860 research outputs found

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool

    Licence Plate Detection Using Machine Learning

    Get PDF
    License Plate Recognition (LPR) is one of the tough tasks in the field of computer vision. Although it has been around for quite a while, there still lies the challenges when we have to deal with; the harsh environmental conditions like snowy, rainfall, windy, low light conditions etc. as well as the condition of the plates which includes the bent, rotated, broken plates. The performance of the recognition and detection frameworks take a significant hit when it is concerned with these conditional effects on the license plate. In this paper, we introduced a model to improve our accuracy based on the Chinese Car Parking Dataset (CCPD) using 2 separate convolutional neural networks. The first CNN will be able to detect the bounding boxes for the license plate detection using Non-Maximus Suppression (NMS) to find the most probable bounding area whereas the second one will take these bounding boxes and use the spatial attenuation network and character recognition model to successfully recognize the license plate. First, we train the CNN to detect the license plates, then use the second CNN to recognize the characters. The overall recognition accuracy was found to be 89% in the CCPD dataset

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras

    System for automatic detection and classification of cars in traffic

    Get PDF
    Objective: To develop a system for automatic detection and classification of cars in traffic in the form of a device for autonomic, real-time car detection, license plate recognition, and car color, model, and make identification from video. Methods: Cars were detected using the You Only Look Once (YOLO) v4 detector. The YOLO output was then used for classification in the next step. Colors were classified using the k-Nearest Neighbors (kNN) algorithm, whereas car models and makes were identified with a single-shot detector (SSD). Finally, license plates were detected using the OpenCV library and Tesseract-based optical character recognition. For the sake of simplicity and speed, the subsystems were run on an embedded Raspberry Pi computer. Results: A camera was mounted on the inside of the windshield to monitor cars in front of the camera. The system processed the cameraā€™s video feed and provided information on the color, license plate, make, and model of the observed car. Knowing the license plate number provides access to details about the car owner, roadworthiness, car or license place reports missing, as well as whether the license plate matches the car. Car details were saved to file and displayed on the screen. The system was tested on real-time images and videos. The accuracies of car detection and car model classification (using 8 classes) in images were 88.5% and 78.5%, respectively. The accuracies of color detection and full license plate recognition were 71.5% and 51.5%, respectively. The system operated at 1 frame per second (1 fps). Conclusion: These results show that running standard machine learning algorithms on low-cost hardware may enable the automatic detection and classification of cars in traffic. However, there is significant room for improvement, primarily in license plate recognition. Accordingly, potential improvements in the future development of the system are proposed

    Practical License Plate Recognition in Unconstrained Surveillance Systems with Adversarial Super-Resolution

    Full text link
    Although most current license plate (LP) recognition applications have been significantly advanced, they are still limited to ideal environments where training data are carefully annotated with constrained scenes. In this paper, we propose a novel license plate recognition method to handle unconstrained real world traffic scenes. To overcome these difficulties, we use adversarial super-resolution (SR), and one-stage character segmentation and recognition. Combined with a deep convolutional network based on VGG-net, our method provides simple but reasonable training procedure. Moreover, we introduce GIST-LP, a challenging LP dataset where image samples are effectively collected from unconstrained surveillance scenes. Experimental results on AOLP and GIST-LP dataset illustrate that our method, without any scene-specific adaptation, outperforms current LP recognition approaches in accuracy and provides visual enhancement in our SR results that are easier to understand than original data.Comment: Accepted at VISAPP, 201

    Unified Chinese License Plate Detection and Recognition with High Efficiency

    Full text link
    Recently, deep learning-based methods have reached an excellent performance on License Plate (LP) detection and recognition tasks. However, it is still challenging to build a robust model for Chinese LPs since there are not enough large and representative datasets. In this work, we propose a new dataset named Chinese Road Plate Dataset (CRPD) that contains multi-objective Chinese LP images as a supplement to the existing public benchmarks. The images are mainly captured with electronic monitoring systems with detailed annotations. To our knowledge, CRPD is the largest public multi-objective Chinese LP dataset with annotations of vertices. With CRPD, a unified detection and recognition network with high efficiency is presented as the baseline. The network is end-to-end trainable with totally real-time inference efficiency (30 fps with 640p). The experiments on several public benchmarks demonstrate that our method has reached competitive performance. The code and dataset will be publicly available at https://github.com/yxgong0/CRPD
    • ā€¦
    corecore