3,014 research outputs found

    Simulation and Planning of a 3D Spray Painting Robotic System

    Get PDF
    Nesta dissertação é proposto um sistema robótico 3D de pintura com spray. Este sistema inclui uma simulação realista do spray com precisão suficiente para imitar pintura com spray real. Também inclui um algoritmo otimizado para geração de caminhos que é capaz de pintar projetos 3D não triviais. A simulação parte de CAD 3D ou peças digitalizadas em 3D e produz um efeito visual realista que permite analisar qualitativamente o produto pintado. Também é apresentada uma métrica de avaliação que pontua trajetória de pintura baseada na espessura, uniformidade, tempo e desperdício de tinta.In this dissertation a 3D spray painting robotic system is proposed. This system has realistic spray simulation with sufficient accuracy to mimic real spray painting. It also includes an optimized algorithm for path generation that is capable of painting non trivial 3D designs. The simulation has 3D CAD or 3D scanned input pieces and produces a realistic visual effect that allows qualitative analyses of the painted product. It is also presented an evaluation metric that scores the painting trajectory based on thickness, uniformity, time and waste of paint

    Generating Optimized Trajectories for Robotic Spray Painting

    Get PDF
    In the manufacturing industry, spray painting is often an important part of the manufacturing process. Especially in the automotive industry, the perceived quality of the final product is closely linked to the exactness and smoothness of the painting process. For complex products or low batch size production, manual spray painting is often used. But in large scale production with a high degree of automation, the painting is usually performed by industrial robots. There is a need to improve and simplify the generation of robot trajectories used in industrial paint booths. A novel method for spray paint optimization is presented, which can be used to smooth out a generated initial trajectory and minimize paint thickness deviations from a target thickness. The smoothed out trajectory is found by solving, using an interior point solver, a continuous non-linear optimization problem. A two-dimensional reference function of the applied paint thickness is selected by fitting a spline function to experimental data. This applicator footprint profile is then projected to the geometry and used as a paint deposition model. After generating an initial trajectory, the position and duration of each trajectory segment are used as optimization variables. The primary goal of the optimization is to obtain a paint applicator trajectory, which would closely match a target paint thickness when executed. The algorithm has been shown to produce satisfactory results on both a simple 2-dimensional test example, and a non-trivial industrial case of painting a tractor fender. The resulting trajectory is also proven feasible to be executed by an industrial robot

    Direct off-line robot programming via a common CAD package

    Get PDF
    This paper focuses on intuitive and direct off-line robot programming from a CAD drawing running on a common 3-D CAD package. It explores the most suitable way to represent robot motion in a CAD drawing, how to automatically extract such motion data from the drawing, make the mapping of data from the virtual (CAD model) to the real environment and the process of automatic generation of robot paths/programs. In summary, this study aims to present a novel CAD-based robot programming system accessible to anyone with basic knowledge of CAD and robotics. Experiments on different manipulation tasks show the effectiveness and versatility of the proposed approach

    Introducing a novel mesh following technique for approximation-free robotic tool path trajectories

    Get PDF
    Modern tools for designing and manufacturing of large components with complex geometries allow more flexible production with reduced cycle times. This is achieved through a combination of traditional subtractive approaches and new additive manufacturing processes. The problem of generating optimum tool-paths to perform specific actions (e.g. part manufacturing or inspection) on curved surface samples, through numerical control machinery or robotic manipulators, will be increasingly encountered. Part variability often precludes using original design CAD data directly for toolpath generation (especially for composite materials), instead surface mapping software is often used to generate tessellated models. However, such models differ from precise analytical models and are often not suitable to be used in current commercially available path-planning software, since they require formats where the geometrical entities are mathematically represented thus introducing approximation errors which propagate into the generated toolpath. This work adopts a fundamentally different approach to such surface mapping and presents a novel Mesh Following Technique (MFT) for the generation of tool-paths directly from tessellated models. The technique does not introduce any approximation and allows smoother and more accurate surface following tool-paths to be generated. The background mathematics to the new MFT algorithm are introduced and the algorithm is validated by testing through an application example. Comparative metrology experiments were undertaken to assess the tracking performance of the MFT algorithms, compared to tool-paths generated through commercial software. It is shown that the MFT tool-paths produced 40% smaller errors and up to 66% lower dispersion around the mean values
    corecore