16 research outputs found

    How Time-Fault Ratio helps in Test Case Prioritization for Regression Testing

    Get PDF
    Regression testing analyzes whether the maintenance of the software has adversely affected its normal functioning. Regression testing is generally performed under the strict time constraints. Due to limited time budget, it is not possible to test the software with all available test cases. Thus, the reordering of the test cases, on the basis of their effectiveness, is always needed. A test prioritization technique, which prioritizes the test cases on the basis of their Time -Fault Ratio (TFR), has been proposed in this paper. The technique tends to maximize the fault detection as the faults are exposed in the ascending order of their detection times. The proposed technique may be used at any stage of software development

    Pair-Wise Time-Aware Test Case Prioritization for Regression Testing

    Get PDF
    After maintenance, software requires regression testing for its validation. Prioritization of test cases for regression testing is required as software is tested under strict time and other constraints. A Pair-wise time-aware Test Case Prioritization (PTCP) technique has been proposed in this paper that determines the effectiveness of a test case on the basis of total number of faults present in software, number of faults detected till time, and the time of execution of different test cases. It selects that test case which determines maximum new faults, not yet detected, within minimum time. Thus prioritized test suite contains those test cases which are effective and tend to minimize repetitive faults detection. Through two comparative studies, it has been observed that with least wastage of time, the proposed technique performed equally well as other two parallel prioritizing techniques, Average Percentage of Fault Detection (APFD) based prioritization, and Optimal Test Case Prioritization (OTCP)

    Satisfying Test Preconditions through Guided Object Selection

    Full text link

    Doctor of Philosophy

    Get PDF
    dissertationIn computer science, functional software testing is a method of ensuring that software gives expected output on specific inputs. Software testing is conducted to ensure desired levels of quality in light of uncertainty resulting from the complexity of software. Most of today's software is written by people and software development is a creative activity. However, due to the complexity of computer systems and software development processes, this activity leads to a mismatch between the expected software functionality and the implemented one. If not addressed in a timely and proper manner, this mismatch can cause serious consequences to users of the software, such as security and privacy breaches, financial loss, and adversarial human health issues. Because of manual effort, software testing is costly. Software testing that is performed without human intervention is automatic software testing and it is one way of addressing the issue. In this work, we build upon and extend several techniques for automatic software testing. The techniques do not require any guidance from the user. Goals that are achieved with the techniques are checking for yet unknown errors, automatically testing object-oriented software, and detecting malicious software. To meet these goals, we explored several techniques and related challenges: automatic test case generation, runtime verification, dynamic symbolic execution, and the type and size of test inputs for efficient detection of malicious software via machine learning. Our work targets software written in the Java programming language, though the techniques are general and applicable to other languages. We performed an extensive evaluation on freely available Java software projects, a flight collision avoidance system, and thousands of applications for the Android operating system. Evaluation results show to what extent dynamic symbolic execution is applicable in testing object-oriented software, they show correctness of the flight system on millions of automatically customized and generated test cases, and they show that simple and relatively small inputs in random testing can lead to effective malicious software detection

    Evotec: Evolving the Best Testing Strategy for Contract-Equipped Programs

    Full text link

    A Divergence-Oriented Approach to Adaptive Random Testing of Java Programs

    Full text link
    Abstract—Adaptive Random Testing (ART) is a testing technique which is based on an observation that a test input usually has the same potential as its neighbors in detection of a specific program defect. ART helps to improve the efficiency of random testing in that test inputs are selected evenly across the input spaces. However, the application of ART to object-oriented programs (e.g., C++ and Java) still faces a strong challenge in that the input spaces of object-oriented programs are usually high dimensional, and therefore an even distribution of test inputs in a space as such is difficult to achieve. In this paper, we propose a divergence-oriented approach to adaptive random testing of Java programs to address this challenge. The essential idea of this approach is to prepare for the tested program a pool of test inputs each of which is of significant difference from the others, and then to use the ART technique to select test inputs from the pool for the tested program. We also develop a tool called ARTGen to support this testing approach, and conduct experiment to test several popular open-source Java packages to assess the effectiveness of the approach. The experimental result shows that our approach can generate test cases with high quality. I

    Mapeo sistemático y estudio de caso sobre técnicas de generación automática de pruebas

    Get PDF
    Incluye bibliografía.El trabajo tiene como objetivo explorar la generación automática de casos de prueba a través de la identificación de las técnicas y sus problemas e investigar su utilidad práctica. Se realizó un mapeo sistemático de la literatura, extendiendo dos trabajos relacionados a la tesis para conocer las técnicas y los problemas investigados. A partir de este mapeo se realizó un estudio de caso con herramientas de generación para evaluar su eficacia con respecto a la detección de defectos

    Enfoque para pruebas de unidad basado en la generación aleatoria de objetos

    Get PDF
    El testing del software es una tarea crucial y a la vez muy desafiante dentro del proceso de desarrollo de software. El testing permite encontrar errores y problemas del software contra la especificación del mismo y cumple un rol fundamental en el aseguramiento de la calidad del producto. Entre los tipos de pruebas que se pueden realizar al software están las pruebas de unidad, carga, integración y funcionales. Cada una de ellas tiene distintos objetivos y son realizadas en diferentes etapas del desarrollo del software. En el primer tipo mencionado, se desarrollan pruebas a componentes individuales de un sistema de software. Los desarrolladores especifican y codifican pruebas para cubrir todos o al menos una parte significativa de los posibles estados/configuraciones del artefacto o unidad de software, para simular el entorno del componente y descubrir la presencia de errores o “bugs”. Dado que escribir todas esas pruebas de forma manual es costoso, las pruebas de unidad son generalmente realizadas de manera ineficiente o simplemente dejadas de lado. El panorama es aún peor, más allá del esfuerzo, porque el testing no puede ser usado para probar la usencia de errores en el software sino tan solo la presencia. Por eso es necesario atacar el problema desde diferentes enfoques, cada uno teniendo sus fortalezas y ventajas. Actualmente existen muchas técnicas para hacer testing de software, y la mayoría de ellos se basan en la automatización de pasos o caminos de ejecución, con valores fijos o componentes predefinidos (hard-coded) o estáticos, y condiciones específicas. En este trabajo de maestría, se presenta un enfoque para pruebas de unidad en la programación orientada a objetos, basado en la generación de objetos de manera aleatoria. El fundamento básico de este enfoque propuesto es el testing aleatorio. También se presenta una herramienta de testing de unidad que usa el enfoque dicho, y que fue escrita en un lenguaje orientado a objetos de amplia difusión. El testing aleatorio (RT o random testing) como técnica no es nueva. Tampoco lo es la generación de valores aleatorios para pruebas. En el paradigma funcional, existe una herramienta muy conocida para probar especificaciones sobre funciones llamada QuickCheck. Ésta herramienta (escrita en Haskell) y sus ideas subyacentes son usadas como fundamento para la herramienta creada en este trabajo. La herramienta desarrollada en el presente trabajo cubre además características que existen en el paradigma orientado a objetos de manera inherente, tales como el estado de los objetos (en particular los objetos singleton con estado), clases abstractas e interfaces, que no existen en la programación funcional pura. La constribución de este trabajo de maestría es la presentación de una forma alternativa de realizar tests de unidad en la programación orientada a objetos (POO), basada en un trabajo anterior para el paradigma funcional. También se presenta una herramienta llamada YAQC4J que plasma esas ideas en un lenguaje orientado a objetos de amplia difusión. Finalmente se incluyen ejemplos que ilustran el uso de la herramienta, y se presenta una comparación con herramientas existentes que han intentado implementar el enfoque de testing. Este trabajo está dirigido a los desarrolladores de software interesados en conocer soluciones alternativas para el testing de unidad, y al mismo tiempo una forma complementaria a las ya existentes para pruebas de unidad.Facultad de Informátic
    corecore