
Sheridan College Sheridan College

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository

Publications and Scholarship Faculty of Applied Science & Technology (FAST)

7-12-2020

How Time-Fault Ratio helps in Test Case Prioritization for How Time-Fault Ratio helps in Test Case Prioritization for

Regression Testing Regression Testing

Prem Parashar
Sheridan College, prem.parashar@sheridancollege.ca

Arvind Kalia
Himachal Pradesh University

Rajesh Bhatia
Deen Bandhu Chotu Ram University

Follow this and additional works at: https://source.sheridancollege.ca/fast_publications

 Part of the Computer Sciences Commons

SOURCE Citation SOURCE Citation
Parashar, Prem; Kalia, Arvind; and Bhatia, Rajesh, "How Time-Fault Ratio helps in Test Case Prioritization
for Regression Testing" (2020). Publications and Scholarship. 71.
https://source.sheridancollege.ca/fast_publications/71

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This Article is brought to you for free and open access by the Faculty of Applied Science & Technology (FAST) at
SOURCE: Sheridan Institutional Repository. It has been accepted for inclusion in Publications and Scholarship by an
authorized administrator of SOURCE: Sheridan Institutional Repository. For more information, please contact
source@sheridancollege.ca.

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/fast_publications
https://source.sheridancollege.ca/fast
https://source.sheridancollege.ca/fast_publications?utm_source=source.sheridancollege.ca%2Ffast_publications%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=source.sheridancollege.ca%2Ffast_publications%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://source.sheridancollege.ca/fast_publications/71?utm_source=source.sheridancollege.ca%2Ffast_publications%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca

25

How Time-Fault Ratio helps in Test Case Parashar et al

How Time-Fault Ratio helps in Test Case
Prioritization for Regression Testing

Prem Parashar(1), Arvind Kalia(2), Rajesh Bhatia(3)
(1) Computer Science Department,Himachal Pradesh University (India)

E-mail: prem.parashar@gmail.com
(2) Computer Science Department,Himachal Pradesh University (India)

E-mail: arvkalia@gmail.com
(3) Computer Science Department, Deen Bandhu Chotu Ram University(India)

E-mail: rbhatiapatiala@gmail.com

ABSTRACT

Regression testing analyzes whether the maintenance of the software has
adversely affected its normal functioning. Regression testing is generally
performed under the strict time constraints. Due to limited time budget, it is not
possible to test the software with all available test cases. Thus, the reordering
of the test cases, on the basis of their effectiveness, is always needed. A test
prioritization technique, which prioritizes the test cases on the basis of their
Time -Fault Ratio (TFR), has been proposed in this paper. The technique
tends to maximize the fault detection as the faults are exposed in the
ascending order of their detection times. The proposed technique may be
used at any stage of software development.

Keywords: Fault detection, maintenance, prioritization, test suite.

1- INTRODUCTION
Software maintenance is one of the most expensive phases of software de-
velopment [1, 8, 11, 12, 13, 15, 18]. After making the required modifications in
the software, regression testing is performed to check that (i) the changes
made in the software do not lead the system to any undesirable behavior [12],
and (ii) the changes made in the software meet with the current requirements
of the system. In order to assure (i), and (ii), software should be tested with
all existing test cases along with the test cases generated for the changed
part of it [4]. Due to limited time and other cost constraints, exhaustive testing
is not feasible in maintenance phase. Therefore, most promising test cases
are selected from test suite for execution. Different researchers have sug-
gested different test case prioritization techniques [10, 15, 18, 20,22]. The
common techniques proposed are, Average Percentage of Fault Detection
(APFD) based prioritization (a test case with highest value of Fault-Exposing
Potential (FEP) is executed first), random test case prioritization (a test case
is selected randomly for execution), optimal test case prioritization (A test
case which determines maximum new faults, is executed first), coverage-
based prioritization etc.
Most of the prioritization techniques mentioned in different studies are based
on FEP of test cases. A test case may detect a number of faults and a fault
may be detected by many test cases. While prioritizing test cases for regres-
sion testing, test cases are arranged in the test suite according to descending

26

Int.J. of Software Engineering, IJSE Vol.5 No.2 July 2012

values of FEP and are executed in the same order. At the time of prioritization,
FEP plays significant role in deciding the priority value of a test case in test
suite. Other prioritization techniques are based on the coverage potential of
test case. A test case that covers maximum functions, classes or code frag-
ments of software program within minimum time has highest priority in the
prioritize test suite. If two or more test cases cover same amount of source
program, a tie is broken and that test case is assigned highest priority which
covers the critical sections of software [6]. The critical nature of any part of the
software is defined by its usability and importance.
The behavior of a fault plays significant role in deciding the order in which it
should be retrieved. A fault may be detected by many test cases. In order to
reveal a fault, that test case should be executed which detects it in minimum
possible time. In proposed technique, the faults are revealed in the ascending
order of their total detection time. In current study, It has been considered that
time constraints are strict if time budget allowed for regression testing is below
half of the time require to execute the test suite designed for it.

2- REVIEW OF LITERATURE

Rothermel [15, 16] et al. compared the results of different test case prioritization
techniques through some experiments. Average Percentage of Fault Detection
(APFD) and total Fault- Exposing Potential (FEP) are the metrics used for
measuring the effectiveness of each technique. From the experimental studies,
it has been observed that most of the times total FEP coverage based test case
prioritization performs better than rest of the techniques mentioned in their stud-
ies, though results could not be generalized due to varying efficacy of tech-
niques from one program to another. Ma, J. and Zhao, J. [6] prioritized test cas-
es on the basis of the structure of program. They proposed TIM (Testing Im-
portance of Module) metrics in the paper. While prioritizing the test cases of a
test suite, both TIM and fault proneness of the test case were taken into con-
sideration. The main advantage of the approach proposed in their paper is that
it can be applied to perform testing of new software or for regression testing.
Since it deals with the importance of a module, the algorithm proposed by them
is more realistic.

Park [10] et al. proposed historical value-based cost-aware test case prioritiza-
tion approach. The main metrics considered in this case is Average Percentage
of Fault detected per cost (APFDc).Their approach mainly depends on the his-
torical value of the test case and the fault severity of the same. The experiment
set up considered in the paper is based on open-source Java software ant. The
cost effectiveness of a test case at any time is estimated on the basis of the
previous value of the test case and the fault severity. The main contribution of
this paper is that it considered the criticality of software.

Mark Sherriff [20, 21] et al. proposed a change impact analysis approach to
prioritize the test cases for regression testing. They used Singular Value De-
composition (SVD) technique to find the structure of the file association clusters
and the amount of variation done by this cluster in the original system after a

27

How Time-Fault Ratio helps in Test Case Parashar et al

change. The U and V matrices provide the information about the file association
clusters and the values from S represent the variation. A large value of variation
signifies that the cluster is problematic and it requires rigorous testing. This
technique has been found quite satisfactory if the level of granularity is file and
provides encouraging results. But nowadays, the granularity level has been
grained to code fragment level [14] for more precise output.

Jiang [3] et al. conducted different empirical studies to find how a subset of test
suite with high priority value helps in fault localization. They considered contin-
uous integration of software for locating fault at early stage of software devel-
opment. By conducting various empirical studies on different types of software it
has been observed that coverage-based strategies for prioritizing test cases of
a test suite outperform the other strategies in continuous integration testing.
For testing software in realistic environment, the field data is leveraged from the
users and software is test with the collected field data [9]. This method is very
effective but due to non-availability of all types of users, data collected is not
sufficient to generalize the results. For business-oriented applications Mei [7] et
al. proposed a technique for prioritization of test cases. This study takes human
behavior of developer into consideration while the software is maintained. Hu-
man behavior is generally underestimated by test case designer. Under such
circumstances, for the successful software maintenance, the implementation of
coverage based test case prioritization techniques for regression testing is re-
quired. The results of an experimental study conducted have shown that by tak-
ing significance of an artifact into consideration, efficacy of regression testing
can be improved.

Engstrom [2] et al. conducted a systematic review of almost all regression test
selection techniques proposed by different researchers from calendar year
1969 to 2006. The review reported 38 studies with 32 techniques. Some tech-
niques evaluated in the review were found software specific. This study gives
the insight view of regression testing selection technique. After studying each
technique mentioned in their review, it has been observed that some of the
techniques are more frequently used where as other are not. It has been further
observed that there is no such test selection technique which fulfills all the re-
quirements of regression testing.

Sebastian [18] et al. conducted a set of empirical studies that aim to find, (i)
the effectiveness of prioritization techniques to specific modified version, (ii) to
find the trade-off between fine granularity prioritization techniques and coarse
granularity prioritization techniques. From the empirical studies based on
various open source utilities, it has been observed that the fault proneness
measure of a test case plays significant role in prioritizing a test case. The
analysis results indicate that version –specific prioritization can improve the
rate of fault detection significantly.

3- RESEARCH METHODOLOGY
Time budget allowed is usually lesser than the time required for execution of all

28

Int.J. of Software Engineering, IJSE Vol.5 No.2 July 2012

test cases of test suite designed for regression testing [22]. Therefore, an effi-
cient technique for selection of test cases from the test suite is required that
detects maximum distinct faults within given time limit. In most of the studies
conducted in this direction, the subset of prioritized test cases contains those
test cases that have high values of FEP [15,16,18,20]. The test cases are ar-
ranged in the descending order of their FEP values and they are executed in
the same order. In this study, FTCP algorithm has been proposed to re-order
the test cases in the test suite such that the fault which has been allotted mini-
mum time for its detection in the test suite is detected first. Let Fi be a fault and
it is detected by test cases Ta,Tb, or Tc. TFR for this fault in the test suite has
been computed as:

(1)

In equation (1), TFTa represents total faults detected by test case Ta, and ta rep-
resents the time of execution of test case Ta. The other factors of equation (1)
can be interpreted in the same manner. TFR (Fi) represents total time allocated
to detect fault Fi in test suite. It has been assumed that if a test case detects m
faults in n seconds, then one fault will be detected in n/m seconds. Further, in
equation (1), that test case will be executed to detect fault Fi, which contributes
minimum to TFR (Fi). A tie is broken arbitrarily. For example, consider a test
suite, Tabulated in Table 1, that contains five test cases which detects five
faults. The faults are tabulated in rows and test cases are presented in col-
umns.

Table 1 Fault and test suite representation for regression testing

 T1 T2 T3 T4 T5
F1 1 0 1 0 1
F2 0 1 0 0 0
F3 1 1 0 1 0
F4 0 0 1 0 1
F5 1 1 0 0 1

Time 4 5 3 2 4

29

How Time-Fault Ratio helps in Test Case Parashar et al

In Table 1, for a particular row, value 1 present in a column indicates that
corresponding fault is detected by the column test case. A fault which has the
least value of TFR is detected first. The test case corresponding to this fault
(which contributes least to TFR) is at the utmost priority of prioritized set of
test cases. The remaining test cases are added to the prioritized set after
ignoring those faults which have already been covered with the identified test
case and repeating the same steps that we have used for the identification of
first test case. FTCP algorithm proposed for prioritization has been shown in
Figure 1.

3-1 FTCP ALGORITHM
Input: A test suite T, set of fault yet to detect (TF), time budget (TB), total num-
ber of faults detected by a test case Ti (tfti), Faults detected by Test case Ti (FTi)
and time taken to execute a test case Ti (ti). Initially TF contains all faults.
Output: Prioritized test suite (P), set of Fault Detected (FD) (initially FD is emp-
ty.)

 while ((TF≠Φ) and ((t≤TB)
 {
 for(i=1;i≤n; i++)
 {
 i) q=∞; (ii) r[0]= ∞;
 for (j=1;j≤n;j++)
 {
 if(f[i,j] ≠ 0)
 {

 r[j]= tftj / tj ;
 if(r[j]<q)

 {
 q=r[j]; (ii) F[i]=Tj;

 }
 TFR[i]=TFR[i]+r[j];
 }//endif
 }//end for
 }end for
 Min=∞;
 for(i=1;i≤n,i++)
 {
 if((TFR[i]> 0 and TFR[i] ≤Min))
 if(t+ti ≤ TB)

 {
 (i) Min=r[i]; (ii) p=i;
 }
 } //end for loop
 t=t+ tp;
 FD=FD U FTp;
 TF=TF-FTp;
 P=P U Tp;
 Make TFR[i]=0; and f[i,j]=0 for all faults detected by Tj and set f[i,j]=0 for test case Tj that is

currently executed }//end while loop

Figure 1 FTCP Algorithm

30

Int.J. of Software Engineering, IJSE Vol.5 No.2 July 2012

In the proposed algorithm, general mathematical set operations (AUB, A∩B,A-
B) have been used for making it simple and understandable.

4- OBJECTIVES

The broad objective of comparative study conducted in this section is to find the
relative effectiveness of proposed technique and two parallel available prioriti-
zation techniques, APFD based [15, 16, 17, 18, 19], and OTCP [15, 16, 17, 18,
19, 22]. The specific objectives of the study are:
1. To analyze that which of prioritization techniques is most fault-prone.
2. To analyze which technique performs better under strict time constraints.

5- ANALYSIS
For the comparative study, a test suite, tabulated in Table 2 has been taken
without any loss of generality.The test suite consists of six test cases, and when
executed, it reveals ten possible seeded faults (inserted randomly). The test
suite is similar to those taken by other researchers [10, 15, 18, 20]. For the
comparision, APFD based and OTCP techniques have been considered as they
also intend to maximize faults detection with the minimum execution of test
cases. Further, TFR ratio and the time Effective Test Case (ETC) for each fault
has been determined with the help of FTCP algorithm and shown in Table 2.

Table 2 Test suits with TFR and ETC

 T1 T2 T3 T4 T5 T6 TFR ETC

F1 1 0 1 1 1 0 3.516667 T1
F2 0 1 1 0 1 1 3.8 T3
F3 1 0 0 1 1 0 2.916667 T1
F4 0 0 0 0 0 1 1.2 T6
F5 0 1 1 0 0 1 2.8 T3
F6 1 0 0 1 0 1 3.116667 T1
F7 0 0 1 0 1 0 1.933333 T3
F8 0 1 0 0 0 1 2.2 T2
F9 0 0 1 1 0 0 1.85 T3
F10 0 1 0 0 0 0 1 T2

Time 2 4 3 5 4 6
Faults 3 4 5 4 4 5

TFR value for fault F10 is less as compared to others. Hence it will be detected
first, and test case executed will be T2. The execution of this test case also re-
veals faults F2, F5, and F8. Therefore, according to FTCP algorithm (Figure 1,
step 28), all non-zero value of these faults, and FTR values will be set to 0. Al-
so, all non-zero values corresponding to test case T2 for any fault will be set to
0. The resultant is represented with the help of Table 3. The gray shells repre-
sent the changed shells. From Table 3, the next values of TFR values are cal-
culated as calculated for Table 2. The iterative tables are generated until either
all faults are detected or total execution time of test cases exceeds time budget
for regression testing.

31

How Time-Fault Ratio helps in Test Case Parashar et al

Table 3 Test suits after First iteration
Colored shells represent the changed values

T1 T2 T3 T4 T5 T6 TFR ETC

F1 1 0 1 1 1 0 3.516667 T1
F2 0 0 0 0 0 0 0

 F3 1 0 0 1 1 0 2.916667 T1
F4 0 0 0 0 0 1 1.2 T6
F5 0 0 0 0 0 0 0

 F6 1 0 0 1 0 1 3.116667 T1
F7 0 0 1 0 1 0 1.933333 T3
F8 0 0 0 0 0 0 0

 F9 0 0 1 1 0 0 1.85 T3
F10 0 0 0 0 0 0 0

 Time 2 4 3 5 4 6
 Faults 3 0 3 4 3 2

The prioritized test suites generated by APFD, OTCP, and FTCP for four time
budgets, i.e. 15 seconds (TB15), 12 seconds (TB12), 9 seconds (TB09), and 6
seconds (TB06) are tabulated in Table 4. Table 5 indicates the total number of
faults detected by different techniques for varying time budgets. From the val-
ues generated, it is clear that proposed technique detects equal or more faults
than APFD based, and OTCP technique. Further, in FTCP, the possibility of
random selection of test cases rarely arises as the value of TFR calculated for
each fault is usually distinct.

Table 4 Test Suites generated by different Prioritization techniques for different time
budgets

Technique TB15 TB12 TB09 TB06

APFD T3,T1,T2,T5 T3,T1,T2 T3,T1,T2 T3,T1
OTCP T3,T6,T2,T1 T3,T6,T1 T3,T6 T3,T1
FTCP T2,T3,T6,T1 T2,T3,T1 T2,T3,T1 T2,T1

Table 5 Total faults detected by different techniques for given time budgets

5-1 FINDINGS
The results of the comparative study are based on an example of test suite tab-
ulated in Table 2. The comparative results indicate that FTCP performs equally
well as APFD based prioritization and OTCP but the number of random selec-

Time
Budget

APFD OTCP FTCP

TB15 9 10 10
TB12 9 9 9
TB09 9 8 9
TB06 7 7 7

32

Int.J. of Software Engineering, IJSE Vol.5 No.2 July 2012

tion of test cases is usually lesser than other techniques [15, 16, 20, 22]. Differ-
ent time budget values have been considered for getting better idea about the
behavior of proposed technique in comparison to APFD, and OTCP technique.

The results of Table 5 are also shown graphically in Figure 2. It is evident from
the graph that FTCP technique is helpful in prioritization of test cases and com-
petes with two other techniques proposed by different researchers. The main
advantage of proposed algorithm is that contrary to APFD, and OTCP, FTCP
algorithm rarely assigns same value to two faults, which reduce the random
selection of test cases.

Figure 2 Relative effectiveness of different prioritization techniques

5-2 THREATS TO VALIDITY
Main threat to validity is that FTCP is based on an assumption that all faults of a
test case take equal time for their detection. The comparative study is based on
an assumed test suite with known faults. In real practice, it is difficult to predict
the behavior of a test case and hence, to generate test cases and their oracles
is always challenging.The generalization of this technique requires some empir-
ical studies of real-world test suites.

6- CONCLUSION AND FUTURE SCOPES

The selection of test cases for the prioritized test suite is challenging task as
their criteria of selection are very complex. In this study, FTCP technique for
the prioritization of test case reorders the test cases on the basis of their

33

How Time-Fault Ratio helps in Test Case Parashar et al

efficacy to detect those faults which have been allocated minimum time for
detection in test suite. From the results of comparative study, it is evident that
proposed technique is an effective time-aware test case prioritization
technique. The FTCP algorithm reduces the possibility of random selection of
test cases while forming prioritized test suite. The current study can be
extended further by experimenting with real test suites generated for open
source software and by considering the business values of the affected
functions in regression testing for the test case prioritization.

REFERENCES

[1] B. Beizer,” Software Testing Techniques”. New Delhi: Dreamtech Press,
2008.

[2] E. Engstrom, M. Skoglund, and P. Runeson, “Empirical evaluation of re-
gression test selection Techniques: A systematic Review”. Proc. of the
Second ACM-IEEE international symposium on Empirical software engi-
neering and measurement, ACM: New York, NY, USA, pp. 22-31, 2008.

[3] B. Jiang, Z. Zhang, T.H. Tse, and T.Y. Chen, “How well do test case priori-
tization techniques support statistical fault localization”. Proc. of the 33rd
Annual IEEE International Computer Software and Applications Confer-
ence (COMPSAC 2009), vol. 1, IEEE Computer Society Press, Los Alami-
tos, CA, pp. 99-106, 2009.

[4] H. Z. Kagdi and J. I. Maletic, “Software- Change Prediction: Estimated +
Actual. Proc. IEEE Workshop on Software Evolvability”, pp. 38-43, 2006.

[5] B. Korel, M. Ali, and Y. Al,“Automated Regression Test Generation.” Proc.
of International Symposium of Software Testing and Analysis, pp. 143-
152, 1998.

[6] Z. Ma and J. Zhao, “Test case prioritization based on analysis of program
structure”. Proc. of Asia-Pecific Software Engineering Conference, pp.
471-478, 2008.

[7] L. Mei, Z. Zhang, W.K. Chan, and T.H. Tse, “Test case prioritization for
regression testing of service –oriented business applications.” Proc. of In-
ternational Conference on World Wide Web, pp. 901-910, New York, April
20-24,2009.

[8] B. Meyer, I. Ciupa, A. Leitner, and L. Liu, “Automatic testing of object-
oriented Software.” Proc. of the 33rd conference on Current Trends in
Theory and Practice of Computer Science, pp. 114-129, 20-26 January,
2007.

[9] A. Orso, T. Apiwattanapong, and M.J. Harrold, “Leveraging field data for
impact Analysis and regression testing”. Proc. of the 9th European soft-
ware engineering conference held jointly with 11th ACM SIGSOFT inter-

34

Int.J. of Software Engineering, IJSE Vol.5 No.2 July 2012

national symposium on Foundations of software engineering, pp. 128 -
137. September, 2003.

[10] H. Park, H. Ryu, and J. Baik, “Historical value –based approach for cost-
cognizant test case prioritization to improve the effectiveness of regres-
sion testing.” Proc. of Second International Conference on Secure System
Integration and Reliability Improvement, pp 39-46,USA 2008.

[11] P. Parashar, A. Kalia, and R. Bhatia,“Change impact analysis: A tool for
effective regression testing”. Proc. of International conference on Infor-
mation Systems and Technology Management(ICISTM 2011), Communi-
cation in Computer and Information Systems Springer-Verlag, vol. 141,
pp. 160-169, 2011.

[12] R. S. Pressman, “Software Engineering: A Practitioner’s approach” New
Delhi: Mc-Graw Hill Higher Education, 2005.

[13] E. Rajina and D. Janzen, “Effects of dependency injection on maintainabil-
ity.” Proc. of International Conference on Software Engineering and Appli-
cations (ICSEA’07),pp 7-12, CA, USA, 2007.

[14] V. Rajlich and M. Patrenko,“Variable granularity for improving precision of
impact Analysis.” Proc. of International Conference on Program Compre-
hension (ICPC’09), pp. 10-19, Vancouver, British Columbia, Canada, May
17-19, 2009.

[15] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,“Test case prioritiza-
tion: An empirical Study”. Proc. of International Conference on Software
Maintance, pp. 179-188 DC, USA, September, 1999.

[16] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Prioritizing test
cases for regression testing.” Proc. of the ACM SIGSOFT International
symposium on Software Testing and Analysis (ISSTA), pp. 102-112, NY,
USA, 2000.

[17] G. Rothermel and M.J. Harrold, “A safe, efficient regression test selection
technique.” ACM Transaction on Software Engineering and Methodology,
pp. 173-210, 1997.

[18] E. Sebastia, A.G. Malishevsky, and G. Rothermel,“Test case prioritization:
A family of empirical studies”. IEEE Transactions on Software Engineer-
ing, vol. 28, no. 2, February 2002.

[19] E. Sebastian, A.G. Malishevsky, and G. Rothermel,“Incorporating varying
test costs and fault severities into test case prioritization.” Proc. of Interna-
tional Conference on Software Engineering, pp. 329-338, 2001.

[20] M. Sherriff, M. Lake, and L. Williams, “Prioritization of regression tests
using singular value decomposition with empirical change records”. Inter-
national Symposium on Software Reliability Engineering, DC, USA, pp.
81-90 Nov. 2007.

35

How Time-Fault Ratio helps in Test Case Parashar et al

[21] M. Sherriff, M. Lake, and L. Williams, “Empirical software change impact
analysis using singular value decomposition.” Proc. of International Con-
ference on Software Testing, pp. 268-277, 2008.

[22] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei,“Time-Aware Test-Case
Prioritization using Integer Linear Programming.” Proc. of International
symposium on Software testing and analysis (ISSTA’09), NY, USA. pp.
213-224, July19-23, 2009.

View publication statsView publication stats

https://www.researchgate.net/publication/266412812

	How Time-Fault Ratio helps in Test Case Prioritization for Regression Testing
	SOURCE Citation

	tmp.1610998929.pdf.iwgHD

