
ENHANCING AUTOMATIC SOFTWARE TESTING

FOR BROADER APPLICABILITY

by

Marko Dimjašević

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2018

Copyright c© Marko Dimjašević 2018

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Marko Dimjašević

has been approved by the following supervisory committee members:

Zvonimir Rakamarić , Chair(s) May 25, 2017
Date Approved

Eric Eide , Member May 25, 2017
Date Approved

Dimitra Giannakopoulou , Member May 25, 2017
Date Approved

Ganesh Gopalakrishnan , Member May 25, 2017
Date Approved

John Regehr , Member May 25, 2017
Date Approved

by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

In computer science, functional software testing is a method of ensuring that software

gives expected output on specific inputs. Software testing is conducted to ensure desired

levels of quality in light of uncertainty resulting from the complexity of software. Most

of today’s software is written by people and software development is a creative activity.

However, due to the complexity of computer systems and software development processes,

this activity leads to a mismatch between the expected software functionality and the

implemented one. If not addressed in a timely and proper manner, this mismatch can cause

serious consequences to users of the software, such as security and privacy breaches, financial

loss, and adversarial human health issues. Because of manual effort, software testing is costly.

Software testing that is performed without human intervention is automatic software testing

and it is one way of addressing the issue.

In this work, we build upon and extend several techniques for automatic software testing.

The techniques do not require any guidance from the user. Goals that are achieved with

the techniques are checking for yet unknown errors, automatically testing object-oriented

software, and detecting malicious software. To meet these goals, we explored several tech-

niques and related challenges: automatic test case generation, runtime verification, dynamic

symbolic execution, and the type and size of test inputs for efficient detection of malicious

software via machine learning.

Our work targets software written in the Java programming language, though the tech-

niques are general and applicable to other languages. We performed an extensive evaluation

on freely available Java software projects, a flight collision avoidance system, and thousands

of applications for the Android operating system. Evaluation results show to what extent

dynamic symbolic execution is applicable in testing object-oriented software, they show

correctness of the flight system on millions of automatically customized and generated test

cases, and they show that simple and relatively small inputs in random testing can lead to

effective malicious software detection.

To Lucija, my love.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTERS

1. INTRODUCTION . 1

2. AUTOMATIC TESTING FOR MALWARE DETECTION 6

2.1 Introduction . 6
2.2 Preliminaries . 9

2.2.1 Problem Definition . 10
2.2.2 System Calls . 10
2.2.3 Automatic Testing . 10
2.2.4 Machine Learning . 11

2.3 Our Approach . 12
2.3.1 Dynamic Analysis Phase . 13
2.3.2 Feature Extraction Phase . 14

2.3.2.1 System Call Frequency Representation . 14
2.3.2.2 System Call Dependency Representation . 14

2.3.3 Machine Learning Phase . 16
2.4 Implementation . 16

2.4.1 Host and Emulator . 17
2.4.1.1 Custom Build of Android SDK . 17

2.4.2 Automatic Testing of Applications . 18
2.4.3 Classification . 19

2.5 Experimental Evaluation . 19
2.5.1 Input Data Set . 20
2.5.2 Configurations . 21
2.5.3 Results . 22

2.5.3.1 Number of System Calls . 22
2.5.3.2 Feature Matrices . 23
2.5.3.3 Cross-validated Comparison of Classifiers . 24
2.5.3.4 Exploring the Effect of Matrix Sparsity . 28
2.5.3.5 Exploring the Effect of Unbalanced Design 28
2.5.3.6 Exploring the Effect of Inputs in Testing . 29

2.5.4 Used Computational Resources . 31
2.6 Related Work . 33

2.6.1 Static Techniques . 33
2.6.2 Dynamic Techniques . 34

2.7 Threats to Validity . 35
2.7.1 Application Crashes . 35
2.7.2 Age of Applications . 35
2.7.3 Hidden Malicious Behavior . 36
2.7.4 Detecting Emulation . 36
2.7.5 System Architecture and Native Code . 36
2.7.6 Randomness in maline . 37

2.8 Conclusions . 37

3. AUTOMATIC TESTING FOR OBJECT-ORIENTED SOFTWARE . . . 39

3.1 Introduction . 39
3.2 Preliminaries . 42

3.2.1 Dynamic Symbolic Execution . 42
3.2.2 Feedback-directed Random Testing . 44
3.2.3 JDart . 45

3.2.3.1 Architecture . 46
3.2.3.2 Executor . 46
3.2.3.3 Explorer . 47
3.2.3.4 JConstraints . 49
3.2.3.5 Handling Native Code . 50

3.3 Hybrid Approach . 51
3.3.1 Generation of Sequences . 52
3.3.2 Selection and Transformation of Sequences . 52
3.3.3 Dynamic Symbolic Execution of Sequences . 53

3.4 Experimental Evaluation . 54
3.4.1 Benchmarks . 55
3.4.2 Experimental Setup . 55
3.4.3 Evaluation of Test Coverage . 57
3.4.4 Profiling Dynamic Symbolic Execution . 58

3.4.4.1 Modes of Operation . 62
3.4.4.2 Robustness and Scalability . 64
3.4.4.3 Amenable Test Cases . 64

3.4.5 Discussion . 65
3.4.5.1 Question 1: Covering More Paths . 65
3.4.5.2 Question 2: Reachable Regions . 65
3.4.5.3 Question 3: Robustness of Symbolic Execution 66

3.5 Related Work . 66
3.5.1 Symbolic Execution . 66
3.5.2 Hybrid Approaches . 67
3.5.3 Random Testing . 68
3.5.4 Benchmarking Infrastructures . 68

3.6 Threats to Validity . 69
3.6.1 Threats to External Validity . 69
3.6.2 Threats to Internal Validity . 69
3.6.3 Threats to Construct Validity . 70

3.7 Conclusion . 70

vi

4. AUTOMATIC TESTING FOR RUNTIME VERIFICATION 71

4.1 Introduction . 71
4.2 Preliminaries . 73

4.2.1 AutoResolver . 74
4.2.2 Lightweight Testing Framework . 74

4.3 Separation Assurance Requirements . 76
4.3.1 Verification Properties . 76
4.3.2 Information Monitors . 77

4.4 Extending AutoResolver’s Testing Framework . 77
4.4.1 Framework Interface . 78
4.4.2 Generating Multiple Conflicts . 79
4.4.3 Generating Secondary Conflicts . 80

4.5 Verification and Monitoring . 82
4.5.1 Monitoring Information and Properties . 82
4.5.2 Monitoring the Monitors . 84

4.6 Experimental Evaluation . 85
4.6.1 Experimental Setup . 86
4.6.2 Property Checking / System Monitoring . 86
4.6.3 Property Coverage . 89

4.7 Lessons Learned . 90
4.8 Related Work . 91
4.9 Conclusion . 93

5. CONCLUSION . 95

REFERENCES . 98

vii

LIST OF FIGURES

2.1 Abstraction layers of the Android architecture . 11

2.2 maline tool flow divided into three phases . 13

2.3 Number of system calls per application . 23

2.4 ROC curves for five-fold cross-validation with RF model 25

2.5 Quality comparison of classifiers . 26

2.6 Quality comparison of classifiers with up- and down-sampling 30

2.7 ROC curves for five-fold cross-validation with RF model and up-sampling 31

3.1 Example Java program for computing absolute difference. 40

3.2 Symbolic execution for program in Figure 3.1. 43

3.3 Architecture of JDart . 47

3.4 Architecture of JConstraints . 49

3.5 Iterative algorithm of JDoop for unit test generation . 51

3.6 Branch coverage for Randoop and JDoop. 60

3.7 Instruction coverage for Randoop and JDoop. 61

4.1 Loss of separation and resolution . 71

4.2 Overview of extended testing framework . 78

4.3 A test case with two pairs of aircraft in two independent conflicts 79

4.4 Loss of separation resolution and introduced secondary conflict 81

LIST OF TABLES

2.1 Standard classifier quality measures . 12

2.2 Nonzero elements in reduced and full feature matrices 24

3.1 Benchmarks from SF110 used in the evaluation . 56

3.2 Branch coverage results in percentage points. 58

3.3 Instruction coverage results in percentage points. 59

3.4 Total number of generated test cases averaged across five runs. 62

3.5 Statistics produced by JDart for single runs of all benchmarks in different
configurations of JDoop. 63

3.6 Symbolic variables introduced by Nhandler in the ’Concrete Native’ mode
in a single run of JDoop-9-1. 64

4.1 Resolution delay and resulting resolution types . 89

ACKNOWLEDGMENTS

This part of the dissertation took the most time among all of the parts for it to be able

to be written. It was a journey that took five years. While the acknowledgments deserve

their own chapter, I will try to keep them short while trying not to forget to thank anyone

that helped with making this dissertation happen.

I thank members of my dissertation committee, Eric Eide, Ganesh Gopalakrishnan, and

John Regehr, for discussions and their guidance in getting to this point. Meeting them to talk

about my progress and asking them for suggestions on what to do next defined directions

of my actions. Furthermore, I am thankful to Falk Howar, Kasper Søe Luckow, Malte

Isberner, Temesghen Kahsai, and Vishwanath Raman for the fruitful research collaborations

we have had. With most of them, I wrote several papers that directly contributed to this

dissertation. I have known Ivo Ugrina since my undergraduate days in Croatia. Even though

I never thought the two of us would write a research paper together because his work is on

statistics, we had a pleasant collaboration and wrote a paper during my doctorate, for

which I am very thankful. Simone Atzeni has been a great friend throughout my PhD and

helped in my personal life many times. It was also very rewarding to work with Simone

on what started as a class project, but that soon grew into a research project. Thanks to

the collaboration with him and Ivo, this dissertation includes work on malware detection

presented in Chapter 2.

I got to know Raimondas Sasnauskas when he joined the School of Computing as a

postdoc. He helped me a lot with the Android platform in one of the projects that is part

of this dissertation. Raimondas has also been a great friend and a person with whom to

discuss various topics, from computer science to politics and culture. The two of us are

hoping to write a research paper together at some point. During my PhD, I made friends

with several members of the software verification group at the university and I am glad to

have known them: Mark Baranowski, Diego Caminha Barbosa de Oliveira, Geof Sawaya,

Sriram Aananthakrishnan, Montgomery Carter, and Alan Humphrey. However, there are

two members of the group whose friendship has been something I appreciate a lot: Shaobo

He and Mohammed Saeed Al-Mahfoudh. With both of them, I spent a lot of time in sport

activities, which we also used as an excuse to discuss numerous topics, which I am thankful

for.

Thanks to Dimitra Giannakopoulou, this dissertation has Chapter 4, which is based

on our joint work on automatic testing and runtime verification. Dimitra was my mentor

during my internship at NASA and it was such a rewarding experience to work with her.

Furthermore, our collaboration was fruitful in other projects, too, and work presented in

Chapter 3 is based on a few more publications the two of us coauthored.

My thesis advisor Zvonimir Rakamarić, obviously, played a major role in this doctorate.

Zvonimir was there to help from the very beginning when I was applying for the PhD

program at the University of Utah. Since then, he provided guidance and expertise in

everything related to research and academia, from my very first steps in reading about and

dissecting other researchers’ work to starting my own lines of research work. In these five

years, we had so many interactions, meetings, and discussions that they are even hard to

count. This led to this point where I am presenting in dissertation form all of the work

that I have done in this time period. I am very thankful to Zvonimir for all of the things

mentioned above and for showing what is it like to do research.

A technical infrastructure that defined my PhD is the Emulab testbed, which I have

used extensively throughout these five years. The infrastructure has been developed and

maintained by the Flux Research Group of the University of Utah and I am thankful to all

members of the group — most of all to Mike Hibler for the countless times he replied to

my emails and provided help — for their quick responses and help with troubleshooting

problems I had with the infrastructure and for being generous in providing additional

hardware resources. I always knew I could count on them to provide a reliable infrastructure

for my research.

The work I have done toward this dissertation was supported by several sources. It

was supported in part by the National Science Foundation’s Division of Computing and

Communication Foundations Grant No. 1421678, by the United States National Aeronautics

and Space Administration (NASA) Ames Research Center, by NASA under Prime Contract

No. NNA10DE60C, by the International Alumni Club of the University of Utah, and by

xi

the Google Summer of Code 2013 program.

Even though temporarily we ended up in distant parts of the world when I moved from

Croatia to the United States for my PhD, friendship with the following friends that I have

known for a long time has not faded: Marko Matosović, Ivan Sokolović, Miroslava Harča,

Marko Šoštarić, and Goran Ljaljić. We have stayed in touch all the time and spent time

together in person on a few occasions when I visited Croatia. Furthermore, two more

long-time friends, Ivan Radiček and Andrej Dundović, have also been in Europe during

this time, although they moved from Croatia to other European countries in pursuit of their

doctoral degrees. They too have been important in my personal life, but also in my academic

life by sharing their experiences in doing science in western Europe.

This dissertation would not have been possible if it were not for my family. With the

help of communication technologies, we have been in touch all the time. Thank you mom

Anica, Marija, Ivana, Snježana, Ivica, Ruža, Ema, Leonardo, Mario, Helena, David, Lana,

Danijel, Dora, Luka, Karlo, Petra, and Ana for countless messages, calls, jokes, and nice

words and moments! You made it so much easier to go through this challenging five-year

journey. I missed you all and I am looking forward to moving back to Croatia so that I can

be at family gatherings in person again, and not only virtually.

I met the love of my life during my PhD. She, along with the rest of my family, has

provided emotional support and encouragement when I needed it most. I am so lucky to

have Lucija, my fiancée, in my life! She has been making a big sacrifice in waiting for me to

return to Croatia and I am relieved this waiting is coming to an end.

In Salt Lake City, May 2017

xii

CHAPTER 1

INTRODUCTION

Since the late twentieth century, we have been witnessing a shift in how society functions

by relying more and more on computing devices. Even though they come in different form

factors and serve different purposes, what is common to all computing devices is that they are

controlled by software. In other words, computing devices are programmed via software to do

certain tasks. Today’s software accomplishes complex tasks such as flying an aircraft. Other

tasks include telecommunication operation, navigation, concert ticket reservation, email

client, and calendar organizer. Without doubt, software has enhanced people’s everyday

lives and work.

Software has to be written and consequently maintained. These two challenging and

creative activities are commonly referred to as software development, which is performed

by people. Software development is carried out by both individuals and small and large

groups, facilitated by existing software tools. To deal with complexity of software, software

developers organize software that they are working on in layers of increasing abstraction.

The lowest layer communicates with hardware and provides services to upper layers by

abstracting away hardware specifics. The highest layers provide users with services such

as video calls. In spite of such organization of software, each layer is still rather complex.

Decades of software development have shown that the complexity of software inevitably leads

to it malfunctioning, which can have serious consequences to its users, including security

and privacy breaches, financial loss, and adverse human health issues.

Because developing software with no unwanted behavior is extremely hard, developers

try to minimize the number of such behaviors and their impact. One viable approach

to addressing this quality challenge is software verification. It consists of writing a formal

specification of what the target software should do and then proving that the implementation

of the target software corresponds to the specification. Proving even a simple specification

2

typically requires much more proof theory knowledge and time than software developers

have, hence this approach is rarely taken.

Another approach is software testing. It is a common approach to finding errors and

unwanted behavior in software and making sure no regressions are introduced. It consists

of providing software with known-in-advance input and checking if it produces expected

output. When an input is found that makes software produce an unexpected output, i.e.,

an error occurs, the software is fixed and the process is repeated. The ideal goal is to cover

all possible inputs to make sure no errors are possible. However, for any nontrivial software

there are far too many inputs to cover in a limited amount of time. Therefore, only some

inputs are tested for.

Software testing is done either completely manually or semi-automatically by having

a domain expert guide a testing tool. When done manually, testers take the role of end

users and use software trying to discover errors, while developers write test cases that cover

particular inputs. In a semi-automatic case, a domain expert specifies what and how to

test such that a testing software tool can perform tasks that are otherwise done manually.

In both cases, software testing turns out to be overwhelmingly time-consuming. Therefore,

there is a need for automatic testing.

There are benefits to testing in an automatic fashion: 1) it reduces time needed for

testing, 2) it can be replayed on different variants of the same software, and 3) it reduces

human error that can happen in testing. Towards automating the testing process, developers

write auxiliary software that tests target software. Such auxiliary software presents the

target software with specific inputs that developers have thought of and decided to test it

on. Nevertheless, that leaves a lot of inputs uncovered, i.e., it leaves a lot of room for inputs

that can make the target software behave unexpectedly. As illustrated earlier, software plays

increasingly more important roles in our lives, yet dominant practices in ensuring desired

software quality are time-consuming and suboptimal.

An extended solution to addressing this quality challenge is to perform automatic soft-

ware testing. There are two parts to automatic testing: 1) generating inputs, and 2) checking

if desired properties hold for generated inputs. To utilize automatic testing, developers have

to formulate properties that software under test should have, encode them in a software

implementation, think of domains over which inputs to be generated should range, and

3

implement generators for inputs. Such testing can reveal misconceptions about desired

software behavior as well as undesired behavior like errors and security threats that are

triggered on inputs that would otherwise be left untested.

In this dissertation, we consider several techniques for automatic software testing and

broaden their applicability. They address the challenge of identifying previously unknown

errors and security threats in software. The techniques are automatic, i.e., they do not

require interaction with the user. In addressing different problems, we investigate several

techniques and related challenges: automatic test case generation, runtime verification,

dynamic symbolic execution, and the type and size of test inputs for efficient detection of

malicious software via machine learning. All of these techniques increase software reliability

and security.

One of the main goals of this work is to make the techniques work at the scale of real-

world software, without impeding the usability of the techniques or having to substantially

instrument the software under analysis. This goal is important if the techniques are to be

applicable to such complex software. All three lines of work required no modification of

the software under analysis. This enables developers of the software to retain their usual

development processes while also providing the benefit of automatically finding errors in the

software.

The scalability goal in some of the techniques was achieved by combining existing

methods in novel ways. In one line of work, we used random testing to dynamically analyze

software executions. For each application considered, we chose a parameterized number

of sampled inputs that served as application execution drivers. These inputs mimicked

user interaction with the application. While each application was executing, we traced its

system calls that occurred due to the provided inputs. Then we repeated this for thousands

of applications, processed each application’s system calls, and used that in machine learning

to gain an insight into what makes an application malicious. Therefore, we used automatic

testing to observe application maliciousness that was automatically modeled via machine

learning techniques.

Similarly, automatic testing of object-oriented software was accomplished by interleav-

ing feedback-directed random testing and dynamic symbolic execution. One of the main

challenges in automatically testing object-oriented software is construction of appropriate

4

objects in the heap memory, which would serve as input to the rest of the program. When

interleaved, the two techniques enabled us to deal with the sheer number of different

executions that dynamic symbolic execution would have to explore on its own otherwise.

With feedback-directed random testing, we first construct multiple execution paths that

created objects and invoked methods on them. Then we applied dynamic symbolic execution

to explore paths that branch off of the constructed paths. Therefore, the interleaving

approach provided us with an ability to sample from inputs and explore execution paths

that they can result in.

In the line of work on verifying at runtime an aircraft separation assurance system, we

verified properties by monitoring test cases during their execution. There we used a novel

approach in generating inputs of interest. Inputs in this line are aircraft trajectories, where

each trajectory is a sequence of points in space and time. It is a four-dimensional space,

where three dimensions are an aircraft’s latitude, longitude, and height position, while the

remaining one is time when an aircraft was at that position. The main challenge there is

to create a property-covering scenario with multiple in-flight aircraft and their trajectories.

Because simply sampling from the input space of multiple trajectories is extremely likely

to give an uninteresting input on which to test and verify properties, an approach that

would find interesting inputs was needed. Our solution was to create somewhat interesting

trajectories first, provide them as input to the system, monitor and learn from executions,

and then create more interesting and complex test cases at runtime.

This dissertation is organized around three lines of work. In the first part of the

dissertation, we analyze how the type and size of inputs in random testing affects malware

detection abilities for a widely used mobile computing operating system. In the second

part, we look at the problem of automatically testing object-oriented software. Our work

addresses the problem by combining feedback-directed random testing and dynamic symbolic

execution. The last part is on runtime verification of a complex real-world software system.

There we consider how runtime monitoring can be interleaved with automatic test case

generation in order to target property coverage. With that said, our thesis statement is the

following:

Automatic software testing can be combined with machine learning, dynamic
symbolic execution, and runtime verification to broaden its applicability.

5

We implemented the techniques for software written in the Java programming language.

The benchmarks on which we evaluated our techniques include dozens of freely available

Java software projects, a flight collision avoidance system, and thousands of applications

for the Android operating system. Such a wide spectrum of benchmarks and their size and

complexity demonstrate the broad applicability of the proposed automatic software testing

techniques. The results of our work show that: 1) simple inputs in random testing can

be used to effectively detect malicious software, 2) for object-oriented software, dynamic

symbolic execution provides additional code coverage on top of feedback-directed random

testing, and 3) the correctness of a flight system can efficiently be tested on millions of

automatically customized and generated test cases.

CHAPTER 2

AUTOMATIC TESTING FOR MALWARE

DETECTION

This chapter is based on work published at the International Workshop on Security And

Privacy Analytics 2016 [DAUR16a] and on the accompanying technical report [DAUR15].1

2.1 Introduction

The global market for mobile devices has exploded in the past several years, and accord-

ing to some estimates, the number of smartphone users alone reached 1.7 billion worldwide in

2014. Android is the most popular mobile platform, holding nearly 85% of the global smart-

phone market share. One of the main advantages of mobile devices such as smartphones is

that they allow for numerous customizations and extensions through installing applications

from public application repositories. The largest of such repositories (e.g., Google Play and

the Apple App Store) have more than one million applications available for download each,

and there are more than 100 billion mobile device applications installed worldwide.

This clearly provides a fertile environment for malicious activities, including the de-

velopment and distribution of malware. A recent study [jun13] estimates that the total

amount of malware across all mobile platforms grew exponentially at the rate of 600%

between 03/2012 and 03/2013. Around 92% of the malware applications found in this

study target Android. In a related study [ris14], similar statistics are reported — the

number of malicious applications in the Google Play store grew around 400% from 2011 to

2013, while at the same time, the percentage of malicious applications removed annually by

Google has dropped from 60% in 2011 to 23% in 2013. Due to the sharp increase in the

total amount of malware, the percentage of removed malware dropped significantly despite

the fact that the absolute number actually increased from roughly 7,000 in 2011 to nearly

1Portions of the published work are reused and reprinted here with permission.

7

10,000 in 2013. Alcatel-Lucent estimates the mobile malware infection rate to be around

0.65%, which means that around 15 million mobile devices are infected with malware, 60%

of which run Android [alc14]. A recent research paper found that the malware infection

rates in Android devices are 0.28% and 0.26%, depending on the chosen malware data

set [TLN+14]. While companies such as Google regularly scan their application repositories

using proprietary tools, this process is often ineffective as the above numbers illustrate.

There are also unofficial, open repositories where often no scanning is performed, partially

because there is a lack of solid freely available solutions and tools. As a consequence,

Android malware detection has been an active area of research in the past several years,

both in industry and academia.

Currently, published approaches can be broadly categorized into manual expert-based

approaches, and automatic static- or dynamic-analysis-based techniques. Expert-based

approaches detect malware by relying on manually specified malware features, such as

requested permissions [ADY13] or application signatures [GZZ+12, FADA14]. These require

significant manual effort by an expert user, are often easy to circumvent by malware writers,

and target existing, specific types of malware, thereby not providing protection from evolving

malicious applications.

Static-analysis-based techniques typically search for similarities to known malware. This

often works well in practice since new malware samples are typically just variations of existing

ones. Several such techniques look for code variations [CGC12, HHW+13], which becomes

ineffective when faced with advanced code obfuscation techniques. Hence, researchers have

been exploring more high-level properties of code that can be extracted statically, such

as call graphs [GYAR13], which make these techniques more resilient to code obfuscation.

Unfortunately, even those approaches can be evaded by leveraging well-known drawbacks of

static analysis. For example, generated call graphs are typically over-approximations, and

hence can be obfuscated by adding many dummy, unreachable function calls. In addition,

native code is hard to analyze statically, and hence malicious behavior can be hidden there.

Dynamic analysis techniques typically run applications in a sandbox environment or on

real devices in order to extract information about the application behavior. The extracted

information is then automatically analyzed for malicious behavior using various techniques,

such as machine learning. Recent techniques is this category often observe application

8

behavior by tracing system calls in a virtualized environment [BBS+10, RFC13, LBK+10].

Both static analysis and dynamic analysis proponents made various claims, often contra-

dicting ones — including claims that are based on questionably designed experiments — on

effectiveness of malware detection based on system calls.

In this chapter, we evaluate existing and propose novel dynamic Android malware

detection techniques based on automatic testing and on tracking of system calls, all of

which we implemented as a free software tool called maline. Our work was initially

inspired by a similar approach proposed for desktop malware detection [PBCK13], albeit

we provide simpler feature encodings and an Android-specific tool flow. We provide several

encodings of behavior fingerprints of applications into features for subsequent classification.

We performed an extensive empirical evaluation on a set of more than 12,000 Android

applications. We analyze how the quality of malware classifiers is affected across several

dimensions, including the choice of an encoding of system calls into features, the relative

sizes of benign and malicious data sets used in experiments, the choice of a classification

algorithm, and the size and type of inputs in automatic testing that drive a dynamic

analysis. Furthermore, we show that the structure of system call sequences observed during

application executions conveys in itself a lot of information about application behaviors. Our

evaluation sheds light on several such aspects, and shows that the proposed combinations

can be effective: our technique yields an overall detection accuracy of 93% with a 5% benign

application classification error. Finally, we provide guidelines for domain experts when

making choices on malware detection tools for Android, such as maline.

Our approach provides several key benefits. By guarding the users at the repository

level, a malicious application is detected early and before it is made publicly available for

installation. This saves scarce energy resources on the devices by delegating the detection

task to a trusted remote party, while at the same time protecting users’ data, privacy, and

payment accounts. System call monitoring is out of reach of malicious applications, i.e.,

they cannot affect the monitoring process. Hence, our analysis that relies on monitoring

system calls happens with higher privileges than those of malicious applications. In addition,

tracking system calls entering the kernel (and not calls at the Java library level) enables us to

capture malicious behavior potentially hidden in native code. Since our approach is based on

coupling an automatic testing-guided dynamic analysis with classification based on machine

9

learning, it is completely automatic. We require no source code, and we capture dynamic

behavior of applications as opposed to their code properties such as call graphs; hence, our

approach is mostly immune to common, simple obfuscation techniques. The advantages of

our approach make it complementary to many existing approaches, such as the ones based

on static analysis.

Our contributions are summarized as follows:

• We show that automatic testing can effectively be applied to as disparate an area as

malware detection for mobile platforms.

• We propose a completely automatic approach to Android malware detection at the

application repository level using automatic testing, system call tracking, and clas-

sification based on machine learning, including a novel heuristics-based encoding of

sequences of system calls into features.

• We implement the approach in a tool called maline, and perform extensive empir-

ical evaluation on more than 12,000 applications. We show that maline effectively

discovers malware with a very low rate of false positives.

• We compare several feature extraction strategies and classifiers. In particular, we

show that the effectiveness of even very simplistic feature choices (e.g., the frequency

of system calls) is comparable to much more heavyweight approaches. Hence, our

results provide a solid baseline and guidance for future research in this area.

• Finally, we contribute 300 GB of data [DAUR16b] generated during this work, for

other researchers, teachers, and the general public to inspect, use, and build upon in

their work. For example, the data were already used in a teaching setting in a class at

the University of Utah where students built machine learning algorithms, which they

compared using our data.

2.2 Preliminaries

In this section, we introduce a problem definition and preliminaries for the problem.

10

2.2.1 Problem Definition

We are provided with a set of Android applications prelabeled as either benign (good-

ware) or malicious (malware). In addition, we assume that each application can be classified

as benign or malicious based on its behavior, i.e., the actions it performs. The goal is to learn

behavioral characteristics of applications to be able to discriminate benign from malicious

ones in a new, yet unlabeled set.

2.2.2 System Calls

A system call is a mechanism for a program to request a service from the underlying

operating system’s kernel. In Android, system calls are created by information flowing

through a multilayered architecture depicted in Figure 2.1. For example, an Android text

messaging application, located at the highest level of the architecture, might receive a user

request to send an SMS message. The request is transformed into a request to the Telephony

Manager service in the Application Framework. Next, the Android runtime receives the

request from the service, and it executes it in the Dalvik Virtual Machine.2 The execution

transforms it into a collection of library calls, which eventually result in multiple system

calls being made to the Linux kernel. One of the system calls will be to sendmsg:

sendmsg(int sockfd, const struct msghdr* msg, unsigned int flags)

The sendmsg function is used to send a message on a socket. The generated sequence of

system calls is a low-level equivalent of the SMS message being sent in the application at the

highest level of abstraction. Information flows in the opposite direction in a similar fashion.

2.2.3 Automatic Testing

In our approach to malware detection, we heavily rely on automatic testing. We use a

form of random automatic testing where pseudo-random events are generated and provided

as inputs to an Android application or the Android system. Android applications are event-

driven; hence, the generated inputs drive the execution of applications. In this way, the

state of an application in its execution is changed based on the provided input. A sequence

2As of Android version 5.0, the Dalvik Virtual Machine was replaced with an application runtime
environment called ART.

11

Applications

Android Framework

Libraries/Runtime

Linux Kernel

Figure 2.1. Abstraction layers of the Android architecture.

of inputs will cause the application to go through a sequence of states. Consequently, this

reflects in a corresponding sequence of system calls that happen between the application

and the Android operating system.

In the testing phase of the malware detection approach, we vary the size and type of

generated inputs, which causes an application to go through different states in its execution.

By varying the inputs, we can drive an application’s execution into different end states. This

lets us observe at the system call level how the behavior of the application changes.

The Android Software Development Kit contains an automatic testing tool called Mon-

key [mon17]. Monkey generates pseudo-random events such as gestures, clicks, touches, as

well as system-level events. We leverage Monkey in the dynamic phase of our approach to

generate input events that drive the execution of an application.

2.2.4 Machine Learning

Our malware detection problem is an instance of a classification problem in machine

learning, and is solved using a classifier algorithm. More specifically, it is an example

of a binary classification problem since it explores connections between the behavior of

an application and its goodware/malware label. The two groups are commonly called a

positive and a negative group. If a positive example (e.g., an application in our case) is

classified into the positive (i.e., respectively, negative) group, we obtained a true positive/TP

(i.e., respectively, false negative/FN). Analogously, we define true negative/TN and false

positive/FP. Table 2.1 gives standard measures of the quality of classification prediction

used in machine learning based on these terms.

Classification is usually conducted through individual measurable properties of a phe-

nomenon being investigated (e.g., the heights of people, their weights, or the number of

12

Table 2.1. Standard classifier quality measures. P (respectively, N) is the number of
positive (respectively, negative) examples.

Measure Formula

accuracy, recognition rate TP+TN
P+N

errorrate, misclassification rate FP+FN
P+N

sensitivity, true positive rate, recall TP
P

specificity, true negative rate TN
N

precision TP
TP+FP

system calls in one run of an Android application). Such properties are called features, and

a set of features of a given object is often represented as a feature vector. Feature vectors

are stored in a feature matrix, where every row represents one feature vector.

Cross-validation is a technique for estimating the performance of a predictive model. If

the validation is five-fold, it means that the input data are split into five disjoint subsets,

where each subset in turn is used as a testing subset. Finally, double five-fold cross-validation

means that the validation was performed for two parameters.

More about machine and statistical learning can be found in related literature [HTF09,

JWH13].

2.3 Our Approach

Our approach is a three-phase analysis, as illustrated in Figure 2.2. The first phase is

a dynamic analysis where we track system calls3 during the execution of an application in

a sandbox environment and record them into a log file. In the second phase, we encode

the generated log files into feature vectors according to several representations we define.

The last phase takes the feature vectors and applies machine learning [HTF09] to learn to

discriminate benign from malicious applications. In both the second and third phase, we

look at multiple techniques, as explained in the remainder of this section.

3A system call is a mechanism for a program to request a service from the underlying operating system’s
kernel. In Android, system calls are created by information flowing through its multilayered architecture,
starting from an application on top; hence, they capture its behavior.

14

system calls in a log file, is a sequence of instances of system calls σ = (q1, q2, . . . , qm), where

qi ∈ S is the ith observed system call in the log file. Such call sequences are passed to the

feature extraction phase.

2.3.2 Feature Extraction Phase

As explained earlier, how features are picked for the feature vector is important for

the machine learning classification task. Therefore, we consider two representations for

generating a feature vector from a system call sequence σ. Our simpler representation is

concerned with how often a system call happens, while our richer representation encodes

information about dependencies between system calls. Both representations ignore system

call information other than their names and sequence numbers (e.g., invocation time, input

and output values), as can be seen from the definition of σ. Once we compute a feature

vector x for every application under analysis according to a chosen representation, we form

a feature matrix by joining the feature vectors such that every row of the matrix corresponds

to one feature vector.

2.3.2.1 System Call Frequency Representation

How often a system call occurs during an execution of an application carries information

about its behavior [BZNT11]. One class of applications might be using a particular system

call more frequently than another class. For example, some applications might be making

considerably more I/O operation system calls than known goodware, indicating that the

increased use of I/O system calls might be a sign of malicious behavior. Our simple system

call frequency representation tries to capture such features. In this representation, every

feature in a feature vector represents the number of occurrences of a system call during an

execution of an application. Given a sequence σ, we define a feature vector x = [x1x2 . . . x|S|],

where xi is equal to the frequency (i.e., the number of occurrences) of system call si in σ. In

the experiments in Section 2.5, we use the system call frequency representation as a baseline

comparison against the richer representation described next.

2.3.2.2 System Call Dependency Representation

Our system call dependency representation was inspired by previous work that has shown

that a program’s behavior can be characterized by dependencies formed through information

15

flow between system calls [FJC+10]. However, we have not been able to find a tool for

Android that would provide us with this information and also scale to analyzing thousands

of applications. Hence, we propose a novel scalable representation that attempts to capture

such dependencies by employing heuristics. As we show in Section 2.5, even though our

representation is simpler than the one based on graph mining and concept analysis from

the original work [FJC+10], it still produces feature vectors that result in highly accurate

malware detection classifiers.

For a pair of system calls qi and qj in a sequence σ, where i < j, we define the distance

between the calls as d(qi, qj) = j−i. We then approximate a potential data flow relationship

between a pair of system calls using the distance between the calls in a sequence (i.e., log file).

For example, if two system calls are adjacent in σ, their distance will be 1. Furthermore,

let wg,h denote the weight of a directed edge (sg, sh) in a system call dependency graph we

generate. The system call dependency graph is a complete digraph with the set of vertices

being the set of all the system call names S, and hence having |S|2 edges. Then, wg,h for a

sequence σ is computed as:

wg,h =

0, if g = h
∑

i<j<k,
qi=sg ,qj=sh

1
d(qi,qj)

, otherwise

where k is the minimal index such that qi = qk and i < k ≤ |σ|. Informally, the closer

the pair is in a sequence, the more it contributes to its edge weight in the graph. Hence,

instead of explicitly observing a data flow between system calls, our representation captures

it implicitly: it is based on a simple observation that the closer a pair of system calls is in

a sequence, the more likely it is that there is a data flow between the pair.

From a sequence σ, we compute weights wg,h for every system call pair (sg, sh) ∈ S2.

For g and h such that wg,h = 0, we still consider edge (sg, sh) to exist, but with a weight

of 0. Since each application is executed only once during our dynamic analysis phase, we

generate one system call dependency graph per application.

We generate a feature vector x of an application by taking edge weights from its system

call dependency graph. For every directed edge (sg, sh), there is a corresponding feature in

x, and hence the dimensionality of x is |S|2. Given a sequence σ, we define a feature vector

x = [x1x2 . . . x|S|2], where xi is equal to wg,h such that i = (g − 1) · |S|+ h. Informally, x is

16

a linearization of the array corresponding to the system call dependency graph.

2.3.3 Machine Learning Phase

We use the generated feature vectors for our applications (i.e., feature matrices) together

with provided malware/goodware labels to build classifiers. We experimented with several

of the most popular and effective classifiers: support vector machines (SVMs), random

forest (RF), LASSO, and ridge regularization [HTF09]. We used the double cross-validation

approach to tune parameters of classifiers.

When a probabilistic classifier is used, a threshold that appropriately tunes the trade-off

between sensitivity and specificity can be studied using receiver operating characteristic

(ROC) curves [HTF09]. Generating ROC curves is especially valuable to the users of

malware detectors such as ours, since they can use them to fine-tune sensitivity vs. specificity

depending on the intended usage. Hence, we generate ROC curves for the most interesting

classifiers.

In our data set, around 33% samples are malware and the rest are goodware. Although

this approach does not generate a perfectly balanced design, it tries to represent the good-

ware population in the best possible manner while still keeping a high percentage of malware

samples and keeping computational costs at a practical level. In addition, we explored

what can be achieved by balancing the design through resampling strategies of up-sampling

(or over-sampling) the minority class and down-sampling (or under-sampling) the majority

class [KJ13] implemented through bootstrapping.

2.4 Implementation

We implemented our approach in a tool called maline, and Figure 2.2 shows its tool

flow. The implementation comes as a free and open reproducible research environment to

foster further evaluation, development, and research in this area.4 Our experience working

on this project suggests that there is a lack of open, stable, and extensible infrastructures

for performing dynamic security analysis of Android. Hence, we have invested significant

effort into developing maline to be an extensive and reproducible research infrastructure

4The maline tool is available from https://github.com/soarlab/maline under the GNU Affero GPLv3
license.

17

enabling execution of easy-to-repeat experiments in the wider domain of Android security.

maline heavily utilizes our own build of the Android Software Development Kit (SDK) and

in Section 2.4.1.1, we discuss specifics we introduced to the SDK. The SDK includes the

Android Emulator, which runs a virtual machine (VM) with the Android operating system.

Every application maline analyzes is installed, executed, and monitored in the VM. The

tool primarily resides on the host machine and relies on the Android Debug Bridge (adb)

to communicate with the VM. The bridge is used, for example, to push and install an

application from the host machine into the VM, to check the VM’s status, and to pull a log

file from the VM to the host machine.

Subsequently, maline generates feature vectors on the host machine and feeds them to

several machine learning libraries we used.

2.4.1 Host and Emulator

maline consists of a number of smaller components. We implemented multiple interfaces

on the host side, ranging from starting and monitoring an experiment with multiple emulator

instances running in parallel to machine-learning differences between applications based on

the processed data obtained from emulator instances. It is the host side that coordinates

and controls all such activities. For example, it creates and starts a pristine installation of

Android in an emulator instance, then installs an application in it, starts the application,

and waits for the application to finish so it can analyze system calls the application has

made during its execution.

We use the emulator, which is built on top of QEMU [Bel05], in the dynamic analysis

phase of our approach (see Figure 2.2). For every application, we create a pristine sandboxed

environment since the emulator enables us to easily create a clean installation of Android.

It is important that each application is executed in a clean and controlled environment to

make sure nothing is left behind from previous executions and to be able to monitor the

execution. Hence, every application’s execution is completely independent of executions of

all the other analyzed applications.

2.4.1.1 Custom Build of Android SDK

In our implementation, we used the Android 4.4.3 KitKat release, which utilizes Android

API version 19. However, we have our own build of the Android system implemented on

18

top of the official source code repositories. The main reason for the custom build is to avoid

bugs we found in the Android SDK throughout multiple releases.

For example, one release had a bug in the Android emulator, making it unable to boot

a virtual machine snapshot. Another release had a problem with the emulator sometimes

becoming unresponsive for hours.

Our build features a modification to the Monkey tool (we describe the tool later) to have

better control over experiments. The default Monkey version injects an event into a system

queue and moves onto the next event right away, without waiting for the queued event to be

executed. However, to make Android more responsive, its developers decided to drop events

from the queue when under heavy load. In our experiments, this would mean that events

that Monkey injects might be discarded, thereby compromising the dynamic analysis of an

application under test. To make sure the Android system does not drop events, we have

slightly modified Monkey so that it waits for each event to be executed before proceeding

to the next event. We made this custom build freely available, and we reference it in the

maline documentation.

2.4.2 Automatic Testing of Applications

In order to scale to thousands of applications, our dynamic analysis phase implements

an automatic application testing and execution process. The process starts with making a

clean copy of our default VM. The copy contains only what is installed by default in a fresh

installation of the Android operating system from the Android Open Source Project. Once

the installation boots, we use adb to send an application from the host machine to the VM

for installation. Next, we start the application and immediately begin tracing system calls

related to the operating system process of the application with the strace tool. The system

calls are recorded into a log file.

We simulate a user interaction with an Android device by injecting both internal and

external events into the emulator. Internal events are sent to the application itself, such

as screen clicks, touches, and gestures. We use the Monkey tool [mon17] as our internal

event generator (see Figure 2.2). It sends a parameterized number of the events to the

application, with a 100 ms pause period between consecutive events if applicable.5 Unlike

5The pause between two consecutive events may not be applicable to actions that are time-dependent,

19

internal events, which are delivered to the application, external events are delivered to the

emulator and include events that come from interacting with an external environment. In

our experiments, for external events, we focus on generating text messages and location

updates only since those are sometimes related to malicious behaviors.

We stop an application execution when all internal events generated by Monkey are

delivered and executed, and then we pull the log file from the VM to the host machine for

parsing. Next, we apply a feature vector representation, either the system call frequency

or dependency representation as explained in Section 2.3. The output is a textual feature

vector file per log file, i.e., per application, listing all the features. Finally, we combine all

the feature vectors into a single matrix where each matrix row corresponds to one feature

vector, i.e., one application.

2.4.3 Classification

Using the feature matrix generated from logs and previously obtained labels denoting

malware/goodware for applications, we proceed with classification. As mentioned in Sec-

tion 2.3.3, we experimented with several classification algorithms: random forest, SVMs,

LASSO, and ridge regression. An implementation of SVMs is based on libSVM [CL11],

while all the other algorithms are implemented in R [r17] using the language’s libraries. The

scripts are heavily parallelized and adjusted to be run on large machines or clusters. For

example, running a random forest model on a feature matrix from a system call dependency

graph sample requires 32 GB of RAM in one instance of five-fold cross-validation.

2.5 Experimental Evaluation

We evaluated maline using a set of 32-core machines with 128 GB of RAM running

Ubuntu 12.04. The machines are part of the Emulab infrastructure [WLS+02]. Our Android

virtual machines running on the computer had full Internet access during experiments. This

network configuration enabled applications under analysis an almost unimpeded access to

whatever websites or resources they needed to access during their execution. Emulab does,

however, employ a firewall blocking most low numbered ports, which prevents a malicious

such as screen tapping. Furthermore, the pause is not to be confused with our modification to the SDK
regarding queued event execution.

20

application from becoming a source of a DoS attack to sites outside of Emulab [emu15]. We

wrote scripts to automatize and parallelize our experiments, without which our extensive

experimental evaluation would not be possible. In our experiments, we use only the x86

Android emulator; the resulting x86 system call set S has 360 system calls.

As explained in Section 2.4.1.1, we have our own custom build of the Android SDK

version 4.4.3. Because the Android Open Source Project depends on more than four hundred

Git repositories, we needed to track the exact versions of the repositories used and the

changes we make on top of them. In the maline documentation, we record the exact

versions of each repository used in the custom build of the SDK.

2.5.1 Input Data Set

We obtained applications from Google Play as goodware. Our malware applications are

from the Drebin data set [ASH+14]. Before we could start using the collected applications

in maline, we performed a filtering step. First, we removed applications that we failed

to consistently install in the Android emulator. For example, even though every Android

application is supposed to be self-contained, some applications had dependencies that were

not installed at the time; we do not include such applications in our final data set. Second,

we removed all applications that we could not consistently start or that would crash imme-

diately. For example, unlike typical Android applications, application widgets are miniature

application views that do not have an Android Activity, and hence they cannot be started

from a launch menu. Third, with some applications, one of the first two reasons was observed

only in some experiment setups. In order to have consistent data sets across all experiments,

we filter out such applications as well.

Applications in the Drebin data set were collected between August 2010 and October

2012, and filtered by their collectors to contain only malicious applications. To the best of

our knowledge, this is the latest verified malware application collection of its size used

by researchers. The malicious applications come from more than 20 malware families

and are classified based on how an application is installed and activated, or based on

its malicious payloads [ZJ12]. The aim of our work is not to explore the specifics of the

families; many other researchers have done that. Therefore, in our experiments, we make no

distinction between malicious applications coming from different families. Rather, our focus

21

is on: 1) leveraging random automatic testing to generate input events for an application,

2) analyzing how stimulation in terms of events sent to an application and to the emulator

affects the overall ability to discriminate benign from malicious applications, 3) comparing

feature vector models based on system calls, and 4) evaluating multiple machine learning

algorithms on the models. The Drebin data set contains 5560 malware applications; after

filtering, our malicious data set contains 4289 of those applications.

We obtained the benign data set in February 2014 by utilizing a crawler tool. The tool

searched Google Play for free-of-charge applications in all usage categories (e.g., communica-

tion, education, music and audio, and business), and randomly collected applications with at

least 50,000 downloads. To get a good representation of the Google Play applications while

keeping the ratio of malware/goodware at the acceptable level for future classification (see

Section 2.3.3), we decided to download roughly three times more goodware applications

than the number of obtained malware applications. We stopped our crawler at 12789

collected Google Play applications; after filtering, our benign data set contains 8371 of

those applications. Note that we make an assumption that applications with more than

50,000 downloads are benign. The extent to which the assumption is reasonable has a direct

impact on the classification results presented in this section. The list of all applications in

our input set is published in the maline repository.

2.5.2 Configurations

We explore the effects of several parameters in our experiments, where one combination

of parameters represents a configuration. The first parameter is the number of events we

inject with Monkey into the emulator during an application execution. The number of events

is directly related to the length of the execution. We insert 1, 500, 1000, 2000, and 5000

events. It takes 229 seconds on average (with a standard deviation of 106 seconds) for an

application execution with 500 events and 823 (±816) seconds with 5000 events.6 That

includes the time needed to make a copy of a clean virtual machine, boot it, install the

application, run it, and download log files from the virtual machine to the host machine.

The second parameter is a flag indicating if a benign background activity should be

6The standard deviations are relatively large compared to the averages because some applications crash
in the middle of their execution. We take recorded system call traces up to that point as their final execution
traces.

22

present while executing the applications in the emulator. The activity consists of inserting

SMS text messages and location updates into the emulator as part of automatic testing. We

experiment with the activity only in the 500-Monkey-event experiments, while for all the

other experiments, we include no background activity.

It is important to ensure that consistent sequences of events are generated across the

executions of all applications. As Monkey generates pseudo-random events, we use the same

pseudo-random seed value in all experiments.

We made all data we obtained for different configurations publicly available [DAUR16b].

2.5.3 Results

In this section, we give results of applying random automatic testing on Android appli-

cations with the goal of learning a binary classifier that discriminates benign from malicious

applications. More precisely, we look at how the type and size of inputs generated by the

Monkey testing tool affects the classifier as seen through four quality measures. Finally, we

discuss trade offs both in testing and machine learning that have several different impacts

on the quality of the classifier.

2.5.3.1 Number of System Calls

As a result of automatic testing by randomly generating and sending events to an

application and the Android operating system to drive the execution, numerous system calls

are invoked. The total number of system calls an application makes during its execution

directly impacts its feature vector, and potentially the amount of information it carries.

Hence, we identified the number of injected events, which directly influences the number

of system calls made, as an important metric to track. Figure 2.3 shows the number of

system calls observed per application in the dynamic analysis phase of an experiment. It

can be seen from the figure that the number of system calls observed per application in the

dynamic analysis phase of an experiment varies greatly. For example, in an experiment with

500 Monkey events, it ranges from 0 (for applications that failed to install and are filtered

out) to over a million. Applications with no system calls are applications that failed to be

installed and they were not considered in later analyses. Most of the applications in this

experiment had less than 100,000 system calls in total.

23

Applications

S
y
s
te

m
 c

a
ll

c
o

u
n

t

0
2

0
0

0
0

0
4

0
0

0
0

0
6

0
0

0
0

0
8

0
0

0
0

0
1

0
0

0
0

0
0

1
2

0
0

0
0

0

Figure 2.3. Number of system calls per application. The number is for one emulator
instance for an experiment with 500 Monkey events and the background activity.

2.5.3.2 Feature Matrices

After the dynamic analysis and feature extraction phases (see Section 2.3) on our filtered

input set, maline generated 12 different feature matrices. The matrices are based on

varying experiment configurations including: five event counts (1, 500, 1000, 2000, 5000),

two system call representations (frequency- and dependency-graph-based), and the inclusion

of an optional benign activity (SMS messages and location updates) for experiments with

500 events. We refer to these matrices with Xsize
rep , where rep ∈ {freq , graph} is the used

representation of system calls and size is the number of generated events. In addition, we

denote an experiment with the benign background activity using an asterisk.

The obtained feature matrices generated according to the system call dependency rep-

resentation exhibited high sparsity. This is not surprising since the number of possible

system call pairs is 129600. Hence, all columns without a nonzero element were removed

from our matrices. Table 2.2 gives the dimensions of the obtained matrices and their level

24

Table 2.2. Nonzero elements in reduced and full feature matrices. Zero-columns are
removed in the reduced matrices.

Full matrix Reduced matrix Full matrix Reduced matrix

Type non-zero (%) columns non-zero (%) Type non-zero (%) columns non-zero (%)

X
1

freq 12.48 118 38.09 X
1

graph 1.49 11112 17.42

X
500

freq∗ 17.30 137 45.48 X
500

graph∗ 3.01 15101 25.83

X
500

freq 17.27 138 45.07 X
500

graph 2.99 15170 25.61

X
1000

freq 17.65 136 46.72 X
1000

graph 3.12 15137 26.79

X
2000

freq 17.93 138 46.79 X
2000

graph 3.22 15299 27.34

X
5000

freq 18.15 136 48.04 X
5000

graph 3.29 15262 27.97

of sparsity. Both the frequency and dependency feature vector representations resulted in

different nonzero elements in the feature matrices. However, those differences could have

only a small or no impact on the quality of classification, i.e., it might be enough only

to observe if something happened, which could be encoded as zero/one values. Therefore,

we have created additional feature matrices by replacing all nonzero elements with ones to

measure the effect of feature matrix structure on the classification.

2.5.3.3 Cross-validated Comparison of Classifiers

Reduced feature matrices (just feature matrices from now on) and goodware/malware

labels are inputs to the classification algorithms we used: support vector machines (SVMs),

random forest (RF), LASSO, and ridge regression. As described in Section 2.5.1, the Google

Play applications were marked as benign and the applications from the Drebin data set as

malicious. To avoid possible overfitting, we employed double five-fold cross-validation on

the set of applications to tune parameters and test models. To enable comparison between

different classifiers for different feature matrices, the same folds were used in the model

building among different classification models. Prior to building the final model on the

whole training set, all classifiers were first tuned by appropriate model selection techniques

to derive the best parameters. The SVMs algorithm in particular required an expensive

tuning phase: for each data set, we had to run five-fold cross-validation to find the best

C and γ parameters. Hence, we had to run the training and testing phases with different

values of C (ranging from 2−5 to 215) and γ (ranging from 2−15 to 23) for the five different

25

splits of training and testing sets. In the end, the best kernel to use with SVMs is the Radial

Basis Function (RBF) kernel.

The built classifiers were then validated on the appropriate test sets. If a positive example

(i.e., malware in our case) is classified into the positive (respectively, negative) group, we

obtained a true positive (respectively, false negative). Analogously, we define true negative

and false positive. The threshold for probabilistic classifiers was set at the usual level of

0.5. Since changes to this threshold can have an effect on the sensitivity and the specificity

of classifiers, a usual representation of the effect of these changes is given by ROC curves

(see Figure 2.4). Here we give ROC curves only for the random forest models (as the best

classifiers judging from the cross-validated comparison) with the largest number of events

(5000).

Figure 2.5 shows measures of the quality of prediction (see Table 2.1) averaged between

cross-validation folds for different classifiers. As it can be seen from the figure, one-event

quality measures are consistently the worst in each category, often with a large margin.

In other words, the size of input to automatic random testing impacts the quality of

resulting classifiers. This indicates the importance of leveraging the information gathered

while driving an application using random events. Moreover, the random forest algorithm

consistently outperforms all other algorithms across the four quality measures. In the

Frequency

Specificity (%)

S
e

n
s
it
iv

it
y
 (

%
)

8
0

8
5

9
0

9
5

1
0

0

100 80

Graph

Specificity (%)

S
e

n
s
it
iv

it
y
 (

%
)

8
0

8
5

9
0

9
5

1
0

0

100 80

Figure 2.4. ROC curves for five-fold cross-validation with RF model. The curves are for
the X5000

freq and X5000
graph feature matrices.

26

R

rf

L

svm
R

rf

L

svm
R

rf

L

svm
R

rf

L

svm
R

rf

L

svm

R

rf

L
svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R
rf

Lsvm

R

rf

Lsvm

R
rf

L

svm R
rf

L
svm

R
rf

L

svm

R

rf

L
svm

R

rf

L
svm R

rf

L
svm R

rf

L
svm

R

rf

L

svm
R

rf

L
svm

R

rf

Lsvm

R
rf

L
svm R

rf

L
svm Rrf

L
svm Rrf

L
svm Rrf

L
svm

Rrf

L

svm

R
rf

L

svm
R
rf

L

svm
R
rf

L

svm R
rf

L

svm R
rf

L

svm

R

rf

L

svm

R
rf

L

svm
R
rf

L

svm
Rrf

L

svm

Rrf

L

svm
Rrf

L

svm

R
rf

Lsvm

Rrf
L

svm

Rrf
L

svm

RrfL

svm

Rrf
L

svm

RrfL

svm

R

rf

Lsvm

R

rf

L

svm
R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm
R

rf
L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm R

rf
L

svm R
rf

L

svm

R

rf

L

svm

R
rf

L

svm

R
rf

L

svm

R
rf

L

svm

R

rf

L
svm R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

Lsvm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm
R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L
svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

L

svm

R

rf

Lsvm

Accuracy

Sensitivity

Specificity

Precision

75

80

85

90

40

50

60

70

80

90

80

85

90

95

65

70

75

80

85

90

5
0
0
0
w

o
−

g

2
0
0
0
w

o
−

g

1
0
0
0
w

o
−

g

5
0
0
w

o
−

g

5
0
0
w

it
h
−

g

1
w

o
−

g

5
0
0
0
w

o
−

f

2
0
0
0
w

o
−

f

1
0
0
0
w

o
−

f

5
0
0
w

o
−

f

5
0
0
w

it
h
−

f

1
w

o
−

f

5
0
0
0
w

o
−

g
−

o

2
0
0
0
w

o
−

g
−

o

1
0
0
0
w

o
−

g
−

o

5
0
0
w

o
−

g
−

o

5
0
0
w

it
h
−

g
−

o

1
w

o
−

g
−

o

5
0
0
0
w

o
−

f−
o

2
0
0
0
w

o
−

f−
o

1
0
0
0
w

o
−

f−
o

5
0
0
w

o
−

f−
o

5
0
0
w

it
h
−

f−
o

1
w

o
−

f−
o

Figure 2.5. Quality comparison of classifiers. All values are averaged on five cross-valida-
tion folds. Values on the vertical axis represent percentages. Labels on the horizontal axis
are written in the short form where wo stands for without background, with stands for with
background, f stands for freq, g stands for graph, o at the end denotes that 0-1 matrices were
used, and the numbers at the beginning represent numbers of generated events. 1-event
experiments have a 2.3% smaller set of applications.

27

cases where feature matrices have weights instead of zeros and ones, it shows only small

variations across all the input parameters. Other classification algorithms perform better

on the dependency than on the frequency representation. Of the other algorithms, SVM is

most affected by the presence of the background activity, giving worse sensitivity with the

presence, but on the other hand, giving better specificity.

When the weights in the feature matrices are replaced with zeros and ones, thereby

focusing on the structure of the features and not their values, all the algorithms consistently

perform better on the dependency than on the frequency feature vector representation.

However, a comparison within an algorithm based on the weights or zeros and ones in the

feature matrices is not straightforward. Random forest clearly performs worse when zeros

and ones are used in the feature matrices. LASSO and ridge typically perform better in all

the quality measures apart from sensitivity for the zeros and ones compared to the weights.

If a domain expert in Android malware detection is considering to apply maline in

practice, there are several practical lessons to be learned from Figure 2.5. The expert can

choose to use only the random forest algorithm as it consistently provides the best outcomes

across all the quality measures. To reduce the time needed to dynamically analyze an

application, it suffices to provide 500 Monkey events as an application execution driver.

Furthermore, the presence of the benign background activity does not make much of a

difference. On the other hand, to provide few execution-driving events to an application

does not suffice. Finally, if the time needed to learn a classifier is crucial and more important

than sensitivity, the expert can choose the frequency feature vector representation since it

yields almost as good results as the dependency representation, but with far smaller feature

vectors.

Figure 2.4 shows that there is not much variability between five different folds from the

cross-validation of the best-performing algorithm, namely random forest. This indicates a

high stability of the random forest model on the input data set regardless of the choice of

training and test sets. It is up to the domain expert to make the trade-off choice in tuning

a classifier towards either high sensitivity or specificity. The choice is directly related to the

cost of having false positives, the benefits of having more true positives, etc. For example,

the domain expert may choose the dependency graph feature vector representation and fix

the desired specificity level to 95%; from the graph ROC curve in Figure 2.4, it follows that

28

the sensitivity level would be around 93%.

2.5.3.4 Exploring the Effect of Matrix Sparsity

Sparsity of feature matrices can sometimes lead to overfitting. Although we significantly

reduce the sparsity with the removal of columns with all zeros, this just removes non-

informative features and sparsity is still relatively high (25% for graph representations).

To be sure that the effect seen in the cross-validation comparison is real, we performed

additional exploration by adopting the idea of permutation tests [OG10].

Due to prohibitively high computational costs, we used only one classification model

to explore the effect of sparsity. We chose the random forest classifier, since it gave the

best results on the cross-validation comparison and the 5000-event matrices. Prior to

building a classifier, we permuted application labels. As before, in this exploration of matrix

sparsity, we applied five-fold cross-validation on permuted labels, thus obtaining quality of

prediction on the permuted sample. This procedure was repeated 1000 times. Average

accuracies of the obtained classifiers were compared to the accuracy of the RF model from

Figure 2.5 and they were all significantly lower: the best was at 83% for the system call

dependency representation. Although 1000 simulations is not much in permutation models,

this exploration reduced the probability of accidentally obtaining high-quality results just

because of sparsity.

2.5.3.5 Exploring the Effect of Unbalanced Design

Since the number of malware applications in our input set is half the number of goodware,

we have an unbalanced design. Hence, we employed down/up-sampling through bootstrap-

ping to explore if we could get better results using balanced designs (i.e., where the number

of malware and goodware applications is the same). Here, we used only the RF classifier to

keep computational costs feasible.

Up- and down-sampling exhibited the same effect on the quality of prediction for all

feature matrices: it increased sensitivity at the cost of decreased specificity. This comes as

no surprise since we have equated the number of malware and goodware applications, thereby

giving larger weights to malware applications in the model built compared to the situation

before. However, the overall accuracy for models with down-sampling was lower than for

the unbalanced model, while for models with up-sampling, it was higher (up to 96.5% for

29

accuracy with a 98% sensitivity and 95% specificity). To explore the stability of results under

down- and up-sampling, these methods were repeated 10 times. The standard deviation of

accuracies between repeats (on the percentage scale) was 0.302. For a comparison of random

forest classifiers with up- and down-sampling, consult Figure 2.6. The figure provides a

comparison of random forest classifiers with up- and down-sampling, while Figure 2.7 shows

ROC curves for a random forest classifier with up-sampling.

2.5.3.6 Exploring the Effect of Inputs in Testing

As explained in Section 2.3.1, in the dynamic analysis phase of the approach, we use

random automatic testing to drive application execution. In general, the type and size

of inputs in automatic testing affects the outcome in testing, or in our case, the observed

behavior of applications under test. The generated and used inputs in testing have a direct

influence on the system calls that happen between an application and the Android operating

system, which in turn reflects on feature vectors for machine learning, and finally on the

overall quality of binary classifiers for malware detection. The type and size of inputs that

we used in evaluating our malware detectors is explained in Section 2.5.2.

Based on the results for four quality measures of machine learning binary classifiers as

given in Section 2.5.3.3, we can observe the following with regard to the effect of the type

and size of inputs for random automatic testing on the overall quality of malware detection

rates. For background activity, which we included only in the case of configurations with

500 Monkey events in order to keep the computation time tractable, there was almost no

influence on the quality of the classifiers except for those built with the SVMs algorithm.

This background activity, which comprises text messages and location updates, is therefore

much less important than internal events generated by Monkey.

When it comes to the size of inputs, i.e., the number of pseudo-random events that

Monkey generated and fed to an application under test, we show that, for example, one

event only is not sufficient to build high-quality classifiers. On the other hand, the overall

quality of built classifiers varies little as we vary the number of Monkey events between

500 and 5000 (see Figure 2.5 and Figure 2.6). This suggests that there is a threshold in

terms of the number of Monkey-generated events for learning the behavior of applications.

Finally, these insights can provide guidance to malware detection experts in configuring their

30

rf rf rf rf rf

rf

rf rf rf rf rf

rf

rf rf rf rf rf

rf rf rf rf rf rf

rf

rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u
rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u
rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u
rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u
rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u

rf−d

rf−u

rf−d

rf−u

rf−d

rf−u

rf−d

rf−u

rf rf rf rf rf

rf

rf rf rf rf rf

rf

rf rf rf rf rf

rf rf rf rf rf rf

rf

rf−d
rf−u

rf−d
rf−u

rf−d
rf−u

rf−d
rf−u

rf−d
rf−u

rf−drf−u
rf−d
rf−u

rf−d
rf−u

rf−d
rf−u

rf−drf−u
rf−d
rf−u

rf−d
rf−u

rf−d
rf−u

rf−drf−u
rf−d
rf−u

rf−d
rf−u

rf−d
rf−u

rf−drf−u
rf−d
rf−u

rf−d
rf−u

rf−d

rf−u

rf−d
rf−urf−d

rf−u

rf−d

rf−u

rf rf rf rf rf rf rf rf rf rf rf
rf rf rf rf rf rf rf rf rf rf rf rf rfrf−d

rf−u

rf−drf−u

rf−d

rf−u

rf−d

rf−urf−d
rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−urf−d
rf−u

rf−d
rf−u

rf−d
rf−u

rf−d

rf−urf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−urf−d
rf−u

rf−d
rf−u

rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u

rf rf rf rf rf
rf

rf rf rf rf rf

rf rf rf rf rf rf
rf

rf rf rf rf rf

rf

rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−urf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−urf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−urf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−urf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u

rf−d

rf−u

rf−d
rf−u

rf−d

rf−u

rf−d

rf−u

Accuracy

Sensitivity

Specificity

Precision

84

88

92

96

70

80

90

80

85

90

95

80

85

90

95

5
0
0
0
w

o
−

g

2
0
0
0
w

o
−

g

1
0
0
0
w

o
−

g

5
0
0
w

o
−

g

5
0
0
w

it
h
−

g

1
w

o
−

g

5
0
0
0
w

o
−

f

2
0
0
0
w

o
−

f

1
0
0
0
w

o
−

f

5
0
0
w

o
−

f

5
0
0
w

it
h
−

f

1
w

o
−

f

5
0
0
0
w

o
−

g
−

o

2
0
0
0
w

o
−

g
−

o

1
0
0
0
w

o
−

g
−

o

5
0
0
w

o
−

g
−

o

5
0
0
w

it
h
−

g
−

o

1
w

o
−

g
−

o

5
0
0
0
w

o
−

f−
o

2
0
0
0
w

o
−

f−
o

1
0
0
0
w

o
−

f−
o

5
0
0
w

o
−

f−
o

5
0
0
w

it
h
−

f−
o

1
w

o
−

f−
o

Figure 2.6. Quality comparison of classifiers with up- and down-sampling. All values are
averaged on 5 cross-validation folds. Labels on the x axis are written in the short form
where wo stands for without background, with stands for with background, f stands for freq,
g stands for graph, o at the end denotes that 0-1 matrices were used, and the numbers
at the beginning represent number of events used. In the names of classifiers, -u denotes
up-sampling while -d denotes down-sampling.

31

Frequency

Specificity (%)

S
e
n
s
it
iv

it
y
 (

%
)

8
0

8
5

9
0

9
5

1
0
0

100 80

Graph

Specificity (%)

S
e
n
s
it
iv

it
y
 (

%
)

8
0

8
5

9
0

9
5

1
0
0

100 80

Figure 2.7. ROC curves for five-fold cross-validation with RF model and up-sampling. The
curves are for the X5000

freq and X5000
graph feature matrices with up-sampling.

malware detection systems.

2.5.4 Used Computational Resources

Here we present the scale of used computational resources needed to carry out as thorough

and extensive experiments as demonstrated in this chapter. It can be seen that a lot of

resources had to be allocated toward such experiments to be able to draw strong conclusions

about our approach to malware detection. We employed up to nine 32-core (with hyper-

threading up to 64 threads) 128 GB RAM Emulab testbed machines in parallel to reduce

the wall-clock time needed to perform the experiments. Not all tasks were executed under

the same load, thereby utilizing the available resources to different extents at different stages

of the evaluation. We also report memory and disk usage.

The dynamic analysis and feature extraction phases together took around 12 days,

typically using over 100 GB of RAM. Executing them on a single-core machine with the same

CPU clock speed would have taken about a year. All machine learning techniques, including

their training, testing, and evaluation, took around six days; without the parallelization, it

would have been more than five years. Simulations for permuted labels took six days to

finish and they would have taken almost three years if executed on the single-core machine.

To sum up, the total single-core CPU time for all the experiments is approximately nine

years, while by heavily parallelizing our experiments, we managed to finish them in less than

32

a month.

The classifiers, including cross-validation, took about five days, which would have been

about 50 days. The longest part were the simulations based on permutations.

The first intensive part was running Android emulators and performing the dynamic

analysis of applications executing in the emulators. Each virtual machine in an emulator

instance would require more than 3 GB of memory to run. Because we had 128 GB RAM

computers at hand, we determined 30 instances of Android emulators can execute in parallel

on a single testbed computer. Typical usage would be over 100 GB of memory at a given

moment. If parallelization had not been employed, it would have taken almost one year of

sequential execution on a single computer to analyze applications according to 10 execution

combinations of input parameters.

Building a random forest classifier (as described in Section 2.5.3.3) for representation with

the system call dependency graph takes around half an hour on 48 cores while for frequency

representation, it takes around two minutes. In total, that makes around 48×(2×5+30×5) =

7680 minutes or five days and eight hours of CPU time (if one core is used). Using down-

sampling takes about 20% less time than for the full model while up-sampling takes around

50% more time. Therefore, if classifiers were to be built on only one core, it would take

around 10 days for the cross-validated build of random forest models.

Simulations based on permutations do the same calculations (in permuted labels) as

the cross-validated random forest so it takes around the same time to finish. Since we did

1000 simulations, using the average times from the previous paragraph, the duration of the

calculations were around 1000× 48× (30 + 2) = 1, 536, 000 minutes or around 2.9 years of

CPU time (if one core is used).

Ridge regression took around one hour per five-fold cross-validation on 48 cores while

LASSO regression took around 20 minutes. Building random forest, LASSO and ridge

classifiers took around five hours, and it would have taken 29 days if executed sequentially

on the single-core computer.

The heaviest part of running the SVMs classification against the five different data sets

was the parameters selection. Given the resources availability, for each data set, we could

run 64 instances of training and find the best parameters in a reasonable amount of time.

It took 20 hours to analyze each one of the five data sets containing data about the system

33

calls frequency and 40 hours to analyze the same number of data sets with the dependency

calls graph data. Since we ran the experiments in five different machines, the total time

was about 60 hours. If we did not have the opportunity to parallelize the experiments using

different machines and several cores, running all the experiments sequentially, it would have

taken a total of about 600 hours, which would be 25 days of uninterrupted computation.

The total disk usage is also significant. The Android SDK sources, analyzed applications,

and generated data during the analyses resulted in 5 TB of disk usage in total.

2.6 Related Work

There is a large body of research on malware detection in contexts other than An-

droid (e.g., [PBCK13, FJC+10, RTWH11, ZJS+11, LBK+10, CAM+08, PMRB09, KCK+09,

SDTC+16, JAS14]). While our work was originally inspired by some of these approaches, we

primarily focus in this section on more closely related work on Android malware detection.

Ever since Android has become popular, there has been an increasing body of research on

detecting malicious Android applications, and we split that research into static and dynamic

analysis techniques.

2.6.1 Static Techniques

Static techniques are typically based on source code or binary analyses that search for

malicious patterns (e.g., [FADA14, WROR14]). For example, static approaches include

analyzing permission requests for application installation [ADY13, GTGZ14, FHE+12],

control flow [LKM+13, LSM14], signature-based detection [GZZ+12, FADA14], and static

taint-analysis [ARF+14].

Stowaway [FCH+11] is a tool that detects over-privilege requests during the applica-

tion install time. Enck et al. [EOMC11] study popular applications by decompiling them

back into their source code and then searching for unsafe coding security issues. Yang et

al. [YXA+15] propose AppContext, a static program analysis approach to classify benign

and malicious applications. AppContext classifies applications using machine learning based

on the contexts that trigger security-sensitive behaviors. It builds a call graph from an

application binary and after different transformations, it extracts the context factors via

information flow analysis. It is then able to obtain the features for the machine learning

34

algorithms from the extracted context. In the paper, 202 malicious and 633 benign ap-

plications from the Google Play store are analyzed. AppContext correctly identifies 192

malicious applications with an 87.7% accuracy. Gascon et al. [GYAR13] also use call graphs

to detect malware. Once they extract function call graphs from Android applications, they

apply a linear-time graph kernel in order to map call graphs to features. These features are

given as input to SVMs to distinguish between benign and malicious applications. They

conducted experiments on 135,792 benign and 12,158 malware applications, detecting 89%

of the malware with a 1% false positive rate.

2.6.2 Dynamic Techniques

Dynamic analysis techniques consist of running applications in a sandbox environment or

on real devices in order to gather information about the application behavior. Dynamic taint

analysis [EGC+10, YY12] and behavior-based detection [DMSS12, BZNT11] are examples of

dynamic approaches. Our approach analyzes Android applications dynamically and captures

their behavior based on the execution pattern of system calls. Some existing works follow

similar approaches.

Dini et al. [DMSS12] propose a framework MADAM for Android malware detection,

which monitors applications at the kernel and user level. MADAM detects system calls

at the kernel level and user activity/idleness at the user level to capture the application

behavior. Their extremely preliminary and limited results, considering only 50 goodware and

two malware applications, show a 100% detection accuracy. Crowdroid [BZNT11] is another

behavior-based Android malware detector that uses system calls and machine learning. As

opposed to our approach, Crowdroid collects information about system calls through a

community of users. A lightweight application, installed in the users’ devices, monitors the

system calls (frequency) of running applications and sends them to a centralized server,

which performs classification. Crowdroid was evaluated on a limited number of goodware

applications and only two malware applications, obtaining detection accuracies of 100% for

one and 85% for the other.

Rieck et al. [RTWH11] propose another framework for automatic Windows malware de-

tection that leverages applications behavior and machine learning. The proposed framework

analyzes each application and maps its monitored behavior (through system call tracing)

35

to feature vectors that can be used in both clustering and classification techniques. The

framework groups system calls based on their functionality, thereby forming a hierarchical

structure for their feature vector representation. By alternating clustering and classification,

the framework can incrementally analyze thousands of applications on a daily basis and

identify novel and known classes of malware. Known malware classes are identified first.

Then, the obtained information about known malware classes combined with unidentified

application behavior reports is clustered for discovery of new malware classes. Their exper-

imental results show an F-measure of 96%, while our computed F-measure is 91%.

2.7 Threats to Validity

There are multiple ways in which validity of this work could be compromised. We address

them here.

2.7.1 Application Crashes

We observed applications crashing while performing our experiments, which could bias

our empirical results. This might impact conclusions we draw about what kind of behavior

is learned with machine learning. In particular, it could be that one behavior group crashes

more often; hence, we would be learning to discriminate a more-crashing from a less-crashing

group of applications, and not goodware from malware. A crash in general happens due to

an application ending up in a program state not foreseen by its developer, resulting in a

non-regular application termination. We used the Monkey tool in the experiments to drive

applications in their executions. Given that Monkey generates sequences of pseudo-random

input events, it is to be expected that it can drive an application into a state that does not

handle certain kinds of events, causing a crash. Depending on an experiment, we observed

from 29% to 49% applications crash, which could bias our empirical results. However, the

crash rate of goodware and malware applications is roughly the same. Therefore, application

crashes do not bring in a classification bias.

2.7.2 Age of Applications

Our goodware data set comprises applications downloaded in 2014, while our malware

applications are from 2010 – 2012. Because the Android operating system’s API evolved

from 2010 to 2014, it could mean our approach learns differences between APIs, and not

36

differences between benign and malicious behaviors. Unfortunately, we could not obtain

older versions of applications from Google Play as it hosts only the most recent versions.

In addition, to the best of our knowledge, a more recent malware data set does not exist.

Hence, we manually downloaded 2010 – 2012 releases of 92 applications from F-Droid [fdr15],

an Android application repository offering multiple releases of free software applications; we

assumed the applications to be benign. We classified them using maline, and we obtained

specificity of around 88%. Compared to the specificities from Figure 2.5, which were typically

around 96%, this might indicate that maline performs API difference learning to some

extent. However, a comparison with a much bigger set of the same applications across

different releases would need to be performed to draw strong conclusions. This suggests that

the difference in age of applications used in our experiments does not create a considerable

bias.

2.7.3 Hidden Malicious Behavior

Malicious behavior may occasionally be hidden and triggered only under very specific

circumstances. As our approach is based on random testing, we might miss such hard-to-

reach behaviors, which could affect our ability to detect such application as malicious. Such

malware is not common though, and ultimately, we consistently obtain sensitivity of 87%

and more using maline.

2.7.4 Detecting Emulation

As noted in previous work [JZAH14, PMRB09, CAM+08], malware could potentially

detect it is running in an emulator and alter its behavior accordingly. maline does not

address this issue directly. However, an application trying to detect that it is being executed

in an emulator triggers numerous system calls, which likely leaves a specific signature that

can be detected by maline. We consistently obtain sensitivity of 87% and more using

maline. If we are to assume that all the remaining malware went undetected only due

to its capability of detecting the emulator and consequently changing its behavior without

leaving the system call signature, it is at most 13% of the malware in our experiments that

successfully disguise as goodware. Finally, Chen et al. [CAM+08] show that less than 4% of

the malware in their experiments changes its behavior in a virtualized environment.

37

2.7.5 System Architecture and Native Code

While the majority of Android-powered devices are ARM-based, maline uses an x86-

based Android emulator for performance reasons. Few Android applications — less than 5%

according to Zhou et al. [ZWZJ12] — contain native libraries typically compiled for multiple

platforms, including x86, and hence they can be executed with maline. Nonetheless,

the ARM and x86 system architectures have different system calls: with the x86-based

and ARM-based emulator, we observed applications utilizing 360 and 209 different system

calls, respectively. Our initial implementation of maline was ARM-based, and switching to

an x86-based implementation yielded roughly the same classification results in preliminary

experiments, while it greatly improved performance.

2.7.6 Randomness in maline

In maline we used only one seed value for Monkey’s pseudo-random number generator; it

is possible the outcome of our experiments would have been different if another seed value was

used. However, as the seed value has to be used consistently within an experiment consisting

of thousands of applications, it is highly unlikely the difference would be significant.

2.8 Conclusions

In this chapter, we presented a free software reproducible research environment maline

for dynamic-analysis-based malware detection in Android. Our approach is based on lever-

aging random automatic testing to generate events that drive an application execution in

Android, observing system calls that occur during the execution, encoding the system calls

into features for machine learning, and finally building binary classifiers that discriminate

benign from malicious applications. We presented an extensive empirical evaluation of

our novel system call encoding into a feature vector representation against a well-known

frequency representation across several dimensions. The novel encoding shows better quality

than the frequency representation. Our evaluation provides numerous insights into the

structure of application executions, the impact of different machine learning techniques, and

the type and size of inputs to automatic testing in dynamic analyses, serving as a guide for

future research. To facilitate further and reproducible research, we made our data freely

available.

38

In this work, we showed how the type and size of inputs in automatic testing affect the

quality measures of built binary classifiers. Background activity such as text messages and

location updates usually have negligible influence, except for classifiers built with the SVMs

algorithm. Therefore, for almost all classifiers, internal events sent directly to applications

under test had the defining impact. In terms of the size of inputs, very few inputs are not

enough to build good classifiers. However, the difference in the quality measures between

a few hundred and a few thousand random events in automatic testing is very small. This

shows that efficient malware detection can be achieved with a relatively short amount of

time spent in automatic random testing of applications under consideration.

CHAPTER 3

AUTOMATIC TESTING FOR OBJECT-

ORIENTED SOFTWARE

This chapter is based on several publications [Dim13, DGH+14, DR13, LDG+16].1

3.1 Introduction

Software developers heavily rely on testing for improving the quality of their software.

There are good reasons for adopting this practice. First, as opposed to more heavyweight

techniques such as static analysis, testing is easy to deploy and understand, and most

developers are familiar with software testing processes and tools. Second, testing is scalable

(i.e., millions of tests can be executed within hours even on large programs) and precise (i.e.,

it does not generate false alarms that impede developers’ productivity). Third, while testing

cannot prove the absence of bugs, there is ample evidence that testing does find important

bugs that are fixed by developers. Despite these advantages, testing is not a silver bullet

since crafting good tests is a time-consuming and costly process, and even then, achieving

high coverage and catching all defects using testing can be challenging. Naturally, there has

been a great deal of research on alleviating these problems by developing techniques that

aim to improve the automation and effectiveness (in terms of achieved coverage and defects

found) of software testing.

Random testing is the most basic and straightforward approach to automating software

testing. Typically, it completely automatically generates and executes millions of test cases

within hours, and quickly covers many statements/branches of the software under test

(SUT). However, a drawback of random testing is that, depending on the characteristics

of the SUT, the achieved coverage plateaus due to unlikely execution paths. Figure 3.1 gives

our motivating example Java program that illustrates this point. To apply random testing

1Portions of the published work are reused and reprinted here with permission.

40

public class Absolute {

private int x;

public Absolute(int x) {

this.x = x;

}

public int difference(int y) {

int out;

if (x > y) out = x - y;

else out = y - x;

assert out > 0;

return out;

}

@Test public void testAbsolute() {

Absolute abs = new Absolute(10);

abs.difference(0);

}

}

Figure 3.1. Example Java program for computing absolute difference. It consists of class
Absolute and its method difference that computes the absolute difference between field
x and input parameter y. It also checks whether the computed difference is greater than 0.
In addition, we include a simple unit test for this class and method.

on the example, we generate the following randomized unit test:

public void testAbsolute() {

Absolute abs = new Absolute(random());

abs.difference(random());

}

Clearly, it is trivial to execute this simple unit test many times, each time with a new

pair of random numbers being generated. It is unlikely, however, that executing it would

generate inputs that violate the assertion swiftly since that requires for the two inputs to

be equal; moreover, the achieved code coverage would plateau. A quick analysis of the

code reveals that covering the assertion amounts to solving a simple logical constraint over

inputs of the form X ≤ Y ∧ Y − X ≤ 0 (see Section 3.2.1). This observation is the basis

for dynamic symbolic execution, which leverages automatic constraint solvers to compute

test inputs that cover such hard-to-cover branches. For example, the JDart [LDG+16]

dynamic symbolic execution tool when run on method testAbsolute generates test cases

covering all branches in less than a second, thereby triggering an assertion violation. A

paper on JDart [LDG+16] also shows that the tool improves coverage over random testing

for a class of numerically intensive SUTs. In general, symbolic testing-based methods excel

in automatically generating test inputs over primitive numeric data types, and have hence

41

been successfully applied as either system-level (e.g., SAGE [GLM12], KLEE [CDE08]) or

method-level (e.g., JDart [LDG+16], JCute [SA06]) test generators.

Generating unit tests for object-oriented software poses an additional challenge: instead

of taking just primitive types as input, methods in object-oriented software require a rich

heap structure of class objects to be generated. We can observe this even in the simple

unit test given in Figure 3.1. Here, testing of method difference requires an object of

type Absolute to be first created and initialized, and in turn, difference is invoked on it.

While several approaches have been proposed that automatically generate symbolic heap

structures [KPV03], logical encoding of such structures results in more complex constraints

that put an additional burden on constraint solvers; hence, these approaches have not yet

seen wider adoption on large SUTs. On the other hand, generating heap structures by

randomly creating sequences of constructor+method invocations was shown to be effective,

in particular when advanced search- and feedback-directed algorithms are employed (e.g.,

EvoSuite [FA11], Randoop [PLEB07]). It is then natural to attempt to combine the two

approaches by using random testing to perform global/macro exploration (by generating

heap structures using sequences of constructor+method invocations at the level of classes)

and dynamic symbolic execution to perform local/micro exploration (by generating inputs

of primitive types using constraint solvers at the level of methods). In this chapter, we

describe, implement, and empirically evaluate such a hybrid approach.

Our hybrid approach combines feedback-directed unit testing with dynamic symbolic

execution. We leverage feedback-directed unit testing to generate method sequences that

create heap structures and drive a SUT into interesting global (i.e., macro) states. We

feed the generated sequences to a dynamic symbolic execution engine to compute inputs of

primitive types that drive the SUT into interesting local (i.e., micro) states. We implemented

this approach in a tool named JDoop, which combines the feedback-directed unit testing

tool Randoop [PLEB07] with our dynamic symbolic execution engine JDart [LDG+16].

Given that such a combination has not been thoroughly empirically studied in the past, we

also assess the merits of this approach through a large-scale empirical evaluation.

Our main contributions are as follows:

• We developed JDoop, a hybrid tool that combines feedback-directed unit testing

with dynamic symbolic execution to be able to experiment with large-scale automatic

42

testing of object-oriented software.

• We implemented a distributed benchmarking infrastructure for running experiments

in isolation on a cluster of machines. This allows us to execute large-scale experiments

that ensure statistical significance, and also advances the reproducibility of our results.

• We performed an extensive empirical evaluation and comparison between random (our

baseline) and hybrid testing approaches in the context of automatic testing of object-

oriented software.

• We identified several open research questions during our evaluation, performed ad-

ditional targeted experiments to obtain answers to these questions, and provided

guidelines for future research efforts in this area.

3.2 Preliminaries

In this section, we introduce dynamic symbolic execution, feedback-directed random

testing, and explain how in particular we implemented dynamic symbolic execution in a

modular testing framework called JDart.

3.2.1 Dynamic Symbolic Execution

Dynamic symbolic execution [GKS05, SMA05, CDE08] is a program analysis technique

that executes a program with concrete and symbolic inputs at the same time. It systemati-

cally collects constraints over the symbolic program inputs as it is exploring program paths,

thereby representing program behaviors as algebraic expressions over symbolic values. The

program effects can thus be expressed as a function of such expressions.

Dynamic symbolic execution maintains, in addition to the concrete state defined by

the concrete program semantics, the symbolic state, which is a tuple containing symbolic

values of program variables, a path condition, and a program counter. A path condition

is a conjunction of symbolic expressions over the symbolic inputs that characterizes an

execution path through the program. It is generated by accumulating (symbolic) conditions

encountered along the execution path, so that concrete data values that satisfy it can be

used to drive its concrete execution. Such values are typically computed using automatic

43

constraint solvers. Path conditions are stored as a symbolic execution tree that characterizes

all the paths exercised as part of the symbolic analysis.

In dynamic symbolic execution, the symbolic execution tree is built by repeatedly aug-

menting it with new paths that are obtained from unexplored branches in the tree. This

is done by employing an exploration strategy such as depth-first, breadth-first, or random.

A constraint solver is used to obtain a valuation for a yet-unexplored branch by feeding

it the corresponding path condition. The new valuation drives a new iteration of dynamic

symbolic execution that augments the symbolic execution tree with a new path.

Figure 3.1 gives a simple Java program that we use to illustrate how dynamic symbolic

execution works. Note that the provided unit test does not fail when executed. However,

the assertion can in fact be violated when x and y are equal, and we describe next how

dynamic symbolic execution generates such inputs. First, we treat field x and parameter y

as symbolic inputs. Their values, as well as all decisions involving them, are recorded during

execution as symbolic constraints. We use X and Y to represent the symbolic inputs. The

resulting symbolic execution tree is shown in Figure 3.2.

In the initial state, the path condition PC is True. The algorithm then proceeds with the

first concrete execution that uses the initial provided concrete inputs x = 10 and y = 0. The

if-condition in method difference involves symbolic values that are recorded in the path

condition. Since x > y and variable out = 10, the assertion in the unit test is not violated

x : X, y : Y
PC : True

x : X, y : Y
PC : X > Y

x : X, y : Y
OUT : X − Y

PC : X > Y

x : X, y : Y
OUT : X − Y

PC : X > Y

∧X − Y > 0

Path 1 (OK)

X − Y > 0

x : X, y : Y
OUT : X − Y

PC : X > Y

∧X − Y ≤ 0

UNSAT

X − Y ≤ 0

X > Y

x : X, y : Y
PC : X ≤ Y

x : X, y : Y
OUT : Y −X

PC : X ≤ Y

x : X, y : Y
OUT : Y −X

PC : X ≤ Y

∧ Y −X > 0

Path 2 (OK)

Y −X > 0

x : X, y : Y
OUT : Y −X

PC : X ≤ Y

∧ Y −X ≤ 0

Path 3 (ERROR)

Y −X ≤ 0

X ≤ Y

Figure 3.2. Symbolic execution for program in Figure 3.1. The tree characterizes the paths
exercised by dynamic symbolic execution of the example program.

44

and its condition is similarly recorded in the path condition. Then, the execution terminates

(Path 1). To drive the next iteration, the algorithm uses a constraint solver to try to compute

concrete values for exploring a yet-unexplored branch: the false branch of the condition in

the assertion. This path is represented by the path condition X > Y ∧X − Y ≤ 0, which is

unsatisfiable, and hence this path is not feasible.

The algorithm moves to the next unexplored branch: the false branch of the if-condition

with path condition X ≤ Y . Let us assume that a solver will return the satisfying assignment

x = 5 and y = 10. A new iteration of dynamic symbolic execution is driven by these

concrete values, resulting in Path 2 being exercised (still no assertion violation). The final

unexplored branch is the false branch of the condition in the assertion represented by the

path condition X ≤ Y ∧ Y −X ≤ 0. Indeed this constraint is satisfiable whenever X = Y ,

which leads to an assertion violation. Since there are no other unexplored branches left in

the symbolic execution tree, the algorithm terminates.

3.2.2 Feedback-directed Random Testing

A simple approach to automatic unit testing of object-oriented software is to completely

randomly generate sequences of constructor+method invocations together with the respec-

tive concrete input values. However, this typically results in a large overhead since numerous

sequences get generated with invalid prefixes that lead to violations of common implicit class

or method requirements (e.g., passing a null reference to a method that expects an allocated

object). Moreover, such sequences cause trivial, uninteresting exceptions to be thrown early,

thereby preventing deep exploration of the SUT state space. Hence, instead of generating

unit tests blindly and in a completely random fashion, useful feedback can be gathered from

previous test executions to direct the creation of new unit tests. In this way, unit tests

that execute long sequences of method calls to completion (i.e., without exceptions being

thrown) can be generated. This approach is known as feedback-directed random testing and

is implemented in the Randoop automatic unit testing tool [PLEB07].

Randoop uses information from previous test executions to direct further unit test

generation. The tool maintains two sets of constructor+method invocation sequences: those

that do not violate a property (i.e., property-preserving) and those that do (i.e., property-

violating). The property-violating set is initially empty, while the property-preserving set

45

is initialized with an empty sequence. The default property that is maintained is unit test

termination without any errors or exceptions being thrown. Randoop randomly selects

a public method (or a constructor) and an existing sequence from the property-preserving

set. It then appends the invocation of the selected constructor/method to the end of the

sequence, and replaces primitive type arguments with concrete values that are randomly

selected from a preset pool of values. Next, the newly generated sequences are compared

against all previously generated sequences in the two sets. If it already exists, it is simply

dropped and random selection is repeated. Otherwise, Randoop executes the new sequence

and checks for property violations. If no properties are violated, the sequence is added to

the property-preserving set and otherwise to the property-violating set. Randoop keeps on

extending property-preserving sequences until it reaches a provided time limit.

3.2.3 JDart

JDart [LDG+16] is a modular testing framework for Java bytecode. The development

of JDart has been driven by two main goals. The primary goal has been to build a symbolic

analysis framework that is robust enough to handle large-scale software. More precisely, it

has to be able to execute such software without crashing, deal with long execution paths,

and deal with complex path constraints. The second objective has been to build a modular

and extensible platform that can be used for the implementation and evaluation of novel

ideas in dynamic symbolic execution. For example, JDart is designed to allow for easy

replacement of all of its components: it supports different and combined constraint solvers,

and several exploration strategies and termination criteria.

A run of JDart produces the following outputs: a symbolic execution tree that contains

all explored paths along with performance statistics, vectors of concrete input values that

execute paths in the tree, and a suite of test cases (based on these vectors). A symbolic

execution tree contains leaf nodes for all explored paths (similar to the one shown in

Figure 3.2) and additionally leaves for branches off of executed paths that could not be

explored because the constraint solver was not able to produce adequate concrete values or

because native code is not executed in the fully symbolic mode (JDart’s ability to handle

native code is described later in Section 3.2.3.5). For these leaves, JDart does not generate

input vectors or test cases.

46

This section presents the modular architecture of JDart, and discusses its main compo-

nents and extension points. It subsequently describes existing uses of JDart as a component

within other research tools.

3.2.3.1 Architecture

JDart executes Java bytecode programs and performs a dynamic symbolic analysis of

specific methods in these programs. JDart also implements extensions that build upon the

results of a dynamic symbolic analysis:

• the Method Summarizer generates fully abstract method summaries for analyzed

methods [HGR13]. In the generated summaries, class members, input parameters,

and return values are represented symbolically.

• the Test Suite Generator generates JUnit test suites that exercise all the program

paths found by JDart.

During dynamic symbolic analysis, JDart uses two main components to iteratively

execute the target method, to record and explore symbolic constraints, and to find new

concrete data values for new executions. Figure 3.3 depicts the modular architecture of

JDart. The basis (at the bottom) is the Executor that executes the analyzed program

and records symbolic constraints on data values. The Explorer organizes recorded path

constraints into a constraints tree, and decides which paths to explore next, and when to stop

exploration. The Explorer uses the JConstraints library to integrate different constraint

solvers that can be used in finding concrete data values for symbolic paths constraints.

3.2.3.2 Executor

The Executor runs a target program and executes an analyzed method with different

concrete data values for method parameters and class members. It also records symbolic

constraints for program paths. Currently, JDart uses the software model checker Java

PathFinder (JPF) for the execution of Java bytecode programs. JDart uses two extension

points of JPF.

JPF uses “choice generators” to mark points in an execution to which JPF backtracks

during state-space exploration. JDart implements a choice generator that sets parameter

values of methods that are analyzed symbolically.

47

Figure 3.3. Architecture of JDart.

JPF extensions can provide custom bytecode implementations. JDart adds a concolic

semantics to Java bytecodes that performs concrete and symbolic operations simultaneously,

while also recording path constraints. Using JPF as an execution platform has several

benefits. For example, it is easy to integrate other JPF extensions in JDart (e.g., for

dealing with native code or for recording test coverage). Moreover, JPF provides easy

access to all objects on the heap and stack, as well as to many other elements and facilities

of the JVM such as stack frames and class loading.

On the other hand, using a full-blown custom JVM for execution has an impact on

performance. This is one of the reasons why we keep the integration with JPF as loose as

possible. JDart has been built with the possibility of changing the underlying execution

environment from JPF to a more lightweight instrumentation, as is the case with other

similar frameworks such as PEX [TH08] and JCute [SA06].

3.2.3.3 Explorer

The Explorer organizes recorded constraints into a constraints tree, decides which parts

of the program to explore, when to stop, and how to solve constraints for new concrete input

48

values.

To hit interesting paths quickly when analyzing large systems, JDart needs to be able

to limit exploration to certain paths. JDart provides configuration options for specifying

multiple predetermined vectors of input values from which the exploration is started. It also

allows the user to specify assumptions on input parameters as symbolic constraints. JDart

will then only explore a method within the limits of those assumptions. Finally, JDart

can be configured to skip exploration of certain parts of a program (e.g., after entering a

specific method), i.e., it supports suspending and resuming exploration based on method

level descriptions. It also allows skipping exploration after a certain depth.

For large-scale systems, it is often not possible to run an analysis to completion. Some-

times, one may even be interested in recording the path constraint of a single program

path (cf., e.g., SAGE [GLM12]). JDart provides an interface for implementing customized

termination strategies. So far, it provides strategies for terminating after a fixed number of

paths and for terminating after a fixed amount of time.

In sizable software systems, path constraints can be long and complex and may contain

trigonometric or elementary functions, which may challenge any advanced constraint solver.

JDart provides several techniques and extension points for optimizing constraints, e.g., by

simplifying path constraints, adding auxiliary definitions and/or interpolation that help solv-

ing complex constraints, and using specialized solvers. These capabilities are based on the

constraint processing features of JConstraints. For example, trigonometric constraints

can be approximated by interpolation before being submitted to a solver (e.g., Z3) or they

can be delegated directly to a solver that supports them (e.g., Coral).

Floating-point constraints can also be processed before submitting them to a solver. For

the Z3 integration, floating-point constraints are approximated using reals. Despite this not

being sound (due to the limited-precision effects), it might frequently yield valuable solutions

even when they are incorrect. In general, JDart always analyzes the solutions and tests

whether they can be used to exercise previously unexplored paths.

Finally, it is important to guarantee that progress is made when only approximating the

Java semantics in solvers. Sometimes, a solution suggested by a solver may not be valid for a

Java bytecode program. JDart tests all valuations produced by a decision procedure on the

constraints tree by evaluating path constraints with the Java semantics before re-executing

49

the program with a new valuation. (This is a feature provided by JConstraints, as

explained later in this section.)

3.2.3.4 JConstraints

JConstraints is a constraint solver abstraction layer for Java. It provides an object

representation for logic expressions, unified access to different SMT and interpolation solvers,

and useful tools and algorithms for working with constraints. While JConstraints was

developed for JDart, it is maintained as a stand-alone library that can be used indepen-

dently. The idea has been explored by others, e.g., PySMT [GM15], which was developed

for the Python programming language.

The architecture of JConstraints is shown in Figure 3.4. It consists of the basic library

providing the object representation of logic and arithmetic expressions, the API definitions

for solvers (for SMT solving and interpolation, or for incremental solving), and some basic

utilities for working with expression objects (basic simplification, term replacement, and

term evaluation). Plugins for connecting to different constraint solvers can be added easily

by implementing a solver interface and taking care of translating between a solver-specific

API and the object representation of JConstraints.

Currently, plugins exist for connecting to the SMT solver Z3 [dMB08], the interpolation

solver SMTInterpol [CHN12], the meta-heuristic-based constraint solver Coral [SBdP11],

and a solver that implements the concolic walk algorithm [DA14]. JConstraints uses the

native interfaces for these solvers as they are much faster than the file-based integration.

It can also parse and export constraints in its own format and supports a subset of the

SMT-LIB format [smt17], which enables connection to many constraint solvers that support

Figure 3.4. Architecture of JConstraints.

50

this format. For example, through the SMT-LIB format, we were able to experiment with

using the dReal solver [GKC13] for nonlinear constraints in JDart.

JConstraints supports both Java and user-defined types for expressions. This enables

it to record path constraints directly in terms of the analyzed program types and semantics,

as opposed to the types supported by the constraint solver to be used. An advantage of

this feature is that it is easy to validate solutions returned by constraint solvers by simply

evaluating the path constraint stored by JConstraints with the Java semantics.

3.2.3.5 Handling Native Code

A limitation of JDart’s approach to symbolic execution of Java programs is that native

code is outside the scope of the analysis. Based on the Nhandler extension [SB14] to JPF,

JDart offers two strategies for dealing with native code:

• Concrete Native. In this mode, JDart executes native code on concrete data values,

and no symbolic execution of native parts is performed. Only concrete values are

passed to and from native calls, and symbolic values are not updated and cannot taint

native return values. The return value is annotated with a new symbolic variable. As

a consequence, the concrete side of an execution is faithful to the respective execution

on a normal JVM. However, branches in the native code are not recorded in symbolic

path conditions, which can lead to JDart not being able to explore branches after

a native call. Another downside of this mode is that the implementation in JPF is

relatively slow.

• No Native. In this mode, JDart does not execute native code at all. Instead, it

returns a default concrete value every time a native method is called and a return

value is expected. The concrete value is annotated with the corresponding symbolic

variable, using the method signature of the native method as the name of that variable.

Concrete execution, in this case, is not faithful to the respective execution on a normal

JVM as the introduced default values in most cases are not equal to the values that

would be returned by the actual method invocations (and side effects are ignored as

well). Recorded symbolic branches cannot be explored even if solutions are found by

a constraint solver as there currently is no mechanism that allows feeding these values

into the execution (instead of the default return values of native methods).

52

3.3.1 Generation of Sequences

The first stage of every iteration of our algorithm is feedback-directed random testing us-

ing Randoop, which generates constructor+method sequences as described in Section 3.2.2.

Randoop takes advantage of a pool of concrete primitive values to be used as construc-

tor/method arguments when generating sequences. In the first iteration, we use the default

pool with few values, which for the integer type are -1, 0 1, 10, 100. Hence, an instance of

a generated sequence for our running example from Figure 3.1 is the following:

void test1() {

Absolute abs = new Absolute(100);

abs.difference(1);

}

Our algorithm grows the pool for subsequent iterations with concrete inputs generated

by dynamic symbolic execution, which we describe later. The sequences generated in this

stage serve two purposes. First, we employ them as standalone unit tests that exercise the

SUT, which is their original intended purpose. Second, our hybrid algorithm also employs

them as driver programs to be used in the subsequent dynamic symbolic execution stage.

3.3.2 Selection and Transformation of Sequences

The previous stage typically generates far too many sequences to be successfully explored

with a dynamic symbolic execution engine in a reasonable amount of time. For example,

several thousand valid sequences are often generated in just a few seconds. Hence, it is

prudent to select a promising subset of the generated sequences to be transformed into inputs

for the subsequent dynamic symbolic execution with JDart. The second stage implements

the selection and transformation of constructor+method sequences.

Note that dynamic symbolic execution techniques have limitations, which is why we

implemented the hybrid approach in the first place. In particular, they can typically treat

symbolically only method arguments of primitive types. For example, if a sequence contains

method calls with non-primitive types only, JDart will not be able to explore any additional

paths. Hence, not every generated sequence is suitable for dynamic symbolic execution with

JDart, and as the first step of this stage, we filter out all sequences with no arguments

of a primitive type. Next, we have two strategies (i.e., heuristics) for selecting promising

sequences. The first strategy randomly selects a subset of sequences. The second strategy

53

prioritizes candidate sequences with more symbolic variables, which is based on the intuition

that having more symbolic variables leads to more paths (and also branches and instructions)

being covered. We compare the two strategies in our empirical evaluation. Once promising

sequences are selected, they have to be appropriately transformed into driver programs for

JDart.

Every candidate sequence is transformed for the final stage where dynamic symbolic

execution is performed. This is achieved by turning all constructor/method arguments

of primitive types, which are supported by JDart, into symbolic input values. In our

implementation, this is a simple source-to-source transformation. For instance, our example

sequence results in the following driver program:

public class TestClass {

void test1(int sym0, int sym1) {

Absolute abs = new Absolute(sym0);

abs.difference(sym1);

}

public static void main(String[] args) {

TestClass tc = new TestClass();

tc.test1(100, 1);

}

}

In the driver, the integer inputs to constructor Absolute and method difference are

transformed into the arguments of the test1 test method. The test1 method is called from

the main method that is added as an entry point for dynamic symbolic execution. Finally,

JDart is instructed that the sym0 and sym1 inputs to test1 are treated symbolically.

3.3.3 Dynamic Symbolic Execution of Sequences

The last stage of every iteration is exploring the generated driver programs using dynamic

symbolic execution as implemented in JDart. JDart explores paths through each driver

program by solving path constraints over the specified symbolic inputs as described in

Section 3.2.1. In the process, it generates additional unit tests, where each unit test

corresponds to an explored path. The generated unit tests are added into the final set

of unit tests. In addition to generating these unit tests, we also collect all the concrete input

values that JDart generates in the process. We add these values back into Randoop’s

concrete primitive value pool for the sequence generation stage of the next iteration. By

54

doing this, we feed the information that the dynamic symbolic execution generates back into

the feedback-directed random testing stage.

3.4 Experimental Evaluation

We aim to answer the following research questions using the results of our empirical

evaluation.

1. Can JDoop cover paths that plain random test case generation does not, and how big

is the positive impact of covering such paths? To answer this question, we compare

the performance of Randoop (as our baseline) and JDoop, using code coverage as a

metric for the quality of the generated test suites.

2. Can dynamic symbolic execution enable randomized test case generation to access

regions of a SUT that remain untested otherwise, i.e., does the feedback loop from

JDart to Randoop (see Figure 3.5) have a measurable impact on achieved cover-

age? To answer this question, we run JDoop in multiple configurations with varying

amounts of runtime attributed to Randoop and JDart, enabling a feedback loop in

some configurations and preventing it in others.

3. What are the constituting factors impacting the effectiveness of JDoop in terms of

the code coverage that can be achieved through automated generation of test suites?

More specifically, can we confirm or refute the conjecture from related work [GFA13]

that robustness of the used dynamic symbolic execution engine is pivotal or do other

factors exist that have an impact on the achievable coverage (e.g., selection of test

cases for symbolic execution)? To answer this question, we analyze statistics produced

by JDart and vary the strategy in JDoop for selecting method sequences for execu-

tion with JDart as discussed in Section 3.3 (either selecting sequences randomly or

prioritizing those with many symbolic variables).

In the remainder of this section, we introduce the benchmarks we used in our evaluation,

describe our experimental setup, and present and discuss the results of the evaluation.

55

3.4.1 Benchmarks

We performed our empirical evaluation using the SF110 benchmark suite [sf113]. The

suite consists of 110 Java projects that were randomly selected from the SourceForge

repository of free software to reduce the threat to external validity (see Section 3.6). In

our evaluation, we chose the largest subset of SF110 that both JDoop and Randoop can

successfully execute on. Benchmarks that were excluded can be grouped into the following

categories: unsuitable environment, inadequate or empty benchmarks, and deficiencies

of testing tools. In the unsuitable environment category, benchmarks require privileged

permissions in the operating system, a properly set configuration file, or a graphical sub-

system to be available. There are several empty benchmarks, benchmarks that call the

System.exit() method that is not trapped by testing tools, and benchmarks that are

otherwise inadequate because of conflicting dependencies with our testing infrastructure.

Finally, for some benchmarks, Randoop generates test cases that do not compile. All such

problematic benchmarks were excluded from consideration, which left us with 41 benchmarks

total, as listed in Table 3.1. For each benchmark, we list the number of instructions,

branches, methods, and classes, which demonstrates we use a wide range of SUTs in terms

of their size and complexity.

3.4.2 Experimental Setup

We used two tools in our empirical evaluation: JDoop and Randoop (version 3.0.10).

For the comparison, we used Randoop 3.0.10, which is a version released after several

months of interaction with the Randoop authors, during which we reported numerous

issues and bugs that we found in the tool. We used JDoop 2.0 in the comparison, which is

the latest version. In the evaluation, we explored several configurations of JDoop, where

each configuration is determined by three parameters. The first parameter is the time limit

for the first stage of every iteration, which is when Randoop runs (see Section 3.2.2); we vary

this parameter as 1, 9, and 20 minutes. The second parameter is the time limit for the second

and third stages combined, which is when JDart runs; we vary this parameter as 1, 9, and

40 minutes. The third parameter determines the strategy for selecting constructor+method

call sequences as candidates for dynamic symbolic execution between: (1) random selection

(denoted by ’R’), and (2) prioritization based on the number of symbolic variables (denoted

56

Table 3.1. Benchmarks from SF110 used in the evaluation.
Benchmark Branches Instructions Methods Classes

1_tullibee 915 8402 204 19
2_a4j 544 9773 522 45
3_gaj 22 415 52 10
5_templateit 564 5391 195 23
6_jnfe 132 7545 339 52
7_sfmis 146 4386 185 19
9_falselight 16 1189 32 14
11_imsmart 103 2244 86 17
13_jdbacl 3098 49385 1578 198
14_omjstate 52 954 67 14
16_templatedetails 38 656 87 24
22_byuic 2124 15031 195 14
23_jwbf 949 16032 609 86
26_jipa 128 1488 36 5
28_greencow 0 7 2 1
30_bpmail 208 3372 208 32
31_xisemele 150 3036 269 50
34_sbmlreader2 76 1447 26 8
37_petsoar 208 3445 377 58
42_asphodel 64 1139 101 20
46_nutzenportfolio 1183 18335 826 62
47_dvd-homevideo 376 10670 161 48
48_resources4j 312 3223 104 12
49_diebierse 197 4859 185 19
50_biff 814 7348 49 6
53_shp2kml 26 656 30 6
55_lavalamp 128 2907 236 48
63_objectexplorer 959 14118 902 84
65_gsftp 517 6587 181 32
67_gae-app-manager 68 1405 46 8
68_biblestudy 424 6005 313 23
69_lhamacaw 2016 51698 1437 101
72_battlecry 674 9550 130 15
74_fixsuite 374 6520 241 36
76_dash-framework 12 188 37 17
79_twfbplayer 1132 18315 902 160
84_ifx-framework 299 136363 26257 3900
90_dcparseargs 88 654 21 6
94_jclo 110 1094 43 4
95_celwars2009 850 15208 164 32
98_trans-locator 40 1097 39 6

by ’P’). Each configuration is code-named as JDoop-O-J-S, where O is the time limit

for Randoop, J is the time limit for JDart, and S is the sequence selection strategy

used. We explored the following six JDoop configurations: JDoop-1-9-P, JDoop-1-9-R,

JDoop-9-1-P, JDoop-9-1-R, JDoop-20-40-P, and JDoop-20-40-R.

We carried out the evaluation in the Emulab testbed infrastructure [WLS+02]. We used

20 identical machines, each of which was equipped with two 2.4 GHz 64-bit 8-core processors,

64 GB of DDR4 RAM, and an SSD disk; the machines were running Ubuntu 16.04. We

developed our testing infrastructure around the Apache Spark cluster computing framework.

To facilitate reproducibility, each execution of a testing tool on a benchmark is performed

57

in a pristine sandboxed virtualization environment. This is achieved via LXC containers

running a reproducible build of Debian GNU/Linux code-named Stretch. We allocated four

dedicated CPU cores and 8 GB of RAM to each container. Both Randoop and JDoop

are multithreaded, and hence they utilized the multiple available CPU cores. Our testing

infrastructure is freely available for others to use and extend.2

We allocate a 1-hour time limit per benchmark per testing tool/configuration for test

case generation. Subsequent test case compilation and code coverage measurement phases

are not counted toward the 1-hour time limit. Given that both Randoop and JDoop

employ randomized heuristics, we repeat each run five times to account for this variability:

for each benchmark we compute an average and a standard deviation. In terms of code

coverage metrics, we measure instruction and branch coverage at the Java bytecode level

using JaCoCo [jac17]. Furthermore, to get more insights into the performance of JDoop’s

symbolic execution engine (JDart), we collect statistics on the number of successful and

failed runs, additional test cases it generates, symbolic variables in driver programs, times

a constraint solver could not find valuation for a path condition, and JDart runs that

explored one path versus multiple paths.

3.4.3 Evaluation of Test Coverage

Table 3.2 gives branch coverage and Table 3.3 gives instruction coverage results for each

tool and configuration on all of the benchmarks. Figure 3.6 and Figure 3.7 provide the

same results in a graphical form. Most results are stable across multiple runs, meaning that

the calculated standard deviations are very small. In particular, the standard deviations

for Randoop on a vast majority of benchmarks are 0, even though we used a different

random seed for every run. This suggests that Randoop reaches saturation and is unable

to cover more branches. For the most part, there are no major differences in terms of

the achieved coverage between different tools/configurations. However, JDoop (in one of

its configurations) consistently achieves higher coverage than Randoop. Given that pure

Randoop saturates, we can conclude that the improvements in coverage we observe with

JDoop are due to leveraging dynamic symbolic execution. Among JDoop configurations,

2The testing infrastructure is available under the GNU Affero GPLv3+ license at https://github.com/
soarlab/jdoop-wrapper.

58

Table 3.2. Branch coverage results in percentage points. The results are averaged across
five runs and including standard deviations. Highest coverage per benchmark is given in
bold.

Benchmark Randoop 1-9-P 1-9-R 9-1-P 9-1-R 20-40-P 20-40-R

1_tullibee 28.0 ± 1.2 29.4 ± 1.4 29.7 ± 1.0 29.4 ± 0.0 31.6 ± 0.531.6 ± 0.531.6 ± 0.5 28.7 ± 0.0 29.0 ± 0.2

2_a4j 58.5 ± 0.5 57.9 ± 0.0 60.0 ± 0.6 59.6 ± 0.2 62.4 ± 0.162.4 ± 0.162.4 ± 0.1 60.7 ± 0.1 60.7 ± 0.0

3_gaj 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0

5_templateit 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0

6_jnfe 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0

7_sfmis 35.9 ± 0.9 40.4 ± 4.2 39.7 ± 4.2 42.5 ± 0.042.5 ± 0.042.5 ± 0.0 40.5 ± 5.5 37.5 ± 2.7 37.1 ± 2.7

9_falselight 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0

11_imsmart 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0

13_jdbacl 36.6 ± 0.7 32.2 ± 3.1 32.2 ± 1.8 37.0 ± 0.5 38.5 ± 0.638.5 ± 0.638.5 ± 0.6 34.2 ± 1.0 33.6 ± 0.8

14_omjstate 48.1 ± 0.0 48.1 ± 0.0 48.1 ± 0.0 48.1 ± 0.0 48.8 ± 3.148.8 ± 3.148.8 ± 3.1 42.3 ± 0.0 42.3 ± 0.0

16_templatedetails 71.1 ± 0.0 68.4 ± 0.0 70.0 ± 1.8 71.1 ± 0.0 71.1 ± 0.0 68.4 ± 0.0 68.4 ± 0.0

22_byuic 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0

23_jwbf 26.6 ± 2.1 26.5 ± 1.7 27.2 ± 0.9 28.0 ± 0.6 28.2 ± 1.928.2 ± 1.928.2 ± 1.9 26.1 ± 0.5 26.0 ± 0.0

26_jipa 18.8 ± 0.0 24.2 ± 0.0 24.2 ± 0.0 24.2 ± 0.0 24.2 ± 0.0 23.4 ± 0.0 23.4 ± 0.0

28_greencow 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30_bpmail 36.9 ± 0.5 36.9 ± 1.5 36.1 ± 1.2 37.3 ± 0.637.3 ± 0.637.3 ± 0.6 37.2 ± 0.6 37.2 ± 0.6 37.1 ± 0.5

31_xisemele 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

34_sbmlreader2 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0

37_petsoar 54.1 ± 0.754.1 ± 0.754.1 ± 0.7 52.8 ± 1.6 52.9 ± 1.4 53.4 ± 0.0 53.4 ± 0.0 53.7 ± 0.7 53.7 ± 0.7

42_asphodel 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0

46_nutzenportfolio 5.5 ± 0.0 5.2 ± 0.0 5.3 ± 1.6 5.6 ± 0.0 5.6 ± 0.6 5.5 ± 0.0 5.5 ± 0.0

47_dvd-homevideo 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0

48_resources4j 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0

49_diebierse 13.7 ± 0.0 13.4 ± 3.0 19.7 ± 1.019.7 ± 1.019.7 ± 1.0 14.2 ± 0.0 15.2 ± 15.1 13.7 ± 0.0 18.6 ± 13.1

50_biff 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

53_shp2kml 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0

55_lavalamp 49.8 ± 0.6 48.4 ± 0.0 48.8 ± 1.6 51.9 ± 0.7 52.0 ± 0.752.0 ± 0.752.0 ± 0.7 48.4 ± 0.0 48.0 ± 2.0

63_objectexplorer 25.3 ± 0.0 24.6 ± 1.8 24.5 ± 1.0 26.4 ± 0.326.4 ± 0.326.4 ± 0.3 26.3 ± 0.9 25.0 ± 0.0 25.0 ± 0.2

65_gsftp 9.8 ± 1.0 9.9 ± 1.0 10.0 ± 0.910.0 ± 0.910.0 ± 0.9 9.9 ± 0.0 9.9 ± 0.0 9.5 ± 0.0 9.5 ± 0.0

67_gae-app-manager 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0

68_biblestudy 37.5 ± 0.037.5 ± 0.037.5 ± 0.0 36.9 ± 0.7 37.0 ± 0.4 37.3 ± 0.0 37.2 ± 0.8 37.0 ± 0.0 37.0 ± 0.0

69_lhamacaw 42.7 ± 0.4 40.1 ± 0.6 39.9 ± 1.0 46.1 ± 0.546.1 ± 0.546.1 ± 0.5 45.7 ± 0.6 40.3 ± 0.7 40.1 ± 0.4

72_battlecry 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

74_fixsuite 17.5 ± 6.5 17.1 ± 3.1 15.5 ± 1.3 19.2 ± 1.8 19.6 ± 4.019.6 ± 4.019.6 ± 4.0 17.4 ± 2.8 17.2 ± 3.3

76_dash-framework 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

79_twfbplayer 27.3 ± 0.0 23.2 ± 1.8 21.5 ± 1.3 29.4 ± 0.0 29.3 ± 1.0 29.5 ± 0.029.5 ± 0.029.5 ± 0.0 29.4 ± 0.1

84_ifx-framework 30.8 ± 0.0 32.6 ± 9.7 31.0 ± 8.9 32.9 ± 2.832.9 ± 2.832.9 ± 2.8 32.0 ± 2.8 29.5 ± 4.9 28.8 ± 2.3

90_dcparseargs 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0

94_jclo 42.7 ± 0.0 46.0 ± 1.646.0 ± 1.646.0 ± 1.6 44.5 ± 0.0 44.5 ± 0.0 44.7 ± 0.8 44.5 ± 0.0 44.5 ± 0.0

95_celwars2009 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.2 ± 5.22.2 ± 5.22.2 ± 5.2 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0

98_trans-locator 25.0 ± 0.0 15.0 ± 36.5 18.0 ± 37.7 25.0 ± 0.0 27.0 ± 3.727.0 ± 3.727.0 ± 3.7 25.0 ± 0.0 25.0 ± 0.0

best-performing are the two 9-1 configurations where in an iteration Randoop runs for nine

minutes and JDart for one minute; there are six such iterations in the 1-hour time limit.

Table 3.4 gives the total number of generated test cases. We do not observe a correlation

between the number of generated test cases and achieved coverage. The JDoop-9-1-P

configuration almost always generates the highest number of test cases. We conjecture that

this is because more new concrete values are discovered by JDart than in the JDoop-9-

1-R configuration (see Table 3.5), which leads to new test cases being generated faster by

Randoop.

3.4.4 Profiling Dynamic Symbolic Execution

To analyze the potential impact of the robustness of dynamic symbolic execution on the

validity of our results, we collected data from runs on all benchmarks for all configurations.

We perform this analysis on data from single runs of JDoop as the other results show very

59

Table 3.3. Instruction coverage results in percentage points. The results are averaged across
five runs and including standard deviations. Highest coverage per benchmark is given in
bold.

Benchmark Randoop 1-9-P 1-9-R 9-1-P 9-1-R 20-40-P 20-40-R

1_tullibee 42.1 ± 0.5 43.1 ± 0.2 43.0 ± 0.4 42.8 ± 0.0 43.2 ± 0.243.2 ± 0.243.2 ± 0.2 42.7 ± 0.0 42.7 ± 0.0

2_a4j 82.3 ± 0.4 83.2 ± 0.0 83.4 ± 0.2 83.0 ± 0.0 84.3 ± 0.184.3 ± 0.184.3 ± 0.1 83.1 ± 0.0 83.1 ± 0.0

3_gaj 59.3 ± 0.0 59.3 ± 0.0 59.3 ± 0.0 59.3 ± 0.0 59.3 ± 0.0 59.3 ± 0.0 59.3 ± 0.0

5_templateit 8.5 ± 0.0 8.5 ± 0.0 8.5 ± 0.0 8.5 ± 0.0 8.5 ± 0.0 8.5 ± 0.0 8.5 ± 0.0

6_jnfe 79.2 ± 0.0 79.2 ± 0.0 79.2 ± 0.0 79.2 ± 0.0 79.2 ± 0.0 79.2 ± 0.0 79.2 ± 0.0

7_sfmis 68.0 ± 0.1 69.5 ± 0.9 69.2 ± 1.0 70.5 ± 0.070.5 ± 0.070.5 ± 0.0 69.7 ± 1.5 68.4 ± 0.4 68.2 ± 0.4

9_falselight 39.8 ± 0.0 42.0 ± 0.0 42.0 ± 0.0 42.0 ± 0.0 42.0 ± 0.0 39.8 ± 0.0 39.8 ± 0.0

11_imsmart 33.9 ± 0.0 33.9 ± 0.0 33.9 ± 0.0 33.9 ± 0.0 33.9 ± 0.0 33.4 ± 0.0 33.4 ± 0.0

13_jdbacl 52.1 ± 0.652.1 ± 0.652.1 ± 0.6 47.4 ± 1.4 47.6 ± 1.7 50.9 ± 1.7 52.1 ± 1.2 49.5 ± 1.5 49.4 ± 2.0

14_omjstate 38.5 ± 0.0 38.5 ± 0.0 38.5 ± 0.0 38.5 ± 0.0 38.9 ± 2.438.9 ± 2.438.9 ± 2.4 37.2 ± 0.0 37.2 ± 0.0

16_templatedetails 89.3 ± 0.0 83.5 ± 0.0 86.0 ± 3.1 89.3 ± 0.0 89.3 ± 0.0 83.5 ± 0.0 83.5 ± 0.0

22_byuic 17.8 ± 0.0 17.8 ± 0.0 18.0 ± 0.0 17.8 ± 0.0 18.0 ± 0.0 17.8 ± 0.0 17.8 ± 0.0

23_jwbf 50.0 ± 0.4 50.1 ± 0.5 50.4 ± 0.3 50.7 ± 0.2 50.8 ± 0.850.8 ± 0.850.8 ± 0.8 49.7 ± 0.1 49.7 ± 0.0

26_jipa 50.8 ± 0.0 52.9 ± 0.0 52.9 ± 0.0 52.9 ± 0.0 52.9 ± 0.0 52.9 ± 0.0 52.9 ± 0.0

28_greencow 42.9 ± 0.0 42.9 ± 0.0 42.9 ± 0.0 42.9 ± 0.0 42.9 ± 0.0 42.9 ± 0.0 42.9 ± 0.0

30_bpmail 42.3 ± 0.042.3 ± 0.042.3 ± 0.0 42.3 ± 0.2 41.9 ± 0.7 42.3 ± 0.2 42.3 ± 0.1 42.2 ± 0.4 42.3 ± 0.1

31_xisemele 6.6 ± 0.0 6.6 ± 0.0 6.6 ± 0.0 6.6 ± 0.0 6.6 ± 0.0 6.6 ± 0.0 6.6 ± 0.0

34_sbmlreader2 11.0 ± 0.0 11.0 ± 0.0 11.0 ± 0.0 11.0 ± 0.0 11.0 ± 0.0 11.0 ± 0.0 11.0 ± 0.0

37_petsoar 63.5 ± 0.5 62.9 ± 1.0 62.9 ± 0.7 63.0 ± 0.1 63.0 ± 0.0 63.6 ± 0.5 63.6 ± 0.5

42_asphodel 26.4 ± 0.0 26.4 ± 0.0 26.4 ± 0.0 26.4 ± 0.0 26.4 ± 0.0 26.4 ± 0.0 26.4 ± 0.0

46_nutzenportfolio 16.6 ± 0.1 16.5 ± 0.1 16.5 ± 0.1 16.7 ± 0.0 16.7 ± 0.0 16.6 ± 0.0 16.6 ± 0.0

47_dvd-homevideo 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0

48_resources4j 3.7 ± 0.0 3.7 ± 0.0 3.7 ± 0.0 3.7 ± 0.0 3.7 ± 0.0 3.7 ± 0.0 3.7 ± 0.0

49_diebierse 23.3 ± 0.3 22.7 ± 0.8 23.4 ± 1.0 23.3 ± 0.0 23.4 ± 0.8 23.2 ± 0.0 23.6 ± 0.823.6 ± 0.823.6 ± 0.8

50_biff 3.5 ± 0.0 3.5 ± 0.0 3.5 ± 0.0 3.5 ± 0.0 3.5 ± 0.0 3.5 ± 0.0 3.5 ± 0.0

53_shp2kml 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0

55_lavalamp 64.8 ± 0.1 63.4 ± 0.0 63.7 ± 0.7 65.2 ± 0.965.2 ± 0.965.2 ± 0.9 65.0 ± 0.1 64.1 ± 0.0 64.1 ± 0.2

63_objectexplorer 27.3 ± 0.0 25.9 ± 1.8 26.0 ± 1.6 27.8 ± 0.2 27.9 ± 0.427.9 ± 0.427.9 ± 0.4 26.5 ± 0.1 26.6 ± 0.4

65_gsftp 10.1 ± 0.0 10.2 ± 0.0 10.2 ± 0.0 10.2 ± 0.0 10.2 ± 0.0 10.2 ± 0.0 10.2 ± 0.0

67_gae-app-manager 55.1 ± 0.0 55.1 ± 0.0 55.1 ± 0.0 55.1 ± 0.0 55.1 ± 0.0 55.1 ± 0.0 55.1 ± 0.0

68_biblestudy 40.3 ± 0.040.3 ± 0.040.3 ± 0.0 39.9 ± 0.4 40.0 ± 0.2 40.0 ± 0.0 40.1 ± 0.4 40.0 ± 0.0 40.0 ± 0.0

69_lhamacaw 41.1 ± 0.4 39.5 ± 0.5 39.5 ± 0.5 42.4 ± 0.542.4 ± 0.542.4 ± 0.5 42.2 ± 0.6 39.5 ± 0.9 39.3 ± 0.2

72_battlecry 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0

74_fixsuite 38.1 ± 11.2 42.8 ± 0.4 34.3 ± 0.2 43.7 ± 0.243.7 ± 0.243.7 ± 0.2 43.7 ± 0.5 43.0 ± 0.5 42.8 ± 0.4

76_dash-framework 66.0 ± 0.0 66.0 ± 0.0 66.0 ± 0.0 66.0 ± 0.0 66.0 ± 0.0 66.0 ± 0.0 66.0 ± 0.0

79_twfbplayer 33.9 ± 0.0 36.5 ± 0.6 35.9 ± 0.3 40.6 ± 0.0 40.6 ± 0.5 41.5 ± 0.0 41.5 ± 0.0

84_ifx-framework 91.1 ± 0.0 91.1 ± 0.1 91.1 ± 0.1 91.1 ± 0.0 91.1 ± 0.0 91.1 ± 0.0 91.0 ± 0.0

90_dcparseargs 55.0 ± 0.0 55.0 ± 0.0 55.0 ± 0.0 55.0 ± 0.0 55.0 ± 0.0 55.0 ± 0.0 55.0 ± 0.0

94_jclo 54.9 ± 0.0 56.4 ± 0.756.4 ± 0.756.4 ± 0.7 55.6 ± 0.0 55.6 ± 0.0 55.6 ± 0.0 55.6 ± 0.0 55.6 ± 0.0

95_celwars2009 3.3 ± 0.0 3.3 ± 0.0 3.3 ± 0.0 3.3 ± 0.4 3.3 ± 0.0 3.3 ± 0.0 3.3 ± 0.0

98_trans-locator 35.8 ± 0.0 33.2 ± 4.0 34.3 ± 4.8 35.8 ± 0.0 36.2 ± 0.536.2 ± 0.536.2 ± 0.5 35.8 ± 0.0 35.8 ± 0.0

60

0

2

4

6

0

20

40

0

10

20

30

40

0

20

40

60

2
8

_
g

re
e

n
c
o
w

3
1

_
x
is

e
m

e
le

5
0

_
b

if
f

7
2

_
b

a
tt

le
c
ry

4
8

_
re

s
o

u
rc

e
s
4

j

4
7

_
d

v
d

−
h

o
m

e
v
id

e
o

5
_

te
m

p
la

te
it

9
5

_
c
e

lw
a

rs
2

0
0

9

6
7

_
g

a
e

−
a

p
p

−
m

a
n

a
g

e
r

4
6

_
n
u

tz
e

n
p

o
rt

fo
lio

9
_

fa
ls

e
lig

h
t

2
2

_
b
y
u

ic

4
2

_
a

s
p

h
o

d
e

l

6
5

_
g

s
ft

p

3
4

_
s
b

m
lr
e

a
d

e
r2

4
9

_
d

ie
b

ie
rs

e

9
8

_
tr

a
n

s
−

lo
c
a

to
r

7
4

_
fi
x
s
u

it
e

1
1

_
im

s
m

a
rt

2
6

_
jip

a

5
3

_
s
h

p
2

k
m

l

7
9

_
tw

fb
p

la
y
e

r

6
3

_
o

b
je

c
te

x
p

lo
re

r

2
3

_
jw

b
f

1
_

tu
lli

b
e

e

8
4

_
if
x
−

fr
a

m
e
w

o
rk

1
3

_
jd

b
a

c
l

7
_

s
fm

is

3
0

_
b

p
m

a
il

6
8

_
b

ib
le

s
tu

d
y

6
9

_
lh

a
m

a
c
a
w

3
_

g
a

j

1
4

_
o

m
js

ta
te

9
4

_
jc

lo

5
5

_
la

va
la

m
p

6
_

jn
fe

7
6

_
d

a
s
h

−
fr

a
m

e
w

o
rk

3
7

_
p

e
ts

o
a

r

2
_

a
4

j

9
0

_
d

c
p

a
rs

e
a

rg
s

1
6

_
te

m
p

la
te

d
e

ta
ils

Benchmark

B
ra

n
c
h
 c

o
ve

ra
g
e
 (

%
)

Tool/Variant

JDoop−1−9−p

JDoop−1−9−r

JDoop−9−1−p

JDoop−9−1−r

JDoop−20−40−p

JDoop−20−40−r

Randoop

Figure 3.6. Branch coverage for Randoop and JDoop. The results are averaged across
five runs, where each tool and variant was given a time limit of 1 hour to generate test cases.
Whiskers denote one standard deviation.

61

0

5

10

15

0

10

20

30

40

0

20

40

0

25

50

75

7
2

_
b

a
tt

le
c
ry

4
7

_
d

v
d

−
h

o
m

e
v
id

e
o

9
5

_
c
e

lw
a

rs
2

0
0

9

5
0

_
b

if
f

4
8

_
re

s
o

u
rc

e
s
4

j

3
1

_
x
is

e
m

e
le

5
_

te
m

p
la

te
it

6
5

_
g

s
ft

p

3
4

_
s
b

m
lr
e

a
d

e
r2

4
6

_
n
u

tz
e

n
p

o
rt

fo
lio

2
2

_
b
y
u

ic

4
9

_
d

ie
b

ie
rs

e

6
3

_
o

b
je

c
te

x
p

lo
re

r

4
2

_
a

s
p

h
o

d
e

l

9
8

_
tr

a
n

s
−

lo
c
a

to
r

1
1

_
im

s
m

a
rt

7
9

_
tw

fb
p

la
y
e

r

7
4

_
fi
x
s
u

it
e

1
4

_
o

m
js

ta
te

5
3

_
s
h

p
2

k
m

l

6
9

_
lh

a
m

a
c
a
w

9
_

fa
ls

e
lig

h
t

6
8

_
b

ib
le

s
tu

d
y

3
0

_
b

p
m

a
il

1
_

tu
lli

b
e

e

2
8

_
g

re
e

n
c
o
w

1
3

_
jd

b
a

c
l

2
3

_
jw

b
f

2
6

_
jip

a

9
4

_
jc

lo

9
0

_
d

c
p

a
rs

e
a

rg
s

6
7

_
g

a
e

−
a

p
p

−
m

a
n

a
g

e
r

3
_

g
a

j

3
7

_
p

e
ts

o
a

r

5
5

_
la

va
la

m
p

7
6

_
d

a
s
h

−
fr

a
m

e
w

o
rk

7
_

s
fm

is

6
_

jn
fe

2
_

a
4

j

1
6

_
te

m
p

la
te

d
e

ta
ils

8
4

_
if
x
−

fr
a

m
e
w

o
rk

Benchmark

In
s
tr

u
c
ti
o
n
 c

o
ve

ra
g
e
 (

%
) Tool/Variant

JDoop−1−9−p

JDoop−1−9−r

JDoop−9−1−p

JDoop−9−1−r

JDoop−20−40−p

JDoop−20−40−r

Randoop

Figure 3.7. Instruction coverage for Randoop and JDoop. The results are averaged
across five runs, where each tool and variant was given a time limit of 1 hour to generate
test cases. Whiskers denote one standard deviation.

62

Table 3.4. Total number of generated test cases averaged across five runs. The highest and
lowest number of test cases per benchmark are given in bold and italic, respectively.

Benchmark Randoop 1-9-P 1-9-R 9-1-P 9-1-R 20-40-P 20-40-R

1_tullibee 327899 294360 218567 571372 780346780346780346 282531 205016

2_a4j 204778 22430 59123 57651 329367329367329367 104675 100769

3_gaj 92133 40605 29663 189206189206189206 124280 67709 45936

5_templateit 2492 305523055230552 20002 29081 15570 6035 4930

6_jnfe 296501 91062 81575 411531 423452423452423452 119809 117743

7_sfmis 106590 106868 97875 312046312046312046 291029 76176 68942

9_falselight 253605 349925 185775 571283 648156648156648156 260382 156277

11_imsmart 92394 71420 70246 139685139685139685 134544 52892 48136

13_jdbacl 144769 54511 40490 213840 224082224082224082 100376 66342

14_omjstate 45258 19897 15383 881148811488114 67370 36586 26753

16_templatedetails 85941 31274 29697 180662180662180662 147381 47189 42105

22_byuic 203736 171090 95498 783132783132783132 464633 231769 123310

23_jwbf 309571 101580 83989 537897537897537897 501119 190664 149524

26_jipa 10197 26398 17360 568925689256892 30887 13684 9424

28_greencow 2 61 61 8 8 4 4

30_bpmail 192152 74257 64353 351093351093351093 325983 107954 91627

31_xisemele 169051 158073 138714 214357 472635472635472635 131312 113848

34_sbmlreader2 216223 98801 83708 484943484943484943 445669 149068 118315

37_petsoar 123934 44107 36463 201709201709201709 173353 71551 58942

42_asphodel 182354 77112 65025 362966362966362966 332233 114756 97165

46_nutzenportfolio 159105 38417 27140 250170250170250170 178543 127859 72222

47_dvd-homevideo 4551 51445 29280 516455164551645 27500 8615 6189

48_resources4j 124493 46543 42517 238827238827238827 222356 77351 66348

49_diebierse 14882 65940 39903 301354301354301354 185464 74089 38992

50_biff 88873 241906241906241906 226403 162718 156676 128378 126911

53_shp2kml 159534 204167 118299 575603575603575603 404853 171718 100513

55_lavalamp 83663 20073 19950 103958103958103958 100395 57446 43075

63_objectexplorer 81502 57088 41593 248669248669248669 173910 70776 49294

65_gsftp 160055 122839 68688 619504619504619504 352394 178501 97830

67_gae-app-manager 8712 6492 6314 116311163111631 8585 5666 5477

68_biblestudy 197945 66947 41936 279601279601279601 276622 143229 96125

69_lhamacaw 47097 26450 19109 121782121782121782 79115 47412 28249

72_battlecry 63 3143 3143 399 399 175 175

74_fixsuite 34597 33743 23190 125728125728125728 79302 41445 24942

76_dash-framework 27430 66864 669776697766977 43307 43106 36546 33940

79_twfbplayer 3818 8083 6790 141521415214152 8529 8930 6753

84_ifx-framework 98087 137964 136555 215055215055215055 213937 141820 136549

90_dcparseargs 100995 46582 32062 245450245450245450 159392 64925 43534

94_jclo 129468 67316 50617 163389 244185244185244185 85283 65468

95_celwars2009 172279 191373 100317 751397751397751397 409514 207416 105749

98_trans-locator 96104 78569 44926 350256350256350256 216182 110986 61545

little variation of results between different runs in most cases. Table 3.5 reports statistics

on the JDart operation in different series of experiments. Data in the table are explained

and discussed in the following paragraphs.

3.4.4.1 Modes of Operation

For all of the analyzed configurations of JDoop, JDart runs successfully in the vast

majority of cases and produces significant numbers of test cases (up to 16, 588 in total for all

benchmarks in one experiment). Most additional test cases are produced in the JDoop-1-9

configurations that enable the feedback loop between Randoop and JDart but grant the

bulk of runtime to JDart. Across all configurations, random selection of method sequences

for JDart leads to generating additional test cases for more benchmarks than prioritizing

sequences with many symbolic variables. Prioritization, on the other hand, leads to more

additional test cases in total.

63

T
a
b
le

3
.5

.
St

at
is

ti
cs

pr
od

uc
ed

by
J
D

a
r
t

fo
r
si

ng
le

ru
ns

of
al

lb
en

ch
m

ar
ks

in
di

ffe
re

nt
co

nfi
gu

ra
ti

on
s
of

J
D

o
o
p
.
J
D

a
r
t

us
es

N
h
a
n
d
l
e
r

in
th

e
’N

o
N

at
iv

e’
m

od
e,

ex
ce

pt
fo

r
on

e
ex

pe
ri

m
en

t
th

at
w

e
pe

rf
or

m
ed

in
th

e
’C

on
cr

et
e

N
at

iv
e’

m
od

e.
J
D

o
o
p
-2

0
-4

0
J
D

o
o
p
-1

-9
J
D

o
o
p
-9

-1
J
D

o
o
p
-9

-1
(C

o
n
cr

et
e

N
a
ti
v
e)

S
eq

u
en

ce
S
el

ec
ti
o
n

S
tr

a
te

g
y

R
P

R
P

R
P

R
P
o
te

n
ti
a
l
Im

p
a
ct

/
B

es
t

M
o
d
e

o
f
O

p
er

a
ti
o
n

#
S
u
cc

es
sf

u
l
R

u
n
s

3
3
,3

9
0
.0

0
2
8
,3

1
6
.0

0
4
6
,9

7
6
.0

0
4
3
,7

7
0
.0

0
4
,6

2
9
.0

0
1
,0

1
7
.0

0
3
,8

8
5
.0

0
S
u
cc

es
sf

u
l
R

u
n
s

(%
)

9
8
.5

0
9
7
.7

6
9
8
.2

2
9
7
.5

0
9
8
.5

0
1
0
0
.0

0
9
6
.3

0
#

A
d
d
it
io

n
a
l
T
es

ts
6
,4

3
6
.0

0
1
0
,8

0
2
.0

0
1
1
,2

7
2
.0

0
1
6
,5

8
8
.0

0
9
1
4
.0

0
5
,3

8
2
.0

0
n
/
a

#
B

en
ch

m
a
rk

s
w

it
h

A
d
d
it
io

n
a
l
T
es

ts
1
9
.0

0
9
.0

0
2
0
.0

1
3
.0

0
1
8
.0

0
4
.0

0
n
/
a

R
o
b
u
st

n
es

s
a
n
d

S
ca

la
b
il
it
y

o
f
J
D

a
r
t

#
F
a
il
ed

R
u
n
s

5
0
7
.0

0
6
4
8
.0

0
8
5
3
.0

0
1
,1

2
1
.0

0
6
9
.0

0
0
.0

0
1
4
8
.0

0
d
u
e

to
u
n
h
a
n
d
le

d
n
a
ti
v
e

co
d
e

3
.0

0
1
.0

0
1
4
.0

0
6
.0

0
1
.0

0
0
.0

0
1
0
.0

0
d
u
e

to
cl

a
ss

lo
a
d
in

g
in

S
U

T
5
0
4
.0

0
6
4
7
.0

0
8
3
9
.0

0
1
,1

1
5
.0

0
6
8
.0

0
0
.0

0
1
3
8
.0

0
F
a
il
ed

R
u
n
s

(%
)

1
.5

0
2
.2

4
1
.7

8
2
.5

0
1
.5

0
0
.0

0
3
.7

0
#

D
/
K

P
a
th

s
1
7
.0

0
1
9
2
.0

0
1
7
0
.0

0
8
4
.0

0
5
.0

0
0
.0

0
2
6
,9

1
5
.0

0
D

/
K

P
a
th

s
(%

)
0
.2

6
1
.7

8
1
.4

6
0
.5

1
0
.0

1
0
.0

0
9
3
.6

2
A

m
en

a
b
le

T
es

t
C

a
se

s
#

S
y
m

b
o
li
c

V
a
ri

a
b
le

s
p
er

T
es

t
C

a
se

(A
v
g
.)

2
.1

0
6
.6

0
1
.8

8
4
.6

7
1
.9

9
6
.2

1
1
.8

6
#

R
u
n
s

o
f
S
in

g
le

P
a
th

s
3
2
,4

1
0
.0

0
2
7
,2

9
3
.0

0
4
5
,2

6
8
.0

0
4
2
,1

6
2
.0

0
4
,4

9
5
.0

0
9
8
8
.0

0
2
,8

0
1
.0

0
#

R
u
n
s

w
it
h

M
u
lt
ip

le
P
a
th

s
9
8
0
.0

0
1
,0

2
3
.0

0
1
,7

0
8
.0

0
1
,6

0
8
.0

0
1
3
4
.0

0
2
9
.0

0
1
,0

8
4
.0

0

64

3.4.4.2 Robustness and Scalability

Our data indicate that JDart is robust. Only a small number of runs fail (between 0.0%

and 2.5%). Of these failures, only a tiny fraction is due to unhandled native code (less than

1%).3 The vast majority of failed runs is caused by class-path issues in the benchmarks

(more than 99%). There are only very few cases in which the constraint solver was not able

to solve constraints of all paths in symbolic execution trees (between 0.0% and 1.75%).

Using Nhandler in the ’Concrete Native’ mode leads to native calls being executed

faithfully and to longer recorded path conditions, as discussed in Section 3.2.3.5. This yields

constraints that are marked as not solvable (“don’t know” or D/K for short) in 93.62% of

all discovered paths in symbolic execution trees. This indicates the likelihood of JDart

not being able to explore most of the paths that could be explored with proper symbolic

treatment of native methods. Table 3.6 reports the number of occurrences for all encountered

native methods in one run of JDoop. As can be seen from the data, the charAt method of

the String class offers by far the greatest potential for improving on the number of explored

paths. Note, however, that numbers in the table do not necessarily translate into the same

number of additional paths as occurrences are counted along paths in trees and the same

method call may appear on multiple paths.

3.4.4.3 Amenable Test Cases

The number of symbolic variables per test case behaves as expected: it increases when

using prioritization of sequences with many variables. Prioritization, however, comes at

a cost since there tends to be more runs of JDart in configurations that do not use

3These are methods for which Nhandler was not configured to take over execution, leading to a crash
of JDart. We configured Nhandler to take care of all native methods of java.lang.String.

Table 3.6. Symbolic variables introduced by Nhandler in the ’Concrete Native’ mode in
a single run of JDoop-9-1.

Method Occurrences
java.lang.String.charAt(I)C 2,157,258
java.lang.String.indexOf(I)I 430,951
java.lang.String.indexOf(II)I 18,199
java.lang.Character.isWhitespace(C)Z 63,723
java.lang.Character.isLetterOrDigit(C)Z 18,517
java.lang.Character.toLowerCase(C)C 16,506
java.lang.Math.min(II)I 2,800
java.lang.Float.floatToRawIntBits(F)I 81
sun.misc.Unsafe.compareAndSwapInt(Ljava/lang/Object;JII)Z 4,008

65

prioritization. For all benchmarks, a high number of runs yields only one path and hence

no additional test cases. A considerable number of these runs may be attributed to using

Nhandler in the ’No Native’ mode, thereby hiding branches by not executing native code.

On the other hand, even in the experiment in which Nhandler was used in the ’Concrete

Native’ mode, two thirds of all runs explored only a single path. This indicates that many

method sequences that were selected for JDart simply do not branch on symbolic variables.

3.4.5 Discussion

The obtained results allow us to provide answers to our research questions.

3.4.5.1 Question 1: Covering More Paths

In terms of branch coverage, JDoop outperforms Randoop on 44% of the benchmarks

and there is a tie between Randoop and JDoop on 46% of the benchmarks; see Table 3.2.

(In instruction coverage, JDoop outperforms Randoop in 29% of the benchmarks; see

Table 3.3.) Measured in percentage points, the margins are relatively slim in many cases.

There are, however, cases in which the achieved branch coverage is increased by 28%,

resulting in an increase in code coverage by 5.4 percentage points (26_jipa). On 40% of the

benchmarks, no variation can be seen in coverage between the two approaches. Together

with the little variance that is observed between different runs, this indicates that Randoop

in many cases reaches a state where coverage is (nearly) saturated. It makes sense that in

such a scenario, JDoop does not add many percentage points in code coverage. It merely

adds coverage through those hard-to-hit corner cases.

3.4.5.2 Question 2: Reachable Regions

Our results indicate that the feedback loop has a positive impact. The JDoop-9-1

configurations perform better than other configurations in most cases. Regarding the time

distribution between Randoop and JDart, the picture is not as clear. There is a lot more

variation in the margins of coverage increase (or decrease sometimes) for the configuration

that grants most of the time to JDart. In one particularly amenable case, this results in

coverage increase by 43% (from 13.7% to 19.7% for 49_diebierse).

66

3.4.5.3 Question 3: Robustness of Symbolic Execution

Here, we have to refute the conjecture that was made in related work [GFA13], namely

that a robust dynamic symbolic execution engine can reap big increases in code coverage,

or at least curb expectations about achievable coverage increases. Our experiments showed

that JDart handles most benchmarks without many problems. Proper analysis of native

code (especially for String methods) certainly has the potential to improve code coverage

further, but the consistently high number of symbolic analyses that result in a single path

(even in the control experiment) points to another important factor that contributes to small

margins: the generated test cases simply do not allow to explore many new branches in most

cases.

The experiments even indicate that it does not pay off to prioritize method sequences

with many variables for JDart. Prioritization adds cost twice: once for analyzing test cases

and then for exploring with many variables. Taking into account the observation from the

first answer, that Randoop (almost) achieves saturation of coverage in 1 hour; this again

indicates that in JDoop, corner cases are discovered by JDart. Covering more search space

beats investigating the few locations more intensively in such a scenario.

3.5 Related Work

Here we present work related to our work.

3.5.1 Symbolic Execution

Dynamic symbolic execution [GKS05, SMA05] is a well-known technique implemented

by many automatic testing tools (e.g., [CDE08, GLM12, TH08, SA06]). For example,

SAGE [GLM12] is a white-box fuzzer based on dynamic symbolic execution. It has been rou-

tinely applied to large software systems, such as media players and image processors, where

it has been successful in finding security bugs. Khurshid et al. [KPV03] extend symbolic

execution to support dynamically allocated structures, preconditions, and concurrency.

Several symbolic execution tools specifically target Java bytecode programs. A num-

ber of them implement dynamic symbolic execution via Java bytecode instrumentation.

JCute [SA06], the first dynamic symbolic execution engine for Java, uses Soot [soo17] for

instrumentation and lp_solve for constraint solving. CATG [TZHS15] uses ASM [asm17]

67

for instrumentation and CVC4 [DRK+14] for constraint solving. Another dynamic symbolic

execution engine, LCT [KLS+11], supports distributed exploration; it uses Boolector and

Yices for solving, but it does not have support for float and double primitive types. A draw-

back of instrumentation-based tools is that instrumentation at the time of class loading is

confined to the system under test (SUT). For example, LCT does not by default instrument

the standard Java libraries, thus limiting symbolic execution only to the SUT classes. Hence,

the instrumentation-based tools discussed above provide the possibility of using symbolic

(and/or simplified) models for non-instrumented classes or using preinstrumented core Java

classes.

Several dynamic symbolic execution tools for Java are not based on instrumentation.

For example, the dynamic symbolic white-box fuzzer jFuzz [JHG09] is based on JPF (as

is JDart) and can thus explore core Java classes without any prerequisites. Symbolic

PathFinder (SPF) [PMB+08] is a JPF extension similar to JDart. In fact, JDart reuses

some of the core components of an older version of SPF, notably the solver interface and its

implementations. While at its core SPF implements symbolic execution, it can also switch

to concrete values in the spirit of dynamic symbolic execution [PRV11]. That enables it to

deal with limitations of constraint solvers (e.g., nonlinear constraints).

3.5.2 Hybrid Approaches

There are several approaches similar to ours that combine fuzzing or a similar testing

technique with dynamic symbolic execution. Garg et al. [GIB+13] propose a combination of

feedback-directed random testing and dynamic symbolic execution for C and C++ programs.

However, they are addressing challenges of a different target language and on a much smaller

collection of benchmarks that they simplified before evaluation. The Driller tool [SGS+16]

interleaves fuzzing and dynamic symbolic execution for bug finding in program binaries,

and it targets single-file binaries in search of security bugs. Galeotti et al. [GFA13] apply

dynamic symbolic execution in the EvoSuite tool to explore test cases generated with a

genetic algorithm. Even though their evaluation is carried out in a different way than

the one presented in this chapter, the general conclusion is the same in spirit: dynamic

symbolic execution does not provide a lot of additional coverage on real-world object-oriented

Java software on top of a random-based test case generation technique. MACE [CBP+11]

68

combines automata learning with dynamic symbolic execution to find security vulnerabilities

in protocol implementations.

There are automated hybrid software testing tools that do not strictly combine with sym-

bolic execution (e.g., OCAT [JKXC10], Agitator [BDS06], Evacon [IX08], Seeker [TXT+11],

DSD-Crasher [CSX08]). Because these tools either focus on a single method at a time

or just form random method call sequences, they often fail to drive program execution to

hard-to-reach sites in the SUT, which can result in suboptimal code coverage.

3.5.3 Random Testing

Randoop [PLEB07] is a feedback-directed random testing algorithm that forms random

test cases that are sequences of method calls, while ensuring basic properties such as

reflexivity, symmetry, and transitivity. Search-based software testing [McM11] approaches

and tools are gaining traction, which is reflected in four annual search-based software

testing tool competitions in recent years [RJGV16]. A prominent search-based tool is

EvoSuite [FA11], which combines a genetic algorithm and dynamic symbolic execution.

T3 [Pra16] is a randomized tool that generates constructor and method call sequences based

on an optimization function. JTExpert [SPG16] keeps track of methods that can change the

underlying object and constructs method sequences that are likely to get the object into a

desired state. All the search-based testing tools are geared toward testing at the class level,

while JDoop performs testing at the application/library level.

3.5.4 Benchmarking Infrastructures

In computer science, any extensive empirical evaluation, software competition, or re-

producible research requires a significant software+hardware infrastructure. The Software

Verification Competition’s BenchExec [Bey16] is a software infrastructure for evaluating

verification tools on programs containing properties to verify. It comes with an interface

for verification tools to follow, which did not fit our needs: our coverage measurement

outcomes cannot be judged in terms of program correctness. The Search-based Software

Testing Competition [RJGV16] community created an infrastructure for the competition

as well. However, just like tools that participate in the competition, their infrastructure

is geared toward running a testing tool on just one class at a time. Emulab [WLS+02]

and Apt [RWS+15] are testbeds that provide researchers with an accessible hardware and

69

software infrastructure. They allow for repeatable and reproducible research, especially in

the domain of computer systems, by providing an environment to specify used hardware, on

top of which users can install and configure a variety of systems.

3.6 Threats to Validity

In this section, we cover threats to validity of herein presented work.

3.6.1 Threats to External Validity

While the main purpose of the SF110 corpus of benchmarks is to reduce the threat to

external validity since they were chosen randomly, we cannot be absolutely sure that the

benchmarks we used are representative of Java programs. Hence, our results might not

generalize to all programs. In JDoop, we combined Randoop and JDart, and we used

Randoop as the baseline in our evaluation. We attempted to include another testing tool

into the comparison, in particular EvoSuite. However, to the best of our ability, we did

not manage to get it to work with JaCoCo (the tool we use for measuring code coverage)

despite being in contact with the EvoSuite authors; hence, we could not perform a direct

comparison and our results might not generalize to other tools. Having said that, earlier

work on EvoSuite reports similar results to ours with respect to using dynamic symbolic

execution in combination with random testing [GFA13]. Finally, note that we do not include

the environment and dependencies of benchmarks into unit test generation, which might lead

to sub-optimal coverage in some cases.

3.6.2 Threats to Internal Validity

In our evaluation, we experimented with 3 different time allocations for Randoop and

JDart that we identified as representative. While our results show no major differences

between these different time allocations, we did not fully explore this space and there might

be a ratio that would lead to a different outcome. JDart currently cannot symbolically

explore native calls, which might lead to not being able to cover program paths (and hence

also branches and instructions) that depend on such calls. Our evaluation shows that this

indeed happens and that native implementations of methods of the String class in Java

are the main culprit, but it does not allow us to provide an estimate for the impact on

the achieved code coverage. Finally, while we extensively tested JDoop to make sure it is

70

reliable and performed sanity checks of our results, there is a chance for a bug to have crept

in that would influence our results.

3.6.3 Threats to Construct Validity

Here, the main threat is the metrics we used to assess the quality of the generated test

suites, and in particular branch coverage. This threat is reduced by previous work showing

that branch coverage performs well as a criterion for comparing test suites [GGZ+13].

3.7 Conclusion

We introduced a hybrid automatic testing approach for object-oriented software, de-

scribed its implementation JDoop, and performed an extensive empirical exploration of this

space. Our approach is a combination of feedback-directed random testing (Randoop) and

dynamic symbolic execution (JDart), where random testing performs global exploration,

while dynamic symbolic execution performs local exploration (around interesting global

states) of the SUT. It is an iterative algorithm where these two exploration techniques are

interleaved in multiple iterations. Our evaluation on real-world object-oriented software

shows that dynamic symbolic execution provides modest, albeit consistent, improvements

in terms of code coverage on top of our baseline (pure feedback-directed random testing).

CHAPTER 4

AUTOMATIC TESTING FOR RUNTIME

VERIFICATION

This chapter is based on work published at the International Symposium on Software

Testing and Analysis 2015 [DG15].1

4.1 Introduction

The Next Generation Air Transportation System (NextGen) is a NASA research program

that addresses the increasing load on the air traffic control system through innovative

algorithms and software systems. AutoResolver is a proposed NextGen component for

prediction and resolution of loss of separation between multiple aircraft in the one to eight

minutes time horizon. Loss of separation between two aircraft occurs when they are closer

to each other than a predefined safe vertical or horizontal distance. Separation assurance

aims to eliminate the occurrence of loss of separation in the air space. Figure 4.1 shows a

sketch of a potential loss of separation between two aircraft and how it can be avoided by

letting one aircraft take a detour.

Testing AutoResolver presents various challenges. The input data consists of several

aircraft trajectories, each trajectory being a sequence of 4-dimensional points, where a point

represents a position in 3-dimensional space, plus a time instant. Given this complex input

1Portions of the published work are reused and reprinted here with permission.

Figure 4.1. Loss of separation and resolution. Lateral view of two aircraft, their
trajectories, and areas of horizontal separation assurance. Left: Conflict in the near future.
Center: Loss of separation. Right: Detour that will prevent loss of separation.

72

space of the separation assurance problem, it is extremely hard to generate appropriate input

data for it. Therefore, the NextGen team typically uses historical airport data recordings

as test inputs. Each such test case usually involves (tens of) thousands of aircraft and takes

several hours to run. When unexpected behavior is detected, it is hard to create subsets

of the test case that would lead AutoResolver to similar behavior, making debugging a

complicated task.

To address these issues, the Robust Software Engineering (RSE) and NextGen groups

at the NASA Ames Research Center have been collaborating over several years for the

development of an automated, lightweight testing infrastructure for AutoResolver. In

previous work [GHI+14], Giannakopoulou et al. developed a wrapper that implements

parameterized loss of separation scenarios between two aircraft for AutoResolver. In

contrast to having trajectories as inputs, which would make it impossible for test-case

generation tools to produce realistic trajectories, these scenarios expose parameters such

as aircraft velocity and heading. These parameters provide flexibility in producing many

different types of aircraft encounters for the problem, while always producing valid trajectory

inputs that also exhibit loss of separation. Despite the fact that scenarios are limited to a

single encounter between two aircraft, the wrapper has enabled them to experiment with

both black-box and white-box test-case generation techniques, and to produce hundreds of

thousands of tests aiming at exercising different aspects of the AutoResolver code.

A key aspect missing from their work [GHI+14] is the identification of desirable properties

for separation assurance software, and the support for automated testing of these properties.

Introduced properties may, in turn, create additional requirements on the test-case genera-

tion itself: to exercise each property, we often need to produce complex encounter situations

that target it. In general, it is hard to identify properties for separation assurance algorithms,

as discussed in TSafe [GBS+11]. Currently, AutoResolver developers manually examine

the outcomes of every test case to determine whether the software behaves as expected.

This is impractical, more so in a setting where millions of test cases are generated and run

automatically.

The work presented in this chapter addresses these issues, thus filling an important

gap in our separation assurance testing framework. Specifically, it makes the following

contributions:

73

• A set of requirements for separation assurance.

• Some of the requirements require test cases with multiple aircraft, including complex

relationships between their trajectories. We therefore implement a generalization of

the wrapper to support scenarios with any number of aircraft and loss of separation

cases between them. Some aircraft are placed strategically in order to check specific

properties of AutoResolver’s logic.

• A runtime verification framework based on aspect-oriented programming for checking

the requirements on AutoResolver. Runtime monitoring is also used to check

property coverage by the generated tests, as well as to monitor other behaviors of the

system, as requested by its developers. The framework is completely separate from

the AutoResolver code, thus allowing us to avoid interfering with the development

process of the AutoResolver team.

• As well as being used for property monitoring, our runtime verification framework is

used for complex test-case generation. This is, to our knowledge, a novel, atypical use

of runtime verification.

• Application of our framework to AutoResolver and discussion of the obtained

results.

The remainder of this chapter is organized as follows. Section 4.2 provides preliminaries

to AutoResolver and a previous testing framework for it. Separation assurance require-

ments for a system like AutoResolver are given in Section 4.3. Section 4.4 presents

extensions to the interface and to the test-case generation capabilities of our testing frame-

work, with Section 4.5 describing the runtime verification infrastructure that we develop

on top of it. Evaluation results follow in Section 4.6, and lessons learned are provided

in Section 4.7. Finally, related work and conclusions are discussed in Section 4.8 and

Section 4.9, respectively.

4.2 Preliminaries

This section provides a high-level description of AutoResolver and provides a brief

overview of previous work on developing a testing environment for it. Note that in the

74

context of this work, we use the terms “conflict” and “loss of separation” interchangeably.

Moreover, by the term “conflict time,” or “ttlos,” we refer to the first time point in their

trajectories at which two aircraft lose separation.

4.2.1 AutoResolver

The Advanced Airspace Concept (AAC) is aimed at automating separation assurance in

the future. AAC uses multiple independent layers of separation assurance for increased reli-

ability. One component of AAC is a strategic problem-solving tool named AutoResolver

[ELC10]. AutoResolver’s separation assurance algorithm was originally developed in the

ACES simulation environment taking full advantage of the zero-error trajectory prediction

available. Many studies of the effectiveness of this algorithm in the zero-uncertainty envi-

ronment have been performed [FE07].

In each round of operation, AutoResolver attempts to resolve all the conflicts identi-

fied by its conflict-detection system, but handles them in the order specified by some notion

of priority. The algorithm that it implements attempts to generate many different types

of resolutions for each conflict. More specifically, AutoResolver iteratively attempts a

variety of maneuvers, and determines which ones result in successful resolutions. Among

all such resolution trajectories, AutoResolver selects the resolution that is expected to

impart the minimum airborne delay.

AutoResolver consists of approximately 65K lines of Java code. For each maneuver

that it attempts, it communicates with ACES, a simulation environment whose core consists

of approximately 450K lines of code. As mentioned, the NextGen team typically uses

historical airport data recordings as test inputs. These test cases consist of 4, 800 or 10, 000

aircraft, and take between three and seven hours to run. The results are monitored manually

by domain experts to see whether AutoResolver behaves as expected.

4.2.2 Lightweight Testing Framework

To ensure more systematic testing of the behavior of AutoResolver, potentially target-

ing some type of test coverage, Giannakopoulou et al. previously developed a lighter-weight

testing environment to complement the current testing process [GHI+14]. That testing

environment has the following features. Despite the fact that ACES is very precise, it is a

heavyweight tool that adds a significant burden to the testing process. Giannakopoulou et al.

75

therefore created stubs that replace the functionality of ACES with more approximate behav-

ior. The main capability that the ACES stubs provide is the generation and modification of

aircraft trajectories. Stubbing ACES allowed them to run tests significantly faster, which is

important in a setting where millions of test cases are generated and executed automatically.

Moreover, to enable meaningful test-case generation, Giannakopoulou et al. created

a modular, extensible wrapper around AutoResolver that implements parameterized

conflict scenarios. Note that loss of separation is handled for two aircraft at a time (all

other aircraft are called “secondary”). Each proposed resolution is evaluated against the set

of all aircraft in the airspace sector that AutoResolver is currently handling.

More precisely, the wrapper provides an interface to AutoResolver that consists of

a number of entry points where each point represents a single-conflict scenario suggested

by the AutoResolver team. In a Cruise scenario, each aircraft is in level flight, i.e., its

altitude remains constant. In a Climb scenario, each aircraft climbs or descends for some

portion of the trajectory. Loss of separation may occur before one or both of them start

climbing or descending, during climb or descent, or after one or both of them has leveled off.

Finally, the Turn scenario is similar to Cruise, but it introduces a heading change for one

or both aircraft at some point in their trajectory. Each scenario is hard-coded in the type

of trajectories, but is parameterized on aspects like aircraft velocity, initial heading, initial

altitude, climb rate, and conflict time. Each concretized scenario is translated into a set of

trajectories with which the wrapper invokes AutoResolver.

In order to ensure that the test inputs that are thus generated mostly correspond to loss

of separation scenarios, the framework works as follows. A point is selected in 3-dimensional

space, representing a position at which the two aircraft will meet (note that loss of separation

actually occurs prior to the airplanes reaching that point). Aircraft are then flown backwards

(headings are reversed) from their meeting point for the duration specified by the conflict

time parameter. The type of trajectory is as specified by the scenario, i.e., whether the

aircraft climb or cruise, for example, but specific details are parameterized, such as the time

point at which a climb trajectory levels off. Aircraft initial positions are thus computed,

and the ACES stub is then invoked to generate concrete trajectories.

The wrapper enables the application of a variety of test-case generation tools or algo-

rithms for this problem, as demonstrated in previous work. In this work, the focus is on an

76

essential aspect of testing, which is how to evaluate the testing outcomes. In particular, we

want to lighten the load of domain experts in monitoring each test case. Rather, our goal is

to automatically check each test case against requirements, and focus the attention of the

domain experts only on those tests that exhibit unexpected behavior.

4.3 Separation Assurance Requirements

The first step in verifying the behavior of AutoResolver is to create a specification,

i.e., a set of requirements it should meet, which is not straightforward for a system that

solves an optimization problem. Through several iterations of discussions with the Au-

toResolver team, we have formed two types of requirements: verification properties and

information monitors. Verification properties are statements about the expected behavior

of AutoResolver. They capture the high-level logic of the system, which conveys how

the system operates in various situations. Information monitors provide a rich insight into

specifics of the logic, which are not necessarily characterized as correct or incorrect.

4.3.1 Verification Properties

P1: There should be a resolution for every conflict. The main goal of AutoResolver

is to predict and resolve conflicts. Therefore, it should be able to resolve every conflict that

occurs within its time horizon.

P2: Initial conflicts are resolved in the non-decreasing order of their time to first loss

of separation. It is important that AutoResolver handles conflicts with earlier conflict

time first. Initial conflicts are those detected before a conflict resolution process starts.

Conflicts that will happen in, e.g., seven minutes are not as urgent to resolve as those that

will happen in one minute. In this way, the conflict resolution process prioritizes to resolve

more imminent conflicts first, and move to later conflicts according to their time to loss of

separation.

P3: New conflicts arising as a result of conflict resolution should be inserted into the list of

conflicts according to their time to first loss of separation. As AutoResolver is resolving

initial conflicts, new conflicts can be created as a result of the resolution process. This

means that a resolution trajectory of the maneuvered aircraft has a conflict with another

aircraft, while its original trajectory did not have a conflict with the same aircraft. When

77

AutoResolver picks a resolution that results in a new conflict, the new conflict should be

resolved according to its conflict time. This property is similar to property P2, but instead

it characterizes conflicts that did not exist originally.

P4: No picked resolution is allowed to cause a more imminent secondary conflict. For

every conflict AutoResolver tries to resolve, it attempts multiple resolutions. Among the

successful ones, it picks the best according to a set of optimization criteria. The picked

resolution should not make the situation worse by getting the aircraft into a more imminent

conflict than the conflict being resolved.

4.3.2 Information Monitors

The AutoResolver team is interested in the stability of the picked resolution’s type

for a given conflict if the resolution process is delayed. Each resolution has a type, such

as a horizontal maneuver, a temporary altitude change maneuver, etc. The team said that

stability is important from the perspective of people working in air traffic control. In other

words, the team wants to know if AutoResolver would pick a different resolution type

for the same conflict, if the resolution process was to be delayed for a given amount of time.

We therefore formulate the following monitor:

M1: For each conflict, report its resolution type and how it changes over time. We explain

how we introduce a resolution delay in Section 4.4.

4.4 Extending AutoResolver’s Testing Framework

Previous work [GHI+14] supported single-conflict preselected scenarios, in spite of Au-

toResolver being able to resolve any number of arbitrary conflicts at a time. Our exten-

sions to the previous work are motivated by the need to support automated verification of

separation assurance properties, and in particular the requirements presented in Section 4.3.

With this work, we aim to verify properties of AutoResolver’s operational logic

pertaining to more than one conflict. We therefore rewrite the framework interface to

support the generation of any combination of any number of conflicting aircraft, including

aircraft that create secondary conflicts (we call these secondary aircraft). An overview of

the extended framework’s architecture is provided in Figure 4.2.

79

public void t e s t 0 () throws Throwable {
AacTestWrapper wrapper = new AacTestWrapper () ;

wrapper . setUpCR(CR_params1 , c on f l i c t_po in t 1) ;
wrapper . setUpCRH(CRH_params1 , c on f l i c t_po in t 1) ;
wrapper . setUpCL(CL_params1 , c on f l i c t_po in t 2) ;
wrapper . setUpCL(CL_params2 , c on f l i c t_po in t 2) ;

wrapper . runCon f l i c tDet e c t i onReso lu t i on () ;
}

Figure 4.3. A test case with two pairs of aircraft in two independent conflicts.

trajectory, and the targeted conflict point. When all aircraft are added to the framework,

a wrapper call to AutoResolver’s detection and resolution process is made with the last

statement in the test case.

A new addition to the interface is the ability to fly all aircraft for a given amount of

time before invoking AutoResolver’s conflict detection and resolution process. With

this ability, we stress-test AutoResolver’s conflict detection and resolution of the same

aircraft trajectories, but at different time points. At the same time, it allows us to observe

how resolution types change over time. Once all aircraft are added to the framework, some

of them exhibiting loss of separation, the framework invokes AutoResolver to detect and

resolve conflicts between the aircraft.

4.4.2 Generating Multiple Conflicts

With the exception of P1, all the properties reason about cases where AutoResolver

handles multiple conflicts between more than two aircraft. In this work, we introduce a way

of generating test cases with multiple independent conflicts. This enables us to exercise the

properties and report potential violations.

In their previous work [GHI+14], Giannakopolou et al. generated test cases by computing

the Cartesian product of all input parameters for an interface entry point describing a pre-

selected single-conflict scenario. For the case of multiple conflicts, if we were to additionally

compute the Cartesian product across conflict points, the resulting number of test cases

would be prohibitively large. There are many ways in which we could handle this problem:

one would be to implement a randomized approach to creating combinations of values;

another would be to use combinatorial testing [CDPP96].

As a first approach to the problem, we decided to introduce initial conflicts at points in

80

the 3-dimensional space that are far enough from each other such that two aircraft involved

in a conflict do not interfere with aircraft from the other conflicts. By making the conflicts

isolated from each other, characteristics of one conflict are expected to be independent from

characteristics of every other conflict. Based on this, it is sufficient to explore the Cartesian

product of the parameter values for each conflict, but it is not necessary to also explore the

Cartesian product across conflicts.

Each initial conflict is described by several parameters such as the time to the first loss

of separation, aircraft trajectories, relative headings of the two aircraft, etc. Each conflict

parameter is a floating point or an integer value. We range over its values by specifying

an interval with a lower bound, an upper bound, and a step between neighboring values to

be extracted from the interval. We draw parameter specifications from input files, one line

specifying one parameter, as illustrated in the following:

ttLOS, DOUBLE, "[400.0 to 540.0 step 20.0]"

relativeHeading, DOUBLE, "[20.0 to 180.0 step 20.0]"

airspeed, DOUBLE, "[450.0 to 550.0 step 50.0]"

For each conflict, we then explore the full Cartesian product of the ranges of all the

parameters involved. However, we do not explore all combinations of parameters across

conflicts. Rather, we create test cases by picking one set of generated values for each conflict,

and covering all possible combinations of parameter values for each conflict. During this

process, we avoid having the same time to loss of separation among conflicts in each test

case by using different offsets in the order in which their respective values are picked.

4.4.3 Generating Secondary Conflicts

Properties P3 and P4 require for us to generate not simply additional aircraft, but also to

strategically position them so that they generate secondary conflicts. In particular, we must

create test cases that include secondary aircraft with which a resolved trajectory creates

more and less imminent conflicts. If we were to take a random approach where we would

include secondary aircraft without a specific goal, it would be extremely difficult to generate

such test cases. We therefore decided to take control over positioning the secondary aircraft,

in the same way that our wrapper takes control over generating initial conflicts.

81

The main challenge in generating secondary conflicts is the fact that we do not, a priori,

know the resolution that AutoResolver will produce for a particular conflict. To deal with

this problem, we develop the following approach, as illustrated in Figure 4.4. Let T1 and T2

be the trajectories of two aircraft in conflict, and assume that AutoResolver produces a

resolution for T1.

1. Monitor the behavior of AutoResolver and obtain the produced resolution. Gen-

erate a resolution trajectory T ′
1.

2. Select a point in T ′
1 to which the secondary aircraft flies (black dot in Figure 4.4).

Use existing algorithms to fly the secondary aircraft backwards to the selected point

and generate a trajectory T3. The secondary aircraft will thus be in conflict with the

resolution trajectory produced by AutoResolver.

3. Create a test case with T1, T2, T3.

Similarly to test case generation of initial aircraft encounters, we want to parameterize

the generation of secondary aircraft in order to be able to create interesting test cases. For

example, we want to vary the time at which the secondary conflict occurs. For a desired

time t to a secondary conflict, we pick an appropriate point in the resolution trajectory

(the point at which the aircraft will be at time t), and create a secondary aircraft to reach

that point also in time t, with the method discussed in Section 4.2.2. This enables us to

create secondary conflicts that are both more and less imminent than the initial conflict. We

also want to vary heading and velocity of the secondary aircraft, among other parameters.

Finally, we need to make sure that when AutoResolver deals with the generated test case,

it will still select T1 and T2 as the first conflict to resolve. In other words, if the secondary

aircraft is in conflict with any of the initial aircraft, and this conflict is more imminent

T2
T1

T ′
1 T2 T2

T ′
1

T3

Figure 4.4. Loss of separation resolution and introduced secondary conflict. Left: conflict
in the near future. Center: resolution that will prevent loss of separation. Right: secondary
conflict introduced along the resolution trajectory.

82

than the conflict between T1 and T2, then AutoResolver will select the former conflict

to resolver first, and therefore we no longer have control over the creation of the resolution

trajectory with which we create a conflict.

To address this last issue, we use a runtime monitor that, prior to generating the test

case including a secondary, checks whether the secondary aircraft has a conflict with the

initial trajectories, and only generates a test case if the latter conflict is less imminent than

the initial conflict. In other words, a test case such as above is only generated if the conflict

between T1 and T2 is more imminent than both 1) a conflict between T1 and T3, if such a

conflict exists, and 2) a conflict between T2 and T3, if it exists.

In summary, we use runtime monitors to query the behavior of AutoResolver and

generate complex secondary scenarios in a strategic fashion. In this novel use of runtime

monitoring for test-case generation, the software under test serves as a solver of our con-

straints for producing the test cases.

4.5 Verification and Monitoring

A new component of the framework was developed to support verification and monitoring

capabilities: monitoring the execution of AutoResolver, checking if properties hold, and

recording property violations and other information to appropriate log files.

Log files for property violations let the AutoResolver team focus on those test cases

that violate the properties, instead of manually examining results of millions of test cases.

These log files provide information analogous to a regression test suite: if there is a test

case violating any of the properties, a report will be written to the log files. Log files for

the information monitor report detailed information on every aircraft conflict for every test

case and how the picked conflict resolution’s type changes over time.

4.5.1 Monitoring Information and Properties

One of the goals of this work was to keep AutoResolver’s source code intact through-

out the verification. What is usually done when verifying a software is to instrument its

source code with inlined commands needed for a verification task. The motivation behind

avoiding such an invasive approach is the fact that we did not want to interfere with the

ongoing development of AutoResolver.

83

Instead of modifying AutoResolver at the source code level, we added a verification

component to our framework. The AutoResolver software is written in the Java pro-

gramming language. Java compiles to Java bytecode, an intermediate language of the

Java Virtual Machine. The verification component is written in the AspectJ language.

AspectJ is an aspect-oriented programming extension to Java. It comes with a modified

Java compiler that weaves the code of the component into AutoResolver’s bytecode. This

way we have AutoResolver’s code interleaved with our verification code at the bytecode

level only, thus leaving AutoResolver’s source code unmodified.

For every property and the monitor introduced in Section 4.3, we have one aspect in

the component. An aspect is an analog of a Java class. It consists of regular Java code

in addition to pointcuts and advices. Pointcuts are moments in a program execution, e.g.,

an occurrence of a method call. Advices are actions to be taken before and/or after the

pointcuts, e.g., fetching a return value after a method call.

In order to implement the runtime verification, we had to identify parts of AutoRe-

solver’s source code pertaining to the properties and monitor. Once the parts were

identified, we were able to write aspects — consisting of pointcuts and advices — that

implement the properties and monitor. The pointcuts also reach into the framework since

the aspects initialize various parameters on the boundary from the framework to AutoRe-

solver. Furthermore, the aspects reach into test cases exercising the framework and

AutoResolver, again initializing parameters before a test case starts or outputting results

after a test case execution or when a whole test suite ends with its execution. An example

of a pointcut and an advice applied before the pointcut is shown in Listing 4.1.

Every aspect is instantiated at the beginning of a framework execution and it monitors

an execution of each test case in a test suite, independently of other aspects.

pointcut executionJUnitTestMethod () :
execution (public void t e s t ∗ ()) &&
within (TestCase+) &&
! cflow (myAspect ()) ;

before () : executionJUnitTestMethod () {
currentTime = 0 . 0 ;
re so lut ionIn foMap =

new HashMap<Aircra f t IDPai r , ArrayList<Reso lut ion In fo >>() ;
}

Listing 4.1. A pointcut and advice initializing parameters before a JUnit test case method
execution.

84

Some information the aspect observes and collects is written to log files after every test case,

like the resolutionInfoMap data structure in Listing 4.1, while the rest of the information

is written to the files only at the end of a test suite execution.

The resolution monitor modifies each JUnit test case and executes it at nine different

time points. The resulting executions represent a class of test cases with the exact same

aircraft trajectories. However, for each delay time, all aircraft involved in the test case are

first flown for the specified amount of time prior to invoking the AutoResolver’s conflict

detection and resolution process. This is equivalent to generating and executing nine times

as many test cases as in the original JUnit test suite. A pointcut and advice that achieve

the runtime modification and execution are shown in Listing 4.2.

In testing AutoResolver, we made it easy to focus on specific properties or the

runtime monitor through a configuration file. The file contains key-value pairs, where a key

represents one of the properties or the monitor, and a value is either enabled or disabled,

allowing or disallowing the property or the monitor to be exercised, respectively. Note that

when the information monitor is enabled, each test case results in multiple invocations to

AutoResolver, one for each resolution delay that is introduced. In addition to that, all

enabled property monitors are also active and checked as AutoResolver is invoked. For

each test case, we therefore checked all enabled properties at all resolution delay time points.

4.5.2 Monitoring the Monitors

In their previous work [GHI+14], Giannakopoulou et al. measured and compared coverage

of generated test suites in terms of both standard structural coverage criteria, but also in

terms of the sets of attempted and successful resolutions.

pointcut callAR (AacTestWrapper wrapper) :
ca l l (public ArrayList runCon f l i c tDet e c t i onReso lu t i on ()) &&
target (wrapper) &&
! cflow (myAspect ()) &&
! cflow (cal lFlyForMethod (∗ , ∗)) &&
i f (i sEnabled) ;

after (AacTestWrapper wrapper) : callAR (wrapper) {
for (t = 6 0 . 0 ; t <= 480 . 0 ; t += 60 . 0) {

AacTestWrapper w = wrapper . f l yFor (t) ;
w. runCon f l i c tDe t e c t i onReso lu t i on () ;

}
}

Listing 4.2. A pointcut and advice delaying the conflict detection and resolution process for
every JUnit test case.

85

When properties are introduced into the system, we have the opportunity to introduce

additional coverage criteria for the generated test suites. In particular, we wished to make

sure that our test suites include enough different scenarios to exercise the logic of all the

properties that are to be checked in the system. One can view this as a type of “property

coverage” criterion. If no test case exercises a particular property, our testing process satisfies

this property “vacuously.”

Let us consider property P4, for example. This property requires that a picked resolution

does not create a more imminent secondary conflict. One can imagine this property as having

two branches, one for the case where a secondary conflict is created as a result of a resolution

trajectory, and one where it is not. The first branch consists of two branches, one where the

secondary conflict is more imminent than the original one, and one where it is less imminent.

To cover this property, we therefore would like to have test cases that cover all three logical

branches.

Similarly, property P3 checks whether secondary conflicts are added to the list of conflicts

in the correct order. In order to check the logic of this property, we must generate test cases

that create secondary conflicts within the AutoResolver time horizon, so that they are

eligible to be added to the list of conflicts.

To evaluate the quality of our generated test suites with respect to a set of properties,

we introduced runtime monitors, which in essence observed whether the property monitors

are exercised properly. This can be performed by extending the property monitor itself.

For example, for property P3, we extended the property monitor to additionally record

the number of calls made to the method that adds secondary conflicts to an existing list

of conflicts. Alternatively, it can be performed by introducing a new monitor. Since the

lifespan of aspects is through a test suite, it is easy to aggregate such test-suite coverage

results.

4.6 Experimental Evaluation

In this section, we report results on verifying the properties and running the monitor

introduced in Section 4.3. We analyze if each of the properties holds and what insights this

gives us into how AutoResolver operates. For the monitor, we look at the data it outputs

and what it means.

86

4.6.1 Experimental Setup

Experiments were run on a 32-core computer with 128 GB of RAM in the Debian

GNU/Linux operating system in the Emulab network testbed [WLS+02]. The experiments

consist of generating test cases for AutoResolver, as described in Section 4.4.2, and then

checking the properties and running the monitor while executing the test cases, as explained

in Section 4.5. Every JUnit test case we generate consists of five independent initial conflicts,

which equals to five pairs of aircraft, each pair flying to a conflict point. In addition, there

is another aircraft in the test case intended to cause a secondary conflict if AutoResolver

were to choose the same conflict resolution for one of the conflicts in the presence of the

additional aircraft.

It took 2.08 seconds on average to execute a test case. Given that it takes so long to

execute a test case and that we generated 3.5 million test cases in total, we decided to

implement the producer-consumer problem in the framework. The producer is the test case

generator where each consumption unit is a batch of 5000 test cases. In the experiments, we

employed 30 consumers, each consumer executing one batch at a time. With the producer-

consumer approach, it took us about three days to run the test cases compared to about 84

days it would take us if we executed them sequentially.

One thing to note is that, as explained in Section 4.5, every test case is modified and

executed in nine different ways at runtime. Effectively, this means we executed not 3.5

million test cases, but 31.5 million modified test cases. Thanks to the runtime modifications

of every test case representing multiple conflict scenarios, we were able to check all the

properties for the same scenarios, but at different time points.

4.6.2 Property Checking / System Monitoring

In this section, we present the results we obtained from the runtime monitors that we

implemented as oracles during the execution of our generated tests.

P1: There should be a resolution for every conflict. Monitoring of this property identified

several test cases for which AutoResolver was not able to produce a resolution. All these

cases fall within four categories, as reported by the output of AutoResolver. Three

categories have to do with the conflict time. More precisely, there are some conflicts that

AutoResolver considers outside (before or after) its time horizon. For really imminent

87

conflicts, tools such as TSafe [GBS+11] and TCAS [KÐ07] are in charge. For conflicts that

are far enough in the future (how far in the future is configurable), it is often better to wait

and see how they evolve before trying to resolve them. After all, each aircraft maneuver

that is to be applied is disruptive in one way or another. There are also cases identified

as “planes already in violation,” which means that the initial states of the trajectories are

already in loss of separation.

The fourth category produces a message that we could not directly interpret based on

our prior experience with the tool: “Neither plane able to maneuver/neither plane able to

be unfrozen.” The AutoResolver developers informed us that this happens when aircraft

involved in a conflict have already received a resolution in this round. By reviewing the

logs from these test cases, we confirmed that this was indeed the case. This is the type of

behavior that we could not observe with the single-conflict test cases of our previous work.

The behavior of AutoResolver in all these cases is therefore as expected. Relating

to the conflicts that fall outside of the AutoResolver time horizon, one could refine the

property monitor to exclude such cases from being reported. Alternatively, to keep the

property general, one could simply create filters to be applied offline to the logged test

cases. One could also create parameterized runtime monitors that allow to configure the

time window within which the target separation assurance algorithm is expected to operate.

P2: Initial conflicts are resolved in the nondecreasing order of their first time to loss of

separation. We did not detect any violations of this property.

P3: New conflicts arising as a result of conflict resolution should be inserted into the list

of conflicts according to their first loss of separation time. We did not detect any violations

of this property.

P4: No picked resolution is allowed to cause a more imminent secondary conflict. Our

framework initially reported several violations of this property, with the following message,

for example:

Resolution for conflict: (ac1=1, ac2=2) ttlos = 75.0 [s], res type = 13 is causing a more

imminent conflict with ac3=3 with ttlos = 0.0 [s]

We observed that in all the cases reported, the more imminent secondary conflict that

occurs as a result of applying a resolution maneuver occurs immediately, with ttlos equal

to 0.0. We performed several tests to confirm that our runtime monitor was detecting a

88

real violation, and that our runtime monitor does not have a bug. In trying to understand

these violations with the AutoResolver team, we provided to them detailed trajectories

involved in one of these test cases. One of the developers observed the fact that in our test

cases, the initial point of the original trajectory did not coincide with the initial point of its

corresponding resolution trajectory.

This fact exposed a bug in our wrapper, which we had not discovered previously. In

debugging the issue, we noticed that when our ACES stub creates a trajectory, the first

point that it adds to the trajectory is the first point to which the aircraft flies. In other

words, all the trajectories generated by our stub are offset by five seconds (trajectory points

are five seconds away from each other). This is not a serious problem since it does not really

matter what the initial point of an aircraft is, for the purpose of our testing. However, when

the ACES stub is asked to create a trajectory that starts at a particular initial point I, it is

reasonable to expect that the first trajectory point will coincide with I.

Despite this fact, we were surprised that AutoResolver produced a resolution with a

more imminent secondary conflict. We were expecting that when a resolution is attempted,

AutoResolver would check whether it creates more imminent conflicts. Since the conflict

detection algorithm detects such a conflict, how is it possible that AutoResolver selects

the resolution? After several interactions with the AutoResolver developers on this issue,

we realized that the logic of the algorithms used assumes that the initial point of original

and resolution trajectories are the same. When we updated the ACES stub, the violations

to this property disappeared.

This attests to the correctness of our runtime monitor. Runtime verification thus proves

invaluable in debugging and understanding a system under test, which is impossible without

the use of test oracles to assist in this process. We identified an issue with our ACES stub,

but also discovered an implicit assumption made by the logic of AutoResolver. We believe

that this feedback was useful to the AutoResolver team. An assumption is made that

the trajectory generator will always create trajectories with a specific initial point, but why

not robustify the logic to work correctly if a trajectory generator does not exactly satisfy

this criterion?

M1: For each conflict, report its resolution type and how it changes over time. This

monitor produces, for each conflict of each test case, a report that looks as in Table 4.1.

89

Table 4.1. Resolution delay and resulting resolution types. Nonresolved conflict 1 is
reported as being “before AutoResolver horizon,” and 2 reports “planes already in
violation.” Resolution types are represented as integers in AutoResolver.

ttlos [s] Delay time [s] Res. type

430.0 0.0 26

370.0 60.0 26

310.0 120.0 26

250.0 180.0 26

190.0 240.0 26

130.0 300.0 13

70.0 360.0 13

10.0 420.0 not resolved
1

0.0 480.0 not resolved
2

This report allows for an easy inspection of how the produced resolution type changes

when conflict resolution is postponed. Visual inspection is of course not the aim of our

work. Monitor M1 produces about 20GB of logged data. This information opens up many

opportunities for data analysis. One could, for example, try to calculate the average, or

minimum, or maximum delay at which the produced resolution type changes. One could also

look for characteristics of outlier cases. Through observation of the reports, for example, we

noticed some cases that look irregular; for example, it was sometimes the case that a conflict

ahead disappears and then reappears between two aircraft, which is not very intuitive. In

other cases, the resolution type changed very early, where in most cases, the resolution type

only changed when we delay by at least a couple of minutes.

4.6.3 Property Coverage

As discussed, in addition to checking properties, we introduced monitors that check

whether properties are exercised appropriately by the executed test suite. Our test suite

exercised all properties appropriately except for property P3. We were puzzled by this

behavior. For this reason, we additionally monitored whether we generate test cases with

the following characteristic: a resolution is picked that introduces a less imminent conflict

than the original one, and the secondary conflict is within the AutoResolver horizon.

After confirming this fact, we had extensive discussions with the AutoResolver team,

and discovered that for the types of conflicts that we are implementing (called en-route),

secondary conflicts are not handled in the current iteration of AutoResolver. Rather,

90

they are left to be detected in the next invocation of the tool. Only weather conflicts, which

we had not yet incorporated in our framework, may exercise this behavior.

4.7 Lessons Learned

Testing without oracles is a shot in the dark. The NextGen team and we thought that

through the years of trying to understand how to generate test cases and stubs for a complex

system like AutoResolver, we had learned many aspects of its behavior. However, the

pace at which we discover new aspects of its logic has increased significantly with the

introduction of runtime monitors. Monitoring the system has helped us identify assumptions

of the AutoResolver logic, categories of unresolved conflicts that we were unaware of,

as well as bugs in our own wrapper code (after all, the wrapper is a part of our system

under test) that Giannakopoulou et al. had not previously discovered despite extensive

testing [GHI+14]. This is without counting all the information that the AutoResolver

team expects to learn from the recorded data by the information monitor.

Strategic test-case generation and property monitoring are valuable tools in the hands

of developers. In presenting our results to the wider separation assurance team, there

were two things that sparked their enthusiasm. The first was the novel way in which we

generate secondary aircraft. Of our other test-case generation work, they said that “we have

done somewhat similar work for our own basic testing, although not nearly as advanced or

flexible.” However, they said that “we have never seen anything remotely similar to this way

of generating secondary conflicts; it is very novel and interesting.”

The second aspect of our work that they believed can make a real impact in the way

they test their software is the runtime monitoring. They believed that verification through

monitoring can significantly facilitate their testing and regression processes. They also

appreciated the fact that monitors do not interfere with their development.

Properties trigger the creation of new properties. From this, but also others’ past

experience with TSafe [GBS+11], it is clear that the best way to identify properties

of complicated algorithms is to start from simple ones, and show the value to system

developers. The capability to create logs of tests that identify several characteristics of

interest immediately creates a desire in the team to monitor additional aspects of the system.

This is a great opportunity for formal methods experts to get their hands on real systems.

91

Of course, it comes at the price of a significant engineering effort, which, in the NextGen

team’s case, has spanned over several years. However, the potential impact of our work

makes the effort worthwhile and rewarding.

Our information monitor also opens up opportunities for applying a variety of data

analysis and mining techniques in this domain. One example of properties that we have not

yet explored are properties that compare resolutions across consecutive rounds of operation

of AutoResolver. The difference from our current information monitor is that instead

of flying aircraft in order to delay the resolution process, we would actually apply the

picked resolutions, and invoke AutoResolver again on the resolved trajectories, at the

next time point according to the frequency of invocation. We are inspired to specify such

properties from work on analyzing the ACAS X system [vEG14]. In that work, an example

of undesirable behavior is described as “reversals,” which describes a situation where the

same aircraft is advised to climb and subsequently to descend. Such maneuvers are extremely

disruptive to the pilot.

Runtime monitoring is useful for test-case generation. In this work, we used runtime

monitoring in conventional ways, to check properties of the system under test, but also in

innovative ways, to generate test cases that are hard to generate with other techniques. In

particular, there are two such interesting examples. The first one has to do with creating

secondary conflicts. In this example, the system under test is used as a “constraint solver”; it

informs our test-case generation tool of the resolution that AutoResolver would pick for

a specific conflict. We believe that such an approach could be applicable in many real-world

scenarios where we are required to solve constraints that are very particular to a specific

application.

The second case is where the runtime monitor captures information from one test case,

modifies it, and subsequently runs the modified test case, as performed by our information

monitor. M1 modifies each test case at runtime to effectively generate a whole class of

related test cases with the same aircraft setup, but across time.

4.8 Related Work

In the research field of runtime verification, researchers have explored a number of

formalisms, usually with a trade-off between expressiveness and performance. Java PathEx-

92

plorer [HR04] checks an execution of a Java program against user-provided properties and

analyzes the program for deadlocks and data races. LogFire [Hav14] is a rule-based runtime

verification system based on a pattern-matching algorithm for implementing production rule

systems. JavaMOP [CR07] enables the user to specify properties using a formalism, and

automatically generates monitors in AspectJ from the specification. Even though we could

have used a tool such as JavaMOP in this work, we did not need its expressiveness, hence we

encoded the requirements in AspectJ directly. For an overview of the runtime verification

field, see Leucker and Schallhart [LS09]. Runtime verification is also used in software-fault

monitoring; Delgado et al. [DGR04] provide a taxonomy and a classification of software-fault

monitoring systems.

A combination of test-case generation and runtime verification has been explored by

others working on runtime verification. The jUnitRV tool [DLT13] extends the JUnit unit

testing framework with annotations that are generated from a user-specified temporal logic

formula. The tool manipulates Java bytecode at runtime. Artho et al. [ABG+05] use an

input-output model to automatically generate test cases enriched with verification proper-

ties. The test cases are generated using symbolic execution and the properties are analyzed

by applying runtime verification to execution traces. In their approach, the system under

test is instrumented manually so that events of interest are recorded in the execution traces.

In our work, runtime verification is instrumental in test-case generation, and instrumentation

is done automatically at the Java bytecode level, without affecting the source code of the

software under test. Furthermore, in our work, runtime monitors and test cases are separate,

offering the flexibility to apply any selection of runtime monitors to any selection of test cases

(whether generated automatically or manually).

The oracle problem of identifying correct output, which we faced in this line of work,

is also approached by metamorphic testing [ZHT+04]. Chen et al. [CCY98] show how to

augment passing test cases in metamorphic testing with the goal of revealing undetected

errors in software.

The AutoResolver system has previously been integrated and evaluated with other

National Airspace System (NAS) simulations [MT08, PHM+09, Thi08]. Moreover, in pre-

vious work, Giannakopoulou et al. tested TSafe [GBS+11], a NextGen component that

also targets separation assurance, but at a shorter time horizon. That work also identifies

93

properties to be tested, but these properties involve the input and output data of the system,

and therefore do not require more involved monitoring, as in this work. Moreover, the input

space of TSafe is much smaller than that of AutoResolver, making test-case generation

simpler.

Several researchers have addressed the challenge of generating structurally complex

inputs with white- and black-box techniques. Techniques range from using declarative

specifications of the test inputs [BKM02, GGJ+10] to white-box techniques based on concolic

execution for security testing [GLM12]. MACE [CBP+11] combines black- and white-box

techniques such as active automata learning and concolic execution in order to increase code

coverage. A lot of research combines the techniques to generate method sequences and input

values for primitive parameter types and objects [TH08, IX08, TXT+11, DR13, PLEB07,

GIB+13]. Arnold and Alexander [AA13] generate complex tests based on an automated

approach to generating content for computer games. Other researchers rely on program

invariants inferred from executions in generating test cases [BDS06, CSX08].

As mentioned, other test-case generation approaches can be added to our framework

such as plain random input generation, concolic execution, combinatorial testing, and evo-

lutionary test case generation [PHP99]. The use of such techniques is only made possible

by our implementation of a wrapper to tame the input space of AutoResolver.

4.9 Conclusion

The presented work here is based on several years of work with experts in aircraft

separation assurance to develop a lightweight testing environment for the AutoResolver

tool. In this work, we particularly focused on specifying and monitoring properties of the

AutoResolver algorithms during testing. We discussed how we implemented property

and information monitors in the AspectJ language, allowing us to log several aspects of

the system without interfering with its source code.

To effectively exercise properties of interest of the system, we had to generate sophisti-

cated test cases. To this aim, we used runtime monitoring in innovative ways, both as an

oracle for constraint solving, and as a generator of classes of related test cases.

Note that in this work, we did not focus on experimenting with different test-case

generation tools. Rather, we focused on creating appropriate interfaces around AutoRe-

94

solver, which tame its input space of trajectories into parameterized scenarios that can be

handled by test-case generation tools. Here we used a simple black-box test-case generation

algorithm.

We automatically generated and efficiently executed millions of test cases, and discovered

errors and vulnerabilities in the system consisting of AutoResolver and our wrapper code.

We also gained new insights in the logic of the algorithms. The separation assurance team at

NASA Ames has expressed interest in incorporating our work more widely. One possible way

to extend the framework is in creating generic monitor templates for separation assurance,

that can be configured to work with a variety of tools and algorithms in that domain.

Finally, the AutoResolver team would like us to stress-test the system by placing

conflict points closer together, for example, and thus having aircraft from different conflicts

interfere with each other. They are also interested in classifying input tests for which the

AutoResolver may not be able to produce a resolution. In general, the information we

produce opens many opportunities for further analysis.

Even though we have so far focused our work on air-traffic control algorithms, the

approaches that we have developed are relevant in other domains. For example, techniques

described here could be applied in the car industry to test algorithms for self-driving cars.

CHAPTER 5

CONCLUSION

This concludes the dissertation. In it, we presented three lines of work revolving around

automatic software testing. All three lines extended and applied several testing techniques

in novel ways with the goal of increasing software reliability.

In Chapter 2 on automatic testing in malware detection, we analyzed how automatic soft-

ware techniques can be used to build high-quality detectors of malicious software behavior.

In particular, we looked at how the type and size of input in automatic random testing affects

four quality measures in various machine learning-based binary classifiers. We applied this

analysis to thousands of applications for the Android operating system. Results showed that

the classifiers can be built efficiently based on simple inputs guiding application execution.

The quality of the classifiers was affected only negligibly when varying the number of inputs

from several hundred to several thousand.

In the first stage of this work, we were planning to employ dynamic symbolic execution

in driving application execution. However, there was no ready-to-use dynamic symbolic

execution engine for Android applications; hence, we decided to start with random testing

and first see results this approach gives. We were pleasantly surprised by preliminary results

and good quality detectors, which made us revisit both our original plan with symbolic

execution and earlier work of others on malware detection with heavyweight techniques.

Detectors we have built are robust and not dependent on particular applications, as

shown by our analysis. They provide insights into how different configurations in testing

influence detectors. Random testing was shown to be effective and did not leave much room

for improvement that more advanced and complex techniques can bring.

With Chapter 3, we introduced a technique for automatic test case generation for object-

oriented software. As explained in the chapter, the challenge was in generating objects of

arbitrary complex classes in the subtyping polymorphism sense. The motivation behind this

96

work is in the fact that covering more code with automatic testing triggers more faulty sites

in a software code base. Therefore, we needed to cover as much of code full of objects,

where each object is generated by either following an unspecified protocol or by setting up

an uncovered state in which an object can be generated.

There we combined two well-known existing automatic testing techniques. The combina-

tion consists of feedback-directed random testing and dynamic symbolic execution, forming

a novel technique that eliminates drawbacks of both underlying techniques. Random testing

provided us with call sequences that broadly explored execution states, while symbolic

execution enabled us to explore the neighborhood of a state in detail. Our extensive

evaluation of the technique on a scale that has not been undertaken before showed on a

wide range of benchmarks that the combined technique provides modest improvements in

code coverage over the feedback-directed random testing technique.

Chapter 4 addressed the challenge of automatically testing and checking properties of

an optimization system. It is difficult to capture correctness of states in an optimization

system as computed states in it are compared in relative terms to each other, and not against

an unknown optimal state. There we proposed an automatic software testing technique

for NASA’s AutoResolver aircraft collision avoidance system. First we formulated four

verification properties and one information property. The properties we formulated gave us

clarity, i.e., something we could work with in terms of testing and verification.

In a novel way, our technique interleaved a black-box test case generation approach

with runtime analysis and verification to 1) guide the iterative construction of complex test

cases that stress-tested the system, and 2) check if the four properties hold for in-flight

scenarios given in the automatically generated test cases. The technique enabled us to use

the system under test in an interesting way by both putting it into a position of a test case

generator and an oracle to correctness of simpler scenarios that were consequently used in

constructing complex aircraft scenarios. Test cases we generated were generic and without

properties baked in. Rather, properties were specified in and checked on the fly by the

verification framework, thereby decoupling test case generation and property specification

and verification.

Our approach in testing the aircraft collision avoidance system led to discovery of errors

and vulnerabilities in the system comprising AutoResolver and our testing framework.

97

With the work, we gained new insights in the logic of the algorithms in the AutoResolver

system. The AutoResolver team’s airspace engineers were happy to be provided with

an automatic test case generation and verification framework for AutoResolver. This

significantly improved over their manual testing process. The framework enabled them to

develop new features and test their behavior more rapidly and with higher confidence of

correctness.

With these three chapters of the dissertation, we demonstrated our thesis that automatic

software testing can be combined with machine learning, dynamic symbolic execution, and

runtime verification to broaden its applicability.

REFERENCES

[AA13] James Arnold and Rob Alexander. Testing Autonomous Robot Control Soft-
ware Using Procedural Content Generation. In Proceedings of the International
Conference on Computer Safety, Reliability and Security (SAFECOMP), pages
33–44. Springer Berlin Heidelberg, 2013.

[ABG+05] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz
Khurshid, Mike Lowry, Corina Pasareanu, Grigore Roşu, Koushik Sen, Willem
Visser, and Rich Washington. Combining Test Case Generation and Runtime
Verification. Theoretical Computer Science, pages 209–234, 2005.

[ADY13] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-level
Features for Robust Malware Detection in Android. In Security and Privacy in
Communication Networks (SecureComm), pages 86–103. Springer International
Publishing, 2013.

[alc14] Kindsight Security Labs Report — H1 2014. http://resources.alcatel-

lucent.com/?cid=180437, 2014. Alcatel-Lucent.

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 259–269, 2014.
ISBN 978-1-4503-2784-8.

[ASH+14] Daniel Arp, Michael Spreitzenbarth, Malte Huebner, Hugo Gascon, and Konrad
Rieck. Drebin: Effective and Explainable Detection of Android Malware in
Your Pocket. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2014.

[asm17] ASM: A Java Bytecode Engineering Library. http://asm.ow2.org, 2017.

[BBS+10] Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet
Camtepe, and Sahin Albayrak. An Android Application Sandbox System for
Suspicious Software Detection. In Proceedings of the International Conference
on Malicious and Unwanted Software (MALWARE), pages 55–62, 2010.

[BDS06] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. From Daikon to
Agitator: Lessons and Challenges in Building a Commercial Tool for Developer
Testing. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA), pages 169–180, 2006. ISBN 1-59593-263-1.

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceed-
ings of the USENIX Annual Technical Conference, pages 41–46, 2005.

99

[Bey16] Dirk Beyer. Reliable and Reproducible Competition Results with BenchExec
and Witnesses (Report on SV-COMP 2016). In Tools and Algorithms for the
Construction and Analysis of Systems, pages 887–904, 2016.

[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Au-
tomated Testing Based on Java Predicates. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pages 123–133, 2002.

[BZNT11] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:
Behavior-based Malware Detection System for Android. In Proceedings of the
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM),
pages 15–26, 2011.

[CAM+08] Xu Chen, Jon Andersen, Z. Morley Mao, Michael Bailey, and Jose Nazario.
Towards an Understanding of Anti-virtualization and Anti-debugging Behavior
in Modern Malware. In Proceedings of the International Conference on De-
pendable Systems and Networks (DSN), pages 177–186, 2008.

[CBP+11] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen, Ed-
ward XueJun Wu, and Dawn Song. MACE: Model-inference-assisted Concolic
Exploration for Protocol and Vulnerability Discovery. In Proceedings of the
USENIX Security Symposium, 2011.

[CCY98] Tsong Y. Chen, Shing C. Cheung, and Siu Ming Yiu. Metamorphic Testing:
A New Approach for Generating Next Test Cases. Technical Report HKUST-
CS98-01, Department of Computer Science, Hong Kong University of Science
and Technology, 1998.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 209–224, 2008.

[CDPP96] David M. Cohen, Siddhartha R. Dalal, Jesse Parelius, and Gardner C. Patton.
The Combinatorial Design Approach to Automatic Test Generation. IEEE
Software, 13(5):83–88, 1996. ISSN 0740-7459.

[CGC12] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the Clones: Detect-
ing Cloned Applications on Android Markets. In Proceedings of the European
Symposium on Research in Computer Security (ESORICS), volume 7459, pages
37–54. 2012. ISBN 978-3-642-33166-4.

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An
Interpolating SMT Solver. In Proceedings of the 19th International Workshop
on Model Checking Software (SPIN), pages 248–254, 2012.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector
Machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27:1–27:27, 2011.

[CR07] Feng Chen and Grigore Roşu. Mop: An Efficient and Generic Runtime
Verification Framework. In Proceedings of the International Conference on

100

Object-oriented Programming Systems Languages and Applications (OOPSLA),
pages 569–588, 2007.

[CSX08] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. DSD-Crasher: A Hybrid
Analysis Tool for Bug Finding. ACM Transactions on Software Engineering and
Methodology, pages 1–37, 2008. ISSN 1049-331X.

[DA14] Peter Dinges and Gul Agha. Solving Complex Path Conditions Through
Heuristic Search on Induced Polytopes. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering
(FSE), pages 425–436. ACM, 2014. ISBN 978-1-4503-3056-5.

[DAUR15] Marko Dimjašević, Simone Atzeni, Ivo Ugrina, and Zvonimir Rakamarić. An-
droid Malware Detection Based on System Calls. Technical Report UUCS-15-
003, University of Utah, School of Computing, 2015.

[DAUR16a] Marko Dimjašević, Simone Atzeni, Ivo Ugrina, and Zvonimir Rakamarić. Eval-
uation of Android Malware Detection Based on System Calls. In Proceedings of
the International Workshop on Security and Privacy Analytics (IWSPA), pages
1–8, 2016. ISBN 978-1-4503-4077-9.

[DAUR16b] Marko Dimjašević, Simone Atzeni, Ivo Ugrina, and Zvonimir Rakamarić. Eval-
uation of Android Malware Detection Based on System Calls — Dataset, 2016.
URL https://doi.org/10.5281/zenodo.154737.

[DG15] Marko Dimjašević and Dimitra Giannakopoulou. Test-case Generation for Run-
time Analysis and Vice Versa: Verification of Aircraft Separation Assurance.
In Proceedings of the 2015 International Symposium on Software Testing and
Analysis (ISSTA), pages 282–292, 2015. ISBN 978-1-4503-3620-8.

[DGH+14] Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar, Malte Isberner,
Zvonimir Rakamarić, and Vishwanath Raman. The Dart, the Psyco, and the
Doop: Concolic Execution in Java PathFinder and its Applications. SIGSOFT
Software Engineering Notes, 40(1):1–5, 2014. ISSN 0163-5948.

[DGR04] Nelly Delgado, Ann Quiroz Gates, and Steve Roach. A Taxonomy and Catalog
of Runtime Software-fault Monitoring Tools. IEEE Transactions on Software
Engineering, pages 859–872, 2004.

[Dim13] Marko Dimjašević. Automatic Testing of Software Libraries. In Formal
Methods in Computer-Aided Design (FMCAD), 2013. Extended abstract.

[DLT13] Normann Decker, Martin Leucker, and Daniel Thoma. jUnitRV — Adding
Runtime Verification to jUnit. NASA Formal Methods, pages 459–464, 2013.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 337–340, 2008.

[DMSS12] Gianluca Dini, Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra.
MADAM: A Multi-level Anomaly Detector for Android Malware. In Proceed-
ings of the International Conference on Mathematical Methods, Models and

101

Architectures for Computer Network Security (MMM-ACNS), pages 240–253.
2012. ISBN 978-3-642-33704-8.

[DR13] Marko Dimjašević and Zvonimir Rakamarić. JPF-Doop: Combining Concolic
and Random Testing for Java. In Java Pathfinder Workshop, 2013. Extended
abstract.

[DRK+14] Morgan Deters, Andrew Reynolds, Tim King, Clark W. Barrett, and Cesare
Tinelli. A Tour of CVC4: How it Works, and How to Use It. In Proceedings of
the 14th Conference on Formal Methods in Computer-Aided Design (FMCAD),
page 7, 2014.

[EGC+10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An Information-flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In Pro-
ceedings of the Symposium on Operating Systems Design and Implementation
(OSDI), 2010.

[ELC10] Heinz Erzberger, Todd A. Lauderdale, and Yung-Cheng Chu. Automated
Conflict Resolution, Arrival Management and Weather Avoidance for ATM.
In Proceedings of the 27th International Congress of the Aeronautical Sciences,
2010.

[emu15] Emulab FAQ. https://wiki.emulab.net/wiki/FAQ, 2015.

[EOMC11] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A
Study of Android Application Security. In Proceedings of the USENIX Security
Symposium, pages 315–330, 2011.

[FA11] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite Generation
for Object-oriented Software. In Proceedings of the 13th European Software
Engineering Conference held jointly with 19th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE), pages 416–
419, 2011.

[FADA14] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-
based Detection of Android Malware Through Static Analysis. In Proceedings
of the International Symposium on the Foundations of Software Engineering
(FSE), pages 576–587, 2014. ISBN 978-1-4503-3056-5.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-
ner. Android Permissions Demystified. In Proceedings of the Conference on
Computer and Communications Security (CCS), pages 627–638, 2011.

[fdr15] F-Droid, Free and Open Source Android App Repository. https://f-droid.

org/, 2015.

[FE07] Todd C. Farley and Heinz Erzberger. Fast-time Simulation Evaluation of a
Conflict Resolution Algorithm Under High Air Traffic Demand. In Proceedings
of the 7th USA/Europe Air Traffic Management R&D Seminar, 2007.

102

[FHE+12] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. Android Permissions: User Attention, Comprehension, and
Behavior. In Proceedings of the Symposium on Usable Privacy and Security
(SOUPS), pages 3:1–3:14, 2012. ISBN 978-1-4503-1532-6.

[FJC+10] Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng
Yan. Synthesizing Near-optimal Malware Specifications from Suspicious Be-
haviors. In Proceedings of the Symposium on Security and Privacy (SP), pages
45–60, 2010.

[GBS+11] Dimitra Giannakopoulou, David H. Bushnell, Johann Schumann, Heinz
Erzberger, and Karen Heere. Formal Testing for Separation Assurance. Annals
of Mathematics and Artificial Intelligence, 63(1):5–30, 2011.

[GFA13] Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. Improving Search-
based Test Suite Generation with Dynamic Symbolic Execution. In Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pages 360–369,
2013.

[GGJ+10] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kun-
cak, and Darko Marinov. Test Generation through Programming in UDITA. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 225–234, 2010.

[GGZ+13] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Moham-
mad Amin Alipour, and Darko Marinov. Comparing Non-adequate Test Suites
Using Coverage Criteria. In Proceedings of the 2013 International Symposium
on Software Testing and Analysis, ISSTA 2013, pages 302–313. ACM, New
York, NY, USA, 2013. ISBN 978-1-4503-2159-4. URL http://doi.acm.org/

10.1145/2483760.2483769.

[GHI+14] Dimitra Giannakopoulou, Falk Howar, Malte Isberner, Todd Lauderdale, Zvon-
imir Rakamarić, and Vishwanath Raman. Taming Test Inputs for Separation
Assurance. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 373–384, 2014.

[GIB+13] Pranav Garg, Franjo Ivančić, Gogul Balakrishnan, Naoto Maeda, and Aarti
Gupta. Feedback-directed Unit Test Generation for C/C++ Using Concolic
Execution. In Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 132–141, 2013.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT Solver
for Nonlinear Theories over the Reals. In Proceedings of the 23rd International
Conference on Automated Deduction (CADE), pages 208–214, 2013.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Auto-
mated Random Testing. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), pages 213–223, 2005. ISBN
1-59593-056-6.

[GLM12] Patrice Godefroid, Michael Y. Levin, and David Molnar. SAGE: Whitebox
Fuzzing for Security Testing. Queue, 10(1):20:20–20:27, 2012. ISSN 1542-7730.

103

[GM15] Marco Gario and Andrea Micheli. pySMT: A Solver-agnostic Library for Fast
Prototyping of SMT-based Algorithms. In Proceedings of the 13th International
Workshop on Satisfiability Modulo Theories (SMT), 2015.

[GTGZ14] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Check-
ing App Behavior Against App Descriptions. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 1025–1035, 2014. ISBN
978-1-4503-2756-5.

[GYAR13] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural
Detection of Android Malware Using Embedded Call Graphs. In Proceedings
of the Workshop on Artificial Intelligence and Security (AISec), pages 45–54,
2013.

[GZZ+12] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
RiskRanker: Scalable and Accurate Zero-day Android Malware Detection. In
Proceedings of the International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2012.

[Hav14] Klaus Havelund. Rule-based Runtime Verification Revisited. International
Journal on Software Tools for Technology Transfer, pages 1–28, 2014.

[HGR13] Falk Howar, Dimitra Giannakopoulou, and Zvonimir Rakamarić. Hybrid Learn-
ing: Interface Generation through Static, Dynamic, and Symbolic Analysis. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 268–279, 2013.

[HHW+13] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn
Song. Juxtapp: A Scalable System for Detecting Code Reuse among Android
Applications. In Proceedings of the International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), pages 62–81.
2013. ISBN 978-3-642-37299-5.

[HR04] Klaus Havelund and Grigore Roşu. An Overview of the Runtime Verification
Tool Java PathExplorer. Formal Methods in System Design, pages 189–215,
2004.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer, 2nd edition, 2009.

[IX08] K. Inkumsah and Tao Xie. Improving Structural Testing of Object-oriented
Programs via Integrating Evolutionary Testing and Symbolic Execution. In
Proceedings of the International Conference on Automated Software Engineering
(ASE), pages 297–306, 2008.

[jac17] JaCoCo Java Code Coverage Library. http://www.jacoco.org/jacoco, 2017.

[JAS14] Ranjith Kumar Jidigam, Thomas H. Austin, and Mark Stamp. Singular Value
Decomposition and Metamorphic Detection. Journal of Computer Virology and
Hacking Techniques, 11(4), 2014.

104

[JHG09] Karthick Jayaraman, David Harvison, and Vijay Ganesh. jFuzz: A Concolic
Whitebox Fuzzer for Java. In Proceedings of the 1st NASA Formal Methods
Symposium (NFM), pages 121–125, 2009.

[JKXC10] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. OCAT: Object
Capture-based Automated Testing. In Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA), pages 159–170, 2010.

[jun13] Third Annual Mobile Threats Report: March 2012 through March
2013. http://www.juniper.net/us/en/local/pdf/additional-resources/

3rd-jnpr-mobile-threats-report-exec-summary.pdf, 2013. Juniper Net-
works Mobile Threat Center.

[JWH13] Gareth James, Daniela Witten, and Trevor Hastie. An Introduction to Statis-
tical Learning: With Applications in R. Springer Texts in Statistics. Springer,
2013. ISBN 9781461471387.

[JZAH14] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Morpheus: Auto-
matically Generating Heuristics to Detect Android Emulators. In Proceedings
of the Annual Computer Security Applications Conference (ACSAC), pages
216–225, 2014.

[KÐ07] James K. Kuchar and Ann C. Ðrumm. The Traffic Alert and Collision
Avoidance System. Lincoln Laboratory Journal, 16(2):277–296, 2007.

[KCK+09] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiao-yong Zhou, and XiaoFeng Wang. Effective and Efficient Malware
Detection at the End Host. In Proceedings of the USENIX Security Symposium,
pages 351–366, 2009.

[KJ13] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer, 2013.
ISBN 9781461468493.

[KLS+11] Kari Kähkönen, Tuomas Launiainen, Olli Saarikivi, Janne Kauttio, Keijo
Heljanko, and Ilkka Niemelä. LCT: An Open Source Concolic Testing Tool
for Java Programs. In Proceedings of the 6th Workshop on Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE), pages 75–80, 2011.

[KPV03] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized Sym-
bolic Execution for Model Checking and Testing. In Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 553–568. Springer-Verlag, 2003. ISBN 3-540-00898-
5.

[LBK+10] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu,
and Engin Kirda. AccessMiner: Using System-centric Models for Malware Pro-
tection. In Proceedings of the Conference on Computer and Communications
Security (CCS), pages 399–412, 2010. ISBN 978-1-4503-0245-6.

[LDG+16] Kasper Luckow, Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar,
Malte Isberner, Temesghen Kahsai, Zvonimir Rakamarić, and Vishwanath
Raman. JDart: A Dynamic Symbolic Analysis Framework. In Proceedings of

105

the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 442–459, 2016. ISBN 978-3-662-49674-9.

[LKM+13] Shuying Liang, Andrew W. Keep, Matthew Might, Steven Lyde, Thomas
Gilray, Petey Aldous, and David Van Horn. Sound and Precise Malware
Analysis for Android via Pushdown Reachability and Entry-point Saturation.
In Proceedings of the Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM), pages 21–32, 2013. ISBN 978-1-4503-2491-5.

[LS09] Martin Leucker and Christian Schallhart. A Brief Account of Runtime Ver-
ification. The Journal of Logic and Algebraic Programming, pages 293–303,
2009.

[LSM14] Shuying Liang, Weibin Sun, and Matthew Might. Fast Flow Analysis with
Gödel Hashes. In Proceedings of the International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 225–234, 2014.

[McM11] P. McMinn. Search-Based Software Testing: Past, Present and Future. In
2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, pages 153–163, 2011.

[mon17] UI/Application Exerciser Monkey. http://developer.android.com/tools/

help/monkey.html, 2017.

[MT08] David McNally and David Thipphavong. Automated Separation Assurance in
the Presence of Uncertainty. In Proceedings of the International Congress of
the Aeronautical Sciences, 2008.

[OG10] Markus Ojala and Gemma C. Garriga. Permutation Tests for Studying Classi-
fier Performance. Journal of Machine Learning Research, 11:1833–1863, 2010.
ISSN 1532-4435.

[PBCK13] Sirinda Palahan, Domagoj Babić, Swarat Chaudhuri, and Daniel Kifer. Ex-
traction of Statistically Significant Malware Behaviors. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC), pages 69–78,
2013.

[PHM+09] Thomas Prevot, Jeffrey Homola, Joey Mercer, Matt Mainini, and Christopher
Cabrall. Initial Evaluation of Air/Ground Operations with Ground-based
Automated Separation Assurance. In Proceedings of the 8th USA/Europe Air
Traffic Management R&D Seminar, 2009.

[PHP99] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. Test-data Genera-
tion Using Genetic Algorithms. Software Testing, Verification and Reliability
(STVR), 9(4):263–282, 1999.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed Random Test Generation. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), pages 75–84, 2007. ISBN
0-7695-2828-7.

106

[PMB+08] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-
Burlet, Michael Lowry, Suzette Person, and Mark Pape. Combining Unit-level
Symbolic Execution and System-level Concrete Execution for Testing NASA
Software. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA), pages 15–26, 2008. ISBN 978-1-60558-050-0.

[PMRB09] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo
Bruschi. A Fistful of Red-pills: How to Automatically Generate Procedures to
Detect CPU Emulators. In Proceedings of the USENIX Workshop on Offensive
Technologies (WOOT), 2009.

[Pra16] Ignatius S. W. B. Prasetya. Budget-Aware Random Testing with T3: Bench-
marking at the SBST2016 Testing Tool Contest. In 2016 IEEE/ACM 9th In-
ternational Workshop on Search-Based Software Testing (SBST), pages 29–32,
2016. ISBN 978-1-5090-2205-2.

[PRV11] Corina S. Pasareanu, Neha Rungta, and Willem Visser. Symbolic Execution
with Mixed Concrete-symbolic Solving. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pages 34–44, 2011.

[r17] The R Project for Statistical Computing. http://www.r-project.org, 2017.

[RFC13] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A System Call-
centric Analysis and Stimulation Technique to Automatically Reconstruct An-
droid Malware Behaviors. Proceedings of the European Workshop on System
Security (EuroSec), 2013.

[ris14] RiskIQ’s Report on Malicious Mobile Apps. http://www.riskiq.com/

company/press-releases/riskiq-reports-malicious-mobile-apps-

google-play-have-spiked-nearly-400, 2014.

[RJGV16] Urko Rueda, René Just, Juan P. Galeotti, and Tanja E. J. Vos. Unit Testing
Tool Competition — Round Four. In Proceedings of the International Workshop
on Search-Based Software Testing (SBST), pages 19–28, 2016. ISBN 978-1-
5090-2205-2.

[RTWH11] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Au-
tomatic Analysis of Malware Behavior Using Machine Learning. Journal of
Computer Security, 19(4):639–668, 2011.

[RWS+15] Robert Ricci, Gary Wong, Leigh Stoller, Kirk Webb, Jonathon Duerig, Keith
Downie, and Mike Hibler. Apt: A Platform for Repeatable Research in
Computer Science. SIGOPS Operating Systems Review (OSR), 49(1):100–107,
2015. ISSN 0163-5980.

[SA06] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing
and Explicit Path Model-checking Tools. In Proceedings of the International
Conference on Computer Aided Verification (CAV), pages 419–423, 2006. ISBN
978-3-540-37406-0.

[SB14] Nastaran Shafiei and Franck van Breugel. Automatic Handling of Native Meth-
ods in Java PathFinder. In Proceedings of the International SPIN Symposium
on Model Checking of Software, pages 97–100, 2014. ISBN 978-1-4503-2452-6.

107

[SBdP11] Matheus Souza, Mateus Borges, Marcelo d’Amorim, and Corina S. Păsăreanu.
CORAL: Solving Complex Constraints for Symbolic Pathfinder. In Proceedings
of the NASA Formal Methods Symposium (NFM), pages 359–374, 2011. ISBN
978-3-642-20397-8.

[SDTC+16] Tanuvir Singh, Fabio Di Troia, Visaggio Aaron Corrado, Thomas H. Austin,
and Mark Stamp. Support Vector Machines and Malware Detection. Journal of
Computer Virology and Hacking Techniques, 12(4):203–212, 2016. ISSN 2263-
8733.

[sf113] The SF110 Benchmark Suite. http://www.evosuite.org/experimental-

data/sf110, 2013.

[SGS+16] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.
In Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2016.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE), pages 263–272, 2005.

[smt17] The SMT-LIB Standard. http://smtlib.cs.uiowa.edu, 2017.

[soo17] Soot: A Java Optimization Framework. http://sable.github.io/soot, 2017.

[SPG16] Abdelilah Sakti, Gilles Pesant, and Yann-Gaël Guéhéneuc. JTExpert at the
Fourth Unit Testing Tool Competition. In Proceedings of the International
Workshop on Search-Based Software Testing (SBST), pages 37–40, 2016. ISBN
978-1-5090-2205-2.

[TH08] Nikolai Tillmann and Jonathan de Halleux. Pex—White Box Test Generation
for .NET. In Proceedings of the International Conference on Tests and Proofs
(TAP), pages 134–153, 2008. ISBN 978-3-540-79123-2.

[Thi08] David Thipphavong. Analysis of Climb Trajectory Modeling for Separation
Assurance Automation. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, 2008.

[TLN+14] Hien Thi Thu Truong, Eemil Lagerspetz, Petteri Nurmi, Adam J. Oliner,
Sasu Tarkoma, N. Asokan, and Sourav Bhattacharya. The Company You
Keep: Mobile Malware Infection Rates and Inexpensive Risk Indicators. In
Proceedings of the International Conference on World Wide Web (WWW),
pages 39–50, 2014. ISBN 978-1-4503-2744-2.

[TXT+11] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Zhendong Su. Synthesizing Method Sequences for High-coverage Testing. In
Proceedings of the International Conference on Object-oriented Programming
Systems Languages and Applications (OOPSLA), pages 189–206, 2011. ISBN
978-1-4503-0940-0.

108

[TZHS15] Haruto Tanno, Xiaojing Zhang, Takashi Hoshino, and Koushik Sen. TesMa
and CATG: Automated Test Generation Tools for Models of Enterprise Appli-
cations. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 717–720, 2015.

[vEG14] Christian von Essen and Dimitra Giannakopoulou. Analyzing the Next Gen-
eration Airborne Collision Avoidance System. In Proceedings of the 20th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 620–635, 2014.

[WLS+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated
Experimental Environment for Distributed Systems and Networks. In Pro-
ceedings of the Symposium on Operating Systems Design and Implementation
(OSDI), pages 255–270, 2002.

[WROR14] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A Precise
and General Inter-component Data Flow Analysis Framework for Security
Vetting of Android Apps. In Proceedings of the Conference on Computer and
Communications Security (CCS), pages 1329–1341, 2014. ISBN 978-1-4503-
2957-6.

[YXA+15] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William
Enck. AppContext: Differentiating Malicious and Benign Mobile App Behav-
iors Using Context. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 303–313, 2015.

[YY12] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly Reconstructing the
OS and Dalvik Semantic Views for Dynamic Android Malware Analysis. In
Proceedings of the USENIX Security Symposium, pages 569–584, 2012.

[ZHT+04] Zhi Quan Zhou, D. H. Huang, T. H. Tse, Zongyuan Yang, Haitao Huang, and
T. Y. Chen. Metamorphic Testing and its Applications. In Proceedings of
the International Symposium on Future Software Technology (ISFST), pages
346–351, 2004.

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization
and Evolution. In Proceedings of the Symposium on Security and Privacy (SP),
pages 95–109, 2012.

[ZJS+11] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David
Wetherall. TaintEraser: Protecting Sensitive Data Leaks Using Application-
level Taint Tracking. SIGOPS Operating Systems Review (OSR), 45(1):142–
154, 2011. ISSN 0163-5980.

[ZWZJ12] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android Markets.
In Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2012.

