3,915 research outputs found

    Content-based Video Retrieval by Integrating Spatio-Temporal and Stochastic Recognition of Events

    Get PDF
    As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated us

    Detecting complex events in user-generated video using concept classifiers

    Get PDF
    Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed byconstructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events

    Image segmentation and feature extraction for recognizing strokes in tennis game videos

    Get PDF
    This paper addresses the problem of recognizing human actions from video. Particularly, the case of recognizing events in tennis game videos is analyzed. Driven by our domain knowledge, a robust player segmentation algorithm is developed real video data. Further, we introduce a number of novel features to be extracted for our particular application. Different feature combinations are investigated in order to find the optimal one. Finally, recognition results for different classes of tennis strokes using automatic learning capability of Hidden Markov Models (HMMs) are presented. The experimental results demonstrate that our method is close to realizing statistics of tennis games automatically using ordinary TV broadcast videos

    A game-based approach towards human augmented image annotation.

    Get PDF
    PhDImage annotation is a difficult task to achieve in an automated way. In this thesis, a human-augmented approach to tackle this problem is discussed and suitable strategies are derived to solve it. The proposed technique is inspired by human-based computation in what is called “human-augmented” processing to overcome limitations of fully automated technology for closing the semantic gap. The approach aims to exploit what millions of individual gamers are keen to do, i.e. enjoy computer games, while annotating media. In this thesis, the image annotation problem is tackled by a game based framework. This approach combines image processing and a game theoretic model to gather media annotations. Although the proposed model behaves similar to a single player game model, the underlying approach has been designed based on a two-player model which exploits the player’s contribution to the game and previously recorded players to improve annotations accuracy. In addition, the proposed framework is designed to predict the player’s intention through Markovian and Sequential Sampling inferences in order to detect cheating and improve annotation performances. Finally, the proposed techniques are comprehensively evaluated with three different image datasets and selected representative results are reported

    Perceptual-based textures for scene labeling: a bottom-up and a top-down approach

    Get PDF
    Due to the semantic gap, the automatic interpretation of digital images is a very challenging task. Both the segmentation and classification are intricate because of the high variation of the data. Therefore, the application of appropriate features is of utter importance. This paper presents biologically inspired texture features for material classification and interpreting outdoor scenery images. Experiments show that the presented texture features obtain the best classification results for material recognition compared to other well-known texture features, with an average classification rate of 93.0%. For scene analysis, both a bottom-up and top-down strategy are employed to bridge the semantic gap. At first, images are segmented into regions based on the perceptual texture and next, a semantic label is calculated for these regions. Since this emerging interpretation is still error prone, domain knowledge is ingested to achieve a more accurate description of the depicted scene. By applying both strategies, 91.9% of the pixels from outdoor scenery images obtained a correct label
    corecore