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Abstract

Automatic detection of complex events in user-generated
videos (UGV) is a challenging task due to its new charac-
teristics differing from broadcast video. In this work, we
firstly summarize the new characteristics of UGV, and then
explore how to utilize concept classifiers to recognize com-
plex events in UGV content. The method starts from man-
ually selecting a variety of relevant concepts, followed by
constructing classifiers for these concepts. Finally, complex
event detectors are learned by using the concatenated prob-
abilistic scores of these concept classifiers as features. Fur-
ther, we also compare three different fusion operations of
probabilistic scores, namely Maximum, Average and Mini-
mum fusion. Experimental results suggest that our method
provides promising results. It also shows that Maximum
fusion tends to give better performance for most complex
events.

1. Introduction

Due to the increasing popularity of Web 2.0 applications
such as YouTube1 and Flickr2 that allow users to instantly
upload their own multimedia content, the amount of user
generated videos (UGV) on the web has been increasing
significantly. Unfortunately though, most user generated
video content is rather unstructured and poorly annotated,
rendering access and retrieval of this content a challeng-
ing task. A promising approach to address this problem
is to automatically create annotations, e.g., by describing
the events that are shown in the videos. Event detection is
particularly important to understand the semantics of video
content, which is helpful for video summarization, indexing
and retrieval purposes.

Most of the existing work on event detection either fo-

1http://www.youtube.com
2http://www.flickr.com

cus on simple events such as dancing or is limited to spe-
cific types of video, such as movies, sports or news video
with rich domain-specific knowledge for constructing event
models. Detecting simple events in video data is usually
considered to be a semantic concept detection task, and
therefore, generic semantic concept detection techniques
are adopted [3, 11, 13].

Most approaches to detect events are domain dependent,
i.e., they rely on specific domain knowledge and textual
metadata information such as movie scripts or closed cap-
tion. Since complex events in these types of video can be re-
garded as a spatial, temporal, and logical interaction of mul-
tiple objects, many techniques focus on tracking the objects
and analyzing their activity patterns. Common techniques
to identify these complex event patterns are transition based
approaches such as Hidden Markov Models (HMM) [15],
Petri-nets [1] and Bayesian Networks [14].

Specifically, for event detection in movies, recent
work [6, 2] incorporates visual information, closed-caption
transcripts, and movie scripts to automatically annotate and
classify movie video. For event detection in sports video,
most of the previous work rely on domain knowledge.
In [8], Poppe et al. summarize existing work and present
a generic architecture for automatic annotation of broadcast
sports video. There is also a lot of work for event analysis
in news video [16, 17]. By exploiting the available audio,
visual and closed-caption cues, the semantically meaning-
ful highlights in a news video are located and event bound-
aries are extracted. In [1], Bai et al. utilize an audio-visual
feature-based framework for event detection in broadcast
video of multiple different field-based sports. The evidence
gathered by the feature detectors is combined by means of a
Petri-Net, which infers the occurrence of an event. In their
approach, however, they heavily rely on sports specific do-
main knowledge.

In [18], Zhang et al. present a generic event detection
approach based on semi-supervised learning, which can be
applied to sports, movie and news video. Their method
jointly explores small-scale expert labeled videos and large-
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scale unlabeled videos to train the models to detect video
events. The labeled videos are obtained from the analy-
sis and alignment of well-structured video related text (e.g.
movie scripts, web-casting text). Unlabeled data are ob-
tained by querying related events from the video search en-
gine (e.g. YouTube) in order to give more distributive infor-
mation for event modeling.

While above approaches provide decent results to detect
simple events, they are doomed to fail when they are ap-
plied to identify more complex events, i.e., events that a)
involve several objects (or persons) with loosely or tightly-
organized complex activity, b) generally occur under spe-
cific scene settings, and c) evolve in different patterns over
time. In 2010, TRECVid [7] started a new task named Mul-
timedia Event Detection (MED)3, which aimed to foster-
ing automatic complex event detection in Internet video.
Now, the task has attracted a lot of participants, and differ-
ent techniques and mixed performance were reported, such
as [4, 9]. The video data used for this task was collected
by the Linguistic Data Consortium4. It consists of publicly
available, user-generated content posted to various Internet
video hosting sites.

In comparison to produced video such as news and sports
video, specific characteristics existing in UGV also make it
more difficult to detect video events. UGV is usually:

• Of lower quality: Due to the uncontrolled captur-
ing conditions and different capture devices, UGV are
most of the time of lower quality than professionally
produced video. For example, UGV suffer from irreg-
ular camera motion and fuzzy backgrounds.

• Less structured: UGV are not as well structured as
news and sports videos. News and sports video is
produced after careful processing, and the structure is
clear (see Fig. 1). However, UGV is usually captured
using personal video recorders by different users, and
there is most of the time no post-production before up-
loading to the video sharing websites. Therefore, there
is less structural information existing in the UGV and
it is more difficult for methods based on state transition
learning the patterns.

• More diversified: The diversity of UGV includes in-
ternal diversity and external diversity. Internal diver-
sity means video reflecting the same topic can be com-
pletely different (see Fig. 2). Video is a tool that can
be used to express ideas [10]. While producing video
such as soccer video, common editing ideas (or rules)
have been established that the producers (experts with
rich experience in recording and editing video) will
comply with. However, UGV can be recorded under

3http://www.nist.gov/itl/iad/mig/med11.cfm
4http://www.ldc.upenn.edu/About/

uncontrolled capturing conditions by a diverse group
of producers (e.g., website users without much knowl-
edge in creating and managing video). External diver-
sity comes from the diversity of topics. Because of the
open and sharing of the video websites and the diver-
sity of authors, video about nearly any topic can be up-
loaded. That is, the UGV can be about anything, and
anyone can be a star, from lip-synching teenage girls
to skateboarding dogs.

• not described following domain-specific rules:
There is far less domain-specific knowledge (DSK) for
analyzing and processing UGV. As described in Sec-
tion 1, the most successful event detection methods
utilize DSK within the video to detect events.

• annotated with less metadata: In the scenario of
UGV, the metadata information is not always avail-
able. For examples, speech transcripts are absent in
UGV, and instead, user tags, which could be noisy and
redundant, are available.

Furthermore, much more UGV data than produced video
can be found on the Web. According to the official statis-
tics from YouTube, 48 hours of video are uploaded every
minute by their users, resulting in nearly eight years of con-
tent uploaded every day. Within one month, more video
is uploaded to YouTube than the three major US networks
created within the past 60 years5.

Due to the new features mentioned above, it is difficult to
detect complex events in UGV. Our approach is to explore
complex event detection in UGV using concepts which are
highly relevant to the complex events. The rational can be
explained by the example of the event Getting a vehicle un-
stuck as illustrated in Fig. 2. This event can happen in dif-
ferent outdoor locations, either with or without person(s)
pushing or pulling a vehicle. Despite these differing fea-
tures that describe the event, we can model it by identify-
ing certain highly relevant concepts such as car or outdoor.
Hence, concept detectors can be used to identify aspects of
an event. Research in automatic detection of semantic con-
cepts has now reached the point where hundreds of con-
cept detectors can be obtained in generic fashions, albeit
with mixed performance, which offer novel opportunities
for video retrieval.

Within this work, we first manually select a series of con-
cepts including scene, object and human action that are suit-
able to depict the essence of certain events and construct
classifiers for these concepts. Finally, complex event detec-
tors are learned by using the concatenated probabilistic out-
put scores of these concept classifier as features. Moreover,
we compare three different fusion operations of probabilis-
tic output scores of concept detectors, namely Maximum,

5http://www.youtube.com/t/press_statistics, ac-
cessed on 30 April 2012
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Figure 1. Two structural methods for broadcasted news video and tennis match video respectively

Figure 2. Visual diversity of the same video
event: Getting a vehicle unstuck

Average and Minimum fusion. In the remainder of this pa-
per, we provide the details of our approach, followed by the
experiments and discussions.

2 Modeling Complex Event in Semantic
Concept-Space

Fig. 3 depicts the flowchart of our event detection tech-
nique. In this chart, we divide the process of complex event
detection into three steps: selection of relevant concepts (in-
cluding object, scene and human action), concept learning,
and event detection with concept scores combination.

2.1 Selection of highly relevant semantic
concepts

While in the approach of event detection using concepts,
there is an issue of relevant concept selection, we will not
elaborate this challenging question due to space limitation.
In this work, we manually select relevant concepts for given
events since knowledge about the world is implicit in human
minds and retrieval systems can exploit this knowledge by
asking humans to select appropriate concepts for complex
event queries. Specific steps for concepts selection are as
follows. We first manually select twenty positive UGV for
Event e from the training set. Each video is divided into
multiple 6-sec subclips for human action learning, and we
extract one keyframe every four seconds for other concepts
learning. Then, two users with rich experience in multi-
media retrieval are asked to inspect these keyframes and

video subclips for each positive video, and to give a list
of concepts which they find highly relevant for Event e.
The object and scene concepts are from viewing the statis-
tic keyframe images, whilst the human action concepts are
from the video subclips. This is similar to generating docu-
ment vectors in text retrieval field to find the most discrim-
inative words. Therefore, for Event e and the selected pos-
itive UGV, a concept-event matrix is obtained by the same
method to produce the tf-idf (term frequency-inverse docu-
ment frequency) matrix.

Since this concept-event matrix is generated in a collec-
tion in which all the videos share the same topic (Event
e), the weights in the matrix measure the importance of the
concepts to the topic. Based on the weights in the concept-
event matrix, we select the top n most important concepts
for Event e.

2.2 Visual Concepts and human actions
learning

We develop automatic classifiers for identifying these
concepts selected in Section 2.1 for all events following
state-of-the-art approaches for semantic concept detection
in [6, 11]. In this work, we only consider visual features,
it can be easily extended to audio concepts though. Specif-
ically, we extract two kinds of feature descriptors: static
OpponentSIFT [12], 3D spatial-temporal interest points
(STIPs) [5] for object/scene concepts and human action
concepts learning respectively. The OpponentSIFT feature
is an extension of the Scale-Invariant-Feature Transform
(SIFT) feature to the opponent color space and is known
to be a good performing single feature for concept detec-
tion [12]. The STIP feature effectively captures space-time
volumes where the image values have significant local vari-
ations in both space and time. Histogram of Oriented Gradi-
ents (HOG; 72 dimensions) and Histogram of Optical Flow
(HOF; 90 dimensions) descriptors are computed for the de-
tected STIPs. We use concatenated HOG and HOF feature
(162 dimensions) as the final descriptor for each STIP.

After extracting the OpponentSIFT and STIP descrip-
tors, the popular bag-of-visual-word (BoVW) representa-
tion is then applied to convert the two sets of descriptors
separately into two fixed-dimensional feature vectors. Hi-
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Figure 3. The flowchart of complex event detection in UGV based on concept classifiers.

erarchical K-means generate a visual vocabulary of 4096
words for STIP features and a smaller visual vocabulary of
512 visual words OpponentSIFT respectively.

Since processing all video frames will be computation-
ally very expensive, we sample one keyframe every four
seconds, and extract OpponentSIFTs descriptors on these
keyframes using 2 spatial pyramids of 2 × 2 and 1 × 3.
Therefore, a 3584-dimension feature vector is generated for
each keyframe (2× 2× 512 + 1× 3× 512) after the vec-
tor quantization process [12]. Each video is divided into
multiple 6-second clips and STIP descriptors are extracted.

In the construction of BoVW representation, we use soft-
assignment [3] to assign each feature descriptor to four
nearest visual words with different weights. Annotations
of training samples for object and scene concepts are per-
formed on the keyframe images, whilst annotations of hu-
man action concepts are performed on 6-second video sub-
clips. With these BoVW feature representation and annota-
tions, we use SVM classifier for concept learning. The χ2

kernel is chosen for SVM for its good classification results.
The concepts used in our experiments and their training data
will be introduced in the experiment section.

2.3 Concept Detection Scores Combina-
tion

For each video clip, we have multiple probabilistic out-
put scores for each concept, where each score corresponds
to one keyframe or video subclip in this video clip. We use
three common fusion strategies to generate the final detec-
tion score for one concept, namely, Maximum, Average and
Minimum. Given a video clip u, the final probabilistic out-
put score for concept c is

p∗u,c = FusionOperator(p1u,c, p
2
u,c, ..., p

l
u,c)

where FusionOperator can be Maximum, Average or Min-
imum operator. piu,c is the probabilistic output score of the
classifier of concept c on the ith keyframe image (or video
subclip) in the video clip u. l is the number of keyframe
images (or video subclips) in the video clip u.

Table 1. Event names and the number of pos-
itive samples in the training set

Event Name Positive Samples #
Birthday party 231

Changing a vehicle tire 121
Flash mob gathering 192

Getting a vehicle unstuck 151
Grooming an animal 143
Making a sandwich 187

Parade 192
Parkour 136

Repairing an appliance 146
Working on a sewing project 133

For fusion operator f, we concatenate the final probabilis-
tic output score of each concept, into vector vfu describing
video clip u. Then vfu serves as the input for a χ2-kernel
SVM, which trains event classifiers. Therefore, for each
event, we have three classifiers corresponding to Maximum,
Average or Minimum fusion of probabilistic output scores
respectively. A comparison of event detection performance
is presented in the next section.

3 Experiments

3.1 Experiment Setup

We evaluate the framework using Internet videos from
the NIST TRECVid 2011 MED task. In Table 3, we list
the ten complex events that we evaluated and the number of
positive video clips in the training set for each event. The
testing set consists of 32061 video clips. Using the method
described in Section 2.1, we manually select 50 concepts
for event detection as listed in Table 2.

Training a large number of concept detectors requires a
lot of manual annotation work, and the key problem is that
the positive samples are usually very rare in the training set.



According to the relationship between concepts and events,
we can easily obtain the positive samples for concept clas-
sifiers by only annotating the positive samples for events,
hence, speeding up the annotation. After concatenating the
probabilistic output score of each concept, a second-stage
annotation is performed on the event level.

For measuring detection performance, we use the com-
mon measure in the multimedia retrieval field, average pre-
cision (AP), which summarizes the recall-precision curve.

3.2 Results and Analysis

We first report and compare the prediction performance
of the ten most complex events. As described in Fig. 4,
the two events Birthday party and Changing a vehicle tire
achieve the highest average precision of 0.0898 and 0.098,
respectively, using Maximum fusion. We conclude that for
these two events, the relevant object concepts, (namely, per-
son, streamers, balloons, birthday cake for event Birthday
party, and vehicle, tire, lug wrench, hand, screwdriver for
Changing a vehicle tire) capture the characteristics of these
two events very well. And the classification performance
for these concepts gains a lot because of our spatial pyra-
mid segmentation (see Section 2.2) of the keyframe images.
For the event Flash mob gathering, the three fusion opera-
tions report the worst performance. In this event, a large
group of people assemble suddenly, perform a group dance
and then disperse quickly. However, in our approach, no
spatial/temporal partitioning is used since the STIP feature
does not capture the temporal feature of this event. More-
over, it is difficult to tell the difference between this event
and other scene such as walking crowd towards a certain
direction. Therefore, many false alarms are reported. The
performance for the event Parade achieves the third posi-
tion. We deem that this is the case because the STIP feature
describes this event well and there are more positive video
clips in the testing set (see Table 3). Overall, for most of
the events, the APs range from 0.03 to 0.06. This is mainly
caused by the quality of the concept classification perfor-
mance.

As shown in Fig. 4, we also see that the Maximum fu-
sion outperforms the other two fusion operations for seven
of the ten events. In the three cases where Maximum fusion
is outperformed by Average and Minimum fusion, the per-
formance difference is not significant. In a video clip about
a complex event, the relevant concept does not appear in
every keyframe image or video subclip. Therefore, Max-
imum fusion reaches better performance than Average and
Minimum fusion.

As displayed in Table 3, we also list the number of true
positives at the Top 10 and Top 100 of the ranked predic-
tive results, as well as the number of the true positive video
clips in the testing set. For the events Flash mob gathering
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Figure 4. Prediction performance compari-
son of ten complex events for three fusion
operations.

Table 3.
Event(true positive video #) Top 10 Top 100

Birthday party(186) 4 23
Changing a vehicle tire(111) 4 24

Flash mob gathering(132) 0 6
Getting a vehicle unstuck(95) 1 10

Grooming an animal(87) 0 10
Making a sandwich(140) 3 18

Parade(231) 2 20
Parkour(104) 1 11

Repairing an appliance(78) 2 13
Working on a sewing project(81) 3 13

and Grooming an animal, our approach did not retrieve any
results. This may be explained by the fact that no human
action concept is selected for this event; only the objects
hand, animal and scene object indoor are used to character-
ize these events. Consistent with the results shown in Fig. 4,
there are four true positives in the Top 10 ranked results for
event Birthday party and Changing a vehicle tire respec-
tively. For the event Making a sandwich and Working on a
sewing project, three relevant video clips are in the Top 10
ranked results respectively. These results suggest that this
method can still retain the potential in generating promis-
ing performance using concept classifiers. However, more
work should be attached on increasing the performance of
concept classifiers.

4 Conclusion and Future Work

In this paper, we summarize the new characteristics of
UGV and explore how to utilize the concept classifiers
to detect complex event in UGV. Further, we also com-
pare three different fusion operations of probabilistic out-



Table 2. Concepts selected for complex event detection
Object streamers, person, road, vehicle, tire, lug wrench, animal, hand, snow, sink, bread, plates, jack,

buildings, walls, stairs, sewing machine, balloons, birthday cake, screwdriver, table
Scene indoor, outdoor with trees or grass visible, outdoor with cityscape, crowd, street, waterfront

Human pushing, pulling, digging, slicing, spreading condiments on bread, jumping, clapping, unscrewing screws,
Action rolling, bending over, dancing, eating, kneeling, playing games, running, turning lugwrench,

unscrewing bolts, walking, sewing, singing, holding objects, cutting, pressing

put scores of concept detector, namely Maximum, Average
and Minimum fusion. Experimental results on a large-scale
dataset show that this method retains the potential in gener-
ating promising performance. It also shows that Maximum
fusion tends to give better performance for most complex
events. There are many issues to be addressed in the future
in using the concept classifier approach for modeling and
detecting the complex events in UGV. In future work, we
will focus on the following aspects. The first is automatic
selection of relevant concepts. Moreover, we will extend
our approach by incorporating audio concepts. Another
plan is to increase the performance of the concept classi-
fiers by incorporating multiple low-level features and dif-
ferent training sets.
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