29 research outputs found

    Maximum approximate entropy and r threshold: A new approach for regularity changes detection

    Get PDF
    Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields. It has proved to be a useful tool because of its ability to distinguish different system's dynamics when there is only available short-length noisy data. Incorrect parameter selection (embedding dimension mm, threshold rr and data length NN) and the presence of noise in the signal can undermine the ApEn discrimination capacity. In this work we show that rmaxr_{max} (ApEn(m,rmax,N)=ApEnmaxApEn(m,r_{max},N)=ApEn_{max}) can also be used as a feature to discern between dynamics. Moreover, the combined use of ApEnmaxApEn_{max} and rmaxr_{max} allows a better discrimination capacity to be accomplished, even in the presence of noise. We conducted our studies using real physiological time series and simulated signals corresponding to both low- and high-dimensional systems. When ApEnmaxApEn_{max} is incapable of discerning between different dynamics because of the noise presence, our results suggest that rmaxr_{max} provides additional information that can be useful for classification purposes. Based on cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmaxApEn_{max} and rmaxr_{max} can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated use

    Sex differences in the fetal heart rate variability indices of twins

    Get PDF
    Aims: To evaluate the differences in linear and complex heart rate dynamics in twin pairs according to fetal sex combination [male-female (MF), male-male (MM), and female-female (FF)]. Methods: Fourteen twin pairs (6 MF, 3 MM, and 5 FF) were monitored between 31 and 36.4 weeks of gestation. Twenty-six fetal heart rate (FHR) recordings of both twins were simultaneously acquired and analyzed with a system for computerized analysis of cardiotocograms. Linear and nonlinear FHR indices were calculated. Results: Overall, MM twins presented higher intrapair average in linear indices than the other pairs, whereas FF twins showed higher sympathetic-vagal balance. MF twins exhibited higher intrapair average in entropy indices and MM twins presented lower entropy values than FF twins considering the (automatically selected) threshold rLu. MM twin pairs showed higher intrapair differences in linear heart rate indices than MF and FF twins, whereas FF twins exhibited lower intrapair differences in entropy indices. Conclusions: The results of this exploratory study suggest that twins have sex-specific differences in linear and nonlinear indices of FHR. MM twins expressed signs of a more active autonomic nervous system and MF twins showed the most active complexity control system. These results suggest that fetal sex combination should be taken into consideration when performing detailed evaluation of the FHR in twins.This work was supported by a grant (SFRH/BD/40146/2007) to the first author from Fundacao para a Ciencia e Tecnologia. Hernani Goncalves is financed by a postdoctoral grant (SFRH/BPD/69671/2010) from the Fundacao para a Ciencia e a Tecnologia (FCT), Portugal

    Linear and non-linear analysis of uterine contraction signals obtained with tocodynamometry in prediction of operative vaginal delivery

    Get PDF
    The aim of this study was to explore whether linear and non-linear analysis of uterine contraction (UC) signals obtained with external tocodynamometry can predict operative vaginal delivery (OVD).Materials and methods: The last 2 h before delivery (H1 and H2) of 55 UC recordings acquired with external tocodynamometry in the labour ward of a tertiary care hospital were analysed. Signal processing involved the quantification of UCs/segment (UCN), and the linear and non-linear indices: Sample Entropy (SampEn) measuring signal irregularity; interval index (II) measuring signal variability, both of which may be associated with uterine muscle fatigue, and high frequency (HF), associated with maternal breathing movements. Thirty-two women had normal deliveries and 23 OVDs. Statistical inference was performed using 95% confidence intervals (95% CIs) for the median, and areas under the receiver operating curves (auROCs), with univariate and bivariate analyses. Results: A significant association was found between maternal body mass index (BMI) and UC signal quality in H1, with moderate/poor signal quality being more frequente with higher maternal BMI. There was an overall increase in contraction frequency (UCN), signal regularity (SampEn), signal variability (II), and maternal breathing (HF) from H1 to H2. The OVD group exhibited significantly higher values of signal irregularity and variability (SampEn and II) in H1, and higher contraction frequency (UCN) and maternal breathing (HF) in H2. Modest auROCs ere obtained with these indices in the discrimination between normal and OVDs. Conclusions: The results of this exploratory study suggest that analysis of UC signals obtained with tocodynamometry, using linear and non-linear indices associated with muscle fatigue and maternal breathing, identifies significant changes occurring during labour, and diferences between normal and OVDs, but their discriminative capacity between the two types of delivery is modest. Further refinement of this analysis is needed before it may be clinically useful.info:eu-repo/semantics/publishedVersio

    Open Access

    Get PDF
    Nicotine exposure increases the complexity of dopamine neurons in the parainterfascicular nucleus (PIF) sub-region of VT

    Electrocardiography versus photoplethysmography in assessment of maternal heart rate variability during labor

    Get PDF
    Evaluation of maternal heart rate (MHR) variability provides useful information on the maternal-fetal clinical state. Electrocardiography (ECG) is the most accurate method to monitor MHR but it may not always be available, and pulse oximetry using photoplethysmography (PPG) can be an alternative. In this study we compared ECG and PPG signals, obtained with conventional fetal monitors, to evaluate signal loss, MHR variability indices, and the ability of the latter to predict fetal acidemia and operative delivery.info:eu-repo/semantics/publishedVersio

    Stress assessment based on EEG univariate features and functional connectivity measures

    Get PDF
    The biological response to stress originates in the brain but involves different biochemical and physiological effects. Many common clinical methods to assess stress are based on the presence of specific hormones and on features extracted from different signals, including electrocardiogram, blood pressure, skin temperature, or galvanic skin response. The aim of this paper was to assess stress using EEG-based variables obtained from univariate analysis and functional connectivity evaluation. Two different stressors, the Stroop test and sleep deprivation, were applied to 30 volunteers to find common EEG patterns related to stress effects. Results showed a decrease of the high alpha power (11 to 12 Hz), an increase in the high beta band (23 to 36 Hz, considered a busy brain indicator), and a decrease in the approximate entropy. Moreover, connectivity showed that the high beta coherence and the interhemispheric nonlinear couplings, measured by the cross mutual information function, increased significantly for both stressors, suggesting that useful stress indexes may be obtained from EEG-based features.Peer ReviewedPostprint (author’s final draft

    Optimized assessment of atrial fibrillation organization through suitable parameters of Sample Entropy

    Get PDF
    Sample Entropy (SampEn) is a nonlinear regularity index that requires the a priori selection of three parameters: the length of the sequences to be compared, m, the patterns similarity tolerance, r, and the number of samples under analysis, N. Appropriate values for m, r and N have been recommended in some cases, such as heart rate, hormonal data, etc., but no guidelines exist for the selection of that values. Hence, an optimal parameters study should be required for the application of SampEn to not previously analyzed biomedical signals. In this work, a thorough analysis on the optimal SampEn parameter values within two different scenarios of AF organization estimation, such as the prediction of paroxysmal AF termination and the electrical cardioversion outcome in persistent AF, is presented. Results indicated that, (i) the proportion between N and the sampling rate (ƒ(s)) should be higher than one second and ƒ(s) ≥ 256 Hz, (ii) overlapping between adjacent N-length windows does not improve organization estimation and (iii) values of m and r maximizing classification should be considered within a range wider than the proposed in the literature for heart rate analysis, i. e. m = 1 and m = 2 and r between 0.1 and 0.25 times the standard deviation of the data

    The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets

    Get PDF
    Approximate entropy (ApEn) and sample entropy (SampEn) are mathematical algorithms created to measure the repeatability or predictability within a time series. Both algorithms are extremely sensitive to their input parameters: m (length of the data segment being compared), r (similarity criterion), and N (length of data). There is no established consensus on parameter selection in short data sets, especially for biological data. Therefore, the purpose of this research was to examine the robustness of these two entropy algorithms by exploring the effect of changing parameter values on short data sets. Data with known theoretical entropy qualities as well as experimental data from both healthy young and older adults was utilized. Our results demonstrate that both ApEn and SampEn are extremely sensitive to parameter choices, especially for very short data sets, N ≤ 200. We suggest using N larger than 200, an m of 2 and examine several r values before selecting your parameters. Extreme caution should be used when choosing parameters for experimental studies with both algorithms. Based on our current findings, it appears that SampEn is more reliable for short data sets. SampEn was less sensitive to changes in data length and demonstrated fewer problems with relative consistency

    New insights into anterior cruciate ligament deficiency and reconstruction through the assessment of knee kinematic variability in terms of nonlinear dynamics

    Get PDF
    Purpose Injuries to the anterior cruciate ligament (ACL) occur frequently, particularly in young adult athletes, and represent the majority of the lesions of knee ligaments. Recent investigations suggest that the assessment of kinematic variability using measures of nonlinear dynamics can provide with important insights with respect to physiological and pathological states. The purpose of the present article was to critically review and synthesize the literature addressing ACL deficiency and reconstruction from a nonlinear dynamics standpoint. Methods A literature search was carried out in the main medical databases for studies published between 1990 and 2010. Results Seven studies investigated knee kinematic variability in ACL patients. Results provided support for the theory of “optimal movement variability”. Practically, loss below optimal variability is associated with a more rigid and very repeatable movement pattern, as observed in the ACL-deficient knee. This is a state of low complexity and high predictability. On the other hand, increase beyond optimal variability is associated with a noisy and irregular movement pattern, as found in the ACL-reconstructed knee, regardless of which type of graft is used. This is a state of low complexity and low predictability. In both cases, the loss of optimal variability and the associated high complexity lead to an incapacity to respond appropriately to the environmental demands, thus providing an explanation for vulnerability to pathological changes following injury. Conclusion Subtle fluctuations that appear in knee kinematic patterns provide invaluable insight into the health of the neuromuscular function after ACL rupture and reconstruction. It is thus critical to explore them in longitudinal studies and utilize nonlinear measures as an important component of post-reconstruction medical assessment. Level of Evidence II
    corecore