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Abstract 

Approximate entropy (ApEn) and sample entropy (SampEn) are mathematical algorithms created 

to measure the repeatability or predictability within a time series. Both algorithms are extremely 

sensitive to their input parameters: m (length of the data segment being compared), r (similarity 

criterion) and N (length of data). There is no established consensus on parameter selection in short 

data sets, especially for biological data. Therefore, the purpose of this research was to examine the 

robustness of these two entropy algorithms by exploring the effect of changing parameter values 

on short data sets. Data with known theoretical entropy qualities as well as experimental data from 

both healthy young and older adults was utilized. Our results demonstrate that both ApEn and 

SampEn are extremely sensitive to parameter choices, especially for very short data sets, N≤200. 

We suggest using N larger than 200, an m of 2 and examine several r values before selecting your 

parameters. Extreme caution should be used when choosing parameters for experimental studies 

with both algorithms. Based on our current findings, it appears that SampEn is more reliable for 

short data sets. SampEn was less sensitive to changes in data length and demonstrated fewer 

problems with relative consistency.  

 

Keywords: step length, step width, step time, nonlinear analysis, entropy, locomotion 

 

Abbreviations 

ApEn – approximate entropy 

SampEn – sample entropy 

SEdiff – Standard error of the difference 
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Introduction 

 

Entropy is defined as the loss of information in a time series or signal. Within the past twenty 

years, the use of entropy methods to define periodicity or regularity in human data has become 

quite popular (Figure 1). Presently, the two most commonly used methods for biological data are 

approximate entropy (ApEn) and sample entropy (SampEn). Entropy has been used to describe 

changes in postural control 	8,	33,	40 , physical activity measures 	3,	38 , as well as other movement 

tasks 	13,	35,	37 . ApEn and SampEn have also been utilized with human walking data 	11,	14‐16,	18,	20,	

21,	28,	32 . The two algorithms are similar yet the validity or accuracy of these algorithms along with 

the selection of correct parameters used with short data sets has yet to be determined. 

 

ApEn was developed by Steven Pincus 	 29‐31  as a measure of regularity to quantify levels of 

complexity within a time series 	30 . The ability to discern levels of complexity within biological 

data sets has become increasingly important. In terms of human movement, newer theories of 

movement control do not view variability in movements as error (i.e. dynamical systems theory). 

In fact, these theories consider complexity of movement patterns to be associated with system 

stability (i.e. rich behavioral state) 	39 . In contrast to older theories of movement control, variability 

is not defined only through the amount of variance (e.g. standard deviation) but rather through 

examination of the temporal variations in the movement output.  Thus, Lipsitz and colleagues 

further defined complexity as signifying the presence of chaotic temporal variations in the steady 

state output of a healthy biological system representing the underlying physiologic capability to 

make flexible adaptations to everyday stresses placed on the human body	22,	23 . Importantly, there 

are certain benefits for the nervous system for adopting chaotic regimes that allow a wide range of 



Page 5 

potential behaviors. This leads to healthy biological systems that are adaptable and flexible in an 

unpredictable and ever-changing environment 	9,	17 . We should mention here that this definition 

of complexity arises from the clinical domain 	22,	23 . However, other definitions of complexity also 

exist mostly from the mathematical domain. For example, Bar-Yam defined complex as 

"consisting of interconnected or interwoven parts" 	 2 . Gell-Mann suggests that the degree of 

connectedness is a measure for complexity 	10 . Thus, complex systems are systems composed of 

connected subsystems. Lastly, Mayer-Kress stated that the characteristics of complex systems are 

a) many interacting subsystems, b) multiple interactions within and between levels of analysis, c) 

emergence of movement coordination modes, and d) exhibition of varying levels of the system 

output that continually evolve with learning and development 	26 . Our research group has adopted 

the definition by Lipsitz and colleagues and propose that mature motor skills and healthy states 

are associated with optimal movement variability where the temporal structure of the movement 

output reveals information about the control processes	39 . Furthermore, a movement with high 

regularity (low entropy) or a very random movement (high entropy) would reveal low complexity, 

inferring the motor control process as either unyielding or too erratic, respectively 	 39 . Thus, 

entropy provides researchers the ability to quantify complexity within relatively short data sets 

based on meaningful experimental comparisons to control groups. 

 

ApEn measures the “likelihood that runs of patterns that are close remain close on next incremental 

comparisons”	31 . Upon development of this algorithm, Pincus demonstrated that as compared to 

other nonlinear algorithms 	41 , ApEn could differentiate between noisy and chaotic time series 

with a relatively short number of data points, i.e. 1,000 	31 . It has been suggested that ApEn could 

be used on data sets as short as 75 to 100 data points 	 29,	 30 . This proved to be essential to 
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researchers working with human subjects, as typically it is difficult to acquire long, continuous, 

biological data sets, particularly when pathological or older adults are of interest. It can be difficult 

for these individuals to complete tasks and fatigue is generally an issue.  

 

The ApEn algorithm has not gone without scrutiny. Richman and Lake (2000) introduced SampEn 

as an algorithm to counteract the following shortcomings of ApEn 	34 . First, ApEn inherently 

includes a bias towards regularity, as it will count a self-match of vectors. SampEn does not count 

a self-match, thus eliminating the bias towards regularity 	 34 . Second, ApEn lacks relative 

consistency 	29 , as the input parameters are changed, the value of ApEn may “flip”. As an example, 

white noise may demonstrate a much smaller ApEn value than a known periodic signal when one 

parameter is set very small. Eventually this will “flip” and the ApEn value will become greater in 

the white noise signal as the input parameters are changed. Third, the parameters of ApEn must be 

fixed and comparing data should only be done when the input parameters are the same for both 

datasets 	29 . This is due not only to the issue of relative consistency, but also due to the overall 

sensitivity of the algorithm to the parameters of choice and to data length 	19,	34 . SampEn has been 

suggested to be independent of data length and demonstrates relative consistency 	34 . However, 

Richman and Lake did state that when using data sets of less than 100, SampEn diverged from 

their predictions 	34 . Thus, the choice of parameters has become important due to the inherent 

sensitivity of the algorithms 	4 . It is imperative that parameters be carefully chosen as findings 

reported in the literature should not be an artifact of parameter choice, meaning that if the 

parameters are changed, even slightly, the conclusions reached through the experimental process 

could be vastly different. Clearly this is a precarious situation that needs to be addressed.  
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The input parameters are 1) m, the length of data that will be compared, 2) r, the similarity criterion 

and 3) N, the length of the data. Typically, for clinical data, m is to be set at 2, r to be set between 

0.1 and 0.25 times the standard deviation of the data and N as 1,000 	30 , even as short as 75 data 

points 	29,	30 . Data length does not have as great of an impact on the calculation of SampEn 	34 . 

Yet, caution has been advised when using data sets of less than 200 points for either ApEn or 

SampEn 	4 ; however, this study utilized data with different m and N values for three different 

animals (cat: m=4, N=2000; rat: m=3, N=1000; mouse: m=4, N=180). Non-stationary (or drift) is 

frequently present in biological data and this could also affect the calculation of entropy. As N 

increases, it is likely that the drift will increase as well 	6 .  

 

Amount of variance in the time series may also affect the calculation of entropy, as well as the 

presence of spikes and outliers within the data 	6,	27 . A greater standard deviation will increase the 

tolerance for consideration of a match and vice versa with a smaller standard deviation. Hence, the 

selection of r appears to be the most difficult to choose. As originally suggested, r is to be chosen 

between 0.1 and 0.25 times the standard deviation of the entire time series. These suggestions do 

not always demonstrate the best results for all data sets and therefore, elaborate methods to choose 

r have been developed. The parameter r may be chosen based on the minimization of the maximum 

SampEn relative error and conditional probability 	19  or to provide the maximum value of ApEn 	

5,	25 . While recently, it was suggested that the maximum value method may not be appropriate for 

analyzing nonlinear signals and is only appropriate for known random time series	24 . Yet another 

method in which a fixed tolerance value is used 	36 , the r value does not depend on the standard 

deviation of each vector during comparison. In this calculation of ApEn, the time series is 
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differenced and the standard deviation in moving windows of a certain length is calculated. The 

maximum and minimum standard deviation values found serve as the bounds of r. 

 

Clearly, no consensus has been established to properly select the parameters needed to calculate 

both ApEn and SampEn. While the sensitivity of ApEn and SampEn to changing parameters in 

biological data from three different animals has been investigated 	4 , there has yet to be a study 

that investigates this issue in human movement data and specifically with gait data. Considering 

that it is difficult to acquire large time series from human walking, the choice of parameters used 

is critical for these short data sets. This is especially true for studies with pathological populations 

that are limited in their walking capacity and can fatigue easily. In addition, it has not been agreed 

upon which algorithm performs consistently independent of parameter choice. SampEn has 

demonstrated more consistent results than ApEn 	4 ; yet, it has been suggested that SampEn is 

highly dependent on the relationship between sampling frequency and Nyquist rate as well as the 

signal-to-noise ratio 	1,	6 . In fact, a study investigating body temperature in patients with multiple 

organ failure concluded that ApEn provided better discrimination between two groups as 

compared to SampEn 	7 . Thus, there is a need to determine 1) the correct parameters to use, 2) 

which algorithm clearly demonstrates relative consistency and 3) which algorithm provides the 

best discrimination between groups. The latter is important due to the fact that entropy values are 

relative. It is not meaningful to report an entropy value for a pathological group without reporting 

the “healthy” entropy value. Thus, if true differences exist, the algorithm should be able to 

discriminate between groups and/or conditions and maintain relative consistency as the parameter 

is changed slightly. 
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The purpose of this research was to examine 1) the effect of changing the parameter values m, r 

and N needed for the calculations of both ApEn and SampEn on short data sets with respect to 

gait; 2) describe the relative consistency of the algorithms; and 3) determine the ability of each 

algorithm to discriminate between groups.  To do this, we first performed ApEn and SampEn 

calculations for different combinations of parameter values on known theoretical data sets. 

Theoretical data represent a situation in which accurate entropy values can be determined based 

on data of unlimited length. Yet, the choice of parameters or consistency of an algorithm may not 

be similar when applied to biological data, which are constrained by short data sets. Hence, using 

both theoretical and experimental data we can examine the algorithms performance in both ideal 

and actual situations. Next, we utilized these same combinations of parameters on spatio-temporal 

gait data from healthy young and older adults. By using both young and older adults, this allowed 

for the investigation of different parameter combinations with ApEn and SampEn to discriminate 

between two different groups.  

 

We hypothesized that the value of ApEn and SampEn would change as a function of m, r and N; 

however, SampEn would maintain relative consistency and that this would be true for both the 

theoretical data and the gait data. We hypothesized that each algorithm would be able to 

discriminate between the theoretical data with periodic data providing the lowest entropy values, 

random data providing the highest entropy values and chaotic data to provide a value in between. 

For the experimental data, we hypothesized that the older adults would demonstrate a loss of 

complexity due to the aging process, either an increased or decreased entropy value, as compared 

to the young adults.  
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Materials and Methods 

 

Theoretical Procedures 

In order to perform our investigation, it was essential to understand the effect of parameter choice 

in time series with known entropy qualities. To investigate this aspect, known periodic, chaotic 

and white noise signals were generated using custom written MatLab code (Mathworks Inc., 

Natick, Massachusetts). These time series were generated in lengths of 200 data points. This length 

was chosen, as this was the same data length as the minimum data length for the experimental data. 

 

To increase the applicability of the theoretical data analysis to the experimental data, a known 

discrete theoretical time series, rather than continuous time series was generated. The periodic time 

series was generated using the logistic map equation (Equation 1) with a set at 3.4 	5 .  This choice 

in a allowed the equation to bifurcate into a two-point attractor, perfectly repeating itself. 

xn+1 = a(xn)(1 – xn)                                               Equation 1. 

Where xn  is a real number and a represents the rate of growth or decay. Initial conditions were 

chosen at random. Since any initial condition within the basin of attraction (zero to one) would 

bifurcate to this same two-point attractor when a was equal to 3.4, only one periodic time series 

was generated. 

 

The chaotic time series were generated using the same logistic map (Equation 1) but using an a of 

4.0. When a was set at 4.0, nearly all initial conditions within the basin of attraction (zero to one) 

iterated to a chaotic pattern. White noise time series were generated using the random number 

function (rand) in MatLab. Twenty chaotic and white noise time series were generated with the 
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initial conditions being chosen at random for each time series. For all theoretical time series, the 

first 100 iterations were discarded in order for the dynamics to stabilize. Representative theoretical 

time series generated are presented in Figure 2. 

 

Experimental Procedures 

Twenty-six healthy young adult (25.9+3.0 years; 175.7+8.8 cm; 72.9+11.9kg; 12 male) and 24 

healthy older adult (70.9+4.1 years; 173.2+11.2 cm; 76.2+13.2 kg; 13 male) subjects were 

recruited and provided informed consent for this study. All subjects were independently residing 

in the community, were able to ambulate independently for a distance of 60 meters without an 

assistive device and were not diagnosed with a progressive neurologic condition. All subjects were 

free of any pathological condition that directly affects the musculoskeletal system, leading to an 

abnormal walking pattern. The University’s Institutional Review Board approved all study 

procedures. 

 

Prior to data collection, subjects were asked to walk on a treadmill for a maximum of eight minutes. 

This eight-minute warm-up has been considered sufficient for individuals to achieve a proficient 

treadmill movement pattern 	12 . During the eight-minute warm-up a self-selected speed was found. If 

a subject indicated that a speed was comfortable, they continued to walk at that speed for one minute 

and then asked again if the speed was too fast or too slow. If they indicated it was too fast, the treadmill 

was slowed or vice versa. This continued until a comfortable speed was found. After the warm-up 

period, subjects were asked to walk on the treadmill at their selected speed for a total of three minutes 

while three-dimensional marker trajectories were recorded. Active rigid body markers were placed on 

the lateral sides of the foot and six position sensors recorded at 100 Hz (Optotrak Certus system; 
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Northern Digital Inc., Waterloo, Canada). In addition, virtual markers were identified prior to data 

collection through the use of wand marking. These markers included the location of the toe, heel and 

the first and fifth metatarsal heads. The position data of the virtual markers was tracked in real-time 

(First Principles software; Northern Digital Inc., Waterloo, Canada) with reference to the 

corresponding rigid bodies. The unfiltered position data for the x, y, and z coordinates of each virtual 

marker were exported and processed using custom computer code (MatLab; Mathworks Inc., Natick, 

Massachusetts). This software calculated step length, step width and step time for each subject. Step 

length was defined as the distance between heel contact and subsequent heel contact of the contralateral 

foot. Step width was defined as the mediolateral distance between heel markers at successive heel 

strikes. Step time was defined as the amount of time from heel strike of one foot to the subsequent heel 

strike of the contralateral foot. All subjects walked a minimum of 200 steps during the data collection 

period. Therefore, the time series of step length, step width and step time were cut to 200 data points.  

 

Data Analysis 

Each individual time series was subjected to calculation of ApEn(m, r, N) and SampEn(m, r, N). The 

calculation of ApEn is described in detail elsewhere	4,	30 . Given the time series f(n) = f(1), f(2), …, 

f(N), where N was the total number of data points, a sequence of m-length vectors (a data segment 

of length m) was formed. Comparisons were then made against each m-length vector within the 

time series. Vectors were considered alike if the tail and head of the vector fall within a tolerance 

level, ±r*standard deviation 	31 . The sum of the logarithm of the total number of like vectors was 

divided by N-m+1. The process was then repeated after m was increased by 1 (m+1). ApEn was 

calculated by subtracting the conditional probabilities of m+1 from m. A time series with similar 

distances between data points resulted in lower ApEn values, while large differences in distances 
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between data points resulted in higher ApEn values. Theoretically, a perfectly repeatable time 

series would elicit an ApEn value ~0 and a perfectly random time series would elicit an ApEn 

value ~2. For human movement, a consistent or periodic gait pattern (i.e. robotic gait) would elicit 

a low ApEn value and a disorderly gait pattern would elicit a higher ApEn value. 

 

SampEn has been defined as the negative natural logarithm for conditional properties that a series 

of data points a certain distance apart, m, would repeat itself at m+1 	34 . SampEn differs from 

ApEn in that SampEn: 1) eliminates the counting of self-matches and 2) takes the logarithm of the 

sum of conditional probabilities, rather than the logarithm of each individual conditional property 

as ApEn does (Figure 3). Given the time series g(n) = g(1), g(2), …, g(N), where N was the total 

number of data points, a sequence of m-length vectors was formed. Comparisons were then made 

against each m-length vector within the time series. As with ApEn, vectors were considered alike 

if the tail and head of the vector fell within the set tolerance level. The sum of the total number of 

like vectors was divided by N-m+1 and defined as B. Further, SampEn defined A as the subset of 

B that also matched for m+1. SampEn was then calculated as –ln(A/B). Similar to ApEn, a time 

series with similar distances between data points would result in a lower SampEn value and large 

differences would result in greater SampEn values with no upper limit. Thus, a perfectly repeatable 

time series elicited a SampEn value ~0 and a perfectly random time series elicited a SampEn value 

converging toward infinity.  

 

To examine the effect of the choice of parameters length of data for comparison (m), sensitivity 

criterion (r) and data length (N), each time series was subjected to the calculation of ApEn and SampEn 

under all combinations of m = 2, 3 and 4; r = 0.05, 0.1, 0.15, 0.20, 0.25 and 0.30 times the standard 
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deviation of the entire time series; and N = 100, 120, 140, 160, 180 and 200, for a total of 108 

combinations. Simply, m was the vector or window length that is compared during runs of data and r 

was the sensitivity criterion in which like vectors or window lengths would be considered similar. For 

the experimental data, m represented the number of steps. For instance, for the interpretation of step 

length data, if m is equal to two, this was the length of two steps. The parameter r represented the 

tolerance of variance in step lengths. When r was equal to 0.2, then the tolerance level in finding like 

step lengths was within 20% of the standard deviation of all step lengths within the entire time series.  

Finally, N was the total number of step lengths within the entire time series.  

 

In addition, the total number of self-matches within the time series was also calculated. This was 

the count of the number of vector comparisons (m) where only the self-match was found.  The 

total number of comparisons for each time series when ApEn was calculated was N-m+1.  

 

All time series were visually inspected for spikes and outliers. Average experimental time series 

for both young and older adults are presented in Figure 2. Experimental data were then examined 

for stationarity. Approximately 1/3 of the trials demonstrated a significant difference in mean 

values from the first 100 data points as compared to the second 100 data points. To eliminate 

stationarity, the data were differenced and ApEn and SampEn were calculated on the differenced 

time series. No significant differences were found between ApEn and SampEn between the 

original time series and the differenced time series. Thus, the original time series were used for 

statistical analysis. 

 

Statistical Analysis 
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When the parameter value m = 4 was used, almost all SampEn values converged toward infinity. 

Therefore, m of 4 was dropped for all analyses.  

 

The mean and standard deviation of the periodic time series was calculated, for all other 

combinations of parameters. Group means and standard deviations for ApEn, SampEn and the 

number of self-matches, from chaotic time series, white noise time series, step length, step width 

and step time for both the young and older adult groups were calculated for all other combinations 

of parameters. A repeated measures ANOVA was conducted in SAS (SAS Institute, Inc., Cary, 

North Carolina) to determine the effect of type (chaotic vs. white noise) and group (young vs. older 

adults) on ApEn and SampEn. The effect of changing m, r and N on ApEn and SampEn for the 

theoretical and experimental data was also investigated. If a significant 3-way interaction between 

m, r and N was found, this indicated that the entropy value was different depending on the values 

of m, r and N. If a significant 2-way interaction was found, this indicated that entropy values were 

different depending on the values of m, r and N yet, consistent across the levels of the third 

variable. For all analyses, there were two levels of m, there were six equally-spaced levels of N 

and r, so these were treated as continuous variables for analysis purposes. Standard error of the 

difference (SEdiff) between groups was also calculated. 

 

Results 

 

Theoretical Data 
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The periodic data set produced a value of zero for all combinations of m, r, and N. This was true 

for the number of self-matches, ApEn and SampEn. Therefore, only the chaotic times series and 

white noise time series were compared. 

 

After accounting for the effects of m, r and N, a significant difference in ApEn (SEdiff: 0.021; F1,19: 

98.93; p<0.0001) and SampEn (SEdiff: 0.046; F1,19: 1838.66; p<0.0001) between the chaotic and 

white noise time series was found. The chaotic data set provided higher values of ApEn, but lower 

values of SampEn. A significant interaction between m, r and N was found for ApEn (F1,2852: 29.97; 

p<0.0001), meaning the value of ApEn is different depending on the combination of values.  For 

SampEn, significant 2-way interactions between m, r and N were found [(r*m: F1,2754: 55.48; 

p<0.0001),  (N*m: F1,2754: 29.72; p<0.0001),  (r*N: F1,2754: 112.14; p<0.0001)]. SampEn is 

consistent across values of N, but is different depending on values of r and m.  (Figures 4-7).  

 

Experimental Data 

Step Length: After accounting for the effects of m, r and N, a significant difference in ApEn (SEdiff: 

0.013; F1,48: 5.77; p=0.02) and SampEn (SEdiff: 0.043; F1,48: 14.27; p=0.0004) between the young 

and older adults was found. Older adults had lower values of SampEn, but higher values of ApEn. 

A significant 3-way interaction between m, r and N was found for ApEn (F1,3543: 435.36; 

p<0.0001). The slope of ApEn as a function of r and N were different from each other depending 

on the m chosen, and the value of the other (Figures 4-7). For SampEn, significant 2-way 

interactions between m, r and N were found [(r*m: F1,3312: 151.02; p<0.0001),  (N*m: F1,3312: 27.62; 

p<0.0001),  (r*N: F1,3312: 145.37; p<0.0001)]. Figures 4 and 5 (m = 2 or 3, respectively) present 

SampEn as a function of N. SampEn was consistent across values of N although there were 
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differences in SampEn as r changed. In Figures 6 and 7, SampEn is presented as a function of r. 

SampEn tended to decrease as r increased although SampEn was consistent across the levels of N. 

 

Step Width: After accounting for the effects of m, r and N, no differences in ApEn (SEdiff: 0.012; 

F1,48: 0.18; p=0.67) and SampEn (SEdiff: 0.034; F1,48: 2.48; p=0.12) between the young and older 

adults were found. A significant interaction between m, r and N was found for ApEn (F1,3543: 

722.95; p<0.0001). The slope of ApEn as a function of r and N were different from each other 

depending on the m chosen, and the value of the other (Figures 4-7).  For SampEn, significant 2-

way interactions between m, r and N were found [(r*m: F1,3245: 165.83; p<0.0001),  (N*m: F1,3245: 

20.54; p<0.0001),  (r*N: F1,3245: 146.85; p<0.0001)]. Just as with step length, SampEn was 

consistent across values of N although there were differences in SampEn as r changed (Figures 4 

and 5). When SampEn is presented as a function of r (Figures 6 and 7), SampEn tended to decrease 

as r increased although SampEn was consistent across the levels of N. 

 

Step Time: After accounting for the effects of m, r and N, no differences in ApEn (SEdiff: 0.033; 

F1,49: 1.15; p=0.29) and SampEn (SEdiff: 0.068; F1,49: 0.33; p=0.57) between the young and older 

adults were found. However, a significant interaction between m, r and N was found for ApEn 

(F1,6854: 70.08; p<0.0001). The slope of ApEn as a function of r and N were different from each 

other depending on the m chosen, and the value of the other (Figures 4-7).  For SampEn, significant 

2-way interactions between m, r and N were found [(r*m: F1,6580: 71.67; p<0.0001),  (N*m: F1,6580: 

36.25; p<0.0001),  (r*N: F1,6580: 30.76; p<0.0001)]. Just as with step length and width, SampEn 

was consistent across values of N although SampEn changed as r changed (Figures 4 and 5). 
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SampEn tended to decrease as r increased although it was consistent across the levels of N (Figures 

6 and 7). 

 

Observational Analysis of relative consistency 

The relative consistency of ApEn became problematic for all experimental data sets for m=2 

(Figure 4) and r was set at 0.25 and 0.3. Older adults demonstrated a higher ApEn when N=100 

but as N increased to 200, younger adults demonstrated a higher ApEn value. Figure 4 also reveals 

that relative consistency for step width SampEn was challenged for smaller r values. The issue 

with relative consistency in ApEn was clearly demonstrated in the theoretical data as well (Figure 

6). At small r values, the randomized logistic data yielded lower ApEn values than the chaotic 

logistic map, which is known to be incorrect 	4 . SampEn demonstrated a similar issue in the step 

time data where the young adults yielded lower SampEn values at lower r values and higher 

SampEn values at higher r values (Figure 6). 

 

Bias in calculation of ApEn 

The number of self-matches increased as the data length increased (Figure 8). As r increased the 

number of self-matches decreased (Figure 9). This was true for both m=2 and m=3. There were far 

less self-matches for m=2 and when r was between 0.2 and 0.3. When m=2, the number of self-

matches was stable at larger r values, i.e. 0.15 and greater. Figures 8 and 9 demonstrate the 

magnitude of the bias associated with the ApEn algorithm; when m=2, the use of a larger r value 

appeared to limit the amount of bias associated with the calculation of ApEn. 

 

Discussion 
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The use of entropy as a mathematical algorithm to describe predictability of spatio-temporal gait 

parameters (e.g. step length, step width, minimum toe clearance) is an emerging practice in human 

movement research 	14‐16 . While previous studies have provided new and important insights into 

a variety of clinical problems using these nonlinear analyses, it is essential to adopt a prudent 

approach to the various techniques available for the quantification of entropic properties of a 

signal. Previous studies have investigated the use of these techniques in various biological signals	

4,	33‐35 ; however, the application of entropy calculations to gait data requires further exploration. 

The current study was aimed at the following three goals: 1) to determine the correct input 

parameters to use, 2) determine which algorithm clearly demonstrates relative consistency and 3) 

to determine which algorithm provides the best discrimination between groups. It was 

hypothesized that 1) the value of ApEn and SampEn would change as a function of m, r and N, 2) 

SampEn would demonstrate better relative consistency as compared to ApEn and that 3) both 

algorithms would able to discriminate between the theoretical data types and the experimental data 

groups, young and older adults. The results fully supported hypothesis 1 and only partially 

supported hypotheses 2 and 3. Overall the results demonstrate that both ApEn and SampEn are 

extremely sensitive to parameter choice in short data sets and extreme caution should be used when 

choosing parameters for gait related studies. 

 

Significant 2-way or 3-way interactions between m, r and N were clearly shown for all data sets 

employed. This indicates that the entropy values are dependent on the combination choice of m, r, 

and N. ApEn entropy values were influenced depending on input parameter combination regardless 

of whether theoretical or experimental data was analyzed. On the other hand, SampEn produced 
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results for the experimental data sets that clearly demonstrated independence of data length 

regardless of the choice of m or r, consistent with previous findings 27 (Figures 4 and 5).  

 

It is reasonable to speculate that the sensitivity to data length would plateau at a certain level. 

Stabilization in entropy would be expected with greater N. In unpublished data from our 

laboratory, we examined the chaotic theoretical data for N lengths up to 10,000 and found that 

ApEn and SampEn clearly stabilized around 2,000 data points (see Appendix A). It is unknown at 

this time if this would be true for experimental data as well. Future work should repeat this 

investigation in longer spatio-temporal gait parameter time series. For now we would recommend 

the N to be larger than 200, and as large as possible with respect to the practical constraints of the 

experiment (i.e. fatigue, pathology investigated). It must be kept in mind however, that stationarity 

and drift in the data may increase with an increasing N and that this drift would have an effect on 

entropy calculations 	6 . Although non-stationarity was present in roughly 1/3 of our experimental 

trials, it did not result in significant difference in the entropy calculations. This may not be true for 

other data sets and stationarity should always be examined. Another consideration to keep in mind 

when choosing N is whether or not the length of the time series being analyzed is sufficient to 

capture the dynamics of the system. It is possible that the dynamics and therefore the related 

biological complexity of the movement pattern could not be captured in such short data sets thus 

affecting the results. On the other hand, for some pathological populations, collecting a trial of 200 

data points may be difficult and therefore, if even shorter data sets are to be considered, a similar 

procedure to what is presented in this paper should be conducted. This will allow for the best 

choice in parameters. 
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Our results highlighted issues with relative consistency in the current data sets for both ApEn and 

SampEn calculations. Relative consistency relates to the stability of the measure. When using an 

entropy algorithm, the investigator should consider if it is providing a consistent value across 

different r values. Inconsistent values for ApEn and SampEn in the current data are problematic 

because the true relative direction of differences between the young and older adults is unknown. 

When utilizing any nonlinear mathematical tool (e.g. entropy) it is critically important that the 

relative differences between groups are not an artifact of parameter choice. Slight changes in the 

input parameter choices should be investigated and their effect on the results should be reported. 

This ensures that the relative difference, not necessarily the magnitude of difference but rather the 

direction of differences, between groups remains stable.  

 

In the current study, the relative magnitude of the numbers switched when r = 0.15 and when r = 

0.20, suggesting that ApEn with the typical r choice of 0.2 may not be the best.  However, our 

results do not clearly reveal a better alternative. Choosing a higher r value of 0.25 or 0.3 then the 

relationship becomes unstable with respect to changing data length, consistent with previous 

reports 	6 . Conversely, choosing a smaller r can lead to an increased number of self-matches. This 

truly illustrates the fact that investigators should be meticulous and careful when choosing 

parameter values, especially r. Data sets are unique and thus, r values may differ. Karmakar et al 

(2007) investigated the entropy of minimum toe clearance from 500 consecutive steps using m = 

3 and a range of r values from 0.1 to 0.9	15 . In their study, they tested the group differences in 

their data across a range of r values, which provides important information regarding the 

consistency of their results. This approach may be the most appropriate in dealing with the issue 

of choosing the correct r value. Certainly, we recommend that a range of r values should be tested 
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in a piloting phase. Going a step further and reporting these results may lead to greater transparency 

and understanding of these methods, as they are applied to gait data.     

 

Typically it is suggested that for clinical data, m is to be set at 2 when utilizing the ApEn algorithm	

30 . An m of 2 has also been utilized in even the earliest papers reporting SampEn	34 . Yet, an m of 

3 has been found to be acceptable for analysis when using SampEn	19 . For the current study, m 

would represent the distance between consecutive steps that are compared to each other. By 

choosing an m of 3, one would compare the first and last step, of three consecutive steps, to the 

first and last step of another set of three consecutive steps. By choosing an m of 2, the algorithm 

compares one set of consecutive steps to another set of consecutive steps. We found that an m of 

2 provides reasonable results for the theoretical data and a lower number of self-matches for the 

experimental data. In addition, SampEn does not contain an upper limit in values and this made it 

difficult to compare results when m was increased to 3. For many of the smaller r values, SampEn 

converged toward infinity. Therefore, thoughtful consideration is required when choosing the m 

parameter value, bearing in mind what the choice of m represents in biological terms with respect 

to individual data sets (in our case, the steps being compared). Choosing a value, like 2, that has 

been utilized frequently in literature, will allow comparison of study results to previously 

published findings. Yet, a choice of the right parameter combinations for individual data sets may 

yield an m value that is different from 2. 

 

Based on our current findings, it appears that SampEn is more reliable for short gait data sets, as 

proposed in previous studies	 19,	 34 . SampEn was less sensitive to changes in data length, 

demonstrated fewer problems with relative consistency and does not contain the inherent bias 
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associated with the ApEn algorithm. How exactly should one go about choosing parameter values? 

Based on the current findings, as well as past studies, it appears that there is not a set combination 

of parameters that will work every time. Time and care will have to be devoted to parameter choice 

when piloting a project and based on the current findings, it is suggested that a range of parameter 

combinations be examined before data collection. It will be important to examine m = 2 and 3, r 

values ranging from 0.1 to 0.3 and N as appropriate to capture the dynamics of the system. Further, 

one should avoid a parameter combination that demonstrates an abrupt change from the parameter 

combinations nearby. For example, using data from the current study, one would not want to 

choose a parameter combination of m = 2: r = 0.25, N = 200 for step length ApEn, as the parameter 

combinations immediately surrounding it yielded an opposite finding, young adults demonstrating 

a greater ApEn. 

 

This study used spatio-temporal gait data from young and elderly subjects to investigate the 

performance of ApEn and SampEn with changing parameters. ApEn and SampEn of the step 

length time series were able to discriminate between groups. Step width and step time were not 

sensitive enough to the differences in age groups. However, we do not know if healthy young do 

in fact demonstrate more (or less) regularity in step length as compared to older adults, e.g. do the 

older adults exhibit consistently higher values across the range of r values or does the trend invert?  

This is a critical question that needs to be answered. Entropy quantifies the degree in which 

complexity is present in movement. A healthy gait pattern is flexible and adaptable, demonstrating 

complexity. A loss of complexity, either too rigid (low entropy) or erratic (high entropy) may 

reveal important information about motor control processes associated with aging. Thus, future 

studies should investigate the ApEn, SampEn and other measures of entropy (e.g. Multiscale 
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Entropy	6 ) of multiple gait parameters in healthy young and healthy older adults to determine if 

age is in fact associated with a loss in regularity.  

 

Future studies may also evaluate the sensitivity of entropy analysis through the generation of 

periodic signals with increasing levels of noise. This could be done for known signals with 

increasing levels of periodicities as well. These generated signals may reflect the nested 

periodicities that are found within human movement patterns and would be useful for a theoretical 

perspective.   

 

The purpose of this study was to investigate short gait data sets. It is feasible that a data length of 

200 is simply too short and that a longer data set would yield more consistent findings. Future 

work should determine what data lengths are required so that ApEn and SampEn provide 

comparable insights (e.g. both ApEn and SampEn demonstrate that young adults walk with more 

regular patterns than older adults) and exhibit a consistent pattern with changing parameters.  

 

Appendix A 

 

In order to understand the stabilization of entropy values as N increased in theoretical data, the 

chaotic logistic map was subjected to entropy analysis up to an N of 10,000 data points. For this 

particular analysis, an m of 2 and r of 0.20 times the standard deviation of the time series were 

chosen, as they are the most popular choice in past and current literature. Using the same 

procedures as outlined in the methods above, SampEn and ApEn were quantified on generated 
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data from 100 to 10,000 data points, in increments of 100. As can be seen in Figure 10, the entropy 

values for both SampEn and ApEn stabilize around an N of 2,000.  
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Figure Captions 

 

Figure 1. Total number of publications using Approximate Entropy or Sample Entropy listed on 

PubMed from 1991- July 2012. 

 

Figure 2. Representative time series for theoretical and average time series for experimental data 

sets. Theoretical data includes: periodic logistic map (A), chaotic logistic map (B) and random 

white noise (C). Experimental data shown are from step length (D), step time (E) and step width 

(F). For experimental data black represents the older adults and gray are the young adults. The 

mean and standard deviation of the entire time series is also shown in the figure.  

 

Figure 3. Visual representation of the calculation of ApEn and SampEn. 

 

Figure 4. ApEn (top row) and SampEn (bottom row) as a function of data length when m=2. For 

theoretical data, the filled shapes represent the various levels of r for chaotic logistic maps, while 

the open shapes represent he various levels of r for randomized logistic maps. For all experimental 

data, the filled shapes represent young adults and the open shapes represent older adult data.  

 

Figure 5. ApEn (top row) and SampEn (bottom row) as a function of data length when m=3. For 

theoretical data, the filled shapes represent the various levels of r for chaotic logistic maps, while 

the open shapes represent he various levels of r for randomized logistic maps. For all experimental 

data, the filled shapes represent young adults and the open shapes represent older adult data. All 

values in which SampEn is equal to 4 are not true data. SampEn does not contain an upper limit 
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for calculation. In order to make graphs more legible at lower resolutions (between 0-3), extremely 

large SampEn values were replaced with the value of 4 for illustration purposes only. These 

numbers were typically larger than 1,000. 

 

Figure 6. ApEn (top row) and SampEn (bottom row) as a function of tolerance (r) when m=2. For 

theoretical data, the filled shapes represent the various levels of N for chaotic logistic maps, while 

the open shapes represent he various levels of N for randomized logistic maps. For all experimental 

data, the filled shapes represent young adults and the open shapes represent older adult data.  

 

Figure 7. ApEn (top row) and SampEn (bottom row) as a function of tolerance (r) when m=3. For 

theoretical data, the filled shapes represent the various levels of N for chaotic logistic maps, while 

the open shapes represent he various levels of N for randomized logistic maps. For all experimental 

data, the filled shapes represent young adults and the open shapes represent older adult data. 

 

Figure 8. The number of self-matches (bias in ApEn) for when m=2 (top row) and m=3 (bottom 

row) as a function of data length (N). For theoretical data, the filled shapes represent the various 

levels of r for chaotic logistic maps, while the open shapes represent he various levels of r for 

randomized logistic maps. For all experimental data, the filled shapes represent young adults and 

the open shapes represent older adult data.  

 

Figure 9. The number of self-matches (bias in ApEn) for when m=2 (first row) and m=3 (second 

row) as a function of tolerance (r). For theoretical data, the filled shapes represent the various 

levels of N for chaotic logistic maps, while the open shapes represent he various levels of N for 
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randomized logistic maps. For all experimental data, the filled shapes represent young adults and 

the open shapes represent older adult data.  

 

Figure 10. The Apen and SampEn values are plotted for the chaotic logistic map using an m of 2 

and r of 0.2. The entropy values were calculated for data of lengths 100 to 10,000 increasing in 

increments of 100. Based on this figure, it appears that the entropy values stabilize around an N of 

2,000. 
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