43,671 research outputs found

    E-QED: Electrical Bug Localization During Post-Silicon Validation Enabled by Quick Error Detection and Formal Methods

    Full text link
    During post-silicon validation, manufactured integrated circuits are extensively tested in actual system environments to detect design bugs. Bug localization involves identification of a bug trace (a sequence of inputs that activates and detects the bug) and a hardware design block where the bug is located. Existing bug localization practices during post-silicon validation are mostly manual and ad hoc, and, hence, extremely expensive and time consuming. This is particularly true for subtle electrical bugs caused by unexpected interactions between a design and its electrical state. We present E-QED, a new approach that automatically localizes electrical bugs during post-silicon validation. Our results on the OpenSPARC T2, an open-source 500-million-transistor multicore chip design, demonstrate the effectiveness and practicality of E-QED: starting with a failed post-silicon test, in a few hours (9 hours on average) we can automatically narrow the location of the bug to (the fan-in logic cone of) a handful of candidate flip-flops (18 flip-flops on average for a design with ~ 1 Million flip-flops) and also obtain the corresponding bug trace. The area impact of E-QED is ~2.5%. In contrast, deter-mining this same information might take weeks (or even months) of mostly manual work using traditional approaches

    Observer-based correct-by-design controller synthesis

    Get PDF
    Current state-of-the-art correct-by-design controllers are designed for full-state measurable systems. This work first extends the applicability of correct-by-design controllers to partially observable LTI systems. Leveraging 2nd order bounds we give a design method that has a quantifiable robustness to probabilistic disturbances on state transitions and on output measurements. In a case study from smart buildings we evaluate the new output-based correct-by-design controller on a physical system with limited sensor information

    Simulation and Bisimulation over Multiple Time Scales in a Behavioral Setting

    Full text link
    This paper introduces a new behavioral system model with distinct external and internal signals possibly evolving on different time scales. This allows to capture abstraction processes or signal aggregation in the context of control and verification of large scale systems. For this new system model different notions of simulation and bisimulation are derived, ensuring that they are, respectively, preorders and equivalence relations for the system class under consideration. These relations can capture a wide selection of similarity notions available in the literature. This paper therefore provides a suitable framework for their comparisonComment: Submitted to 22nd Mediterranean Conference on Control and Automatio

    The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

    Get PDF
    The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions

    Performance Verification of the FlashCam Prototype Camera for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.Comment: 5 pages, 13 figures, Proceedings of the 9th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2016), Lake Bled, Sloveni

    An analysis of spacecraft data time tagging errors

    Get PDF
    An indepth examination of the timing and telemetry in just one spacecraft points out the genesis of various types of timing errors and serves as a guide in the design of future timing/telemetry systems. The principal sources of timing errors are examined carefully and are described in detail. Estimates of these errors are also made and presented. It is found that the timing errors within the telemetry system are larger than the total timing errors resulting from all other sources
    corecore