
US 20170074932A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0074932 A1

KOURFAL et al. (43) Pub. Date: Mar. 16, 2017

(54) INTEGRATED CIRCUIT VERIFICATION Publication Classification
USING PARAMETERIZED CONFIGURATION

(51) Int. Cl.
(71) Applicant: UNIVERSITEIT GENT, Gent (BE) GOIR 3L/37 (2006.01)

GOIR 3L/377 (2006.01)
(72) Inventors: Alexandra KOURFALI, Gent (BE): H03K 19/177 (2006.01)

Dirk STROOBANDT, Deinze (BE) (52) U.S. Cl.
CPC. G0IR 31/31704 (2013.01); H03K 19/17764

(21) Appl. No.: 15/363,066 (2013.01); G0IR 31/31705 (2013.01); G0IR
31/31703 (2013.01); G0IR 31/31 77 (2013.01)

(22) Filed: Nov. 29, 2016

Related U.S. Application Data (57) ABSTRACT
(63) Continuation-in-part of application No. PCT/EP2015/

062049, filed on May 29, 2015.
A method for debugging and a method for testing a circuit

(30) Foreign Application Priority Data design on a programmable logic device is disclosed, making
use of a parameterized configuration. A corresponding sys

May 29, 2014 (EP) 14170514.5 tem also is disclosed.

Full Compile

E:::::::::::
C38gii:

strict

Tape Out

Patent Application Publication Mar. 16, 2017. Sheet 1 of 6

F::::::::pile

Exist:::::::
(.333i:

F.G. 1

*::::::::::::::::::x: $33x:388 *:::::::::::::::

it::::::

*:::::::::88:88.
Exx: 388x

* - - - - - - - - - - - - - - - - - -& - - - - - - - - - - - - - - - - - -&- - - - -

FG. 2

a six; r. r a -a- a-- aea a -a - and ea ar 1 a an ar- ra
-a- a-- ra r" a 10 a a- a- 1a- - -a- a-- a

US 2017/0074932 A1

-

Patent Application Publication Mar. 16, 2017. Sheet 2 of 6 US 2017/0074932 A1

24

FG. 4

Patent Application Publication Mar. 16, 2017. Sheet 3 of 6 US 2017/0074932 A1

synthesis

SO

Fault injection

FCCN Faggig 8:

61

52

Speciaisation :
g383xecre

F.G. 5

Fault Point
-

3rgia: six: x

88: $88: 833
&:

Seiget fast

Patent Application Publication Mar. 16, 2017. Sheet 4 of 6 US 2017/0074932 A1

(3:3pxit

S$83.88: 833

38883

Part:
Specialised
3rit:33if

FIG. 7

Patent Application Publication Mar. 16, 2017. Sheet 5 of 6 US 2017/0074932 A1

s

US 2017/0074932 A1

INTEGRATED CIRCUIT VERIFICATION
USING PARAMETERIZED CONFIGURATION

FIELD OF THE INVENTION

0001. The invention relates to the field of application
specific integrated circuit (ASIC) verification and debugging
by emulation of Such circuit in a programmable logic device,
as well as to the field of Verification and debugging of a
circuit implemented in a programmable logic device. More
specifically it relates to a method and device for testing and
verifying and/or for debugging a circuit design in a pro
grammable logic device Such as a field-programmable gate
array (FPGA) or in an application specific integrated circuit
(ASIC).

BACKGROUND OF THE INVENTION

0002 Many electronic devices have at their core Appli
cation-Specific Integrated Circuits (ASICs), e.g. Integrated
Circuits (IC) that are customized for a particular use. Veri
fying the correct operation within time-to-market constraints
can be a challenge for ASIC design teams. For example, 35
to 45 percent of the total ASIC development effort may be
spent on verification, and this fraction may continue to grow
due to the constant increase of chip complexity. Moreover,
debugging may consume about 60 percent of the total
verification effort and may be the fastest growing compo
nent. For example, a large fraction of silicon IC re-spins may
be at least partially due to functional errors and bugs
inadvertently introduced at the register-transfer level (RTL)
stage of the design process. Thus, comprehensive functional
verification is the key to reduce development costs and to
deliver a product on time. Embedded systems are becoming
even more complex. Errors in the specification, the design
and the implementation may be substantially unavoidable.
Efficient verification tools for verifying designs are therefore
important, and even more so for ASIC designs, where errors
cannot be easily fixed. In addition, a late introduction of the
product can invoke an important loss of revenues.
0003. Thus, application specific integrated circuit (ASIC)
verification and debugging has become a challenging and
time consuming task in ASIC design, particularly because
state of the art ASIC designs can be quite large and complex.
Circuit designers may use software simulation, e.g. Mentor
Graphics Model-Sim, to verify and debug circuits. This is
extensively used because of its ease of use. For example,
designers are able to view the behavior of any internal signal
in the circuit and they can detect design errors, fix them and
re-simulate. However, the inefficiency of software simula
tion and timing constraints can prohibit the debugging of
complete systems through software simulation. Moreover,
the complexity of integrated circuits continues to increase,
consistent with Moore's Law. For a complex chip design,
e.g. a computer central processing unit, Software simulations
may run a billion times slower than the intended silicon
implementation.
0004 Programmable logic devices (PLDs) can be used as
building blocks in creating electronic circuit designs. A
programmable logic device is a hardware component whose
functionality can be configured. For example, Field Pro
grammable Gate Arrays (FPGAs) are off-the-shelf inte
grated circuit PLDS that can be configured to implement any
particular digital circuit design. In order to address chal
lenges in ASIC verification and debugging, programmable

Mar. 16, 2017

logic devices such as FPGAs can be used to facilitate
debugging. Of course, also designs that are being imple
mented on FPGAs from the beginning must be debugged.
Implementing a logic design on a FPGA, e.g. implementing
an abstract description of functionality defining a predeter
mined function when executing on the FPGA, may typically
comprise the steps of synthesis, technology mapping, place
ment and routing. As for ASICs, the FPGA implementation
can be performed entirely at design time, before the com
ponent is used. However, due to the inherent reconfigurabil
ity of static RAM-based FPGAs (SRAM-FPGAs), this
implementation can also be performed on the fly, e.g. by
run-time hardware generation. Unfortunately, state of the art
methods for hardware generation can be computationally
expensive. Such that run-time hardware generation may not
be feasible for most applications given realistic time con
straints. Nevertheless, an FPGA emulation can bridge the
gap between hardware prototyping and Software simulation
by providing an environment which is much closer to the
device being simulated.
0005. The simulation of complete circuit systems in an
FPGA, referred to as FPGA emulation, allows early access
to verification and test preparation for the FPGA before the
final result of the design cycle for ICs, referred to as the
tape-out phase. Compared to software simulation, FPGA
emulation allows for simulated operating frequencies that
are several orders of magnitude faster. Hence the designers
can run more complex tests and achieve higher testing
coverage.

0006. However, FPGA emulation can suffer from a lack
of on-chip signal observability and a lengthy recompilation
cycle. Observability of the internal signals can be enhanced
by instrumentation of the design, but only a limited amount
of Such instruments can be inserted due to resource con
straints. Therefore, only a limited Subset of signals can be
monitored simultaneously. The monitored Subset can be
changed by a recompilation, but each instrument-compile
debug iteration can take multiple hours due to this time
consuming recompilation. This severely limits debug pro
ductivity and may result in a slow time-to-market.
0007. It is known in the art to insert trace-buffer instru
mentation if Sufficient spare resources exist in the target
FPGA after a version of the circuit is emulated in the FPGA.
Such trace-buffer IP can be inserted but require additional
area and therefor are limited in number as such additional
area is not always available (large designs may use the entire
FPGA area). Furthermore, in some FPGA architectures,
hardened control logic exists inside RAM blocks to allow
circular buffers to be implemented.
0008 For example, specific tools known in the art, e.g.
tailored to specific FPGA devices, can embed logic analyzer
IP into the user-circuit during compilation. Such logic ana
lyZer IP can for example comprise signal probes, trigger
monitors, trace buffers and/or data offload logic. If erroneous
behavior is observed, verification tools can be used to add
instrumentation to the circuit. Afterwards, the designer may
determine the number of signals to be observed and the size
of the trace-buffers. The circuit is then recompiled and the
error is reproduced. The designer can use the data in the
trace-buffer to narrow down the cause of the failure. How
ever, such approach as known in the art may have the
disadvantage of requiring signal predetermination and full
recompilation. Alternatively, incremental techniques may be
known in the art in which internal signals are multiplexed to

US 2017/0074932 A1

reserved I/O pin for external analysis. The designer may
predetermine the subset of signals to be observed. However,
in this approach signal predetermination is also required and
run time flexibility via parameterized configuration is not
provided.
0009 Furthermore, device-neutral techniques exist in the
art that can offer much of the same functionality as described
above. Such techniques may for example enable the selec
tion of a small Subset of signals during debug-time for
observation and triggering, by allowing the designer to
pre-instrument a large set of interesting signals in the target
FPGA prior to compilation. Run time flexibility may for
example be increased by using a multiplexer network.
However, this may have the disadvantage of requiring the
selection of a set of signals for observation before any bugs
are known is required. The solutions such as a multiplexer
network also require a lot of extra resources on the FPGA,
increasing the used area.
0010 Methods as known in the art may operate primarily
on the pre-mapping circuit. Therefore, such methods may
instrument the original user circuit with trace-buffers and
associated connections before place-and-routing the com
bined design. Some tools as known in the art may however
Support a limited amount of reconfiguration. Nevertheless,
even though it may be possible to modify the trigger
conditions during runtime, changing the signals under obser
Vation does require a lengthy FPGA recompilation, even
with the more advanced techniques known in the art.
0011. However, methods are known in the art which use
a debugging workflow that may bridge the gap between
simulation and emulation, bringing good visibility to FPGA
based debugging. Such methodology may use as basis for
the observation network a Virtual Overlay Network, imple
mented in free resources. Spurious recompilations may be
avoided by reconfiguring this network during debug-time.
However, in typical realistic designs, few available
resources are left for the Virtual Overlay Network and the
Virtual Overlay Network thus typically may be too small.
Thus, insertion of extra instrumentation in the free multi
plexers can be impractical in FPGA emulation of a large
ASIC design.

SUMMARY OF THE INVENTION

0012. It is an object of embodiments of the present
invention to provide good means and methods for debugging
and verifying an FPGA design or an ASIC design imple
mented in a FPGA.
0013. It is an advantage of embodiments of the present
invention that a short debugging cycle can be achieved.
0014. It is an advantage of embodiments of the present
invention that a high degree of signal visibility can be
achieved while debugging a hardware design or ASIC
design emulation on a FPGA platform.
0015. It is an advantage of embodiments of the present
invention that a debugging methodology in accordance with
embodiments can be integrated into a conventional debug
ging flow, called Debugging methodology, which is inte
grated in the general design tool flow, e.g. may not require
a separate debugging tool flow.
0016. It is an advantage of embodiments of the present
invention that time efficient debugging turns can be
achieved, resulting in a faster time-to-market.
0017. It is an advantage of embodiments of the present
invention that a small area overhead suffices for insertion of

Mar. 16, 2017

debugging instrumentation. It is an advantage of embodi
ments of the present invention that large designs can be
efficiently debugged, even where few free resources are
available, e.g. where substantially no free resources are
available in the FPGA.

0018. The above objective is accomplished by a method
and device according to the present invention.
0019. The present invention relates to a method for
debugging a circuit design on a programmable logic device,
the method comprising
inserting multiplexers in an existing design at signal loca
tions whose value should be observable in the debugging
phase, where the selection bits of the multiplexers are
parameters defining when a signal is observable and when
not,
compiling an enhanced integrated circuit design specifica
tion to a parameterized configuration specification for a
programmable logic device, with the multiplexer selection
bits as parameters,
programming the programmable logic device in accordance
with said parameterized configuration specification, said
programming comprising adding a plurality of tunable con
nections to the parameterized configuration specification for
routing a plurality of internal signals to at least one trace
buffer, each tunable connection being adapted for routing
exactly one internal signal of said plurality of internal
signals to exactly one trace buffer of said at least one trace
buffer when the tunable connection is set to an active state
by a corresponding parameter, and
debugging the programmable logic device while executing
said parameterized configuration specification, wherein said
debugging comprises reconfiguring the programmable logic
device for selecting a subset of the plurality of internal
signals to route to the at least one trace buffer, wherein this
reconfiguring comprises applying a parameterized run-time
reconfiguration of at least one routing configuration cell of
the programmable logic device in accordance with said
parameterized configuration specification.
0020 Selecting a subset of the plurality of internal sig
nals may comprise selecting a Subset of multiplexer selec
tion bits for selecting signals to be observable during the
debugging.
0021. According to embodiments of the present inven
tion, the debugging functionality may advantageously be
introduced in the design cycle at the same time as the circuit.
According to Some embodiments, the debugging function
ality may be optimized at the same time as the circuit. For
example, the amount of debugging functionality and the
circuit design, Such as for example layout and space, may be
optimized together, i.e. taking both optimization conditions
for the debugging functionality and the circuit design at the
same time and together into account. By co-optimizing
debugging functionality and the circuit design, a better
debugging functionality and/or better circuit design (with
more possibilities) can be obtained, compared to a situation
where the debugging functionality would for example not be
co-optimized but e.g. only be implemented thereafter.
According to Some embodiments, by co-optimizing the
debugging functionality and the circuit design during the
design cycle, more debugging functionality can be obtained
for a same circuit space, since e.g. the layout can be
optimized such that appropriate circuit design is obtained as
well as large debugging functionality.

US 2017/0074932 A1

0022. Such an optimization may be performed by defin
ing a cost function for the debugging flexibility and the
circuit design and optimizing the cost function (e.g. obtain
ing a minimal cost function). In this optimization, it may be
guaranteed that at least a predetermined minimum debug
ging functionality and at least the required circuit flexibility
is obtained. In some embodiments, by selecting for example
another layout, for the same circuit functionality, a better
debugging functionality can be obtained.
0023 Embodiments of the present invention also provide
a benefit in online monitoring and debugging. In some
applications, debugging is not only done beforehand (at
design time) but also continues during normal operation of
the circuit (online monitoring and debugging) (e.g. this is
important for ESA and in the automotive world to constantly
check if the circuit still operates correctly). The current
approach, wherein co-optimization can be performed,
allows both design time and online debugging (where you
keep the optimized debugging infrastructure together with
the circuit implementation). It is an advantage of embodi
ments of the present invention that the debugging function
ality may be optimized for speed, such that also in online
debugging, the entire circuit can run at a high clock speed.
In embodiments of the present invention, the debug clock is
optimized together with the circuit clock and therefore the
total speed (circuit--debugging) can be faster and even
controllable upfront. The speed may be used as a cost
function or as a parameter of a cost function.
0024. It is an advantage of at least some embodiments,
that it allows to switch between circuit mode and debug
mode easily.
0025. It is an advantage of at least some embodiments of
the present invention that it allows to easily deal with high
level debug infrastructure which is added to the circuit code
(assertions). Since these are integrated within the circuit
code, one can immediately implement these signals as
“preferred debug signals within the circuit design. This is
another benefit from the implementation as described. The
present invention also relates to a method for debugging a
circuit design on a programmable logic device, the method
comprising:
inserting multiplexers in an existing design specification at
signal locations whose value should be selectively observ
able during debugging, where selection bits of the multi
plexers are parameters defining when a signal is observable
and when not, thus forming an enhanced integrated circuit
design specification,
compiling the enhanced integrated circuit design specifica
tion to a parameterized configuration specification for a
programmable logic device, with the multiplexer selection
bits as parameters,
programming the programmable logic device in accordance
with said parameterized configuration specification, and
debugging the programmable logic device while executing
said parameterized configuration specification, wherein said
debugging comprises applying a parameterized run-time
configuration of the programmable logic device in accor
dance with said parameterized configuration specification
taking into account the selection bits of the multiplexers in
accordance with signals to be observed during the debug
ging.
0026 Said programming the programmable logic device
may comprise an automatic generation of a parameterized
configuration of the programmable logic device.

Mar. 16, 2017

0027 Said automatic generation may comprise the steps
of synthesis, technology mapping, placement and routing.
0028 Said compiling of the integrated circuit design
specification to the parameterized configuration specifica
tion may comprise inserting multiplexers for routing internal
signals to trace buffers.
0029. The present invention also relates to a method for
generating a test set of a circuit design on a programmable
logic device, the method comprising inserting multiplexers
in an existing design at signal locations where a fault can be
generated, where selection bits of the multiplexers are
parameters defining when a signal (fault) occurs and when
not.

0030 The present invention also relates to a method for
generating a test set of a circuit design on a programmable
logic, the method comprising:
inserting multiplexers in an existing design at signal loca
tions where a fault can be generated, wherein selection bits
of the multiplexers are parameters defining when a signal
(fault) occurs and when not, thus forming an enhanced
integrated circuit design specification,
compiling an enhanced integrated circuit design specifica
tion to a parameterized configuration specification for a
programmable logic device, with the multiplexer selection
bits as parameters,
programming the programmable logic device in accordance
with said parameterized configuration specification, and
testing the programmable logic device while executing said
parameterized configuration specification, wherein said test
ing comprises applying a parameterized run-time configu
ration of the programmable logic device in accordance with
said parameterized configuration specification taking into
account the selection bits of the multiplexers in accordance
with faults to occur for said testing.
0031 Said compiling the integrated circuit design speci
fication to the parameterized configuration specification may
comprise injecting at least one parameterized fault in the
parameterized configuration specification.
0032. The method furthermore may comprise testing the
programmable logic device while executing said parameter
ized configuration specification, wherein said testing com
prises reconfiguring the programmable logic device for
selecting a Subset of the at least one parameterized fault.
0033 Testing may comprise applying a Parameterized
Test Pattern Generation procedure.
0034 Applying the Parameterized Test Pattern Genera
tion procedure may comprise selecting random tests.
0035. As indicated above, in the different methods, the
debugging functionality may advantageously be introduced
in the design cycle at the same time as the circuit. According
to some embodiments, the debugging functionality may be
optimized at the same time and together with the circuit.
0036. The present invention also relates to a debugging
system for debugging a circuit design on a programmable
logic device, the debugging system being configured for
performing a method for debugging as described above.
0037. The present invention also relates to a debugging
system for debugging a circuit design on a programmable
logic device, the debugging system comprising:
a circuit design component adapted for implementing a
parameterized specification of a programmable logic device
for a circuit design to be debugged, the parameterized
specification comprising a plurality of tunable connections
for routing a plurality of internal signals to at least one trace

US 2017/0074932 A1

buffer, each tunable connection being adapted for routing
exactly one internal signal of said plurality of internal
signals to exactly one trace buffer of said at least one trace
buffer when the tunable connection is set to an active state
by a corresponding parameter, and
a debugging component configured for debugging the pro
grammable logic device while executing said parameterized
configuration specification, wherein said debugging compo
nent is adapted for reconfiguring the programmable logic
device for selecting a subset of the plurality of internal
signals to route to the at least one trace buffer, wherein this
reconfiguring comprises applying a parameterized run-time
reconfiguration of at least one routing configuration cell of
the programmable logic device in accordance with said
parameterized configuration specification.
0038. The circuit design component may be adapted for
inserting multiplexers in an existing initial design specifi
cation at signal locations whose value should be selectively
observable during debugging, where selection bits of the
multiplexers are parameters defining when a signal is
observable and when not, thus obtaining an enhanced inte
grated circuit design specification for said implementing a
parameterized specification of the programmable logic
device.

0039. In some embodiments, the circuit design compo
nent may be adapted for co-optimizing the debugging func
tionality and the circuit during the design cycle. This co
optimization advantageously results in an optimum
debugging functionality for a given circuit flexibility.
0040. The debugging component furthermore may com
prise an output means for outputting internal signals repre
sentative of the circuit design or its operation.
0041. The debugging system furthermore may comprise
a feedback component for reconfiguring the tunable con
nection based on the obtained internal signals.
0042. The present invention also relates to a test set
generation system for generating a test set of a circuit design
on a programmable logic device, the test set generation
system being configured for performing a method for test set
generation as described above.
0043. The present invention also relates to a test set
generation system for generating a test set of a circuit design
on a programmable logic device, the test set generation
system comprising a circuit design component adapted for
inserting multiplexers in an existing design at signal loca
tions where a fault can be generated, where selection bits of
the multiplexers are parameters defining when a signal
(fault) occurs and when not.
0044. In some embodiments, the circuit design compo
nent may be adapted for co-optimizing the debugging func
tionality and the circuit during the design cycle. This co
optimization advantageously results in an optimum
debugging functionality for a given circuit flexibility.
0045. The present invention furthermore relates to a
computer program product for implementing a method as
described above.
0046. The computer program product furthermore may
be adapted for integrating in a standard debug flow for a
programmable logic device.
0047 Particular and preferred aspects of the invention are
set out in the accompanying independent and dependent
claims. Features from the dependent claims may be com
bined with features of the independent claims and with

Mar. 16, 2017

features of other dependent claims as appropriate and not
merely as explicitly set out in the claims.
0048. These and other aspects of the invention will be
apparent from and elucidated with reference to the embodi
ment(s) described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0049 FIG. 1 illustrates a method for debugging accord
ing to prior art.
0050 FIG. 2 illustrates the proposed combination of the
test set generation, debugging and testing tool flows, as can
be obtained using embodiments of the present invention.
0051 FIG. 3 illustrates a method for debugging accord
ing to embodiments of the present invention.
0.052 FIG. 4 shows a tool flow for programming a device
in accordance with a parameterized configuration specifica
tion in a method according to embodiments of the present
invention.
0053 FIG. 5 illustrates the offline stage of a test set
generation method according to an embodiment of the
present invention.
0054 FIG. 6 illustrates the injection of a parameterized
fault in a parameterized configuration specification accord
ing to embodiments of the present invention.
0055 FIG. 7 describe the offline and the online tool for
test set generation, according to an embodiment of the
present invention.
0056 FIG. 8 shows an area comparison with different
mapping Solutions. The initial area (golden) that is needed
for the benchmark is compared with different mappers for
the fault injected circuit, TCONMap and ABC with 4-input
LUTs. The drawings are only schematic and are non-limit
1ng.
0057 FIG. 9 illustrates a method for testing as could be
used according to an embodiment of the present invention.
0058. In the drawings, the size of some of the elements
may be exaggerated and not drawn on scale for illustrative
purposes.
0059 Any reference signs in the claims shall not be
construed as limiting the scope.
0060. In the different drawings, the same reference signs
refer to the same or analogous elements.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

0061 The present invention will be described with
respect to particular embodiments and with reference to
certain drawings but the invention is not limited thereto but
only by the claims. The drawings described are only sche
matic and are non-limiting. In the drawings, the size of some
of the elements may be exaggerated and not drawn on scale
for illustrative purposes. The dimensions and the relative
dimensions do not correspond to actual reductions to prac
tice of the invention.
0062. Furthermore, the terms first, second and the like in
the description and in the claims, are used for distinguishing
between similar elements and not necessarily for describing
a sequence, either temporally, spatially, in ranking or in any
other manner. It is to be understood that the terms so used
are interchangeable under appropriate circumstances and
that the embodiments of the invention described herein are
capable of operation in other sequences than described or
illustrated herein.

US 2017/0074932 A1

0063 Moreover, the terms top, under and the like in the
description and the claims are used for descriptive purposes
and not necessarily for describing relative positions. It is to
be understood that the terms so used are interchangeable
under appropriate circumstances and that the embodiments
of the invention described herein are capable of operation in
other orientations than described or illustrated herein.
0064. It is to be noticed that the term “comprising”, used
in the claims, should not be interpreted as being restricted to
the means listed thereafter; it does not exclude other ele
ments or steps. It is thus to be interpreted as specifying the
presence of the stated features, integers, steps or components
as referred to, but does not preclude the presence or addition
of one or more other features, integers, steps or components,
or groups thereof. Thus, the scope of the expression “a
device comprising means A and B should not be limited to
devices consisting only of components A and B. It means
that with respect to the present invention, the only relevant
components of the device are A and B.
0065 Reference throughout this specification to “one
embodiment' or “an embodiment’ means that a particular
feature, structure or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, appearances of the phrases
“in one embodiment’ or “in an embodiment” in various
places throughout this specification are not necessarily all
referring to the same embodiment, but may. Furthermore,
the particular features, structures or characteristics may be
combined in any suitable manner, as would be apparent to
one of ordinary skill in the art from this disclosure, in one
or more embodiments.
0066 Similarly, it should be appreciated that in the
description of exemplary embodiments of the invention,
various features of the invention are sometimes grouped
together in a single embodiment, figure, or description
thereof for the purpose of streamlining the disclosure and
aiding in the understanding of one or more of the various
inventive aspects. This method of disclosure, however, is not
to be interpreted as reflecting an intention that the claimed
invention requires more features than are expressly recited
in each claim. Rather, as the following claims reflect,
inventive aspects lie in less than all features of a single
foregoing disclosed embodiment. Thus, the claims follow
ing the detailed description are hereby expressly incorpo
rated into this detailed description, with each claim standing
on its own as a separate embodiment of this invention.
0067. Furthermore, while some embodiments described
herein include some but not other features included in other
embodiments, combinations of features of different embodi
ments are meant to be within the scope of the invention, and
form different embodiments, as would be understood by
those in the art. For example, in the following claims, any of
the claimed embodiments can be used in any combination.
0068. In the description provided herein, numerous spe

cific details are set forth. However, it is understood that
embodiments of the invention may be practiced without
these specific details. In other instances, well-known meth
ods, structures and techniques have not been shown in detail
in order not to obscure an understanding of this description.
0069. Where in embodiments of the present invention
reference is made to "dynamic reconfiguration', reference is
made to a reconfiguration of a programmable logic device,
such as an FPGA device, which enables serial multiplexing
of several functionalities; e.g. Such that these are not used

Mar. 16, 2017

simultaneously. For example, the same FPGA area portion
could be used for all these functionalities, because they are
never needed at the same time. The FPGA area is simply
reconfigured when a new functionality is needed. Dynamic
reconfiguration can boost the area efficiency of FPGAs in
certain applications.
0070. Where in embodiments of the present invention
reference is made to “dynamic circuit specialization’ (DCS),
reference is made to a technique for dynamically specializ
ing an FPGA configuration according to the values of a set
of parameters. The principle is described in U.S. Pat. No.
8.347.243. The general idea of DCS is that each time the
parameter values change the device is reconfigured with a
configuration that is specialized for the new parameter
values. Since specialized configurations are smaller and
faster than their generic counterparts, the system implemen
tation will be more cost efficient. The main difficulty when
building a DCS system is the fact that the specialized
configurations need to be rapidly generated on the fly while
providing a good quality in terms of size and speed.
0071. Where in embodiments of the present invention
reference is made to a "parameterized configuration', ref
erence is made to an FPGA configuration bitstream for
which some of the bits are expressed as Boolean functions
of specific parameters. A parameterized configuration can be
used to implement a DCS. For example, such parameterized
configurations can be used to efficiently and quickly gener
ate specialized configuration bitstreams by evaluating the
Boolean functions. The specialized bitstreams may for
example have slightly different properties and functional
ities. Before the FPGA can be configured, the parameter
values are used to evaluate the Boolean functions. This
generates the specialized configuration. A parameterized
configuration may be generated Starting from a register
transfer level (RTL) description of the functionality to be
implemented, wherein low speed, infrequently varying sig
nals are annotated as parameters. This description may be
referred to as a parameterized HDL description.
0072 FIG. 1 illustrates a method of a conventional
debugging flow, shown for reason of comparison. Further
more, in FIG. 2 an illustration of a method for FPGA/ASIC
testing and Verification as well as debugging is shown.
0073. In order to allow the changing of the observed
signals in an FPGA during a debugging cycle without
requiring the circuit to be re-instrumented and recompiled,
parameterized configurations are introduced into the debug
cycle of ASICs in accordance with embodiments of the
present invention. Thus, these parameterized configurations
may be adapted for changing the Subset of observed signals
without requiring a complete recompilation.
0074. In a first aspect, the present invention relates to a
method, e.g. a computer implemented method, for debug
ging a circuit design on a programmable logic device.
(0075 Referring to FIG. 3, a method 10 according to
embodiments of the present invention is shown. For
example, the circuit design may relate to a high level or low
level description of an integrated circuit design, e.g. an ASIC
design, being verified and/or debugged on a programmable
logic device. Such as a field-programmable gate array. The
programmable logic device may relate to a dynamically
reconfigurable device in particular, such as an SRAM
FPGA.
0076. The method 10 comprises an offline stage, per
formed at compile time, and an online state, performed at

US 2017/0074932 A1

debug time. The method comprises the step of compiling 20
an integrated circuit design specification to a parameterized
configuration specification, e.g. a parameterized configura
tion specification for a programmable logic device. Com
piling 20 may comprise designing 21 and/or simulating the
integrated circuit design specification, e.g. in accordance
with circuit design and Software logic simulation techniques
known in the art. The integrated circuit design specification
may for example be a specification provided in VHDL or
Verilog.
0077 Compiling 20 the integrated circuit design speci
fication may comprise obtaining a register-transfer level
hardware description language specification of the inte
grated circuit design directly, e.g. receiving such specifica
tion as input, or may comprise fully compiling 22 a register
transfer level HDL specification from a high-level language
specification, e.g. an algorithmic specification. The param
eterized configuration specification may comprise a Boolean
function definition and a set of parameters which is a Subset
of the functions arguments. The parameterized configura
tion specification may comprise a programmable logic
device configuration in which some of the configuration bits
are expressed as a function of the set of parameters. Thus,
online specialization can be achieved by evaluating this
function.
0078. An internal signal of the plurality of internal sig
nals may be connected to exactly one trace buffer of the at
least one trance buffers. Connecting these signals to the trace
buffers (signal-memory connection) is a routing approach.
In the designs debug cycle, the only aspects of the FPGA
that have to be reconfigured are the routing resources and
specifically, only the configuration cells for all the multi
plexers in the routing Switch-boxes and the connection
boxes. In Such method, the routing configuration bits of the
FPGA are expressed as a function of the parameters, allow
ing reconfiguration of the interconnections. The latter may
be implemented in one example via a virtual overlay net
work which provides a plurality of net connections, e.g. nets,
each providing an interconnection having one source, e.g. a
signal to be observed, and multiple sinks, e.g. a plurality of
trace buffers.

0079 According to some embodiments, the method may
comprise introducing in the design cycle at the same time the
debugging functionality and the circuit design. According to
Some embodiments, the debugging functionality may be
optimized at the same time as the circuit. For example, the
amount of debugging functionality and the circuit design,
Such as for example layout and space, may be optimized
together, i.e. taking both optimization conditions for the
debugging functionality and the circuit design at the same
time and together into account. Alternatively or in addition
thereto also the speed of the debugging and the circuit may
be optimized and/or the layout can be optimized, resulting in
the possibility for reaching a higher debugging functionality
for a given circuit flexibility or more circuit flexibility for a
given debugging functionality.
0080. The method 10 further comprises programming 24
the programmable logic device in accordance with the
parameterized configuration specification. This program
ming 24 comprising adding a plurality of tunable connec
tions to the parameterized configuration specification for
routing a plurality of internal signals to at least one trace
buffer. Each tunable connection is adapted for routing
exactly one internal signal of the plurality of internal signals

Mar. 16, 2017

to exactly one trace buffer of the at least one trace buffer
when the tunable connection is set to an active state by a
corresponding parameter. Thus, each tunable connection
may correspond to a one-to-one logic block connector which
can be Switched in an on or off state via a selector parameter.
By controlling the tunable connections, e.g. by selecting
appropriate parameters and reconfiguring the device during
runtime, the user may select internal signals to be traced
during runtime. Therefore, where the available resources
may not be sufficient to provide a virtual overlay network
with good coverage of the signals to be observed without
circuit specialization, a parameterized configuration of the
device may allow fast and easy reconfiguration of the
routing resources to obtain a good coverage. Thus, the
plurality of internal signals may comprise all available
internal signals defined by the register-transfer level HDL
specification or a Subset of all available internal signals, for
example a large Subset selected by the designer. The at least
one trace buffer may be a limited number of trace-buffer
resources, e.g. scarce trace buffers formed by resources left
unused by integrated circuit design specification.
I0081 Programming 24 the programmable logic device in
accordance with the parameterized configuration specifica
tion may comprise an automatic generation of a parameter
ized configuration, e.g. a configuration bitstream for the
programmable logic device, from the parameterized con
figuration specification, e.g. a parameterized HDL descrip
tion. Such automatic generation may comprise steps as
known in conventional FPGA tool flows: synthesis 51,
technology mapping 52, placement 53 and routing 54.
Details on the programming 24 in accordance with embodi
ments of the present invention may for example be found in
international patent application WO 2009/138490. The
above is described with reference to FIG. 4.

I0082 For example, the synthesis 51 may generate a
parameterized Boolean network, and the technology map
ping 52 may map the parameterized Boolean network on
abstract primitives that represent parameterized versions of
the resource primitives available in the target device archi
tecture. For example, a Tuneable LookUp Table (TLUT) is
a parameterized abstraction of a LUT. The truth table bits are
expressed as functions of parameter inputs. Since parts of
the design functionality depending on the parameters are
incorporated in truth table bits of the TLUTs, the size of the
TLUT circuit is much smaller than the regular LUT circuit
for the same design. Therefore, a TLUT is a LookUp Table
with the truth table expressed in terms of parameters. A
TLUT can be implemented by a regular LUT and the
dynamic reconfiguration of its truth table. A Tuneable Con
nection (TCON), another abstract concept which may be
generated in the technology mapping step, is a connection
with connection condition expressed in terms of parameters.
A TCON may be implemented by a set of wires and
Switches, and the dynamic reconfiguration of some of the
switches in the set. A schematic of a TCON can be found in
FIG. 4. Comparable to a regular connection, a TCON has a
Source and a sink. Not all connections are needed at the same
time and each TCON has a connection condition that reflects
this fact. The connection condition is defined as (p):
B'->B, with K the number of parameters. It is a Boolean
function of the parameters that when the design requires the
connection to be active the connection condition returns
true. These connections are also allowed to share FPGA

US 2017/0074932 A1

routing resources. Another example of an abstract primitive
is a TLC: one TLUT with TCONs attached to its inputs, as
shown in FIG. 5.
0083. The technology mapping 52 may exploit both the
reconfigurable properties of the look-up tables (LUTs) and
of the interconnect network in an FPGA device. The tech
nology mapping may be referred to as a TCONMap algo
rithm. TCONMap may for example be used to perform
technology mapping after providing parameterized routing
infrastructure for tracing internal signals and/or after param
eterized fault injection in accordance with embodiments of
the present invention.
0084. The method 10 further comprises debugging 30 the
programmable logic device while executing the parameter
ized configuration specification. Such debugging may com
prise a conventional debugging loop, e.g. comprising a
testing step 32, evaluating a pass criterion 33 and an
automatic, guided or manual new signal selection for obser
Vation when the pass criterion is not satisfied. The debug
ging comprises reconfiguring 31 the programmable logic
device for selecting a subset of the plurality of internal
signals to route to the at least one trace buffer, in which this
reconfiguring comprises applying a parameterized run-time
reconfiguration of at least one routing configuration cell of
the programmable logic device in accordance with the
parameterized configuration specification.
0085 For example, before debugging the designer may
select a subset of signals to be multiplexed into the trace
buffers and a parameterized configuration is created for this
design. Now, each time the designer wants to change the
signals under observation, the appropriate parameter values
are selected and a new specialized configuration is generated
using the Parameterized Configuration. Once this new con
figuration is loaded into the FPGA, the observed signals
have changed and the emulation can be restarted. Thus, only
reconfiguration is needed at debug time and the time con
Suming recompilation step is avoided. Because reconfigur
ing even an entire FPGA can be very fast, e.g. tens of
milliseconds, the debug-cycle can be sped up significantly.
I0086. With the use of Parameterized Configurations, one
of the major disadvantages of FPGA emulation, limited
visibility, can be improved, bringing it closer to the full
visibility provided by software simulation. An additional
advantage of Parameterized Configurations is that it allows
the use of the routing infrastructure of the FPGA to imple
ment the instruments, thus reducing their overhead. Instead
of implementing multiplexers that select the observed sig
nals by lookup tables, multiplexers may be implemented in
accordance with embodiments of the present invention by
the reconfiguration of the routing infrastructure.
0087. Designers can choose to insert trace instrumenta
tion to enhance on-chip observability. Where prior art meth
ods may require recompiling the entire design for each new
trace configuration, the use of DCS in accordance with
embodiments of the present invention can offer an automatic
method where no reimplementation and recompilation of the
entire design is anymore needed.
0088. In some embodiments, a virtual overlay network
may be used. The virtual overlay network may use only the
FPGA resources that were left over from the initial mapping,
but the resources in the prototypes of modern ASIC designs
are scarce. If the FPGA runs out of resources, the obvious
solution in a conventional debug flow would be to use
several FPGAs. However, the run-time parameterized recon

Mar. 16, 2017

figuration of routing resources in accordance with embodi
ments of the present invention may provide a simpler, faster
and cheaper alternative. The routing problem may be defined
as connecting a large number of internal signals to at least
one trace buffer. In the design’s debug cycle, the only
aspects of the FPGA that have to be reconfigured are the
routing resources and specifically, only the configuration
cells for all the multiplexers in the routing switch-boxes and
the connection-boxes. A tunable connection (TCON) is an
abstraction of a subset of an FPGA's routing resources,
which reflects the reconfigurability of those resources. Thus,
using the TCON, extra resources may be considered hidden
in the wiring.
I0089 More specifically, before debugging, a large subset
of signals may be selected to be multiplexed into the trace
buffers and a parameterized configuration is created for this
design. Now, each time the designer wants to change the
signals under observation, appropriate parameter values are
selected and a new specialized configuration is generated
using the Parameterized Configuration. Once this new con
figuration is loaded into the FPGA, the observed signals
have changed and the emulation can be restarted. Thus, only
reconfiguration is needed at debug time and the time con
Suming recompilation step is avoided. Because reconfigur
ing even a complete FPGA can be very fast, e.g. tens of
milliseconds, the debug-cycle can be speed up significantly.
With the use of Parameterized Configurations, one of the
major disadvantages of FPGA emulation, limited visibility,
will be improved, bringing it closer to the full visibility
provided by simulation. An additional advantage of Param
eterized Configurations is that it allows the use of the routing
infrastructure of the FPGA to implement the instruments,
thus reducing their overhead.
(0090 While methods may exist in the art that enable the
reconfiguration of the observed signals by setting configu
ration bits, e.g. selecting the observed signals by lookup
tables, in embodiments of the present invention, multiplex
ers may be implemented by the reconfiguration of the
routing infrastructure. Thus, a larger set of signals may be
selectable for observation, by inserting trace buffers with a
minimal area overhead and at the same eliminating FPGA
recompilations.
0091 Embodiments according to the present invention
may implement, or form part of an efficient instrument
compile-debug cycle. In particular, embodiments of the
present invention may enable the partial reconfiguration of
a design during runtime without requiring extensive recom
pilation. During debug time, when a new Subset of signals
needs to be observed, in a system as known in the art, an
FPGA recompilation may be necessary, which can take
several hours to be executed. However, in accordance with
embodiments of the present invention, an efficient recon
figuration enables a new set of signals to be observed
without a new recompilation cycle. Furthermore, this recon
figuration may for example be executed in a few seconds.
Hence, each debug turn may have its time efficiency
increased.

0092. Embodiments of the present invention may also
offer full signal visibility. For example, multiple signals may
be multiplexed into a single trace buffer. Even though a
limited window of signals can be observed simultaneously,
fast reconfiguration can constantly enable new Subset of
signals to be observed, such that full on-chip visibility, e.g.
similar to the high degree of signal observability available in

US 2017/0074932 A1

Software simulation systems, may be achieved in practice.
The signals may be multiplexed in the routing resources of
the FPGA such as to allow a rapid parameterized reconfigu
ration of those resources during debug-time, e.g. providing
in a few seconds a new set of signals for tracing and
triggering, while other approaches known in the art may
require multiple hours for Such reconfiguration.
0093. In embodiments according to the present invention,
a network may multiplex multiple internal signals to a scarce
set of FPGA trace buffers. This multiplexing may be
executed by using only the FPGA resources that are left over
from an initial mapping. Since these available resources in
modern ASIC design prototypes may be scarce, a param
eterized run time reconfiguration of the FPGA routing
resources may significantly increase the number of signals
that can be traced.
0094. In a second aspect, the present invention relates to
a process related to debugging that can delay time-to-market
being the test set generation for testing. It is a small but time
consuming part of the Verification and Testing process. Test
set generation is an important step that ensures that the
physical device, manufactured from the synthesized design,
has no manufacturing defects. While verification is a pre
dictive analysis to ensure that the synthesized design will
perform the given functionality, testing verifies the correct
ness of hardware and includes Test Set Generation which
allows easy verification on every manufactured device.
Conventionally, the test set generation may be derived by
fault simulation, which is applied throughout the entire test
pattern generation cycle. However, it can also be done on an
FPGA during debugging.
0095 FPGA fault injection techniques known in the art
can be divided into two basic categories: reconfiguration
based or instrumentation based. Reconfiguration based tech
niques change the configuration bits of the FPGA device
using full or partial reconfiguration in Such a way that a fault
model is applied on the desired fault site. These techniques,
can add errors directly to the bitstream and it is necessary to
generate a new bitstream for each new fault. Hence, in these
techniques, the reconfiguration process is the speed bottle
neck. In the instrumentation-based techniques, fault injec
tion circuitry is added to a possible fault site, called a
checkpoint. Thus, faults are injected in every fault site.
These techniques offer higher speed-up than reconfigura
tion-based techniques, but the injection of the extra circuitry
results in an area bottleneck, since they add extra hardware.
0096. It is known in the art to implement Fault Emulation
by a combination of Fault Injection software and Input
Pattern generators. The Fault Insertion software adds logic
in the circuit to emulate faulty behavior, Such as single
stuck-at-faults. The test pattern generation is used to quickly
find which test pattern is best suited to find the injected fault.
0097 FIGS. 5 and 7 illustrate respectively the offline and
online stage of an exemplary method according to embodi
ments of the present invention, in which the step of com
piling 50 an integrated circuit design specification to a
parameterized configuration specification for a program
mable logic device, comprises injecting 61 at least one
parameterized fault in the parameterized configuration
specification, wherein injecting each at least one parameter
ized fault may comprise the injection of a multiplexer at a
fault location, in which the selection signal of the multi
plexer corresponds to a parameter of the parameterized
configuration specification. Thus, each fault site can be

Mar. 16, 2017

controlled by reconfiguration while simultaneously keeping
the area overhead minimal. The injection of a parameterized
fault is illustrated in FIG. 6.
(0098. During the testing flow illustrated in FIG. 5 the
selected fault injection model may be applied by adding a
virtual multiplexer network. However, the resources in the
prototypes of modern ASIC designs can be scarce. If the
FPGA runs out of resources the obvious solution in a
conventional testing flow is to use several FPGAs. In such
case the tunable connections approach may be used in
accordance with embodiments of the present invention for
run time reconfiguration of FPGAs routing resources. Since
building the virtual multiplexer network is a routing prob
lem, in the design testing cycle the only aspects of the FPGA
that have to be reconfigured are the routing resources and
specifically, only the configuration cells for all the multi
plexers in the routing Switch-boxes and the connection
boxes. A TCON is an abstraction of a subset of an FPGAs
routing resources, which reflects the reconfigurability of
those resources.
0099. A method according to embodiments may com
prise testing 70 the programmable logic device while
executing the parameterized configuration specification. The
latter is shown in FIG. 7. It is known in the art to apply an
Automatic Test Pattern Generation (ATPG) to the Circuit
Under Test (CUT) with a specific fault model, in order to
find a test set that detects all possible faults in the circuit.
This can be used to find a test sequence that enables
automatic test equipment to distinguish between correct and
faulty circuit behaviour. The effectiveness of an ATPG can
be measured by the coverage, being the ration/(n-n),
where n is the number of detected faults, n, is the number
of total faults and nif is the number of redundant faults.
0100. In order to check if the test set is capable of
detecting a fault, the outputs of the CUT and of the initial
fault free version defined as golden reference circuit, may be
compared under the same input stimulus. If the outputs
differ, the fault is detected and the test vector that detected
it is stored in the final test set. The process repeats for each
single stuck-at fault. Thereby, when a specific level of fault
coverage is achieved, the ATPG terminates resulting to the
test Set.

0101 The testing 70 may comprise a Parameterized Test
Pattern Generation (PTPG) flow, e.g. similar to an Auto
matic Test Pattern Generation procedure. The ATPG may
produce the input patterns needed to identify all faults by
using test set generation, and may find a test set efficiently.
Both the circuit under test and the fault inserted version of
the original circuit can be implemented together on the
FPGA by different parameter choices of the parameterized
configuration. The area overhead can be reduced and the
time consuming full reconfiguration of the FPGA can be
avoided by a method according to embodiments of the
present invention.
0102 Parameterized Configurations may be used via the
TCON tool flow, as described above. After the fault injec
tion, the output may for example be a BLIF file with
parameterized faults inserted in all possible fault locations.
Then, this CUT is used as an input for mapping with the
parameterized configurations tool flow, e.g. TCONMap. The
parameterized configurations technique can minimize the
area needed by reducing the number of LUTs of the injected
circuitry and can introduce TCONs as well. Thereby the
circuit is able to fit into the target FPGA and the technique

US 2017/0074932 A1

can also be used for larger circuits. Thus, it can be used to
expedite the generation of the input patterns for testing the
integrated circuits.
0103) Applying the Parameterized Test Pattern Genera
tion procedure may comprise selecting random tests. This
approach provides the advantage of providing a fast test set
generation cycle, which is easy to design. Also, it is faster to
generate random test inputs and select a viable test by
emulation, then to effectively search for a test that detects the
fault. For example, a Linear Feedback Shift Register (LFSR)
may be used to generate pseudo-random inputs, as it is
impractical to test all possible inputs. LFSR may create
repeatedly new vectors to be tested in the fault emulation
circuitry and may be applied simultaneously with the deter
ministic testing algorithm in order to detect a fault.
0104. The initial circuit and the CUT may be compared
for every different input. If a fault is detected it keeps logs
so that the appropriate test can be generated. As an output
correctness analysis a XOR gate may be used, because it is
easy to implement in hardware. The possible outputs of the
golden reference circuit and the CUT may be XORed and if
the output is 0 then the fault is detected and the vector
generated by the LFSR is stored.
0105 Taking into consideration that the parameters have
to be infrequently changing inputs during the emulation and
that one may want to use parameters for different faults,
faults may be changed only after all tests related to that fault
are done. As we each parameterized fault may have been
assigned a different IDs for identifying each checkpoint, the
fault emulator may activate one fault each time, which is
consistent with the single stuck-at fault concept. Afterwards,
a generic VHDL module may start creating inputs for the
golden reference circuit and the CUT. The number of inputs
that have to be generated until a certain level of fault
coverage is achieved, can vary. The number of the generated
test vectors can be increased up to a certain point. At this
point, the maximum fault coverage is achieved, and most of
the faults are detected. After this point, there is minimal
increase in the test size as well. Hence, if the outputs differ
given the same input, an output correctness analysis cir
cuitry may detect the difference and therefore the input
vector is stored for further use and the FPGA is reconfigured
with a different parameterized configuration in order to
activate a different fault location. A pseudo-code for the
algorithm may be as below:
0106 Algorithm 1: Finds the parameterized test set gen
erator

0107 Input: CUT and golden reference circuit
0108 Output: The Parameterized Test Set
0109 1 for each fault F do
0110] 2 Call Reconfiguration Procedure with F:
0111. 3 initiate LFSR;
0112 4 while outputs equal do
0113 5 proceed LFSR to next bit vector;
0114) 6 apply test vector from LFSR;
0115 7 log input test vector;
0116 8 return test sequence;
0117 The testing 70 may comprise reconfiguring the
programmable logic device for selecting a Subset of the at
least one parameterized fault.
0118. In embodiments according to the present invention,
the injecting of the at least one parameterized fault may be
performed before technology mapping on a synthesized
object, e.g. on a BLIF gate-level logic representation of the

Mar. 16, 2017

integrated circuit design specification. Thus, resynthesis of
the design can be avoided, Such that fault injection can be
performed in a fast and efficient manner.
0119 Injecting the at least one parameterized fault may
emulate stuck-at-fault behaviour. It is an advantage of
embodiments of the present invention that a simple algo
rithm may be used for generating the fault injected circuitry
without requiring deep knowledge of the hardware of the
FPGA platform. The fault injection tool may be applied to a
fault injected circuit in order to produce tunable lookup
tables (TLUTs).
I0120 Embodiments of the present invention may provide
a pre-mapping fault injection technique without requiring
user intervention in the FPGAs configuration.
I0121 Embodiments of the present invention may provide
efficient test set generation through fault emulation. The
parameterized configurations concept can also be used to
reduce the area overhead of fault emulation and allow fast
test vector generation through reconfiguration. Both the
original circuit and a fault injected version of the same
circuit may be emulated together on the FPGA. Parameter
ized configurations may be used to rapidly change the
location of the faults in the circuit, which allows a fast
generation of the test sets.
0122. During compilation, e.g. during the offline stage of
a method according to embodiments of the present inven
tion, the area overhead of the circuit can be reduced, e.g.
minimized, by annotating the hardware that was left unused
by the initial design specification as parameters. Then,
technology mapping based on the parameterized configura
tions tool flow may be applied. During technology mapping,
as discussed hereinabove, the parameterized Boolean net
work generated by the synthesis step is not mapped onto the
resource primitives available in the target FPGA architec
ture, but on abstract primitives that represent parameterized
versions of these resource primitives. Afterwards, during the
debugging 30, e.g. during the online stage, a parameterized
reconfiguration may be applied to select a useful special
ization of the annotated hardware.
I0123. In a third aspect, the present invention relates to a
computer program product for implementing a method
according to the first aspect and/or a method according to the
second aspect of the present invention, for example, for
performing steps of Such method when executing the com
puter program product, e.g. a computer software, on a
computing platform. The computer program product is fur
thermore adapted for integrating in a standard debug flow
for a programmable logic device, e.g. for integrating in a
standard automation product as known in the field.
0.124. In one particular aspect, the present invention
relates to a debugging system for debugging a circuit design
on a programmable logic device. Such a debugging system
typically is a design tool for designing specific circuits. The
debugging system may be a system adapted for performing
a method as described above. It may be implemented in
software as well as hardware. In one particular set of
embodiments, it comprises a circuit design component
adapted for implementing a parameterized specification of a
programmable logic device for a circuit design to be
debugged, the parameterized specification comprising a
plurality of tunable connections for routing a plurality of
internal signals to at least one trace buffer, each tunable
connection being adapted for routing exactly one internal
signal of said plurality of internal signals to exactly one trace

US 2017/0074932 A1

buffer of said at least one trace buffer when the tunable
connection is set to an active state by a corresponding
parameter. In these embodiments, it also comprises a debug
ging component configured for debugging the program
mable logic device while executing said parameterized
configuration specification, wherein said debugging compo
nent is adapted for reconfiguring the programmable logic
device for selecting a subset of the plurality of internal
signals to route to the at least one trace buffer, wherein this
reconfiguring comprises applying a parameterized run-time
reconfiguration of at least one routing configuration cell of
the programmable logic device in accordance with said
parameterized configuration specification. In some embodi
ments, an output means may be provided for outputting
internal signals representative of the circuit design or its
operation. In some other particular embodiments, a feedback
component, e.g. a feedback loop, may be present for pro
viding feedback in the debugging system, e.g. it may be
adapted for reconfiguring the tunable connection based on
the obtained internal signals. Such a reconfiguration may be
Such that the monitoring of specific internal signals is
triggered, e.g. based on certain results obtained for previ
ously monitored internal signals. The selection of the inter
nal signals to be monitored may be performed based on a
look up table, a predetermined algorithm, an algorithm
based on a neural network, etc.
0.125. In another particular aspect, the present invention
relates to a test set generation system for generating a test set
of a circuit design on a programmable logic device. Such a
test set generation system typically is a design tool for
designing specific circuits. The test set generation system
may be a system configured for performing a test set
generation method as describe above or a testing/verification
method as described above. It may be implemented in
software as well as hardware. In one particular set of
embodiments, it comprises a circuit design component
adapted for implementing a parameterized specification of a
programmable logic device for a circuit design to be tested,
the design having multiplexers inserted in an existing design
at signal locations where a fault can be generated, where
selection bits of the multiplexers are parameters defining
when a signal (fault) occurs and when not. In some other
particular embodiments, a feedback component, e.g. a feed
back loop, may be present for providing feedback in the
testing, e.g. it may be adapted for reconfiguring the tunable
connections, i.e. select the selection bits, based on the
obtained results. Specific features of the test set generation
system or a test system using Such a test set generation
system may correspond with features having the function
ality of standard and/or optional steps of the method for test
set generation or testing as described above.
0126. By way of example, a particular implementation of
an offline stage as illustrated in FIG. 5, is described in more
detail below, illustrating standard and optional features of
embodiments of the present invention.
0127. The offline stage as shown in FIG. 5 may comprise
the following steps:
0128 Synthesis: In the synthesis step the HDL code is
translated from a human readable form to a gate-level logic
circuit. Since one has already available the synthesized
initial design (golden reference circuit) one can inject
directly faults at this level, after synthesis, where the design
can be expressed in Berkeley Logic Interface (BLIF) format.
This format can describe a logic-level hierarchical circuit in

Mar. 16, 2017

textual form. So the design can be synthesized with any of
the conventional tools that can produce BLIF files and the
design originally can be described in various HDLS, such as
VHDL/Verilog. No changes are needed in the synthesis step.
Normally, during the TCON and TLUT tool flow some
minor changes are necessary, as HDL parameter annotation.
However, since already synthesized BLIF files are used, the
synthesis step can be performed by any tool that is able to
extract the BLIF format. At this point the design is ready for
fault injection.
I0129. Fault Injection: in the embodiments of the present
invention where test set generation is performed, it is
assumed that the injected fault set is either optimized, or it
can be optimized by existing techniques such as fault
dropping and fault collapsing. The single stuck-at fault is
used as it is a widely applied and easy-to-implement method
in order to introduce faulty behaviour in the circuit. These
stuck-at faults, have to be added into the design at every
possible fault location in such a way that after the new
modifications, the new description remains synthesizable.
0.130. The solution is to add multiplexers into each fault
point to introduce a logic one or Zero in order to mimic a
stuck-at fault, as it is shown in FIG. 6. Next, focus is put on
the details of how to insert the MUXes in the synthesized
design. So, in order to insert faults in the netlist, before the
mapping step, our tool reads the netlist and locates all the
possible fault checkpoints; locations where faults need to be
inserted. When a possible fault location is found, the algo
rithm adds a multiplexer as shown in FIG. 6. The selection
signal and the stuck-at fault signal are annotated as param
eters, as they will change depending on the type of fault and
whether or not the fault should be injected. In order to keep
specialization overhead under control and apply test set
generation further optimizations are needed.
I0131 First, by introducing faults directly in the BLIF
format one minimizes the computation runtime of the offline
stage, as the design needs to be synthesized only once and
it is avoided to design resynthesis for every new fault. Then,
the selection signals of the multiplexers are used as a
parameter. Thus, each one of the potential fault sites can be
activated by the tool via rapid reconfiguration. At this point
the design is ready for technology mapping. Next, one can
apply the PConf concept during technology mapping. This
approach focuses mainly on changes in the technology
mapping step and how it addresses the area overhead in the
routing.
I0132 TCON mapping: When injecting faults in the BLIF
file, the tool will annotate as parameters the selection bits of
the multiplexers. There is a focus on observing and control
ling all the different possible faults. Whereas the traditional
FPGA-based fault emulation methods still suffer from spe
cialization overhead, the PConf concept is used, to reduce
the area overhead of fault emulation and to allow fast test
vector generation through reconfiguration. During technol
ogy mapping, the parameterized Boolean network generated
by the synthesis step is not directly mapped onto the
resource primitives available in the target FPGA architec
ture, but intermediately on abstract primitives that represent
parameterized versions of these resource primitives:
(0.133 ATuneable LookUp Table (TLUT) is implemented
by a regular LUT and the dynamic reconfiguration of its
truth table. It is a parameterized abstraction of a LUT
expressed as functions of parameter inputs. Generally, when
we use TLUTs, parts of the design functionality depending

US 2017/0074932 A1

on the parameters are incorporated in truth table bits of the
TLUTs, thus the size of the TLUT circuit is much smaller
than the regular circuit for the same design. In the approach
according to embodiments of the present invention, logic
(multiplexers) is basically added without adding more LUTs
because they are depending on only parameters. So basi
cally, the same size is present as for the original circuit but
now for an extended circuit with injected faults.
0134. A Tuneable Connection (TCON) is an abstraction
of a connection with a connection condition expressed in
terms of parameters. A TCON is implemented by a set of
wires and Switches, and the dynamic reconfiguration of
Some of the Switches in the set. Comparable to a regular
connection, a TCON has a source and a sink, not all
connections are needed at the same time and each TCON has
a connection condition that reflects this fact. The connection
condition is defined as a Boolean function of the parameters
that indicates when the design requires the connection to be
active and thus when the connection condition returns true.
Connections with mutually exclusive connection conditions
are never active at the same time and therefore are also
allowed to share FPGA routing resources.
0135 TCONMap produces a tuneable circuit, which con
tains TLUTs and TCONs. TCONMap is able to exploit both
the reconfigurable properties of the LUTs and the intercon
nect network of the FPGA. TCONMap is used in order to
apply technology mapping after we performed parameter
ized fault injection.
0.136. During the proposed testing flow, the goal is to
apply the selected fault injection model by adding a virtual
multiplexer network. However, the resources in the proto
types of modern ASIC designs are scarce. If the FPGA runs
out of resources the obvious solution in a conventional
testing flow is to use several FPGAs. The TCON tool is used
and more specifically the run time reconfiguration of FPGAs
routing resources. Since building the virtual multiplexer
network is a routing problem, in the design testing cycle the
only aspects of the FPGA that have to be reconfigured are
the routing resources and specifically, only the configuration
cells for all the multiplexers in the routing switch-boxes and
the connection-boxes

0.137 TPaR: Next, the Tunable Place and Route tool
(TPAR) places and routes the TCON netlist of a TCON
implementation and performs packing, placement and rout
ing with the algorithms TPack, TPlace and TRoute. In the
packing step, LUTs and FFs are packed into CLBs and the
placer choses a physical CLB on the FPGA for every
instance of the CLB primitive in the circuit. This step has
significant changes compared to the conventional packing,
placement and routing. Alterations were made to be able to
deal with tuneable circuits. Then, during the TRoute step,
routing resources are assigned to the TCONs. The TPoute
has to deal with tunable circuits with TCONs as well, and the
interconnection pattern is now dependent upon the value of
the parameters. That is why TPaR outputs a Boolean func
tion of the parameters. These algorithms can enable routing
of tuneable circuits and the routing resources can be reused
during the fault emulation and drastically reduce the area
uSage.

0138 Parameterized Bitstreams: Finally, at the end of
this computational intensive offline stage the tool flow
creates a PConf, a virtual intermediate FPGA configuration
in which the bits are Boolean functions of the parameters.
Next, in the second, online, stage the parameterized con

Mar. 16, 2017

figuration is rapidly evaluated in a configuration update (the
actual configuration bits). The configuration update is then
applied using DPR. Finally, the FPGA is running this new
specialized configuration. This methodology results in a low
specialization overhead due to the rapid evaluation of the
new specialized configurations. With the introduction of a
PConf, every FPGA capable of DPR can be used for fault
emulation, without extra design effort.
0.139. By way of example, a particular implementation of
the test set generation procedure as shown in FIG. 7 is
described in more detail below, illustrating standard and
optional features of embodiments of the present invention.
In order to create FPGA based emulation environment
important subtasks have to be designed, besides the fault
injection tool. Such as the input generator and the output
correctness circuitry technique, within an Automatic Test
Pattern Generator (ATPG).
0140 Automatic Test Pattern Generation: An Automatic
Test Pattern Generation (ATPG) technique finds a test
sequence that enables automatic test equipment to distin
guish between correct and faulty circuit behaviour. The
effectiveness of ATPG is measured by the coverage. In order
to check if the test set is capable of detecting a fault, the
outputs of the CUT and of the initial fault free version
defined as golden reference circuit, are compared under the
same input stimulus. If the outputs differ, the fault is detected
and the test vector that detected it, is stored in the final test
set. The process repeats for each single stuck-at fault.
Thereby, when a specific level of fault coverage is achieved,
the ATPG terminates resulting to the test set. This test
sequence can be applied to check for errors in the design.
0.141 Parameterized Test Pattern Generation: Based on
ATPGs, we propose a Parameterized Test Pattern Generation
(PTPG) flow, that produces the input patterns needed to
identify all faults with the use of test set generation and finds
a test set efficiently. This PTPG forms the online tool flow
described in FIG. 7. The emulation environment that we
have built for that purpose was designed in order to imple
ment circuits to be tested on FPGAs.
1). Test set generation cycle: Fast test set generation cycle
designs efficiency is essential, therefore random tests have
been selected, as it is easier to design them. Also, it is faster
to generate random test inputs and select a viable test by
emulation, then to effectively search for a test that detects the
fault. So, a Linear Feedback Shift Register (LFSR) has been
selected to generate pseudo-random inputs, as it is imprac
tical to test all possible inputs. LFSR creates repeatedly new
vectors to be tested in the fault emulation circuitry and is
applied simultaneously with the deterministic testing algo
rithm in order to detect a fault. The initial circuit and the
CUT have to be compared for every different input set. If a
fault is detected it keeps logs so that the appropriate test can
be generated. AXOR gate is used to check if the output of
the CUT is the same as with the golden reference circuit,
because it is easy to implement in hardware. The possible
outputs of the golden reference circuit and the CUT are
XORed and if the output is equal to 1 the outputs of the
correct and faulty circuit are different. Hence, a fault is
detected and the vector generated by the LFSR is stored. The
stored fault vectors form the test set.
2). Algorithm: Taking into consideration that the parameters
have to be infrequently changing inputs during the emula
tion and that we want to use parameters for different faults,
we want to change faults only after all tests related to that

US 2017/0074932 A1

fault are done. Therefore, the fault emulator will activate one
fault each time, which is consistent with the single stuck-at
fault concept. Afterwards, a generic VHDL module starts
creating inputs for the golden reference circuit and the CUT.
If the outputs differ given the same input, an output correct
ness analysis circuitry detects the difference and therefore
the input vector is stored for further use.
0142. Then, the FPGA is reconfigured with a different
PConf in order to activate a different fault location. When
the fault coverage is achieved, the test vectors that are stored
form the test set. Optimizations of the test set can still be
done and can also use our emulation technique, but that is
out of the scope of this paper. Thus, after ASIC fabrication,
the actual device under test (DUT) will be tested with these
tests found on the golden circuit with injected faults. This is
described in FIG. 7.
0143. In an example provided herein below, a method
comprising parameterized fault injection in accordance with
embodiments of the present invention is evaluated with the
use of different mappers after the creation of the circuit
under test. These results show that this approach, illustrated
schematically above, only has a Small impact on the area use
in the device. Thus, such approach may scale very well. Such
that it may be efficiently applied to larger designs.
0144. In this example the TCON tool flow was used for
allowing the dynamic reconfiguration of the FPGAs routing
resources. Since modified instrumentation-based fault injec
tion methodology is used in accordance with embodiments
of the present invention, a low specialization overhead has
to be maintained. The specialization overhead consists of the
area overhead and the runtime overhead. The area overhead
consists of the FPGA resources needed for the valuation and
reconfiguration processes and the runtime overhead is the
time needed for a test set to be generated through PConf. The
TCON tool flow, which uses TLUTs and TCONs absorbs
most of the area overhead in the routing infrastructure.
0145 For the area overhead, the proposed approach is
compared with the conventional approach. In the prior art
approaches such as ABC, one can only include the fault
injection with a large area overhead, while using embodi
ments of the present invention, one can do the same with
almost no area for TCONMap and TLUTMap. The conven
tional fault modelling adds multiplexers everywhere a fault
is introduced. So the traditional techniques do not scale and
therefore cannot be applied to larger designs. With a meth
odology according to embodiments of the present invention,
after the parameterisation of the MUX-select signal and the
SAO/SA1 fault one has minimal area overhead. Therefore,
the proposed technique does scale very well, making it
feasible to be applied in larger designs.

TABLE I

Golden TMAP TCON ABC

S349 44 50 41 237
S510 105 133 106 346
S1196 217 3O2 253 861
S1238 241 337 289 869
S1423 160 220 210 1049
S1488 269 400 334 1027
S1494 272 4.08 343 1010

0146 The results are shown in FIG. 8. Indeed, the results
regarding the area needed, prove that with the use of the
methodology according to embodiments of the present

Mar. 16, 2017

invention, there is a minimal impact regarding the area. FIG.
8 thus shows an area comparison with the conventional
mapper and the golden reference circuit. The initial area
(golden) that is needed for the benchmark is compared with
different mappers for the fault injected circuit, TCONMap
and ABC with 4-input LUTs.
0.147. In a further example, stuck-at fault signal is set as
a non-parameter. Even though this caused a slight increase
in the area overhead, the TCONMapper created a significant
amount of TCONs and TLCs. Because a reconfigurable
virtual multiplexer network in the FPGA's routing infra
structure was aimed at, the extra area is addressed in the
routing resources with TCONs. Since TCONs are designed
to take advantage of the multiplexers, single stuck-at fault
was treated as a non-parameter. Adapting the fault injection
accordingly may thus transform the problem in a better case
for TCONMap. Even though the area usage may increase
compared to the previous example hereinabove, as less
parameters are used, it was observed that in the present
example the TCON tool flow still behaved better than
conventional mappers. Additionally, it behaved better than
the TLUT mapper, a technology mapping solution that
contains TLUTs. The results are shown in the table I listing
area results expressed in LUTs.
0.148. An additional advantage is that the specialized
configurations fault injection methodology has a reduced
logic depth in comparison with its corresponding conven
tional implementations. Logic Depth is defined as the maxi
mum number of LUTs a signal needs to travel through to get
from the input to the output. In a next example, the stuck-at
fault signal is indicated again as a parameter. Aiming at an
even minimized area overhead, the TCON tool flow was
used with 6 input LUTs. The results shown in table II herein
below indicate that such minimal area overhead can be
achieved. This table lists an area comparison between the
initial circuit and the fault injected version mapped respec
tively with 6-input LUTs, TCONMAP and ABC. The results
shown indicate that indeed the area overhead and the depth
can be kept minimal.

TABLE II

Golden TCON ABC

S27 4 4 27
S208 18 19 170
S349 24 25 237
S510 39 45 346
S1196 124 126 861
S1238 137 144 869
S1423 129 130 1049
S1488 148 153 1027
S1494 149 153 1010

014.9 The runtime overhead depends on the number of
times the emulator needs to be reconfigured and by the
reconfiguration overhead, the time to evaluate the PConfand
reconfigure the bits that changed.
0150. The frequency of reconfiguration depends on the
PTPG. It needs to be reconfigured when a new fault needs
to be activated. Therefore, the time overhead can be
expressed as the single specialization time (for specializing
the FPGA once) multiplied by the number of times a new
fault will be activated. The single specialization time
depends on the evaluation time and the time required for
reconfiguration.

US 2017/0074932 A1

0151. They are both influenced by the number of TLUTs
and TCONs. The TCONMap algorithm reduces the contri
bution of logic block delays to the critical path delay by
reducing the number of lookup tables (TLUTs) and the
routing infrastructure on the critical path. From table III, one
can observe that the logical depth of the design remains
constant after the fault injection and the use of TCONMap.
In fact, the logic depth decreases with a factor of 5 to 8,
compared to the conventional methodology.
0152 The online specialization stage of the TCON tool
flow also requires extra processing power to evaluate the
Boolean functions in the parameterized configuration pro
duced by the offline generic stage of the TCON tool flow. An
embedded processor can be used to evaluate the Boolean
functions within one clock tick of the design clock. Also, one
parameterized reconfiguration is highly dependent on the
complexity of the Boolean function, and needs maximum 50
us. Thus, each parameterized configuration can be 3 orders
of magnitude faster than a full reconfiguration, which is
typically 176 milliseconds for a Xilinx Virtex-5 FPGA.

TABLE III

Golden TCON ABC

S27 1 1 8
S2O8 3 3 12
S349 3 3 2O
S510 3 3 14
S1196 5 5 25
S1238 5 5 25
S1423 10 10 61
S1488 3 3 18
S1494 3 3 18

0153. For further analyzing the system, it has been inte
grated within VTR 6.0, being a framework for conducting
FPGA architecture and CAD research and development. The
software flow is initiated with a Verilog hardware descrip
tion of digital circuits and a file describing the target
hypothetical architecture. A description of the heterogeneous
blocks on e.g. the FPGA is provided. The software flow then
elaborates, synthesizes, packs, places and routes the circuit
and it performs timing analysis on the result. The flow is, by
way of illustration, shown in FIG. 9 illustrating the different
steps, including the use of Verilog hardware description of
the digital circuit and the description of heterogeneous
blocks on the FPGA as input for a front-end synthesis
(Odin). This leads to a blif netlist of logic & blackboxes for
heterogeneous blocks. An infrequent signal parameteriza
tion tool results in the creation of a debugging infrastructure
and integration of debugging infrastructure in the design.
Logic optimization and technology mapping to the TLUTs
results in blif netlist of logic & blackboxes for heteroge
neous blocks as well as par net list of the parameterized
signals which proceed to a VPR performing packing, place
ment and routing. An FPGA architecture description file and
.net netlist of logic & heterogeneous blocks may be used as
input, the VPR providing the parameterized FPGA configu
ration which can be sent to a specialization stage. The VPR
also provides place & route output files and statistics.
0154 The system further has been tested in a hybrid
framework that Supports both parameterized configuration
and debugging infrastructure within the normal VTR flow.
0155 Experimental results in a parameterized test pattern
generator demonstrates the practicality of the proposed

Mar. 16, 2017

technique, illustrating that compared to conventional tools,
a speedup of three order of magnitude, an 8 times reduction
in area and no increase in critical path delay.
0156. It was shown that the debugging infrastructure can
be integrated in a design with minimal impact. In order to
show this, larger benchmarks were applied. The experiments
were conducted with the largest ISCAS89 benchmarks and
with the VTR benchmarks. They indicate that only the area
for the largest circuit instance implementation is needed,
instead of the sum of areas of the initial and the added
implementation. This enables to include the infrastructure
without much area overhead. Moreover, the implementation
with the PConf in many cases is even smaller than the
original design, despite the extra circuitry. Hence, the free
space can be used for the debugging infrastructure, and more
specifically for the insertion of trace buffers, to handle the
limited internal signal observability. The area results of the
method were compared with two conventional tools that are
often used in FPGA mapping. The first is SimpleMAP and
the second is ABC that is additionally a part of the VTR flow.
The area produced with the proposed method is approxi
mately 3.5x Smaller than with the conventional mappers,
and it can be up to 23% smaller than the Golden circuit.

TABLE IV

Proposed
Benchmark #Gate Golden SM ABC (TLUTs/TCONs)

Stereow. 215 208 553 590 190 (8/332)
diffeq2 419 422 1719 1819 325 (2/712)
diffeq1 582 575 2556 2659 491 (4/1065)
clima 8381 4461 23694. 23219 7707 (1252/7935)
or 1200 3136 3084 9769 10958 3004 (9/2986)
frisc 6002 2747 11517 11412 5881 (2333/4910)
S38417 6096 3462 20695 21040 6204 (1495/5597)
S38584 6281 2906. 20687 21032 6204 (1495/5597)

O157 Area results in LUTs: The first column contains the
number of gates and the next column the initial design in
terms of LUTs. The other columns contain the area results
after the insertion of the debugging infrastructure. SM
(SimpleMAP) and ABC are the conventional mappers. The
last column describes the results of the proposed technique.

TABLE V

Benchmark Golden SimpleMap ABC Proposed

Stereow. 4 5 5 4
diffeq2 14 15 15 14
diffeq1 15 15 15 14
clima 11 11 11 11
or12OO 27 28 28 27
frisc 14 14 14 14
S38417 7 8 8 7
S38584 7 8 8 7

0158. The logic depth (inversely related to clock speed)
of the design, after adding the extra debugging infrastruc
ture, was either remained the same or reduced, compared to
the two conventional mappers. The critical path delay can be
up to 8 times Smaller compared to conventional mappers and
can remain the same with the golden circuit, after the
addition of the extra hardware.

1. A method for debugging a circuit design on a program
mable logic device, the method comprising:

US 2017/0074932 A1

inserting multiplexers in an existing design at signal
locations whose value should be observable in the
debugging phase, where the selection bits of the mul
tiplexers are parameters defining when a signal is
observable and when not,

compiling an enhanced integrated circuit design specifi
cation to a parameterized configuration specification
for a programmable logic device, with the multiplexer
Selection bits as parameters,

programming the programmable logic device in accor
dance with said parameterized configuration specifica
tion, said programming comprising adding a plurality
of tunable connections to the parameterized configura
tion specification for routing a plurality of internal
signals to at least one trace buffer, each tunable con
nection being adapted for routing exactly one internal
signal of said plurality of internal signals to exactly one
trace buffer of said at least one trace buffer when the
tunable connection is set to an active state by a corre
sponding parameter, and

debugging the programmable logic device while execut
ing said parameterized configuration specification,
wherein said debugging comprises reconfiguring the
programmable logic device for selecting a Subset of the
plurality of internal signals to route to the at least one
trace buffer, wherein this reconfiguring comprises
applying a parameterized run-time reconfiguration of at
least one routing configuration cell of the program
mable logic device in accordance with said parameter
ized configuration specification.

2. A method according to claim 1, wherein selecting a
Subset of the plurality of internal signals comprises selecting
a Subset of multiplexer selection bits for selecting signals to
be observable during the debugging.

3. A method according to claim 1, wherein the method
comprises co-optimizing the debugging functionality and
the circuit design, during a design cycle.

4. A method for debugging a circuit design on a program
mable logic device, the method comprising:

inserting multiplexers in an existing design specification
at signal locations whose value should be selectively
observable during debugging, where selection bits of
the multiplexers are parameters defining when a signal
is observable and when not, thus forming an enhanced
integrated circuit design specification,

compiling the enhanced integrated circuit design specifi
cation to a parameterized configuration specification
for a programmable logic device, with the multiplexer
Selection bits as parameters,

programming the programmable logic device in accor
dance with said parameterized configuration specifica
tion, and

debugging the programmable logic device while execut
ing said parameterized configuration specification,
wherein said debugging comprises applying a param
eterized run-time configuration of the programmable
logic device in accordance with said parameterized
configuration specification taking into account the
selection bits of the multiplexers in accordance with
signals to be observed during the debugging.

5. The method according to claim 4, wherein said pro
gramming the programmable logic device comprises an
automatic generation of a parameterized configuration of the
programmable logic device.

14
Mar. 16, 2017

6. The method according to claim 5, wherein said auto
matic generation comprises the steps of synthesis, technol
ogy mapping, placement and routing.

7. The method according to claim 4, wherein the method
comprises co-optimizing the debugging functionality and
the circuit design, during a design cycle.

8. The method according to claim 4, wherein said com
piling of the integrated circuit design specification to the
parameterized configuration specification comprises insert
ing multiplexers for routing internal signals to trace buffers.

9. A method for generating a test set of a circuit design on
a programmable logic device, the method comprising insert
ing multiplexers in an existing design at signal locations
where a fault can be generated, where selection bits of the
multiplexers are parameters defining when a signal (fault)
occurs and when not, thus forming an enhanced integrated
circuit design specification.

10. A method according to claim 9, wherein the method
comprises co-optimizing the debugging functionality and
the circuit design, during a design cycle.

11. The method according to claim 9, the method further
comprising:

compiling an enhanced integrated circuit design specifi
cation to a parameterized configuration specification
for a programmable logic device, with the multiplexer
Selection bits as parameters,

programming the programmable logic device in accor
dance with said parameterized configuration specifica
tion, and

testing the programmable logic device while executing
said parameterized configuration specification, wherein
said testing comprises applying a parameterized run
time configuration of the programmable logic device in
accordance with said parameterized configuration
specification taking into account the selection bits of
the multiplexers in accordance with faults to occur for
said testing.

12. The method according to claim 11, wherein said
compiling the integrated circuit design specification to the
parameterized configuration specification comprises inject
ing at least one parameterized fault in the parameterized
configuration specification and/or furthermore comprising
testing the programmable logic device while executing said
parameterized configuration specification,

wherein said testing comprises reconfiguring the pro
grammable logic device for selecting a Subset of the at
least one parameterized fault and/or wherein testing
comprises applying a Parameterized Test Pattern Gen
eration procedure or comprises applying the Param
eterized Test Pattern Generation procedure comprising
Selecting random tests.

13. The method according to claim 11, wherein the
method comprises co-optimizing the debugging functional
ity and the circuit design, during a design cycle.

14. A debugging system for debugging a circuit design on
a programmable logic device, the debugging system com
prising:

a circuit design component adapted for implementing a
parameterized specification of a programmable logic
device for a circuit design to be debugged, the param
eterized specification comprising a plurality of tunable
connections for routing a plurality of internal signals to
at least one trace buffer, each tunable connection being
adapted for routing exactly one internal signal of said

US 2017/0074932 A1

plurality of internal signals to exactly one trace buffer
of said at least one trace buffer when the tunable
connection is set to an active state by a corresponding
parameter, and

a debugging component configured for debugging the
programmable logic device while executing said
parameterized configuration specification, wherein said
debugging component is adapted for reconfiguring the
programmable logic device for selecting a Subset of the
plurality of internal signals to route to the at least one
trace buffer, wherein this reconfiguring comprises
applying a parameterized run-time reconfiguration of at
least one routing configuration cell of the program
mable logic device in accordance with said parameter
ized configuration specification.

15. A debugging system according to claim 14, the
debugging system being configured for performing the
method comprising:

inserting multiplexers in an existing design at signal
locations whose value should be observable in the
debugging phase, where the selection bits of the mul
tiplexers are parameters defining when a signal is
observable and when not,

compiling an enhanced integrated circuit design specifi
cation to a parameterized configuration specification
for a programmable logic device, with the multiplexer
Selection bits as parameters,

programming the programmable logic device in accor
dance with said parameterized configuration specifica
tion, said programming comprising adding a plurality
of tunable connections to the parameterized configura
tion specification for routing a plurality of internal
signals to at least one trace buffer, each tunable con
nection being adapted for routing exactly one internal
signal of said plurality of internal signals to exactly one
trace buffer of said at least one trace buffer when the
tunable connection is set to an active state by a corre
sponding parameter, and

debugging the programmable logic device while execut
ing said parameterized configuration specification,
wherein said debugging comprises reconfiguring the
programmable logic device for selecting a Subset of the
plurality of internal signals to route to the at least one
trace buffer, wherein this reconfiguring comprises
applying a parameterized run-time reconfiguration of at
least one routing configuration cell of the program
mable logic device in accordance with said parameter
ized configuration specification.

16. A debugging system according to claim 14, wherein
the circuit design component is adapted for inserting mul
tiplexers in an existing initial design specification at signal
locations whose value should be selectively observable
during debugging, where selection bits of the multiplexers
are parameters defining when a signal is observable and
when not, thus obtaining an enhanced integrated circuit

15
Mar. 16, 2017

design specification for said implementing a parameterized
specification of the programmable logic device.

17. A debugging system according to claim 14, wherein
the debugging component furthermore comprises an output
means for outputting internal signals representative of the
circuit design or its operation and/or wherein the debugging
system furthermore comprises a feedback component for
reconfiguring the tunable connection based on the obtained
internal signals.

18. A test set generation system for generating a test set
of a circuit design on a programmable logic device, the test
set generation system comprising a circuit design compo
nent adapted for inserting multiplexers in an existing design
at signal locations where a fault can be generated, where
selection bits of the multiplexers are parameters defining
when a signal (fault) occurs and when not.

19. A test set generation system according to claim 18, the
design component being adapted for co-optimizing the
debugging functionality and the circuit during the design
cycle.

20. A test set generation system according to claim 18, the
test set generation system being configured for performing a
method comprising:

inserting multiplexers in an existing design at signal
locations whose value should be observable in the
debugging phase, where the selection bits of the mul
tiplexers are parameters defining when a signal is
observable and when not,

compiling an enhanced integrated circuit design specifi
cation to a parameterized configuration specification
for a programmable logic device, with the multiplexer
Selection bits as parameters,

programming the programmable logic device in accor
dance with said parameterized configuration specifica
tion, said programming comprising adding a plurality
of tunable connections to the parameterized configura
tion specification for routing a plurality of internal
signals to at least one trace buffer, each tunable con
nection being adapted for routing exactly one internal
signal of said plurality of internal signals to exactly one
trace buffer of said at least one trace buffer when the
tunable connection is set to an active state by a corre
sponding parameter, and

debugging the programmable logic device while execut
ing said parameterized configuration specification,
wherein said debugging comprises reconfiguring the
programmable logic device for selecting a Subset of the
plurality of internal signals to route to the at least one
trace buffer, wherein this reconfiguring comprises
applying a parameterized run-time reconfiguration of at
least one routing configuration cell of the program
mable logic device in accordance with said parameter
ized configuration specification.

k k k k k

