1,723 research outputs found

    Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    Get PDF
    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing systems. The methodology applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation. Recent work on modelling applications from the healthcare domain is reported. One objective of this work is to explore and elaborate the proposed methodology. At the University of Twente we are developing m-health systems based on Body Area Networks (BANs). One specialization of the generic BAN is the health BAN, which incorporates a set of devices and associated software components to provide some set of health-related services. A patient will have a personalized instance of the health BAN customized to their current set of needs. A health professional interacts with their\ud patientsÂż BANs via a BAN Professional System. The set of deployed BANs are supported by a server. We refer to this distributed system as the BAN System. The BAN system extends the enterprise computing system of the healthcare provider. Development of such systems requires a sound software engineering approach and this is what we explore with the new methodology. The methodology is illustrated with reference to recent modelling activities targeted at real implementations. In the context of the Awareness project BAN implementations will be trialled in a number of clinical settings including epilepsy management and management of chronic pain

    Interpreting streaming biosignals:in search of best approaches to augmenting mobile health monitoring with machine learning for adaptive clinical decision support

    Get PDF
    We investigate Body Area Networks for ambulant patient monitoring. As well as sensing physiological parameters, BAN applications may provide feedback to patients. Automating formulation of feedback requires realtime analysis and interpretation of streaming biosignals and other context and knowledge sources. We illustrate with two prototype applications: the first is designed to detect epileptic seizures and support appropriate intervention. The second is a decision support application aiding weight management; the goal is to promote health and prevent chronic illnesses associated with overweight/obesity. We begin to explore extending these and other m-health applications with generic AI-based decision support and machine learning. Monitoring success of different behavioural change strategies could provide a basis for machine learning, enabling adaptive clinical decision support by personalising and adapting strategies to individuals and their changing needs. Data mining applied to BAN data aggregated from large numbers of patients opens up possibilities for discovery of new clinical knowledge

    An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works

    Get PDF
    Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DLbased CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper

    SCANN: Synthesis of Compact and Accurate Neural Networks

    Full text link
    Deep neural networks (DNNs) have become the driving force behind recent artificial intelligence (AI) research. An important problem with implementing a neural network is the design of its architecture. Typically, such an architecture is obtained manually by exploring its hyperparameter space and kept fixed during training. This approach is time-consuming and inefficient. Another issue is that modern neural networks often contain millions of parameters, whereas many applications and devices require small inference models. However, efforts to migrate DNNs to such devices typically entail a significant loss of classification accuracy. To address these challenges, we propose a two-step neural network synthesis methodology, called DR+SCANN, that combines two complementary approaches to design compact and accurate DNNs. At the core of our framework is the SCANN methodology that uses three basic architecture-changing operations, namely connection growth, neuron growth, and connection pruning, to synthesize feed-forward architectures with arbitrary structure. SCANN encapsulates three synthesis methodologies that apply a repeated grow-and-prune paradigm to three architectural starting points. DR+SCANN combines the SCANN methodology with dataset dimensionality reduction to alleviate the curse of dimensionality. We demonstrate the efficacy of SCANN and DR+SCANN on various image and non-image datasets. We evaluate SCANN on MNIST and ImageNet benchmarks. In addition, we also evaluate the efficacy of using dimensionality reduction alongside SCANN (DR+SCANN) on nine small to medium-size datasets. We also show that our synthesis methodology yields neural networks that are much better at navigating the accuracy vs. energy efficiency space. This would enable neural network-based inference even on Internet-of-Things sensors.Comment: 13 pages, 8 figure

    An EEG Signal Recognition Algorithm During Epileptic Seizure Based on Distributed Edge Computing

    Get PDF
    Epilepsy is one kind of brain diseases, and its sudden unpredictability is the main cause of disability and even death. Thus, it is of great significance to identify electroencephalogram (EEG) during the seizure quickly and accurately. With the rise of cloud computing and edge computing, the interface between local detection and cloud recognition is established, which promotes the development of portable EEG detection and diagnosis. Thus, we construct a framework for identifying EEG signals in epileptic seizure based on cloud-edge computing. The EEG signals are obtained in real time locally, and the horizontal viewable model is established at the edge to enhance the internal correlation of the signals. The Takagi-Sugeno-Kang (TSK) fuzzy system is established to analyze the epileptic signals. In the cloud, the fusion of clinical features and signal features is established to establish a deep learning framework. Through local signal acquisition, edge signal processing and cloud signal recognition, the diagnosis of epilepsy is realized, which can provide a new idea for the real-time diagnosis and feedback of EEG during epileptic seizure

    An application of augmented MDA for the extended healthcare enterprise

    Get PDF
    Mobile health systems extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a methodology for the development of such extended enterprise computing systems which applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation. At the University of Twente we develop context aware m-health systems based on Body Area Networks (BANs). A set of deployed BANs are supported by a server. We refer to this distributed system as a BAN System. Development of such distributed m-health systems requires a sound software engineering approach and this is what we target with the proposed methodology. The methodology is illustrated with reference to modelling activities targeted at real implementations. BAN implementations are being trialled in a number of clinical settings including epilepsy management and management of chronic pain

    Remote and long-term self-monitoring of electroencephalographic and noninvasive measurable variables at home in patients with epilepsy (EEG@HOME) : protocol for an observational study

    Get PDF
    ©Andrea Biondi, Petroula Laiou, Elisa Bruno, Pedro F Viana, Martijn Schreuder, William Hart, Ewan Nurse, Deb K Pal, Mark P Richardson. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 19.03.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included.Background: Epileptic seizures are spontaneous events that severely affect the lives of patients due to their recurrence and unpredictability. The integration of new wearable and mobile technologies to collect electroencephalographic (EEG) and extracerebral signals in a portable system might be the solution to prospectively identify times of seizure occurrence or propensity. The performances of several seizure detection devices have been assessed by validated studies, and patient perspectives on wearables have been explored to better match their needs. Despite this, there is a major gap in the literature on long-term, real-life acceptability and performance of mobile technology essential to managing chronic disorders such as epilepsy. Objective: EEG@HOME is an observational, nonrandomized, noninterventional study that aims to develop a new feasible procedure that allows people with epilepsy to independently, continuously, and safely acquire noninvasive variables at home. The data collected will be analyzed to develop a general model to predict periods of increased seizure risk. Methods: A total of 12 adults with a diagnosis of pharmaco-resistant epilepsy and at least 20 seizures per year will be recruited at King's College Hospital, London. Participants will be asked to self-apply an easy and portable EEG recording system (ANT Neuro) to record scalp EEG at home twice daily. From each serial EEG recording, brain network ictogenicity (BNI), a new biomarker of the propensity of the brain to develop seizures, will be extracted. A noninvasive wrist-worn device (Fitbit Charge 3; Fitbit Inc) will be used to collect non-EEG biosignals (heart rate, sleep quality index, and steps), and a smartphone app (Seer app; Seer Medical) will be used to collect data related to seizure occurrence, medication taken, sleep quality, stress, and mood. All data will be collected continuously for 6 months. Standardized questionnaires (the Post-Study System Usability Questionnaire and System Usability Scale) will be completed to assess the acceptability and feasibility of the procedure. BNI, continuous wrist-worn sensor biosignals, and electronic survey data will be correlated with seizure occurrence as reported in the diary to investigate their potential values as biomarkers of seizure risk. Results: The EEG@HOME project received funding from Epilepsy Research UK in 2018 and was approved by the Bromley Research Ethics Committee in March 2020. The first participants were enrolled in October 2020, and we expect to publish the first results by the end of 2022. Conclusions: With the EEG@HOME study, we aim to take advantage of new advances in remote monitoring technology, including self-applied EEG, to investigate the feasibility of long-term disease self-monitoring. Further, we hope our study will bring new insights into noninvasively collected personalized risk factors of seizure occurrence and seizure propensity that may help to mitigate one of the most difficult aspects of refractory epilepsy: the unpredictability of seizure occurrenceThis study is funded by Epilepsy Research UK (award 1803). MPR, PFV, and EN are supported by the Epilepsy Foundation of America’s Epilepsy Innovation Institute My Seizure Gauge grant.info:eu-repo/semantics/publishedVersio
    • …
    corecore