67 research outputs found

    Corneal endothelium assessment in specular microscopy images with Fuchs’ dystrophy via deep regression of signed distance maps

    Get PDF
    Specular microscopy assessment of the human corneal endothelium (CE) in Fuchs’ dystrophy is challenging due to the presence of dark image regions called guttae. This paper proposes a UNet-based segmentation approach that requires minimal post-processing and achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs’ dystrophy. We cast the segmentation problem as a regression task of the cell and gutta signed distance maps instead of a pixel-level classification task as typically done with UNets. Compared to the conventional UNet classification approach, the distance-map regression approach converges faster in clinically relevant parameters. It also produces morphometric parameters that agree with the manually-segmented ground-truth data, namely the average cell density difference of -41.9 cells/mm2 (95% confidence interval (CI) [-306.2, 222.5]) and the average difference of mean cell area of 14.8 µm 2 (95% CI [-41.9, 71.5]). These results suggest a promising alternative for CE assessment.This work has been partly funded by Ministerio de Ciencia, Tecnología e Innovación, Colombia, Project 124489786239 (Contract 763-2021), Universidad Tecnológica de Bolívar (UTB) Project CI2021P02, and Agencia Estatal de Investigación del Gobierno de España (PID2020-114582RB-I00/ AEI / 10.13039/501100011033). J. Sierra thanks UTB for a post-graduate scholarship.Peer ReviewedPostprint (published version

    Deep learning for corneal and retinal image analysis:AI for your eye

    Get PDF

    Deep learning for corneal and retinal image analysis:AI for your eye

    Get PDF

    Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology

    Full text link
    [EN] Background and objective: Magnetic resonance imaging is the most reliable imaging technique to assess the heart. More specifically there is great importance in the analysis of the left ventricle, as the main pathologies directly affect this region. In order to characterize the left ventricle, it is necessary to extract its volume. In this work we present a neural network architecture that is capable of directly estimating the left ventricle volume in short axis cine Magnetic Resonance Imaging in the end-diastolic frame and provide a segmentation of the region which is the basis of the volume calculation, thus offering explain-ability to the estimated value. Methods: The network was designed to directly target the volumes to estimate, not requiring any labeled segmentation on the images. The network was based on a 3D U-net with extra layers defined in a scan-ning module that learned features like the circularity of the objects and the volumes to estimate in a weakly-supervised manner. The only targets defined were the left ventricle volumes and the circularity of the object detected through the estimation of the pi value derived from its shape. We had access to 397 cases corresponding to 397 different subjects. We randomly selected 98 cases to use as test set. Results: The results show a good match between the real and estimated volumes in the test set, with a mean relative error of 8% and a mean absolute error of 9.12 ml with a Pearson correlation coefficient of 0.95. The derived segmentations obtained by the network achieved Dice coefficients with a mean value of 0.79. Conclusions: The proposed method is capable of obtaining the left ventricle volume biomarker in the end-diastole and offer an explanation of how it obtains the result in the form of a segmentation mask without the need of segmentation labels to train the algorithm, making it a potentially more trustworthy method for clinicians and a way to train neural networks more easily when segmentation labels are not readily available.The authors acknowledge financial support from the Consel-leria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (grants AEST/2019/037 and AEST/2020/029) , from the Agencia Valenciana de la Innovacion, Generalitat Valenciana (ref. INNCAD00/19/085) , and from the Centro para el Desarrollo Tecnologico Industrial (Programa Eurostars2, actuacion Interempresas Internacional) , Spanish Ministerio de Ciencia, Innovacion y Universidades (ref. CIIP-20192020) .PĂ©rez-PelegrĂ­, M.; Monmeneu, JV.; LĂłpez-Lereu, MP.; PĂ©rez-PelegrĂ­, L.; Maceira, AM.; Bodi, V.; Moratal, D. (2021). Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology. Computer Methods and Programs in Biomedicine. 208:1-8. https://doi.org/10.1016/j.cmpb.2021.106275S1820

    Artificial Intelligence Algorithms for Eye Banking

    Get PDF
    Eye banking plays a critical role in modern medicine by providing cornea tissues for transplantation to restore vision for millions of people worldwide. The evaluation of corneal endothelium is done by measuring the corneal endothelial cell density (ECD). Unfortunately, the current system to measure ECD is manual, time-consuming, and error prone. Furthermore, the impact of social behaviors and biological conditions on corneal endothelium and corneal transplant success is largely unexplored. To overcome these challenges, this dissertation aims to develop tools for corneal endothelial image and data analysis that enhance the efficiency and quality of the cornea transplants. In the first study, an image processing algorithm is developed to analyze corneal endothelial images captured by a Konan CellChek specular microscope. The algorithm successfully identifies the region of interest, filters the image, and employs stochastic watershed segmentation to determine cell boundaries and evaluate endothelial cell density (ECD). The proposed algorithm achieves a high correlation with manual counts (R2 = 0.98) and has an average analysis time of 2.5 seconds. In the second study, a deep learning-based cell segmentation algorithm called Mobile-CellNet is proposed to estimate ECD. This technique addresses the limitations of classical algorithms and creates a more robust and highly efficient algorithm. The approach achieves a mean absolute error of 4.06% for ECD on the test set, similar to U-Net but with significantly fewer floating-point operations and parameters. The third study explores the correlation between alcohol abuse and corneal endothelial morphology in a donor pool of 5,624 individuals. Multivariable regression analysis shows that alcohol abuse is associated with a reduction in endothelial cell density, an increase in the coefficient of variation, and a decrease in percent hexagonality. These studies highlight the potential of big data and artificial algorithms in accurately and efficiently analyzing corneal images and donor medical data to improve the efficiency of eye banking and patient outcomes. By automating the analysis of corneal images and exploring the impact of social behaviors and biological conditions on corneal endothelial morphology, we can enhance the quality and availability of cornea transplants and ultimately improve the lives of millions of people worldwide

    Elongated Physiological Structure Segmentation via Spatial and Scale Uncertainty-aware Network

    Full text link
    Robust and accurate segmentation for elongated physiological structures is challenging, especially in the ambiguous region, such as the corneal endothelium microscope image with uneven illumination or the fundus image with disease interference. In this paper, we present a spatial and scale uncertainty-aware network (SSU-Net) that fully uses both spatial and scale uncertainty to highlight ambiguous regions and integrate hierarchical structure contexts. First, we estimate epistemic and aleatoric spatial uncertainty maps using Monte Carlo dropout to approximate Bayesian networks. Based on these spatial uncertainty maps, we propose the gated soft uncertainty-aware (GSUA) module to guide the model to focus on ambiguous regions. Second, we extract the uncertainty under different scales and propose the multi-scale uncertainty-aware (MSUA) fusion module to integrate structure contexts from hierarchical predictions, strengthening the final prediction. Finally, we visualize the uncertainty map of final prediction, providing interpretability for segmentation results. Experiment results show that the SSU-Net performs best on cornea endothelial cell and retinal vessel segmentation tasks. Moreover, compared with counterpart uncertainty-based methods, SSU-Net is more accurate and robust

    Evaluation of a computer-aided diagnostic model for corneal diseases by analyzing in vivo confocal microscopy images

    Get PDF
    ObjectiveIn order to automatically and rapidly recognize the layers of corneal images using in vivo confocal microscopy (IVCM) and classify them into normal and abnormal images, a computer-aided diagnostic model was developed and tested based on deep learning to reduce physicians’ workload.MethodsA total of 19,612 corneal images were retrospectively collected from 423 patients who underwent IVCM between January 2021 and August 2022 from Renmin Hospital of Wuhan University (Wuhan, China) and Zhongnan Hospital of Wuhan University (Wuhan, China). Images were then reviewed and categorized by three corneal specialists before training and testing the models, including the layer recognition model (epithelium, bowman’s membrane, stroma, and endothelium) and diagnostic model, to identify the layers of corneal images and distinguish normal images from abnormal images. Totally, 580 database-independent IVCM images were used in a human-machine competition to assess the speed and accuracy of image recognition by 4 ophthalmologists and artificial intelligence (AI). To evaluate the efficacy of the model, 8 trainees were employed to recognize these 580 images both with and without model assistance, and the results of the two evaluations were analyzed to explore the effects of model assistance.ResultsThe accuracy of the model reached 0.914, 0.957, 0.967, and 0.950 for the recognition of 4 layers of epithelium, bowman’s membrane, stroma, and endothelium in the internal test dataset, respectively, and it was 0.961, 0.932, 0.945, and 0.959 for the recognition of normal/abnormal images at each layer, respectively. In the external test dataset, the accuracy of the recognition of corneal layers was 0.960, 0.965, 0.966, and 0.964, respectively, and the accuracy of normal/abnormal image recognition was 0.983, 0.972, 0.940, and 0.982, respectively. In the human-machine competition, the model achieved an accuracy of 0.929, which was similar to that of specialists and higher than that of senior physicians, and the recognition speed was 237 times faster than that of specialists. With model assistance, the accuracy of trainees increased from 0.712 to 0.886.ConclusionA computer-aided diagnostic model was developed for IVCM images based on deep learning, which rapidly recognized the layers of corneal images and classified them as normal and abnormal. This model can increase the efficacy of clinical diagnosis and assist physicians in training and learning for clinical purposes
    • …
    corecore