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Objective: In order to automatically and rapidly recognize the layers of corneal 
images using in vivo confocal microscopy (IVCM) and classify them into normal 
and abnormal images, a computer-aided diagnostic model was developed and 
tested based on deep learning to reduce physicians’ workload.

Methods: A total of 19,612 corneal images were retrospectively collected from 
423 patients who underwent IVCM between January 2021 and August 2022 from 
Renmin Hospital of Wuhan University (Wuhan, China) and Zhongnan Hospital of 
Wuhan University (Wuhan, China). Images were then reviewed and categorized by 
three corneal specialists before training and testing the models, including the layer 
recognition model (epithelium, bowman’s membrane, stroma, and endothelium) 
and diagnostic model, to identify the layers of corneal images and distinguish 
normal images from abnormal images. Totally, 580 database-independent IVCM 
images were used in a human-machine competition to assess the speed and 
accuracy of image recognition by 4 ophthalmologists and artificial intelligence 
(AI). To evaluate the efficacy of the model, 8 trainees were employed to recognize 
these 580 images both with and without model assistance, and the results of the 
two evaluations were analyzed to explore the effects of model assistance.

Results: The accuracy of the model reached 0.914, 0.957, 0.967, and 0.950 for 
the recognition of 4 layers of epithelium, bowman’s membrane, stroma, and 
endothelium in the internal test dataset, respectively, and it was 0.961, 0.932, 
0.945, and 0.959 for the recognition of normal/abnormal images at each 
layer, respectively. In the external test dataset, the accuracy of the recognition 
of corneal layers was 0.960, 0.965, 0.966, and 0.964, respectively, and the 
accuracy of normal/abnormal image recognition was 0.983, 0.972, 0.940, and 
0.982, respectively. In the human-machine competition, the model achieved an 
accuracy of 0.929, which was similar to that of specialists and higher than that 
of senior physicians, and the recognition speed was 237 times faster than that of 
specialists. With model assistance, the accuracy of trainees increased from 0.712 
to 0.886.
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Conclusion: A computer-aided diagnostic model was developed for IVCM 
images based on deep learning, which rapidly recognized the layers of corneal 
images and classified them as normal and abnormal. This model can increase 
the efficacy of clinical diagnosis and assist physicians in training and learning for 
clinical purposes.
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1. Introduction

The cornea is located in the outermost layer of the eye, and as the 
first step in vision formation, its transparency and refractive index 
allow light to be refracted into the eye and focused on the retina. 
Therefore, structural and functional damage at any level of the cornea 
may lead to vision loss or even blindness (1). Corneal diseases, such 
as granular corneal dystrophy and Fuchs’ endothelial corneal 
dystrophy, may damage a single layer of the cornea, while infectious 
keratitis, corneal mechanical damage, and chemical injuries to the eye 
may cause multi-layer or even whole corneal damage (2). Meanwhile, 
systemic diseases, such as diabetes mellitus and rheumatoid arthritis, 
also affect the cornea (3). Corneal blindness is the fourth most 
common cause of blindness in the world (4), which affects more than 
5% of the world’s blind population and mainly influences marginalized 
populations (5), while according to the estimation of the World Health 
Organization (WHO), nearly 80% of corneal blindness is avoidable.

In vivo confocal microscopy (IVCM) is a non-invasive imaging 
tool that facilitates observation of the cornea and its structural changes 
at the cellular level in regular and pathological states, and it possesses 
the advantages of real-time, non-invasive, repeatable, and high-
resolution (6). At present, it is being used increasingly in clinical 
practice, and it is an important reference for the clinical diagnosis of 
several corneal diseases. The monitoring of corneal microstructural 
changes is also advantageous to optimize the targeted management of 
keratoconus (7) and to assess the prognosis of patients with systemic 
diseases (8). In clinical practice, however, due to the small area of the 
IVCM lens (400 μm × 400 μm per frame), detailed evaluation of the 
cornea requires the acquisition of a large number of images (typically 
50–300 images per eye), while manual analysis of the IVCM images is 
extremely labor-intensive, time-consuming, and is inherently 
subjective (9), and IVCM reading also requires a certain level of 
experience, in which a certain training period is necessary for 
physicians to distinguish various layers of corneal images and their 
performance. With the shortage of ophthalmologists in both 
developed and developing countries (10), improving the accuracy and 
diagnostic efficiency of IVCM image reading in the identification of 
corneal layers and their performance can reduce clinical and scientific 
workload and improve physicians’ efficiency.

Advances in artificial intelligence (AI) are transforming screening, 
diagnosis, and treatment in all areas of medicine (11), and the 
application of AI to ophthalmic diseases has also significantly evolved 
over the past decade. To date, AI has made significant breakthroughs 
in the segmentation, quantification, and identification of corneal 
epithelial cells, corneal nerves, corneal endothelial cells, fungal 
hyphae, dendritic cells, and inflammatory cells in IVCM images (9, 

12–15), and it has demonstrated an excellent performance in terms of 
speed and accuracy of film reading, which can make healthcare more 
accessible and cost-effective. However, no relevant study has yet 
evaluated multilevel corneal IVCM images. The present study aimed 
to develop an AI-assisted automatic diagnostic model for IVCM 
images, improve the speed of diagnosing corneal diseases and the 
detection rate of abnormal corneal images, reduce physicians’ 
workload, and assess its efficacy in clinical application and the 
possibility of facilitating the intelligent screening of corneal diseases.

2. Methods

2.1. Datasets and preprocessing

This study retrospectively collected corneal images from patients 
who underwent IVCM at the Renmin Hospital of Wuhan University 
(Wuhan, China) and Zhongnan Hospital of Wuhan University 
(Wuhan, China) from January 2021 to August 2022. All IVCM images 
were acquired by senior ophthalmic confocal microscopists with more 
than 15 years of experience through strictly standardized operation 
using IVCM (HRT III/RCM Heidelberg Engineering, Germany), and 
images were anonymously processed before labeling and model 
training. The study was conducted following the Declaration of 
Helsinki, which was approved by the Ethics Committee of Renmin 
Hospital of Wuhan University (Approval no. WDRY2021-K148), and 
the need for informed consent was waived due to the retrospective 
design of the study.

All images were screened by professional ophthalmologists to 
eliminate low-quality images due to overexposure, insufficient 
light, poor focus, blurred shooting or poor contact, etc. (These 
images account for 5.27% of the total number of the images 
we collected). A total of 18,101 images of 314 patients from the Eye 
Center of Wuhan University People’s Hospital and 1,510 images of 
109 patients from Wuhan University Central South Hospital were 
finally included. Supplementary Table S1 shows the baseline 
information and sample distribution and Supplementary Table S2 
shows the clinical diagnosis and number of included cases. After 
extracting the depth information by optical character recognition, 
the qualified images were first converted to a uniform size of 384 
pixels × 384 pixels (corresponding to the size of an IVCM image 
without any text or borders). In order to classify images in a more 
standardized way, we established various normal and abnormal 
image criteria based on the book In Vivo Laser Confocal Microscopy 
Atlas Of Cornea 2014, Atlas Of Ocular Surface In Vivo Confocal 
Microscopy 2021 and clinical experience from cornea experts. 
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Normal image criteria: (1) all epithelial cells were observed to 
be  structurally intact and morphologically clear in the normal 
epithelial images; (2) the background of the normal bowman’s 
membrane images are homogeneous and moderately reflective, 
while highly reflective nerve fibers with moderate thickness, 
curvature and density are visible; (3) normal stroma images are 
characterized by the absence of a characteristic dark reflective 
background and well defined stromal cell nuclei, with occasional 
few coarse highly reflective stromal nerves; (4) normal endothelial 
images can be seen as regularly arranged uniform 5–7 sided cells 
with clear cell borders. In order to improve sensitivity to screen 
out abnormal images as widely as possible, our inclusion criteria 
for abnormal images include: (1) the abnormal epithelial image 
shows edema of epithelial cells, unclear structure, enlarged 
interstitial space and inflammatory cells; (2) abnormal bowman’s 
membrane images can reveal obvious nerve fiber tortuosity, 
thinning and reduced density, also more than 10 unactivated 
Langerhans cells and/or any activated Langerhans cell or oval 
inflammatory cell can be observed; (3) abnormal stroma images 
may show stromal cell swelling, activation, pine-needle-like highly 
reflective scarring and amoebic encapsulation, fungal hyphae, 
fungal spores, neovascularization, etc.; (4) abnormal endothelial 
images can appear as endothelial cell swelling, degeneration, 
dystrophy and the appearance of arbitrary posterior corneal 
deposits. Images were independently classified by two professional 
cornea specialists and when the two cornea specialists obtained 
the same classification result, a basic true label was assigned to 
each image, and if there was any disagreement, a third cornea 
specialist with over 15 years of experience made the final decision. 
Images were first classified into epithelium, bowman’s membrane, 
stroma, and endothelium classes according to corneal layers, and 
images of each layer were then re-classified into normal and 
abnormal classes based on clinical diagnosis. Descemet’s 
membrane was not involved in the training because its thickness 
was very low and it was closely attached to the corneal endothelium 
(16), thus, negligible images were collected. Furthermore, its 
clinical significance is relatively limited, and it is mainly manifested 
in the field of corneal transplantation (17). Figure 1 shows the 
workflow of the model.

2.2. Development of the model

A deep learning model based on ResNet-50 module was used for 
image classification training using early stopping, drop out, and 
dataset augmentation to reduce the risk of overfitting. A server with 
four NVIDIA Geforce GTX 2080s devices (8GB GPU memory) was 
used to train the model, and the algorithms were written in Python 
(version 3.6.5) with the open source TensorFlow library (version 
1.12.2) and Keras library (version 2.2.5) as the backend.

The model training was summarized as follows: (1) deep 
convolutional neural network 1 (DCNN1): classification of images to 
epithelium/endothelium, bowman’s membrane, and stroma classes; 
(2) DCNN2: introducing the image depth information to distinguish 
the epithelial and endothelial images; (3) DCNN3, DCNN4, DCNN5, 
and DCNN6: after the layer classification, corneal images of the 4 
layers were classified to normal and abnormal classes, respectively. (4) 
Output image layer information, depth information, and normal/

abnormal diagnosis were considered as results, and output heat map 
results of abnormal images were obtained.

Briefly, after the images were input into the system, they were 
initially classified into epithelial/endothelial, preelastic, and stroma by 
the three-classification model DCNN1 based on the image layers, then 
the epithelial/endothelial images were classified into epithelial and 
endothelial by the two-classification model DCNN2, finally the 
images that had been classified into four layers were classified into 
normal and abnormal for each layer by the corresponding 
two-classification models DCNN3-6. For the choice of activation 
function, we mainly use sigmoid in the two-classification model and 
softmax in the three-classification model.

Images were assigned to the training dataset and the internal test 
dataset at a ratio of 8:2 in the number of patients, and this process 
ensures that each classified image is restricted to the appropriate set, 
avoiding overestimation of model performance due to image mixing 
and label leakage in which the number of images. In DCNN1 model 
was 17,521 (training dataset: test dataset =13,276:4245), that of images 
in DCNN2 model was 4,122 (training dataset: test dataset 
=2,720:1,402), that of images in DCNN3 model was 2,521 (training 
dataset: test dataset =1,704:817), that of images in DCNN5 model was 
3,607 (training dataset: test dataset =2,059:1,295), that of images in 
DCNN5 model was 9,792 (training dataset: test dataset =8,497:1,295), 
and that of images in DCNN6 model was 1,601 (training dataset: test 
dataset = 1,016:585; Figure 2).

2.3. Evaluation of the model

A dataset for internal testing (Renmin Hospital of Wuhan 
University) and a dataset for external testing (Zhongnan Hospital of 
Wuhan University) were used to evaluate the performance of the 
model. Accuracy, specificity, sensitivity, receiver operating 
characteristic (ROC) curve, area under the curve (AUC), positive 
predictive value (PPV), and negative predictive value (NPV) with 95% 
confidence interval (CI) were used to assess the performance of 
the model.

2.4. Comparison between the diagnostic 
performance of DCNNs and 
ophthalmologists

After the training of the model was completed, 580 images were 
selected independently of the training dataset and the test dataset, 
according to a sample of 282 images from the positive group and 282 
images from the negative group. A power of 90% could be achieved to 
detect a difference of 0.1000 between an AUC under the null 
hypothesis of 0.9500 and an AUC under the alternative hypothesis of 
0.9100 using a two-sided z-test at a significance level of 0.04000 and 
the data were discrete (rating scale) responses. Then, two specialists 
with more than 10 years of experience and two senior physicians with 
5–10 years of experience in IVCM were invited to participate in the 
human-machine competition, they independently diagnosed image 
levels and normal/abnormal performance, while the same researcher 
recorded the elapsed time in the test, and the accuracy of the 
assessment results and the time spent on the assessment between 
physicians and the model were finally compared.
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2.5. Comparison the performance of the 
ophthalmologists with and without model 
assistance

Using the same batch of 580 images, 8 trainees with no 
professional IVCM training and less than 3 years of experience 
were randomly divided into groups A (A1, A2, A3, A4) and B 
(B1, B2, B3, B4). Trainees in group A first diagnosed and 
recorded the results of 580 images with model assistance 
(images were first evaluated by computer and lesion areas were 
marked in the form of heat maps) separately, after a 2-week 
washout period, they re-evaluated these 580 images without 
model assistance and recorded the results. Trainees in group B 
initially diagnosed and recorded the results of 580 images 
independently without model assistance, after a 2-week washout 
period, they re-evaluated these 580 images with model assistance. 
Finally, the accuracy of the two assessments was compared 
between groups A and B.

2.6. Statistical analysis

SPSS 25.0 (IBM, Armonk, NY, United States) and MedCalc 19.1–64 
bit (MedCalc Software Ltd., Ostend, Belgium) software were used for 
statistical analysis of the data. A t-test was utilized to analyze the 
difference in accuracy between the model and ophthalmologists, and the 
Mann–Whitney U test was applied to compare the accuracy of trainees 
with and without model assistance to assess the efficacy of the model in 
clinical application. p < 0.05 was considered statistically significant.

3. Results

3.1. Results in both internal and external 
datasets

To recognize the epithelium/endothelium, bowman’s membrane, 
and stroma images, DCNN1 had the highest accuracy of 0.951 (95% 

FIGURE 1

The flowchart of the model. Images were imported into the proposed architectures, initially sorted by DCNN1 to recognize epithelium/endothelium, 
bowman’s membrane, and stroma, and were then sorted by DCNN2 to recognize epithelium and endothelium. Afterwards, images of each layer were 
classified to abnormal and normal by DCNN3, DCCN4, DCCN5, and DCCN6. Finally, the heat map of abnormal images was plotted.
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CI = 0.945–0.957) in the internal dataset and 0.965 (95% CI = 0.956–
0.974) in the external dataset. In distinguishing between epithelium 
and endothelium images, DCNN2 reached the highest accuracy of 
0.995 (96% CI = 0.991–0.999) in the internal dataset and 1.000 in the 
external dataset. In classifying the abnormal and normal images of 
each layer, DCNN3, DCNN4, DCNN5, and DCNN6 all achieved the 
highest accuracy with values of 0.961 (95% CI = 0.948–0.974), 0.932 
(95% CI = 0.919–0.944), and 0.945 (95% CI = 0.932–0.957), and 0.959 
(95% CI = 943–0.975) in the internal dataset and 0.983 (95% 
CI = 0.968–0.998), 0.972 (95% CI = 0.957–0.987), 0.940 (95% 
CI = 0.917–0.963), and 0.982 (95% CI = 0.968–0.996) in the external 
dataset, respectively. The confusion matrix diagrams of DCNN1 and 
DCNN2 are shown in Figure  3, and the specific competence of 
DCNN3–DCNN6 is presented in Table  1. The test results 
demonstrated that the model had a high potential for classifying and 
diagnosing multi-category corneal images of IVCM.

3.2. Comparison between the performance 
of DCNNs and ophthalmologists

For 580 images tested independently, the average accuracy of the 
model, specialists, and senior physicians in distinguishing corneal 
layers was 0.974, 0.961, and 0.919, the average accuracy of identifying 
normal and abnormal images was 0.953, 0.954, and 0.907, the average 
time spent on 580 images was 12.80, 4520.00, and 9026.00 s, and the 
average time spent on each image was 0.02, 7.79, and 15.56 s, 
respectively. The accuracy of the model in distinguishing corneal 
layers and identifying normal and abnormal images was similar to that 
of two specialists (p = 0.872, >0.05) and higher than that of two senior 
physicians (p < 0.001). The evaluation speed was significantly faster 

than that of 4 ophthalmologists, which was about 390 times higher 
than that of specialists (Table 2).

3.3. Comparison of the performance of the 
ophthalmologists with and without the 
model assistance

The overall accuracy of 8 trainees with and without the model 
assistance was 0.888 and 0.715, respectively. Trainees had an accuracy 
of 0.843 and 0.809 without model assistance and 0.940 and 0.938 with 
model assistance in layer identification and classification of images as 
normal and abnormal. Both groups of trainees showed statistically 
significant differences in the accuracy with model assistance (0.17, 
p = 0.002, <0.05), and the changes in the accuracy of trainees are 
shown in Figure 4.

4. Discussion

In the present study, a model was developed based on 6 
DCNNs to assess the capability of AI in distinguishing the layers 
of corneal IVCM images and classifying them as normal and 
abnormal. The results showed that the model was highly effective 
in distinguishing epithelium, bowman’s membrane, stroma, and 
endothelium, while it also had satisfactory accuracy, specificity, 
and sensitivity in distinguishing normal and abnormal images at 
each layer. The higher accuracy in some of the external test datasets 
than that of internal ones may be  related to the slightly higher 
quality of external images, while data were retrospectively 
collected. A human-machine competition demonstrated that the 

FIGURE 2

Flowchart of the model development and validation.
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model was as accurate as a corneal specialist and about 237 times 
as fast as a clinician. At the same time, the accuracy of IVCM image 
recognition by trainees with the model assistance could 
be  significantly improved, and may even approach specialists’ 
accuracy, indicating that the model is potentially used to facilitate 
evaluation of IVCM images, and it is expected to facilitate the 
initial screening and classification of large volumes of images in 
actual clinical research, which can benefit physicians to promptly 
and centrally assess patients’ abnormal images or uniformly 
acquire specific layers and types of images, particularly for 
research purposes.

Due to the rapid progress of technology analysis, the improvement 
of computing power, and the promotion of big data, AI has recently 
developed rapidly in the field of healthcare (18, 19). Deep learning is 
one of the novel AI technologies, in which convolutional neural 
networks (CNNs) are programmed to optimize a specific performance 
criterion (20). In contrast to conventional machine learning methods, 

such as support vector machine, the deep learning-based methods 
allow the machine to identify complex features using hundreds of 
filters and eliminate the need for manual feature selection and 
extraction (21, 22). Deep learning has shown an outstanding 
performance in image recognition of skin diseases, cardiovascular 
system, respiratory system, digestive system, and other organs and 
diverse types of diseases (23). It has caused great changes in various 
diagnostic fields, including endoscopic ultrasound technology. At the 
same time, the accuracy of deep learning models in diagnosis and 
treatment of diseases also showed the potential of approaching or even 
surpassing physicians (24, 25).

It is widely accepted that AI has been widely used in the 
diagnosis, identification, and prevention of ophthalmic diseases (26). 
The United  States Food and Drug Administration (FDA) also 
approved the first automatic diagnosis tool for diabetic retinopathy 
based on AI in 2018 (27). At the same time, AI has made remarkable 
achievements in the diagnosis, segmentation, and quantification of 

A B

C D

FIGURE 3

Confusion matrix diagrams of 2 DCNN models in internal and external test datasets. DCNN1: classifying all images to epithelium/endothelium, 
bowman’s membrane, and stroma classes. DCNN2: distinguish the epithelial and endothelial images. (A) DCNN1 in internal test dataset. (B) DCNN2 in 
internal test dataset. (C) DCNN1 in external test dataset. (D) DCNN2 in external test dataset.
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slit lamp images, anterior segment optical coherence tomography 
(A-S OCT), macular OCT, fundus fluorescein angiography (FFA), 
and other ophthalmic anterior and posterior segment images (11). 
IVCM photography and examination are well-established diagnostic 
imaging techniques for corneal diseases, while in clinical conditions, 
ophthalmologists mainly analyze images for multiple times to ensure 
accuracy of diagnosis. In the IVCM image recognition, there have 
been studies on AI-assisted quantification and segmentation of 
corneal nerves (14), classification of nerve fiber curvature (28), 
identification of nerve fibers and dendritic cells and fungal hyphae 
(12), discrimination of activated dendritic cells and inflammatory 
cells (9), segmentation of corneal endothelial cells, and evaluation of 
morphological parameters (15), fully highlighting that AI is used to 
assist IVCM image recognition to explore multiple structures. 
However, to our knowledge, cornea is a tissue with multiple layers, 
and few studies have concentrated on automatic multiple-layer 
corneal recognition even using traditional digital image analysis 
techniques, therefore, developing a more extensive tool to evaluate 
the cornea as thoroughly as possible can bridge the gap in this 
research area.

Res-Net-50 is a type of deep neural network that is a subclass 
of CNNs and is used to classify images, possessing the advantages 
of low computational burden and easy optimization. It contains 49 
convolutional layers and a full connection layer, which are excellent 
residual network models. The residual network models can be used 
to solve the degradation and gradient problems, so that the 
network performance can be  improved (29). According to the 
auxiliary clinical diagnosis and scientific research, 8 types of IVCM 
images (normal epithelium, abnormal epithelium, normal anterior 
elastic layer, abnormal anterior elastic layer, normal matrix, 
abnormal matrix, normal endothelium, and abnormal 
endothelium) were identified and diagnosed using one three-
classification and five two-classification models, which were set up 
by Res-Net-50 in the present study. Firstly, DCNN1 and DCNN2 
are used for corneal image level recognition, and then, DCNN3, 
DCNN4, DCNN5, and DCNN6 are utilized for normal and 
abnormal image recognition at each layer. Although the network 
is applicable to the diagnosis and recognition of a single image 
rather than a single patient, in clinical practice, examiners may 
collect dozens to hundreds of images for each patient. As long as 

TABLE 1 The classification performance of deep convolutional networks.

Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI) AUC

DCNN3
Internal 0.961 (0.948–0.974) 0.924 (0.898–0.950) 0.998 (0.993–1.002) 0.997 (0.992–1.003) 0.929 (0.905–0.953) 0.994

External 0.983 (0.968–0.998) 0.986 (0.966–1.006) 0.981 (0.959–1.003) 0.979 (0.955–1.003) 0.987 (0.969–1.005) 0.997

DCNN4
Internal 0.932 (0.919–0.944) 0.888 (0.866–0.910) 0.975 (0.964–0.986) 0.973 (0.961–0.985) 0896 (0.875–0.917) 0.997

External 0.972 (0.957–0.987) 0.987 (0.972–1.002) 0.957 (0.930–0.983) 0.958 (0.932–0.984) 0.987 (0.971–1.002) 0.975

DCNN5
Internal 0.945 (0.932–0.957) 0.998 (0.996–1.001) 0.881 (0.855–0.908) 0.908 (0.887–0.929) 0.998 (0.994–1.002) 0.996

External 0.940 (0.917–0.963) 0.952 (0.923–0.981) 0.928 (0.892–0.963) 0.930 (0.896–0.965) 0.950 (0.920–0.981) 1.000

DCNN6
Internal 0.959 (0.943–0.975) 0.904 (0.865–0.943) 0.992 (0.983–1.001) 0.985 (0.968–1.002) 0.945 (0.922–0.968) 0.979

External 0.982 (0.968–0.996) 0.975 (0.951–0.999) 0.988 (0.972–1.005) 0.988 (0.970–1.005) 0.977 (0.955–1.000) 0.996

DCNN3, classification model of normal and abnormal epithelium images; DCNN4, classification model of normal and abnormal bowman’s membrane images; DCNN5, classification model of 
normal and abnormal stroma images; DCNN6, classification model of normal and abnormal endothelium images. CI, confidence interval; PPV, positive predictive value; NPV, negative 
predictive value; AUC, area under the receiver operating characteristic curve.

TABLE 2 Comparison of the performance of the model and ophthalmologists.

Accuracy of classification (95% CI)

Model Expert A Expert B
Senior doctor 

A
Senior doctor 

B

Epithelium
Layer 0.960 (0.928–0.992) 0.960 (0.928–0.992) 0.927 (0.884–0.969) 0.853 (0.796–0.911) 0.860 (0.804–0.916)

Normal/abnormal 0.980 (0.957–1.003) 0.973 (0.947–0.999) 0.920 (0.876–0.964) 0.953 (0.919–0.987) 0.920 (0.876–0.964)

Bowman’s membrane
Layer 0.979 (0.956–1.003) 1.000 0.959 (0.926–0.991) 0.897 (0.846–0.947) 0.959 (0.926–0.991)

Normal/abnormal 0.931 (0.889–0.973) 0.952 (0.916–0.987) 0.966 (0.935–0.996) 0.938 (0.898–0.978) 0.945 (0.907–0.982)

Stroma
Layer 0.987 (0.969–1.005) 0.961 (0.931–0.992) 0.955 (0.922–0.988) 0.955 (0.922–0.988) 0.884 (0.833–0.935)

Normal/abnormal 0.929 (0.888–0.970) 0.968 (0.940–0.996) 0.935 (0.896–0.975) 0.839 (0.780–0.897) 0.787 (0.722–0.852)

Endothelium
Layer 0.969 (0.939–0.999) 0.954 (0.917–0.990) 0.969 (0.939–0.999) 0.985 (0.963–1.006) 0.977 (0.951–1.003)

Normal/abnormal 0.977 (0.951–1.003) 0.954 (0.917–0.990) 0.962 (0.928–0.995) 0.985 (0.963–1.006) 0.908 (0.857–0.958)

Layer recognition average 0.974 (0.961–0.987) 0.969 (0.955–0.983) 0.952 (0.934–0.969) 0.921 (0.899–0.943) 0.917 (0.895–0.940)

Normal/abnormal classification average 0.953 (0.936–0.971) 0.962 (0.946–0.978) 0.945 (0.926–0.963) 0.926 (0.904–0.947) 0.888 (0.862–0.914)

Total 0.929 (0.908–0.950) 0.933 (0.912–0.953) 0.922 (0.901–0.944) 0.852 (0.823–0.881) 0.829 (0.799–0.860)
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all images of a single patient are imported into the model, the 
hierarchy and positive anomalies of the collected images can 
be obtained for IVCM of the patient.

In machine-aided image recognition, the accuracy of trainees in 
identifying corneal layers and abnormal image resolution has 
significantly improved with the development of models, indicating 
that the model proposed in the current study can also assist junior 
doctors to more reliably diagnose various abnormal corneal images 
and reduce the missed diagnoses of abnormal images. In the human-
machine competition, the machine showed an accuracy similar to that 
of senior physicians, and the time spent was significantly shortened, 
demonstrating that the model may reduce physicians’ workload in 
actual clinical conditions, alleviate the influence of fatigue on the 
examination results, and is also worthy of promotion.

The present study has some limitations. Firstly, as the results 
achieved by the model for image recognition were qualitative, the 
actual abnormal features (e.g., cortical inflammatory cells, stromal 
hyphae, and endothelial KP) cannot be evaluated quantitatively or 
hierarchically. The enlargement of the training sample size in the next 
step of research is therefore suggested to more reliably segment and 
identify different abnormal features. Secondly, although as many 
IVCM images of clinical corneal diseases were collected as possible, 
due to certain requirements for sample data in model training, some 
rare corneal diseases were not included. Moreover, the number of 
images of few diseases involved in model development was relatively 
limited, which temporarily hindered further identification of types of 
disease for abnormal images. Hence, it will be attempted to cooperate 
with multiple hospitals to establish a database with involvement of 

more types of disease and a larger sample size for model training and 
optimization in the future, which will be  advantageous to 
comprehensively analyze physicians’ IVCM image performance at all 
layers, enhance the diagnosis of various types of disease, and improve 
the accuracy of the model. It is suggested to apply AI to clinical and 
scientific research and facilitate the popularization of ophthalmic 
intelligent medical treatment.

In conclusion, a corneal IVCM image recognition model was 
developed based on deep learning. The results showed that the 
model had high accuracy, specificity, and sensitivity, and assisted 
clinicians to distinguish corneal IVCM images faster and more 
reliably. The model can be applied to communities and grassroots 
hospitals with little clinical experience or a lack of ophthalmologists, 
which can help novice doctors to identify and learn corneal IVCM 
images initially; it can also help professional doctors with heavy 
workload to screen images and quickly find the abnormal ones that 
need to be focused on. It is beneficial for preliminary screening of 
corneal diseases in large quantities of patients and obtaining specific 
corneal hierarchical images, particularly for research purposes, and 
lays the foundation for further building corneal disease 
identification models.
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FIGURE 4

The comparison of performance of trainees with and without model assistance. (A) Overall accuracy; (B) the accuracy for recognizing layers; (C) the 
accuracy for classifying the normal and abnormal images. Folded-lines depict the changes in accuracy for each trainee with and without model 
assistance. Different colors represent different trainees.
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