7 research outputs found

    Rotational Cryptanalysis in the Presence of Constants

    Get PDF
    Rotational cryptanalysis is a statistical method for attacking ARX constructions. It was previously shown that ARX-C, i.e., ARX with the injection of constants can be used to implement any function. In this paper we investigate how rotational cryptanalysis is affected when constants are injected into the state. We introduce the notion of an RX-difference, generalizing the idea of a rotational difference. We show how RX-differences behave around modular addition, and give a formula to calculate their transition probability. We experimentally verify the formula using Speck32/64, and present a 7-round distinguisher based on RX-differences. We then discuss two types of constants: round constants, and constants which are the result of using a fixed key, and provide recommendations to designers for optimal choice of parameters

    A Survey of ARX-based Symmetric-key Primitives

    Get PDF
    Addition Rotation XOR is suitable for fast implementation symmetric –key primitives, such as stream and block ciphers. This paper presents a review of several block and stream ciphers based on ARX construction followed by the discussion on the security analysis of symmetric key primitives where the best attack for every cipher was carried out. We benchmark the implementation on software and hardware according to the evaluation metrics. Therefore, this paper aims at providing a reference for a better selection of ARX design strategy

    Related-Tweak Statistical Saturation Cryptanalysis and Its Application on QARMA

    Get PDF
    Statistical saturation attack takes advantage of a set of plaintext with some bits fixed while the others vary randomly, and then track the evolution of a non-uniform plaintext distribution through the cipher. Previous statistical saturation attacks are all implemented under single-key setting, and there is no public attack models under related-key/tweak setting. In this paper, we propose a new cryptanalytic method which can be seen as related-key/tweak statistical saturation attack by revealing the link between the related-key/tweak statistical saturation distinguishers and KDIB (Key Difference Invariant Bias) / TDIB (Tweak Difference Invariant Bias) ones. KDIB cryptanalysis was proposed by Bogdanov et al. at ASIACRYPT’13 and utilizes the property that there can exist linear trails such that their biases are deterministically invariant under key difference. And this method can be easily extended to TDIB distinguishers if the tweak is also alternated. The link between them provides a new and more efficient way to find related-key/tweak statistical saturation distinguishers in ciphers. Thereafter, an automatic searching algorithm for KDIB/TDIB distinguishers is also given in this paper, which can be implemented to find word-level KDIB distinguishers for S-box based key-alternating ciphers. We apply this algorithm to QARMA-64 and give related-tweak statistical saturation attack for 10-round QARMA-64 with outer whitening key. Besides, an 11-round attack on QARMA-128 is also given based on the TDIB technique. Compared with previous public attacks on QARMA including outer whitening key, all attacks presented in this paper are the best ones in terms of the number of rounds

    More Accurate Differential Properties of LED64 and Midori64

    Get PDF
    In differential cryptanalysis, a differential is more valuable than the single trail belonging to it in general. The traditional way to compute the probability of the differential is to sum the probabilities of all trails within it. The automatic tool for the search of differentials based on Mixed Integer Linear Programming (MILP) has been proposed and realises the task of finding multiple trails of a given differential. The problem is whether it is reliable to evaluate the probability of the differential traditionally. In this paper, we focus on two lightweight block ciphers – LED64 and Midori64 and show the more accurate estimation of differential probability considering the key schedule. Firstly, an automated tool based on Boolean Satisfiability Problem (SAT) is put forward to accomplish the automatic search of differentials for ciphers with S-boxes and is applied to LED64 and Midori64. Secondly, we provide an automatic approach to detect the right pairs following a given differential, which can be exploited to calculate the differential property. Applying this technique to the STEP function of LED64, we discover some differentials with enhanced probability. As a result, the previous attacks relying upon high probability differentials can be improved definitely. Thirdly, we present a method to compute an upper-bound of the weak-key ratio for a given differential, which is utilised to analyse 4-round differentials of Midori64. We detect two differentials whose weak-key ratios are much lower than the expected 50%. More than 78% of the keys will make these two differentials being impossible differentials. The idea of the estimation for an upper-bound of the weak-key ratio can be employed for other ciphers and allows us to launch differential attacks more reliably. Finally, we introduce how to compute the enhanced differential probability and evaluate the size of keys achieving the improved probability. Such a property may incur an efficient weak-key attack. For a 4-round differential of Midori64, we obtain an improved differential property for a portion of keys

    Automatic Search of Linear Trails in ARX with applications to SPECK and Chaskey

    No full text
    © Springer International Publishing Switzerland 2016. In this paper, we study linear cryptanalysis of the ARX structure by means of automatic search. To evaluate the security of ARX designs against linear cryptanalysis, it is crucial to find (roundreduced) linear trails with maximum correlation. We model the problem of finding optimal linear trails by the boolean satisfiability problem (SAT), translate the propagation of masks through ARX operations into bitwise expressions and constraints, and then solve the problem using a SAT solver. We apply the method to find optimal linear trails for round-reduced versions of the block cipher SPECK and the MAC algorithm Chaskey. For SPECK with block size 32/48/64/96/128, we can find optimal linear trails for 22/11/13/9/9 rounds respectively, which largely improves previous results, especially on larger versions. A 3-round optimal linear trail of Chaskey is presented for the first time as far as we know. In addition, our method can be used to enumerate the trails in a linear hull, and we present two linear hulls with the distributions of trails for round-reduced SPECK32. Our work provides designers with more accurate evaluation against linear cryptanalysis on ARX designs, especially for primitives with large block sizes and many rounds.status: publishe

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore