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Abstract. In differential cryptanalysis, a differential is more valuable than the single
trail belonging to it in general. The traditional way to compute the probability of the
differential is to sum the probabilities of all trails within it. The automatic tool for
the search of differentials based on Mixed Integer Linear Programming (MILP) has
been proposed and realises the task of finding multiple trails of a given differential.
The problem is whether it is reliable to evaluate the probability of the differential
traditionally. In this paper, we focus on two lightweight block ciphers – LED64 and
Midori64 and show the more accurate estimation of differential probability considering
the key schedule. Firstly, an automated tool based on Boolean Satisfiability Problem
(SAT) is put forward to accomplish the automatic search of differentials for ciphers
with S-boxes and is applied to LED64 and Midori64. Secondly, we provide an automatic
approach to detect the right pairs following a given differential, which can be exploited
to calculate the differential property. Applying this technique to the STEP function
of LED64, we discover some differentials with enhanced probability. As a result, the
previous attacks relying upon high probability differentials can be improved definitely.
Thirdly, we present a method to compute an upper-bound of the weak-key ratio for
a given differential, which is utilised to analyse 4-round differentials of Midori64.
We detect two differentials whose weak-key ratios are much lower than the expected
50%. More than 78% of the keys will make these two differentials being impossible
differentials. The idea of the estimation for an upper-bound of the weak-key ratio
can be employed for other ciphers and allows us to launch differential attacks more
reliably. Finally, we introduce how to compute the enhanced differential probability
and evaluate the size of keys achieving the improved probability. Such a property
may incur an efficient weak-key attack. For a 4-round differential of Midori64, we
obtain an improved differential property for a portion of keys.
Keywords: Differential · Automatic search · SAT · LED64 · Midori64

1 Introduction
Differential cryptanalysis [BS90] is one of the most fundamental techniques targeting
symmetric-key primitives. It investigates how an input difference propagates through the
objective function. If a particular input/output difference happens in a non-random way,
it can be used to construct a distinguisher or even to recover keys.

Since the introduction of differential cryptanalysis, many investigations concentrated
on achieving provable security against it. Among these works, the Markov cipher theory
[LMM91] is regarded as the first attempt to design block ciphers resistant against differential
cryptanalysis. It has inspired many works on iterative block ciphers. Since the complexity
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of an attack depends on the differential probability (DP) of the differential exploited,
which in general relies on the value of the key, evaluating the distribution of the fixed-key
probability becomes a crucial issue to realise the goal of provable security. With the
hypothesis of stochastic equivalence, which claims that for almost all keys the average
probability of a differential is equal to the fixed-key probability, we are allowed to construct
the bound on the expected data complexity of the differential attack where the attacker
uses precisely one differential. However, Daemen and Rijmen [DR07b] pointed out that for
key-alternating ciphers, a more precise formulation of the distribution can be derived. They
proposed an explicit expression of the distribution of the fixed-key DP for a differential
concerning its expected differential probability (EDP).

Apart from the theoretical research, another strong research trend in the field of
differential cryptanalysis is the construction of the automatic tool for searching differential
characteristics or differentials [SHW+14, KLT15, SHY16, SGL+17, AST+17]. Nevertheless,
most of these techniques pay attention to the seek of differential trails instead of differentials.
The few pieces of research related to the differential searching problem mainly target ARX
ciphers, and they cannot be applied to block ciphers with S-box directly, for the lack of
a model on S-box. Although the tool1 presented in [KLT15] supports primitives with
S-boxes, it is based on Satisfiability Modulo Theories (SMT) instead of SAT. Many
modern (lightweight) block ciphers built upon Substitution-Permutation Network (SPN)
are designed to avoid the existence of the dominating trail and thus increase resistance
against differential cryptanalysis.

With an automatic tool for the search of differentials, we are allowed to obtain multiple
trails within a differential. The traditional way to compute the probability of the differential
is to sum the probabilities of all trails within it, and this probability is adopted in the
differential attack. The problem is whether it is reliable to evaluate the probability of
the differential in a traditional manner. In this paper, we focus on two lightweight block
ciphers - LED64 [GPPR11, GPPR12] and Midori64 [BBI+15] and show the more accurate
estimation of differential probability considering the key schedule. The ideas proposed in
this paper permit us to launch differential attacks more reliably.

1.1 Our Contributions
An automatic method for the search of differentials Since we target the analysis of
the differential, an automatic tool for the search of differentials for ciphers with S-boxes is
proposed firstly. Inspired by the previous works targeting ARX ciphers, we put forward an
automated method based on SAT to realise the automatic search for ciphers with S-boxes.
Owing to the invention of this method, we can search for differentials with numerous
characteristics for LED64 and Midori64. We remark that the previous works related to
the automatic search of differentials depending on MILP [SHW+14] and SMT [KLT15]
only concentrate on the seek of multiple characteristics, and evaluate the probability of
the differential as the sum of the probabilities of all characteristics within it. However, our
aim is not only to obtain multiple trails of a differential but also to get a more accurate
differential probability. Because the SAT solver assists the computation of the more
accurate differential probability, we also use SAT to construct the automatic tool for the
search of differentials for consistency.

Improved differentials of the STEP function of LED64 Since the STEP function of LED is
an unkeyed permutation, the design of LED can be seen as a special case of the generalised
Even-Mansour construction [EM97]. Therefore, many attacks regard the STEP function
as a public mapping and stem from some attacks on the Even-Mansour construction
[MRTV12, NWW15]. Some of these attacks rely on the existence of differential with high

1https://github.com/kste/cryptosmt
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probability. In this paper, we aim to seek differentials with high probability. With plenty
of trails found by the differential searching tool, we construct an automatic approach to
detect the right pairs following a given differential, which can be exploited to calculate the
differential property. Firstly, we derive the constraints on the right pairs following a given
characteristic. Then, these constraints are converted into SAT clauses, and the solutions
of these clauses are the right pairs matching that characteristic. Finally, the right pairs of
a differential can be obtained by gathering all right pairs of trails within the differential.
With this technique, we improve the previous results provided by Mendel et al. [MRTV12].
In particular, under the same setting as [MRTV12], we obtain an iterative differential with
66 right pairs, which updates the one with six right pairs [MRTV12]. For the non-iterative
differential, the number of right pairs raises from around 210 to 215. Benefiting from the
increased differential probability, the previous attacks exploiting the differential property
of the STEP function can be improved.

4-round differentials of Midori64 with unexpectedly low weak-key ratios The distri-
bution of fixed-key probability is an essential problem in differential cryptanalysis because
it determines the validity of the differential distinguisher exploited in the attack. From the
precise distribution proposed by Daemen and Rijmen [DR07b], we can infer that when the
value of EDP is far from 2−n, the keys, for which the fixed-key probability is higher than
the expected differential probability, make up about 50% of the whole keyspace. Since the
differential attacks with the fixed-keys falling into this space are more likely to succeed, we
call these keys the weak-keys. For a given key schedule, the real weak-key ratio may deviate
from 50%. To evaluate the deviation, we present a method to compute an upper-bound of
the weak-key ratio for a given differential, which is utilised to analyse 4-round differentials
of Midori64. We detect two differentials whose weak-key ratios are much lower than
the expected 50%. More than 78% of the keys will make these two differentials being
impossible differentials. If such a differential is used to launch a key-recovery attack, the
attack is very likely to fail since the attacker cannot find right pairs under a vast amount
of right keys. These results force us to pay more attention to the validity of the differential
distinguisher. Moreover, the idea of the estimation for an upper-bound of the weak-key
ratio can be employed for other ciphers.

Key subspace with enhanced differential probability In differential cryptanalysis, an-
other interesting problem is that a differential distinguisher with much higher probability
than the value of EDP under a fraction of keys can incur an efficient weak-key attack. Here,
we aim at identifying such high probability differential distinguisher. After introducing
the notion of partially expected differential probability (EDPP) to replace EDP when
the upper-bound for the weak-key ratio is known, we concentrate on the problem of the
maximum number of compatible characteristics in a differential. Since the compatible
trails hold simultaneously under a particular set of keys, for those keys we may detect the
enhancement on the differential probability. We find that this problem can be converted
into a special kind of Max-PoSSo problem [AC11], which intends to find a solution that
satisfies the maximum number of polynomials in a given set of polynomials F . We put
forward a technique based on SAT to solve the dedicate Max-PoSSo problem derived
from the question we care about. As a result, for a 4-round differential of Midori64
with EDP = 2−23.79, we observe that for 2−12 of the keys, the differential property is
increased to 2−16. Note that the disadvantage of our technique lies in that it is not easy
to be applied to more rounds due to the limited computational resource. Although the
enhanced differential probability for the short-round differential can also be predicted under
statistical method, our method is much more efficient than the random test according to
the runtime.
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Paper Outline The paper is organised as follows. Section 2 recalls some definitions and
theories that will be useful to understand the remaining contents. Section 3 provides
an automatic search method based on SAT problem to search for differentials instead
of characteristics. Section 4 concentrates on the property of the weak-key space of a
differential/trail. The differential analyses of LED64 and Midori64 are introduced in
Section 5 and 6, respectively.

2 Preliminaries
2.1 Differential Cryptanalysis
Typically, the first step of differential cryptanalysis is to analyse the smallest nonlinear
component of the function, i.e., the S-box. An S-box is called active if it has non-zero
input difference; otherwise, we call it passive.

An r-round differential characteristic/trail C = (C0, C1, . . . , Cr) is a sequence of
differences through various operations of the encryption. A differential [LMM91] over a
mapping f consists of an input difference α and an output difference β and is denoted by
(α, β). The differential probability (DP) of a differential (α, β) over an n-bit function f is
computed as

DPf (α, β) = {x ∈ Fn2 | f(x)⊕ f(x⊕ α) = β}
2n .

For a keyed function f(·, k), we define differential probabilities DPf [k](α, β) and DPf [k](C)
for each value k of the key. Then, the expected differential probability (EDP) of a charac-
teristic or a differential is the average DP of that characteristic or differential over all keys.
The weight of a differential or a trail is the opposite number of the binary logarithm of
its EDP. The height [MRTV12] of a possible differential or a possible trail is the binary
logarithm of the number of pairs following that differential or trail, and we call these pairs
the right pairs. The cardinality [DR07b] of a differential or a characteristic is the number
of right pairs.

The Markov cipher theory [LMM91] was the first approach to design block ciphers
resistant against differential cryptanalysis. The theory has inspired many pieces of research
on iterative block ciphers. A Markov cipher is an iterative cipher for which the average
differential probability over one round is independent of the input of the round function.
For such ciphers, the assumption of independent round keys allows us to compute the EDP
of a characteristic as the product of the probabilities of each round. The average probability
of a differential can be computed as the sum of the probabilities of all characteristics
sharing the same input and output differences with the differential.

Modern block ciphers are designed to resist differential cryptanalysis. In general, the
release of a current block cipher is accompanied with provable security bound on the EDP
of either differential or characteristic [DR02, Mat97, GPPR11, GPPR12, BBI+15]. For
the classical block cipher DES [Nat77], it is well known that the EDP of a differential
can be estimated by the EDP of the dominating trail. Many modern block ciphers are
designed to withstand the existence of dominating trail; this estimation can no longer be
adopted. The following hypothesis is often used as a replacement, and it allows one to
construct proofs of security.

Hypothesis 1 (Hypothesis of stochastic equivalence [LMM91]). For all differentials (α, β),
it holds that for most values of the key k, DPf [k](α, β) = EDPf (α, β).

Afterwards, Daemen and Rijmen [DR07b] proved that this hypothesis could be discarded
for key-alternating ciphers, which are iterative ciphers whose round keys are applied by an
XOR operation in between unkeyed round functions. More specifically, they put forward
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the distribution of the fixed-key probability of differential, which is characterised by the
value of EDP.

Theorem 1 (Theorem 13 [DR07b]). In a key-alternating cipher f(·, k), the fixed-key
cardinality Nf [k](α, β) of a differential (α, β) is a stochastic variable with the following
distribution:

Pr(Nf [k](α, β) = i) ≈ Poisson(i; 2n−1 EDP(α, β)),

where the distribution function measures the probability over all possible values of the key
and all possible choices of the key schedule.

2.2 Planar Differentials and Maps
For the differential (α, β) of the function f , denote Ff (α, β), Gf (α, β) the sets that contain
the input values, respectively the output values of the right pairs following the differential,
i.e.,

Ff (α, β) = {x | f(x)⊕ f(x⊕ α) = β},
Gf (α, β) = {y | y = f(x), x ∈ Ff (α, β)}.

A differential (α, β) is called a planar differential if Ff (α, β) and Gf (α, β) are affine
subspaces. In that case, we can uniquely construct two linear spaces Uf (α, β) and Vf (α, β),
such that

Ff (α, β) = p⊕ Uf (α, β),
Gf (α, β) = q ⊕ Vf (α, β),

where p is an arbitrary element in Ff (α, β), and q is an arbitrary entry in Gf (α, β). A
mapping is planar if all differentials over it are planar.

It has been proved [DR07a] that a differential (α, β) is always planar if it has exactly
two or four right pairs. When an S-box S has differential uniformity [Nyb93] of 4, i.e.,
max
α 6=0
|NS(α, β)| = 4, all the sets FS(α, β) and GS(α, β) are affine subspaces. Let y = f(x)

be a function consisting of a set of parallel functions yi = fi(xi) with x = (x0, x1, . . . , xt−1)
and y = (y0, y1, . . . , yt−1). It can be proved [DR07a] that a differential (α, β) for f is
planar if every differential (αi, βi) for fi is planar. Thus, the S-layer composed of the
parallel applications of S-boxes is planar when all the S-boxes have differential uniformity
of 4.

2.3 SAT Problem
The boolean satisfiability problem (SAT) considers the satisfiability of a given Boolean
formula, i.e., it decides whether there exists a valid assignment of boolean values to the
variables such that the formula is evaluated to be True. If such an assignment exists,
the SAT problem is said satisfiable. It was shown that the problem is NP-complete
[Coo71]. However, modern SAT solvers based on backtracking search can solve problems
of practical interest with millions of variables. Since many issues covered in this paper
involve XOR operations and the SAT solver called Cryptominisat52 is specially designed to
be compatible with the XOR operation, we adopt it to solve our problems.

For every Boolean formula, there exists an equi-satisfiable formula in Conjunctive
Normal Form (CNF), expressed as the conjunction (∧) of the disjunction (∨) of (possibly
negated) variables. Every conjunct of the Boolean formula in CNF is called a clause, and

2https://github.com/msoos/cryptominisat

https://github.com/msoos/cryptominisat
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each (possibly negated) variable within a clause is called a literal. Because all modern
SAT solvers accept problems organised in CNF as a standard input format, we need to
translate the question into an equivalent one in CNF when we want to invoke SAT solvers
to solve the problem we care about.

3 Automatic Search of Differentials
There are many investigations on the automatic search of differential and linear charac-
teristics [SHW+14, KLT15, LWR16, SHY16, SGL+17, AST+17]. The principle behind
these automated tools is to transform the searching problem into some mathematical
problems, which can be handled by some available solvers. Very few of the previous works
concentrate on the differential searching problem. The practices related to this topic
[KLT15, LWR16, SHY16] mainly target ARX ciphers. Even though the tool presented in
[KLT15] supports primitives with S-boxes, it is based on SMT instead of SAT. Because we
rely on the SAT solver to accomplish the computation of the more accurate differential
property, we also use SAT to construct the automatic tool for the search of differentials
for consistency.

To realise the automatic search of differentials, we need to model the problem of finding
multiple solutions under the fixed input and output differences. Besides the compatibility
of XOR operation, another reason we choose Cryptominisat5 lies in that it supports the
usage of searching multiple solutions.

In this section, we propose a method based on SAT to accomplish the automatic search
of differentials. First, we model a truncated version of the differential distribution table
(DDT), which only contains information of all possible differential propagations of the
S-box, and we demonstrate how to transform it into formulas in CNF. Then, we illustrate
this method can be adapted to generate clauses for ordinary DDT by introducing variables
representing the weight of the differential propagation. After that, the objective function
is created so that we can search characteristics with fixed weight. Finally, we describe how
to find multiple trails within a differential.

For all automatic tools for the search of differential/linear characteristics, the most
critical step is to translate the propagation rule of these trails into the language of the
ultimate mathematical problem. For the reason that we mainly focus on LED64 and
Midori64, which adopt similar round functions, we only need to construct SAT models
for the S-layer composed of the parallel applications of small-scale S-boxes and the P-layer
constituted by the parallel applications of MDS matrices.

3.1 Propagation of Differences Through P-layer
For an n-bit P-layer y = P (x), we can always find its primitive representation [SLR+15],
which is an n× n binary matrix MP with P (x) = MP · x. Thanks to the compatibility
of Cryptominisat5 with the XOR operation, the model for the P-layer can be constructed,
directly. The following n XOR clauses are required

n−1⊕
j=0

(MP )i,j · xj ⊕ yi = 0, i = 0, 1, . . . n− 1,

where (MP )i,j ∈ {0, 1} stands for the entry located at the i-th row and the j-th column of
MP .

3.2 Propagation of Differences Through S-layer
First of all, a truncated version of the DDT, where all the non-zero entries of the DDT are
replaced by 1, which is called ∗−DDT in [AST+17], is considered. The primary method
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of the generation of clauses for ∗−DDT is very similar to the logical condition modelling
method adopted in MILP [SHW+14]. Then, we aim to reduce the number of acquired
clauses so that we can accelerate the solution finding phase. After that, we illustrate that
this method can be generalised to model ordinary DDT.

3.2.1 Modelling ∗−DDT

To describe ∗-DDT, we ought to generate a set of clauses about the variables representing
the input and output differences of the S-box. All solutions of these clauses have a
one-to-one correspondence with all possible differential propagations.

For a c-bit S-box, suppose that (x0, x1, . . . , xc−1) and (y0, y1, . . . , yc−1) are variables
standing for the input and output differences, respectively. Denote (a0, a1, . . . , ac−1) 9
(b0, b1, . . . , bc−1) an impossible propagation, where ai, bi ∈ {0, 1}. Then the formula

c−1∨
i=0

(xi ⊕ ai) ∨
c−1∨
i=0

(yi ⊕ bi) = 1

excludes the impossible case since this equation fails when xi = ai and yi = bi hold for
all i’s. Besides, the left hand side (LHS) of this equation is a legitimate clause, because
xi ⊕ ai equals to either xi or xi depending on the value of ai. If there are η impossible
propagations (a(j)

0 , a
(j)
1 , . . . , a

(j)
c−1) 9 (b(j)0 , b

(j)
1 , . . . , b

(j)
c−1), j = 0, 1, . . . , η−1, in a DDT, the

following η clauses remove all the impossible differentials,

c−1∨
i=0

(xi ⊕ a(j)
i ) ∨

c−1∨
i=0

(yi ⊕ b(j)i ) = 1, j = 0, 1, . . . , η − 1. (1)

In other words, η clauses are enough to depict the ∗−DDT, precisely.
Due to the fact that some clauses can be integrated, the number of clauses can

be reduced. As an example, suppose that (a0, a1, . . . , ac−1) 9 (b0, b1, . . . , bc−1) and
(a0, a1, . . . , ac−1) 9 (b0, b1, . . . , bc−1) are two impossible differentials, adding the clause

c−1∨
i=1

(xi ⊕ ai) ∨
c−1∨
i=0

(yi ⊕ bi) = 1

enables us to remove these two cases, simultaneously. Over the course of the trial, we
detect that the runtime can be slightly reduced when we use fewer clauses. Thus, we aim
to reduce the number of acquired clauses further.

Note that the solution space of the η equations about xi’s and yi’s in (1) is same as
that of the following function:

f(x‖y) =
η−1∧
j=0

(
c−1∨
i=0

(xi ⊕ a(j)
i ) ∨

c−1∨
i=0

(yi ⊕ b(j)i )
)

= 1,

where x = (x0, x1, . . . , xc−1), y = (y0, y1, . . . , yc−1). Equivalently, we have

f(x‖y) =
∧

a‖b∈F2c
2

(
f(a‖b) ∨

c−1∨
i=1

(xi ⊕ ai) ∨
c−1∨
i=0

(yi ⊕ bi)
)
, (2)

where a = (a0, a1, . . . , ac−1), b = (b0, b1, . . . , bc−1). Equ. (2) is called the product-of-sum
representation of f . The issue of reducing the number of clauses is turned into the problem
of simplifying the product-of-sum representation of the Boolean function. Inspired by
[AST+17], we know that this simplification problem is a well-studied question in the
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field of Boolean algebra, and can be solved by the Quine-McCluskey (QM) algorithm
[Qui55, McC56] and Espresso algorithm [BHMSV84], theoretically. Although it is also an
NP-complete problem, the small-scale problem can be implemented by some off-the-shelf
software, such as Logic Friday3. After simplification, we obtain a relatively small set of
clauses, which is employed to depict the ∗−DDT.

3.2.2 Modelling Ordinary DDT

Now, we turn to set up SAT model for the ordinary DDT, and we restrict ourselves to
4-bit S-box with differential uniformity 44. Thus, the entries in the DDT only take four
possible values, which are 0, 2, 4, and 16, and the differential probability belongs to the
set {0, 2−3, 2−2, 1}. To cover the information of weight in the SAT model, we need to
bring in some auxiliary variables. More specifically, we introduce three variables, which are
denoted as p0, p1 and p2, such that p0 + p1 + p2 equals to the weight of the corresponding
differential. Let us consider an 11-bit Boolean function f(x‖y‖p), where x and y denote
the 4-bit input and output differences, p = (p0, p1, p2). The definition of f ties to the
value of DPS(x,y):

for DPS(x,y) = 0 : f(x‖y‖p) = 0;

for DPS(x,y) = 2−3 : f(x‖y‖p) =
{

1 if p = (1, 1, 1)
0 else ;

for DPS(x,y) = 2−2 : f(x‖y‖p) =
{

1 if p = (0, 1, 1)
0 else ;

for DPS(x,y) = 1 : f(x‖y‖p) =
{

1 if p = (0, 0, 0)
0 else .

With this definition, the product-of-sum representation of f(x‖y‖p) can be constructed
easily. The simplified set of clauses can be obtained by invoking Logic Friday. The
solutions of f(x‖y‖p) = 1 (or equivalently, the set of clauses) not only describe all possible
differentials but also involve messages about the corresponding weight.

So, the SAT model characterising the differential propagation through different opera-
tions of the round function is established. In the following part, we discuss the SAT model
of the objective function.

3.3 Objective Function
Assuming that we intend to search an r-round differential, and there are m parallel S-boxes
for one round of encryption. For the j-th S-box of the i-th round, we import three variables
p

(i,j)
k , k = 0, 1, 2, which are introduced in Section 3.2.2, to trace the message of the weight.

The ultimate goal for the search of differentials demands searching multiple trails sharing
the same input and output differences with the given differential. However, in this phase,
we do not conduct an irregular search. We prefer to search trails with higher probabilities
foremost for the reason that the characteristic with high probability potentially on average
has more contribution to the probability of the differential, which is a common sense
under the hypothesis of stochastic equivalence. Therefore, we need to put a restriction
on the sum of weight variables

∑
i,j,k

p
(i,j)
k . For simplicity, we use pξ to represent p(i,j)

k ,

where ξ = 3mi+ 3j + k, and denote the number of weight variables 3 · r ·m as µ, then∑
i,j,k

p
(i,j)
k =

µ−1∑
ξ=0

pξ.

3http://sontrak.com/
4The S-boxes of LED64 and Midori64 satisfy this restriction.

http://sontrak.com/
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In the automatic search of linear characteristics for ARX ciphers [LWR16], the authors
mentioned that addition over integers is an unnatural operation in SAT language. They
employed an inequality version of cardinality constraint as the objective function. Accord-

ingly, in our case, it is
µ−1∑
ξ=0

pξ 6 w, where w > 1, which requests the solver to search trails

with weight less than or equal to w. By applying sequential encoding method [Sin05], this
constraint can be transformed into SAT problem in CNF. To be specific, new dummy
variables ui,j (0 6 i 6 µ − 2, 0 6 j 6 w − 1) are introduced regarding the cardinality

constraint
µ−1∑
ξ=0

pξ 6 w, where w > 1, and the following clauses will return unsatisfiable

when the cardinality is larger than w,

p0 ∨ u0,0 = 1
u0,j = 1
pi ∨ ui,0 = 1
ui−1,0 ∨ ui,0 = 1
pi ∨ ui−1,j−1 ∨ ui,j = 1
ui−1,j ∨ ui,j = 1
pi ∨ ui−1,w−1 = 1
pµ−1 ∨ uµ−2,w−1 = 1

, (3)

where 1 6 i 6 µ− 2, 1 6 j 6 w − 1.

In this paper, in addition to the objective function
µ−1∑
ξ=0

pξ 6 w, we take
µ−1∑
ξ=0

pξ = w as

another candidate for the objective function. Before we explain the reason, we reveal the
essence of the usage of searching multiple solutions for SAT solvers. During the searching
phase of multiple solutions, after obtaining one solution, we will add one clause, which
bans the acquired solution from the solution space, into the original SAT problem so that
the solver will not return that solution. However, this procedure cannot repeat indefinitely,
because the scale of the SAT problem becomes larger and larger with the increasing number
of solutions we already obtained. If the size of the solution space is extremely huge, the
solver will come to a halt after finding a reasonable amount of solutions. That is to say,
the number of solutions handled by the solver is limited, which constitutes the motivation
we add the equality constraint as an optional objective function.

Let us consider an extreme situation. Note that, usually, with the growing value of
w, the number of trails with weight w will increase. Assuming that the amount of trails
with weight no more than w′ goes beyond our computation power, while the size of the set
composed of the trails with weight w′ is still within touch. So in that way, the objective

function
µ−1∑
ξ=0

pξ 6 w′ disables us from obtaining the trails with weight w′, while the equality

constraint enables us to do that. Thus, we take the equality constraint as a candidate,

when the original objective function is out of operation. Besides, we will select
µ−1∑
ξ=0

pξ = w

if we only target the trails with weight w. Furthermore, the amount of solutions managed
by the solver is determined by the individual SAT problem. According to our experience,
232 is an upper-bound.

To convert the equality constraint into a SAT problem in CNF, we first note that it is
equivalent to

µ−1∑
ξ=0

pξ 6 w and
µ−1∑
ξ=0

pξ > w.

The first constraint is same to the previous objective function, whose model is mentioned
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above. Since pξ ∈ {0, 1}, for the second constraint, we have

µ−1∑
ξ=0

pξ > w ⇔ µ−
µ−1∑
ξ=0

pξ 6 µ− w ⇔
µ−1∑
ξ=0

pξ 6 µ− w.

Thus, the model of the second constraint can be set up by interchanging pi and pi in (3)
and introducing dummy variables as usual.

3.4 From Characteristic to Differential
Let Xi = (Xi,0, Xi,1, . . . , Xi,n−1) and Yi = (Yi,0, Yi,1, . . . , Yi,n−1) be the input and output
differences of the i-th round. After obtaining an r-round characteristic C = (C0, C1, . . . , Cr),
where Ci = (Ci,0, Ci,1, . . . , Ci,n−1), we delete it from the solution space of the initial SAT
problem. To be specific, the following clause is appended so that the SAT solver does not
find this trail again

r−1∨
i=0

n−1∨
j=0

(Xi,j ⊕ Ci,j)

 ∨ n−1∨
j=0

(Yr−1,j ⊕ Cr,j) = 1.

This procedure is repeated until the solver returns unsatisfiable, which indicates that there
are no more solutions.

It is important to note that the method introduced in this section can be generalised
to analyse other ciphers although we only apply it to LED64 and Midori64. The potential
usages are provided in Supplementary Material A.

4 Weak-key Space of a Differential
In general, in differential cryptanalysis, the EDP of the differential is utilised to compute
the complexity. However, Theorem 1 claims that for key-alternating ciphers, the fixed-key
differential probability is lower than the EDP for a portion of the keys. For the set of keys
with N [k](α, β) < 2n−1EDP(α, β), the differential attacks are more likely to fail. Because
when we launch a key-recovery attack for these keys, it is relatively hard to obtain the
same amount of right pairs for the right key comparing to the cases where N [k](α, β) >
2n−1EDP(α, β). In this sense, we call the keys fulfilling N [k](α, β) > 2n−1EDP(α, β) the
weak-keys for the differential (α, β), and the set of weak-keys is denoted as WK(α, β). By
Theorem 1, the weak-key ratio is

∞∑
i=2n−1EDP(α,β)

Poisson(i; 2n−1EDP(α, β)),

where the probability is measured over all possible values of the key and all possible choices
of the key schedule.

It is well known that the normal distribution with mean λ and variance λ is an excellent
approximation to the Poisson distribution with parameter λ when λ is sufficiently large
(say, λ > 1000)[DS12]. Thus, when 2n−1EDP(α, β) > 1000, the weak-key ratio is about
50% measured over all possible selections of the key schedule.

Now, we restrict ourselves to key-alternating cipher taking SPN as its iterative function.
We intend to derive a necessary condition for a key being a weak-key and an upper-bound
of the weak-key ratio for a given differential. Moreover, we suppose that the S-layer is
a planar mapping, and we remind the readers that the S-layers of LED64 and Midori64
meet this condition since they both use S-boxes with differential uniformity 4.
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Figure 1: Two consecutive rounds of the key-alternating cipher.

Let us consider two consecutive rounds. For an n-bit cipher, denote ∆xi and ∆yi the
input and output differences of the S-layer, xi and yi the input and output values of the
S-layer, and ki the i-th subkey. Please see Figure 1. Since we assume that the S-layer is
planar, the input and output values of the differential (∆xi,∆yi) constitute affine spaces.
Thus, for the input and output spaces FS(∆xi,∆yi) and GS(∆xi,∆yi), we can construct
two li × n matrices MatiF and MatiG, and two li-bit vectors VeciF and VeciG such that

xi ∈ FS(∆xi,∆yi) if and only if MatiF · xi = VeciF ,
yi ∈ GS(∆xi,∆yi) if and only if MatiG · yi = VeciG.

Because xi+1 = P · yi ⊕ ki, we have

Mati+1
F · xi+1 = Mati+1

F ·
(
P · yi ⊕ ki

)
= Mati+1

F · P · yi ⊕Mati+1
F · ki = Veci+1

F . (4)

Then, the 2n-bit vector yi‖ki must satisfy the following condition:[
MatiG 0

Mati+1
F · P Mati+1

F

]
·
[
yi

ki

]
=
[

VeciG
Veci+1

F

]
. (5)

After simplifying this equation with Gaussian Elimination, yi‖ki fulfils a linear relation of
the following form [

MatiU
0 MatiK

]
·
[
yi

ki

]
=
[

VeciU
VeciK

]
. (6)

MatiK denotes an n-column binary matrix. For each row of MatiU , there is at least one
non-zero entry among the first n columns.

One necessary condition to ensure the solvability of Equ. (6) is that the equation
MatiK · ki = VeciK has at least one solution. That is, only the i-th subkey ki falls into the
affine space

{
x
∣∣MatiK · x = VeciK

}
, the corresponding 2-round differential characteristic

may possess right pairs. Otherwise, it is an impossible characteristic. Thus, for an r-round
trail, we can deduce (r − 1) spaces for the (r − 1) intermediate subkeys, respectively. The
trail may become a possible one only if all intermediate subkeys fall into the corresponding
subspaces. For an r-round differential consisting of m characteristics, if a particular key
leads all m characteristics to become impossible trails, the differential under this fixed-key
turns into an impossible differential. For the differential (α, β), we denote the set of these
keys as IK(α, β), which satisfies WK(α, β) ⊆ K − IK(α, β), where K represents the whole
keyspace. Therefore, a key may become a weak-key only if it does not belong to IK(α, β),
which constitutes a necessary condition for a key being a weak-key.

Suppose that the cardinality of the set IK(α, β) is p · |K|, where |K| is the size of K,
the possibility that a key is a weak-key is lower than 1− p, which is an upper-bound for
the weak-key ratio.

5 Differential Analysis of the LED64 Block Cipher
LED [GPPR11, GPPR12] is a lightweight block cipher proposed by Guo et al. at CHES
2011. LED uses a block size of 64 bits and LED64 is a version with 64-bit key. A 4× 4 array
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represents the 64-bit plaintext, and the encryption is composed of eight STEP functions
preceded by a key addition for LED64. LED64 has a simple key schedule, and the user key
K is used as it is in each round.

The STEP function is an AES-like design composed of four rounds, where the addition
of subkeys is replaced with the addition of constants. All the STEP functions can be
seen as public permutations and differ only in the round constants they use. The design
of LED can be regarded as a special case of the generalised Even-Mansour construction
[EM97]. We denote the i-th STEP function as Fi, 0 6 i 6 7. Each of these four rounds
uses, in sequence, the operations AddConstants(AC), SubCells(SC), ShiftRows(SR),
and MixColumnsSerial(MC). Please find in the Supplementary Material B.1 a detailed
description of the STEP function.

Note that in the submission version to CHES 2011 [GPPR11], the constant matrix
adopted in AddConstants operation only depends on the number of rounds. Later, the
authors issued a new version [GPPR12] with minor modification in the constant matrix.
The new round constant matrix relies on the key size as well. To distinguish these two
cases, we call the version at CHES 2011 the old version of LED64 and write it as LED64-old
for short. Correspondingly, the latest version is called the new version of LED64, and we
denote it as LED64-new.

In this section, we aim at searching for right pairs of a given differential for the STEP
function, so that some attacks targeting LED64 and counting on the differential property
of the STEP function can be improved.

5.1 Previous Differential Attacks for LED64

Several distinguishing and key-recovery cryptanalyses on reduced versions of LED have
been published [MRTV12, NWW15, IS12]. Some of these attacks rely on non-iterative or
iterative differentials of the STEP function with high height. It was discussed in [MRTV12]
that the 4-round differential characteristics of LED are not always plateau characteristic
[DR07a]. Therefore, the Two-Round Plateau Characteristic Theorem, which is used to
determine the number of right pairs following a given 2-round characteristic, cannot be
applied directly. By extending this work with mega boxes [DLP+09], they proposed a
specialised algorithm to find good differentials and right pairs for one step of LED. With
such algorithm, they obtained a non-iterative differential with more than 210 right pairs
and an iterative differential with six right pairs for one step of LED64-old. However, they
also claimed that both of these results might not be the best differentials regarding the
probability of the STEP function of LED.

In [MRTV12], the authors put forward 3-STEP and 4-STEP related-key differential
attacks for LED64. The 3-STEP attack is based on the assumption that one can detect
a non-iterative differential with high probability p in Fi, 0 6 i 6 5. Both the time and
memory requirements of this attack are 2n/2 · (1/p)1/2. On the other hand, the 4-STEP
attack relies on an iterative differential of Fi, where 1 6 i 6 5, with probability p′.
Moreover, the complexity is about 2n/2 · (1/p′)1/2.

Afterwards, Nikolić et al. provided a 5-STEP chosen-key attack for LED64. The attacker
managed to construct q-multicollisions with complexity less than the lower bound q ·2

(q−2)
(q+2)n

demanded by an ideal permutation. With the help of a non-iterative differential of Fi,
where 4 6 i 6 7, with high probability p, this attack can be realised with complexity
(q/p)1/2 · 230.2.

Notice that the complexities of these attacks all tie to the probabilities of the exploited
differentials. If differentials with better probability may exist and if such differentials are
discovered, some attacks in [MRTV12, NWW15] will be improved immediately. Please find
a detailed description of the three attacks mentioned above in Supplementary Material B.2.
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5.2 Automatic Search for the Right Pairs of the STEP function
In this section, we focus on searching for differentials with better probability and propose
an automatic method based on SAT to settle this problem. To begin with, we derive the
constraints on the plaintexts constituting the right pairs. Then, we proceed to translate
these constraints into SAT problem in CNF. After that, to get the desired right pairs, we
call SAT solver and request it to return multiple solutions.

5.2.1 Constraints for the Right Pairs

Denote ∆xi and ∆yi the input and output differences of the SubCells operation in the
i-th round. Let xi and yi be the input and output values of the i-th SubCells operation,
and ci stands for the round constant involved in the i-th round. For an illustration, please
refer to Figure 2.
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Figure 2: An illustration of the LED block cipher.

Since the STEP function does not comprise subkey, Equ. (4) is modified as

Mati+1
F · xi+1 = Mati+1

F (P · yi ⊕ ci+1) = Mati+1
F · P · yi ⊕Mati+1

F · ci+1 = Veci+1
F ,

where P = MC ◦ SR for the case of LED. Thus, the given differential characteristic only
puts restrictions on the value of yi. In other words, Equ. (5) is adapted to[

MatiG
Mati+1

F · P

]
·
[
yi
]

=
[

VeciG
Veci+1

F ⊕Mati+1
F · ci+1

]
. (7)

Moreover, because the intermediate values of the right pair must follow the encryption
rule, we have

yi = SC(xi), (8)
xi+1 = MC ◦ SR(yi)⊕ ci+1. (9)

Note that Equ. (7) - (9) entirely describe the plaintexts in the right pairs following the
given trail, i.e., the solutions of these constraints have a one-to-one correspondence with
the plaintexts constituting the right pairs of the given differential characteristic.

Since Equ. (8) is a non-linear constraint, we intend to transform the right pair searching
problem into an equivalent SAT problem and invoke SAT solver to find out the right pairs.

5.2.2 Algorithm for the Right Pairs

Note that Equ. (7) and (9) are linear constraints, which can be expressed with matrices,
and we include these constraints in the SAT problem by adding several XOR clauses. For
Equ. (8), we apply the trick introduced in Section 3. We define an 8-bit Boolean function
f(x‖y), where x and y refer to the input and output values of the S-box, respectively. f
outputs one if and only if y = S(x). Then, the product-of-sum representation of f can
be constructed, accordingly. A simplified set of clauses can be derived after calling Logic
Friday. Also, we involve them in the SAT problem.
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Now, all the constraints describing the right pairs are converted into clauses following
CNF format. Thus, we can invoke SAT solver for the search of right pairs under a
given differential characteristic. To get multiple right pairs following the given trail, after
obtaining a plaintext belonging to a right pair, we ban it from the solution space of the
original SAT problem. We repeat this step until the solver returns unsatisfiable.

Note that the above search is conducted under a fixed characteristic. To obtain the
right pairs of a given differential, we first search for many trails within the differential.
Then, we apply the automatic method to get right pairs for every characteristic, separately.

Although the choice of the constant ci results in that the trail with high probability
does not always possess right pairs, the probability of a characteristic indicates the number
of its right pair on average. Thus, the search for the trails is conducted in a probability-first
manner, i.e., we incline to search for trails with high probability firstly. With the growth
of the weight, the number of trails may increase rapidly. However, we observe that the
characteristic barely5 has right pairs, when its weight is more than 80. Thus, for the
characteristic searching phase mentioned in the remaining of this section, we only search
for trails with probability higher than a certain threshold. In this sense, we do not claim
that the search for the right pairs of the differentials in this paper is complete, we only
ensure that the number of right pairs of a differential is at least equal to the amount we
obtained.

5.3 Improved Differentials with Higher Height
5.3.1 Iterative Differentials

Note that the number of right pairs relates to the round constant matrix, which determines
whether the output values of the i-th round SubCell operation and the input values of
the (i+ 1)-th round SubCell operation can be connected with each other, as well as how
many pairs may pass it. Since different STEP functions adopt different round constants,
the numbers of right pairs of the same differential may vary for different STEP functions.

Mendel et al. [MRTV12] proposed a 4-round iterative differential with six right pairs
for the first STEP function F0 of LED64-old. To verify the correctness of our automatic
algorithm, we apply it to the same setting. For the fixed input and output differences
0x6000c00070003000, we first search for all differential characteristics with probability
higher than 2−90. There are 19 characteristics in total, and the probability distribution
of these trails are listed in Table 1. Then, we search for the right pairs following each
characteristic, the number of right pairs corresponding to the trails with a certain probability
is summarised in Table 1. Moreover, we output the six plaintexts, with which six right
pairs can be constructed. And the six right pairs are precisely same to those provided in
[MRTV12].

Table 1: Probability distribution for the iterative differential 0x6000c00070003000.

Probability 2−62 2−63 2−67 2−68 2−69 2−70 2−73

#{Trails} 1 1 1 5 6 1 4

#{Right Pairs} 4 2 0 0 0 0 0

Besides, we apply the automatic method to F0 of LED64-new and observe that the
values of the right pairs change although the number of right pairs remains the same. The

5For many differentials of LED64, we search for all the trails with probability higher than 2−90, but we
cannot find any right pairs for all the trails with weight beyond 80.
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three pairs are listed below:

{0x6ac6d235bedb9a2e, 0x0ac61235cedbaa2e},
{0x00c61665c3999a43, 0x60c6d665b399aa43},
{0x9cd618013e1da826, 0xfcd6d8014e1d9826}.

The remaining three pairs are obtained by exchanging the order of the plaintexts in the
above three pairs.

Moreover, we test many iterative differentials with the fixed differential pattern
0x*000*000*000*000 as well as unfixed patterns. The maximum numbers of right pairs
for different STEP functions (F0−F7) are summarised in Table 2. The concrete differentials
with the maximum number of right pairs are provided in Supplementary Material B.3.

Table 2: The maximum number of right pairs for the iterative differential.

Pattern Version F0 F1 F2 F3 F4 F5 F6 F7

Fixed maxold 40 36 38 42 38 44 38 38

maxnew 42 40 40 42 36 46 36 36

Unfixed maxold 66 64 62 68 58 82 90 90

maxnew 62 64 76 70 54 82 68 84

Fixed: The differential pattern is fixed as 0x*000*000*000*000.
Unfixed: The differential pattern is arbitrary.
maxold: The maximum number of right pairs for LED64-old.
maxnew: The maximum number of right pairs for LED64-new.

5.3.2 Non-iterative Differentials

In [MRTV12], the authors found a 4-round differential with 1026 right pairs for F0 of
LED64-old. We apply the automatic method to search for right pairs under the same
setting, and the number of right pairs is also 1026. We also test the right pairs of the same
differential for LED64-new and observe that not only the values of right pairs vary but also
the number of right pairs reduces. The differential only possesses 966 right pairs for F0 of
LED64-new.

Besides, we detect a differential has around 215 right pairs for all STEP functions
(F0 − F7) of the two versions, and the differential is

0x0780003ba0007000→ 0x36de4c3562a87eb7.

The numbers of right pairs under different settings are summarised in Table 3. We do
not claim that this differential achieves the highest height for four rounds of encryption,
it is just the best one we obtained. Please refer to Supplementary Material B.4 for more
details.

With these new differentials, the attack results mentioned in Section 5.1 can be improved.
For the 3-STEP related-key attack utilising a non-iterative differential, the time and memory
requirements are roughly 2n/2 · (1/p)1/2. Since p is enhanced from around 2−54 to 2−49,
the complexity decreases by a factor of about 22.5. The same amount of improvement
is achieved for the 5-STEP chosen-key attack, whose complexity is (q/p)1/2 · 230.2. In the
case of the 4-STEP related-key attack making use of an iterative differential, the time and
memory requirements are roughly 2n/2 · (1/p′)1/2. Notice that this attack demands to
put the iterative differential at the third last STEP function among the targeted four STEP
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Table 3: The maximum number of right pairs for the newly acquired differential.

Version F0 F1 F2 F3 F4 F5 F6 F7

maxold 32636 33270 32680 32918 32640 32736 32602 32550

maxnew 32722 32822 32744 32434 32562 32910 33060 32812

maxold: The maximum number of right pairs for LED64-old.
maxnew: The maximum number of right pairs for LED64-new.

functions. From Table 2, the maximum number of right pairs for both versions of LED64
is 82, when the position i of the STEP function is restricted with 1 6 i 6 5. Thus, p′ grows
from 6/264 to 82/264, which results in the decrease in the complexity by a factor of about
21.89.

6 Differentials of Midori64 Considering Key-schedule
It is pointed in Section 4 that for the differential of a key-alternating cipher, the weak-
key ratio is about 50% in theory when 2n−1EDP(α, β) > 1000. In this section, we first
analyse the weak-key ratio for some 4-round differentials of Midori64 and propose two
counterexamples whose weak-key ratios are much lower than 50%. Besides, we investigate
how many characteristics within a differential can hold simultaneously, because it may
reflect the highest fixed-key cardinality of a differential (α, β). To handle this, we realise
that this problem can be converted into a Max-PoSSo problem [AC11]. Then, we transform
this particular Max-PoSSo problem into SAT problem and invoke SAT solver to settle it.

Midori64 [BBI+15] is a lightweight block cipher with 64-bit block and uses 128-bit
keys. The round function of Midori64 is iterated 16 times and consists of an S-layer
SubCell, a P-layer ShuffleCell and MixColumn and a key-addition layer KeyAdd. The
key-schedule is linear. A 128-bit secret-key K is split into two 64-bit keys K0 and K1, i.e.,
K = K0‖K1. Then, the i-th round key is generated as RKi = K(i mod 2) ⊕ αi, where αi’s
are predetermined constant matrices. Please refer to Supplementary Material C for more
information.

6.1 Upper-Bound for Weak-key Ratio of Differential
6.1.1 Estimating the Cardinality of the Weak-key Space

Suppose that the r-round differential (α, β) contains m characteristics denoted as C(j) =
(C(j)

0 , C
(j)
1 , . . . , C

(j)
r ), where C(j)

0 = α, C(j)
r = β, and 0 6 j 6 m − 1. Let xi and yi

be the input and output values of the i-th SubCell operation. Please refer to Figure 3
as an illustration, where P represents the composition of ShuffleCell and MixColumn
operations.
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Figure 3: An illustration for the Midori64 block cipher.

We prove in Section 4 that for each trail C(j), (r − 1) affine subspaces describing the
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(r − 1) internal subkeys can be derived. Only if all subkeys respectively fall into these
subspaces, the corresponding characteristic may become a possible one. Due to the linear
structure of the key schedule, for Midori64, these small spaces can be transformed into an
affine subspace V (j)

K of the 128-bit keyspace K = F128
2 . That is, for K lies in the set V (j)

K ,
the j-th trail may possess right pairs. By the definition of weak-key space WK(α, β), it

must follow WK(α, β) ⊆
m−1⋃
j=0

V
(j)
K , which indicates that

Pr {K | K ∈WK(α, β)} 6 Pr

K
∣∣∣∣∣K ∈

m−1⋃
j=0

V
(j)
K

 . (10)

Thus, Pr
{
K

∣∣∣∣∣K ∈ m−1⋃
j=0

V
(j)
K

}
constitutes a natural upper-bound for the weak-key ratio.

To evaluate the cardinality of the set
m−1⋃
j=0

V
(j)
K , we have to handle the union of a series

of affine spaces. For small amount of affine spaces, we can make use of some techniques
in the field of linear algebra. However, when the number of affine spaces is considerable,
directly dealing with them is not easy because the union of the affine spaces is probably
no longer an affine space. By De Morgan’s laws, we know

K −
m−1⋃
j=0

V
(j)
K =

m−1⋂
j=0

(
K − V (j)

K

)
.

Thus, estimating the quantitative characters of the set
m−1⋃
j=0

V
(j)
K is equivalent to evaluating

those characters of the set
m−1⋂
j=0

(
K − V (j)

K

)
, which is the intersection of some complementary

sets. And we find it is relatively convenient to deal with intersection operations.

To estimate the number of entries in
m−1⋂
j=0

(
K − V (j)

K

)
, we manage to convert the

restrictions on the set into some clauses in CNF, and call SAT solver and ask it to return
solutions satisfying the constraints. Note that translating the intersection operations is an
easy task since the CNF is the conjunction of a series of clauses in nature. The remaining
work is centred on how to use clauses, expressed as disjunctions of (possibly negated)
variables, to describe the complement of an affine space.

For the affine space V (j)
K , an s(j)× 128 matrix M (j) and an s(j)-bit vector V (i) can be

constructed such that

K = (k0, k1, . . . k127) ∈ V (j)
K if and only if M (j) ·K = V (j). (11)

Denote the l-th line of M (j) as M (j)
l , and the l-th bit of V (j) as V (j)

l . Then,

M (j) ·K = V (j) if and only if
s(j)−1∧
l=0

(
1⊕M (j)

l ·K ⊕ V
(j)
l

)
= 1.

Equivalently, we have

V
(j)
K =

{
K
∣∣∣M (j) ·K = V (j)

}
=
s(j)−1⋂
l=0

{
K
∣∣∣1⊕M (j)

l ·K ⊕ V
(j)
l = 1

}
.
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By De Morgan’s laws,

K − V (j)
K =

s(j)−1⋃
l=0

{
K
∣∣∣M (j)

l ·K ⊕ V
(j)
l = 1

}
.

Thus,

K ∈ K − V (j)
K if and only if

s(j)−1∨
l=0

(
M

(j)
l ·K ⊕ V

(j)
l

)
= 1. (12)

Because V (j)
l ∈ {0, 1}, and M

(j)
l · K can be organised by an XOR clause about ki’s,

s(j)−1∨
l=0

(
M

(j)
l ·K ⊕ V

(j)
l

)
satisfies the format of the clause. After addingm clauses matching

m trails, the restrictions on the elements in K−
m−1⋃
j=0

V
(j)
K are converted into SAT problem

in CNF.
We can infer from Theorem 1 that the cardinalities of the set

m−1⋃
j=0

V
(j)
K and its com-

plementary set are O(|K|) roughly. However, SAT solvers have limited ability to search
multiple solutions as we explained before. If the independent variables of the above SAT
problem are set as the master key bits, say k0, k1, . . . , k127, the searching space roughly is
ε · 2128, where ε is a non-negligible number. We definitely cannot afford the search.

To make the estimation feasible, we notice that some master key bits are not involved
in any characteristic of a differential when the number of rounds is not so long. On the
other hand, by observing Equ. (12), the composition M (j)

l ·K of the master key bits can
be treated as independent variables when the number of the independent compositions is
less than 128 notably, which holds when the number of rounds is small. To handle the
dependencies between M (j)

l ·K’s, we first combine all rows of the matrices M (j) into one
128-column matrix M . Then, we choose independent rows from M , which are denoted
as M0, M1, . . ., M`−1, and set the independent variables of the SAT problems as x0, x1,
. . ., x`−1, which respectively stand for M0 ·K, M1 ·K, . . ., M`−1 ·K. Since the remaining
vectors M (j)

l are linear combinations of M0, M1, . . ., M`−1, the corresponding variables
M

(j)
l ·K can be expressed by the XOR of x0, x1, . . ., x`−1. Please refer to Figure 4 for an

illustration. Note that one solution for x0‖x1‖ · · · ‖x`−1 corresponds to |K|/2` possible
values for k0‖k1‖ · · · ‖k127 since a particular value of x0‖x1‖ · · · ‖x`−1 can be considered as
putting ` linear limitations for the whole keyspace. For a reasonable amount of independent
variables, if we can get ι solutions for x0‖x1‖ · · · ‖x`−1, the probability that a key falls into

K −
m−1⋃
i=0

V
(i)
K is ι/2`. Hence, with Equ. (10), the weak-key ratio is less than or equal to

1− ι/2`.

6.1.2 4-round Differentials with Weak-key Ratio Lower than 50%

We apply the above technique based on SAT to analyse some 4-round differentials of
Midori64. In the following, we provide two examples. The weak-key ratio of one differential
is less than 21.36%. For another one, the weak-key ratio is bounded by 3.94%, which
means that for 96.06% of the key, the corresponding differential is an impossible differential
although its EDP still enables us to utilise this differential to launch a key-recovery attack
for the cipher in theory. These examples are meaningful since we seldom consider the
probability that a distinguisher holds when we launch a differential attack. The distribution
of the fixed-key DP affects the success probability of the attack. For a differential, if the
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1

...

M
(0)
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1

...
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(m−1)
s(m−1)−1

M (0)

M (1)

M (m−1)

...

M

Choose independent rows

M0,M1, . . . ,M`−1

Set independent variables
x0, x1, . . . , x`−1

Figure 4: Independent variables selecting phase.

possibility of a key with fixed-key DP zero is very high, when we exploit this differential
in an attack, we are more likely to regard the right key as a wrong key, since we cannot
obtain any right pairs corresponding to it. At the same time, we will wrongfully accept
a wrong key with right pairs as a right key. These examples remind us that for some
lightweight block ciphers with a simple key schedule, or at least for Midori64, we need to
pay attention to the effectiveness of the differential distinguisher itself.

The First Example The first differential is

0x0022022202200202→ 0x2220000022022022.

We do not restrict the probability of the characteristic and search for all trails belonging
to this differential. There are 896 characteristics in total, and the probability distribu-
tion of these trails is listed in Table 4. The EDP of this differential is 2−23.79. After
analysing these trails, 16 independent variables are required to solve the estimation
problem. We call SAT solver and obtain 51540 solutions for x0‖x1‖ · · · ‖x15. Therefore,

Pr
{
K

∣∣∣∣∣K ∈ K − m−1⋃
j=0

V
(j)
K

}
= 51540/216 ≈ 78.64%. Accordingly, the weak-key ratio for

this differential is less than 21.36%, which is much lower than 50%.
To verify the validity of this probability, we test the number of right pairs for the

randomly selected keys. The experimental results illustrate that the probability for a
fixed-key with no right pair is about 78.66%, which is in accordance with our estimation.
Moreover, if we adopt the distribution in Theorem 1 in this case, the possibility of a key
with fixed-key probability zero is almost 0%, which does not match the experimental result.

Table 4: Probability distribution for the first differential of Midori64.

Probability 2−32 2−36

#{Trails} 256 640

The Second Example The second differential is

0x7000000000a0000a→ 0x5ffa05ff5faf00aa.

In this case, we obtain Pr
{
K

∣∣∣∣∣K ∈ K − m−1⋃
j=0

V
(j)
K

}
≈ 96.06%. For 96.06% of the keys, the

differential is an impossible one. If this differential is applied in a key-recovery attack, the
attack will fail for most of the keys, since the attacker cannot find any right pair under
the right key. This result is also examined with random tests.
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6.2 Maximum Number of Compatible Characteristics in a Differential
In this section, we propose a method to estimate the maximum number of trails holding
simultaneously. But before that, we consider how to compute the differential probability
of the characteristic when every internal subkey falls into the corresponding affine space
derived from the given trail.

6.2.1 Partially Expected Differential Probability

Note that the EDP of a characteristic is defined as the average differential probability of
that characteristic over all keys. During the deduction of the cardinality of the weak-key
space in Section 6.1, we point out that for each characteristic C(j), an affine subspace
V

(j)
K of the keyspace can be derived. The characteristic may possess right pairs only when
K belongs to V (j)

K . We define the partially expected differential probability (EDPP(C(j)))
of C(j) as the average differential probability of that characteristic over all keys in V (j)

K ,
which is equal to

EDPP(C(j)) = EDP(C(j)) · K
|V (j)
K |

,

where |V (j)
K | stands for the size of V (j)

K . Thus, we employ EDPP(C(j)) as the expected
differential probability of the characteristic when all intermediate keys satisfy the conditions
imposed by the trail. We will see that this evaluation fits very well with the experimental
result.

It is interesting to see that this definition has an association with the notion of plateau
characteristic[DR07a], which is a particular type of characteristics whose probability for
each value K of the key depends on the key and can have only two values. Nevertheless,
since Midori64 takes almost-MDS matrix instead of MDS matrix as the diffusion layer,
and its structure is different from that of AES, we cannot determine whether the 4-round
trail is plateau characteristic.

6.2.2 Maximum Number of Compatible Characteristics & Max-PoSSo Problem

The affine spaces V (j)
K ’s derived from distinct trails may intersect with others. The keys

belonging to the intersection set of some trails may result in an enhancement of the proba-
bility. The interesting problem is to investigate how many trails can hold simultaneously.
Furthermore, we wonder the scale of the intersection set of V (j)

K ’s corresponding to these
trails. The differential attack is more likely to succeed for the keys belonging to this
intersection set comparing to the one targeting the keys out of the possible set derived
from all the trails of the differential. Or rather, the differential attack can be realised with
less data requirement in this case.

To begin with, we recall a closely related problem in the Cold Boot attack [AC11].
Let us consider the set F = {f0(x), f1(x), . . . , fm−1(x)}, where fi(x)’s are polynomial
functions over Fn2 , x ∈ Fn2 . The Max-PoSSo problem is to find any x ∈ Fn2 that satisfies
the maximum number of polynomials in F , i.e., search x such that the functions in F
satisfy fi(x) = 0 as much as possible.

Then, we return to the problem of determining the maximum number of compatible
characteristics in a differential. By the discussion in Section 6.1, the keys K in V (j)

K satisfies
Equ. (11). That is, if fj(K) denotes fj(K) = M (j) ·K ⊕ V (j), we know

K ∈ V (j)
K if and only if fj(K) = 0.

Hence, the problem of determining the maximum number of compatible characteristics is
equivalent to the issue of findingK under which the number of functions following fj(K) = 0
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is maximised. It is a Max-PoSSo problem over the set F = {f0(K), f1(K), . . . , fm−1(K)}.
There are many automatic methods based on MILP and SAT to solve this kind of problems
[AC11, BCJ07]. To retain the consistency of this paper, we put forward a technique based
on SAT problem to solve our Max-PoSSo problem.

The most critical step is to transform the Max-PoSSo problem into a SAT problem in
CNF. To realise this goal, we introduce an auxiliary bit variable ζj for each of the polyno-
mials fj(K)’s. ζj can be regarded as the characteristic function of the set {K|fj(K) = 0},
and it equals to 1 when fj(K) = 0. Therefore, finding K maximising the number of fj ’s

following fj(K) = 0 is equivalent to searching K maximising
m−1∑
j=0

ζj . In other words, the

objective function of this problem can be set as
m−1∑
j=0

ζj > t, where t stands for a predeter-

mined constant. We introduce how to convert this cardinality constraint into clauses in
Section 3.3. The remaining task is to construct SAT model to depict the characteristic
function ζj .

Following the symbols defined in Section 6.1, we have

ζj = 1 if and only if M (j)
l ·K ⊕ V

(j)
l = 0 for l = 0, 1, . . . , s(j)− 1.

We use y(j)
l to represent M (j)

l ·K ⊕ V
(j)
l for short. The above condition is equivalent to

restrict the value of the concatenation y(j)
0 ‖y

(j)
1 ‖ · · · y

(j)
s(j)−1‖ζj of variables to either 0 · · · 0︸ ︷︷ ︸

s(j)

1

or u0‖u1‖ · · · ‖us(j)−1‖0, where at least one ul satisfies ul = 1. Thus, all the impossible
values, which are

0 . . . 0︸ ︷︷ ︸
s(j)

0, 1 ∗ . . . ∗︸ ︷︷ ︸
s(j)−1

1, ∗1 ∗ . . . ∗︸ ︷︷ ︸
s(j)−2

1, . . . , ∗ . . . ∗︸ ︷︷ ︸
s(j)−1

11,

for the concatenation are required to eliminate. To ban the s(j) + 1 impossible values from
the solutions for the concatenation, we construct the following s(j) + 1 clauses:

s(j)−1∨
l=0

y
(j)
l ∨ ζj = 1

y
(j)
l ∨ ζj = 1 for l = 0, 1, . . . , s(j)− 1

, (13)

which constitute the SAT model depicting the characteristic function. Note that y(j)
l is

just a symbolic representation of the real variables M j
l ·K’s. Besides the variables ζj , we

need to introduce variables for M j
l ·K. The technique is similar to the one in Section 6.1,

i.e., only independent variables among these M j
l · K’s are selected as the independent

variables for the SAT problem and the remaining M j
l ·K’s are represented as the XOR of

these independent variables.
To sum up, the SAT problem for searching the maximum number of compatible

characteristics is set up by adding m groups of clauses, which is in the form of Equ. (13),
and involving the cardinality constraint on ζj . After that, we can invoke SAT solver to
settle it.

6.2.3 Application

We apply this method to the first differential in Section 6.1. Firstly, we estimate the
partially expected differential probability for the 896 characteristics, respectively. Among
these trails, four trails have EDPP = 2−22, 84 trails follow EDPP = 2−23, 168 trails satisfy
EDPP = 2−24, and the EDPP’s of remaining 640 trails all equal to 2−25.
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Then, we investigate the maximum number of compatible trails. For the 896 trails, we
find that the maximum number of compatible characteristics achieves 212. When fixing

the objective function as
m−1∑
j=0

ζj 6 212 and searching for multiple solutions by banning

the acquired solutions from the initial SAT problem, we find three groups composed of
212 trails, and the trails in each group hold simultaneously. Denote the three groups as
G(i) =

{
C

(i)
0 , C

(i)
1 , . . . , C

(i)
211

}
, i = 0, 1, 2.

We analyse the three groups and observe that for all G(i)’s, the values of EDPP for 44
trails in the group are 2−23, and the EDPP values for the remaining 168 characteristics
are 2−24. Thus, for the keys falling into the intersection set of V (j)

K ’s derived from the
212 trails, which is represented as WK(G(i))6, the corresponding differential probability is
improved to 2−16, while the EDP of the differential is 2−23.79.

Moreover, the scale ofWK(G(i)) can be estimated. This task can be realised by selecting
the augmented matrices

[
M (j)

∣∣V j]’s corresponding to the trails C(i)
j in G(i) and combining

these matrices into a large matrixM(G(i)) first and then simplifyingM(G(i)) with Gaussian
Elimination. Since these trails in the group are compatible trails, the linear equation
system on K generated by M(G(i)) must have solutions. Denote the rank of M(G(i))
as rank(G(i)), the size of WK(G(i)) is 2128−rank(G(i)). For the three groups, the ranks
rank(G(i)) are all equal to 15. On the other side, we must have WK(G(i))∩WK(G(j)) = ∅
if i 6= j, otherwise, G(i) ∪G(j) will be the set with the maximum number of compatible
characteristics. However,

∣∣G(i) ∪G(j)
∣∣ > 212 results in a contradiction with the fact that

the maximum number of compatible trails is 212.
We wonder whether the phenomenon, where the expected differential probability is

improved to 2−16, occurs for other groups containing less than 212 trails. Thus, we gradually

decrease the value in the objective function. For the objective function
m−1∑
j=0

ζj 6 64, we

obtain 16 groups in total. The information of these groups is summarised in Table 5. We
exam the eight subspaces derived from the eight groups with no less than 208 compatible
trails and find that arbitrary two of the subspaces do not result in an intersection. Hence,
we obtain eight subspaces, on which the expected differential probability is improved to
2−16. For a randomly drawn key, the possibility that the EDP of the differential under
this key is no less than 2−16 is at least 2−15 × 8 = 2−12, which means that on average for
one of the 4096 keys, the EDP of the differential under this key is enhanced from 2−23.79

to 2−16. On the contrary, by Theorem 1, it is almost impossible for a key with fixed-key
probability 2−16 under the same setting.

Table 5: The information of groups with no less than 64 trails.

#{Trails} 212 211 208 128

#{Groups} 3 4 1 8

Rank 15 15 15 16

EDPP 2−16 2−16 2−16 2−18

To exam the correctness of this conclusion, we search for right pairs for 9280 randomly
generated keys. Among the 9280 keys, the differential under 1994 keys has right pairs, and
the distribution of the number of right pairs for the 1994 keys is illustrated in Figure 5. We
find that the number of right pairs under two keys achieves about 216, and the probability

6We reuse the notation of weak-key space since these keys belong to weak-key space.
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is about 2/9280 ≈ 2−12.18, which is very close to the theoretical prediction 2−12. Thus,
the rightmost singular point in Figure 5 can be explained.
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Figure 5: Distribution of the number of right pairs.

We remark that the techniques exploited to derive the theoretical conclusions are
meaningful, although it seems that all the theoretical conclusions can be verified with
random tests. On the one hand, the experimental results hold with a probability, and we
cannot entirely rely on them to draw conclusions. Besides, as we mentioned before, the
occurrences of some phenomena depend on a vast amount of tests. If we are not convinced
of their existences, we do not know how many times we need to repeat until we observe
them. On the other hand, the runtimes consumed by the theoretical deduction and the
random tests are different. For the examples in this section, the complexity is around 240,
and it takes us a few days to obtain the results. However, the theoretical conclusions are
discovered within a few minutes, and they hold for sure.
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A Potential Usages for General 4-bit and 8-bit S-boxes
Even though we put some limitations on the S-box in Section 3.2.2, we remark that the
method can be generalised to the more general cases.

For 4-bit S-boxes with differential uniformity larger than 4, whose weight is not limited
to being an integer, some tricks can be applied to address this problem. For example, we
may import new variables as a symbolic representation for the decimal part of the weight.
Suppose that DPS(x,y) = 6/16, and the corresponding weight is 1.415. For the integer
part, we introduce variables pi’s as usual. Additionally, we use variable s to stand for the
existence of 0.415. The Boolean function describing the DDT is modified as:

for DPS(x,y) = 0 : f(x‖y‖p‖s) = 0;

for DPS(x,y) = 2−3 : f(x‖y‖p‖s) =
{

1 if p‖s = (1, 1, 1, 0)
0 else ;

for DPS(x,y) = 2−2 : f(x‖y‖p‖s) =
{

1 if p‖s = (0, 1, 1, 0)
0 else ;

for DPS(x,y) = 2−1.415 : f(x‖y‖p‖s) =
{

1 if p‖s = (0, 0, 1, 1)
0 else ;

for DPS(x,y) = 1 : f(x‖y‖p‖s) =
{

1 if p‖s = (0, 0, 0, 0)
0 else .

The objective function remains only related to
∑
i,j,k

p
(i,j)
k , the solution for s is as output in

addition to the trail. The total weight, which equals to
∑
i,j,k

p
(i,j)
k + 0.415 ·

(∑
i,j

s(i,j)

)
, is

computed outside the SAT problem.
For 8-bit S-boxes, whose DDT cannot be handled by Logic Friday directly, we may

borrow the method of converting DDT into some pb-DDT’s introduced in [AST+17]. As
to the weights being non-integer values, the trick stated above can be applied.

B Supplementary Materials for LED

B.1 STEP Function of LED

The four operations consisted in the round function is defined as follows.

AddConstants At each round, the 6-bit round constant (rc5, rc4, rc3, rc2, rc1, rc0) is ar-
ranged into an array and is combined with the state using bitwise exclusive-or. In
the submission version to CHES 2011, the constant matrix is defined as

0 (rc5‖rc4‖rc3) 0 0
1 (rc2‖rc1‖rc0) 0 0
2 (rc5‖rc4‖rc3) 0 0
3 (rc2‖rc1‖rc0) 0 0

 . (14)

Later, the authors issued a new version [GPPR12] with minor modification in the
round constant matrix. The new round constant matrix depending on the key size
as well is 

0⊕ (ks7‖ks6‖ks5‖ks4) (rc5‖rc4‖rc3) 0 0
1⊕ (ks7‖ks6‖ks5‖ks4) (rc2‖rc1‖rc0) 0 0
2⊕ (ks3‖ks2‖ks1‖ks0) (rc5‖rc4‖rc3) 0 0
3⊕ (ks3‖ks2‖ks1‖ks0) (rc2‖rc1‖rc0) 0 0

 , (15)
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where (ks7, ks6, . . . , ks0) stands for the 8-bit representation of the key size.

SubCells Each nibble is replaced by the nibble generated after using the PRESENT
[BKL+07] S-box.

ShiftRows Row i of the array is rotated i cell positions to the left for i = 0, 1, 2, 3.

MixColumnsSerial Each column of the array is viewed as a column vector and replaced
by the column vector that results after post-multiplying the vector by a matrix M .

B.2 Differential Attacks for LED64

In this section, we recall the three differential attacks of LED64 for the integrality of the
paper.

B.2.1 3-STEP and 4-STEP Related-key Attacks for LED64

The attack is based on the assumption that one can find a good differential ∆∗ → ∆ with
high probability p in Fi, see Figure 6.

∆⊕∆∗
∆

Fi

∆∗ → ∆

∆

Fi+1

Probability 1

∆

Fi+2

∆→ ?

∆

∆C

Figure 6: Attack on LED64 with 3-STEP

The attacker first constructs a list L composed of 2n/2 · (1/p)1/2 pairs (∆Fi+2(a), a),
where ∆Fi+2(a) = Fi+2(a) ⊕ Fi+2(a ⊕ ∆). Then, he randomly chooses P and P ′ =
P ⊕∆ ⊕∆∗ and asks for the ciphertexts C and C ′. If ∆C = C ⊕ C ′ is in the list L, a
candidate for K is obtained as K = Fi+2(a)⊕ C. After repeating the randomly chosen
procedure, the expected number of matches in the list L is 1/p. Since the differential in Fi
holds with probability p, one of these matches will satisfy ∆Fi = ∆. In sum, the time and
memory requirements of this attack depending on p are 2n/2 · (1/p)1/2.

This attack can be extended to four steps of LED64. The main observation is that if we
can find a good iterative differential ∆→ ∆ for Fi+1 with probability p, then a differential
covering four steps can be constructed and the attack described above can be applied with
2n/2 · (1/p)1/2 time and memory requirements. Please refer to Figure 7 for an illustration.

∆

∆

Fi

Probability 1

∆

Fi+1

∆→ ∆

∆

Fi+2

Probability 1

∆

Fi+3

∆→ ?

∆

∆C

Figure 7: Attack on LED64 with 4-STEP

B.2.2 5-STEP Chosen-key Attack for LED64

The attack is designed to construct q-multicollisions, which is defined below.

Definition 1 ([BKN09]). A differential q-multicollisions for the block cipher EK(·) is
defined as a set of two differences ∆P and ∆K and q key-plaintext pairs (K1, P1), (K2, P2),
. . . , (Kq, Pq) that satisfy the relation:

EK1(P1)⊕ EK1⊕∆K(P1 ⊕∆P )
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= EK2(P2)⊕ EK2⊕∆K(P2 ⊕∆P )
= · · ·
= EKq

(Pq)⊕ EKq⊕∆K(Pq ⊕∆P ).

Bogdanov et al. [BKN09] proved that it takes at least q · 2
(q−2)
(q+2)n queries to produce

a differential q-multicollisions for an ideal n-bit permutation. Thus, an attacker can
distinguish the dedicated cipher from an ideal permutation in the chosen-key model if he
can find a differential q-multicollisions on the cipher with a complexity less than the lower
bound q · 2

(q−2)
(q+2)n.

The attack based on the differential path shown in Figure 8. and aims to construct
a differential q-multicollisions. The differential on Fi+4 is fixed to be a good differential
∆→ ∆∗ with probability p, and then set ∆P = ∆, ∆K = ∆, and ∆C = ∆⊕∆∗.

The attacker starts with launching a meet-in-the-middle attack between Fi+1 and
Fi+2. He randomly selects 2s values for the input X of Fi+1 as well as the output Y of
Fi+2, and matchs between Fi+1(X)⊕ Fi+1(X ⊕∆) and F−1

i+2(Y )⊕ F−1
i+2(Y ⊕∆)⊕∆. On

average, there are 22s−64 matches. For each match, the two values Fi+1(X)⊕F−1
i+2(Y ) and

Fi+1(X)⊕ F−1
i+2(Y ⊕∆) are selected as key K. For each candidate key, he computes C

and C ′ from the pairs (K,Y ) and (K ⊕∆,Y ⊕∆). If ∆C equals to ∆⊕∆∗, he stores the
corresponding pair (P,K). On average, 22s−63 · p values of (P,K) are stored.

To produce a differential q-multicollisions, we set 22s−63 · p = q, which implies s =
1
2 log2 q − 1

2 log2 p + 31.5. Since the time complexity is dominated by the meet-in-the-
middle attack, which is 2s−1.3. To make the distinguishing attack success, we demand
2s−1.3 < q · 2

(q−2)
(q+2)n.

∆

∆

Fi

Probability 1

∆

Fi+1

∆

Fi+2

∆

Fi+3

Probability 1

∆

Fi+4

∆→ ∆∗

∆

∆C

Meet-in-the-middle

Figure 8: Attack on LED64 with 5-STEP

B.3 Iterative Differentials with High Height for LED64

We fix the number of active S-boxes to 25 for four rounds of LED and invoke SAT solver to
exhaustively search for the 4-round iterative differential with input and output differences
following the pattern 0x*000*000*000*000, i.e., only the first column is active. The
experimental results indicate that 829 differentials satisfy this pattern, while it was
mentioned in [MRTV12] that 240 iterative characteristics were available. For each of the
829 differentials, we search for the corresponding right pairs for different STEP functions
(F0 − F7) of LED64-old as well as LED64-new, and the maximum number of right pairs
under different cases can be found in Table 2. The concrete differentials with the maximum
number of right pairs are listed in Table 6.

Since we wonder whether there are iterative differentials with higher height following
other patterns, we remove the restriction on the pattern and aim to search for iterative
differential characteristic with maximum probability since the higher probability potentially
indicates more right pairs. We observe that the probability for a 4-round iterative
characteristic is less than or equal to 2−60. There are in total 80 trails with probability
2−60. Then, we search for right pairs for the 80 differentials containing the 80 trails. The
maximum number of right pairs under different settings can be found in Table 2. Please
refer to Table 7 for the dedicate differentials.
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Table 6: Iterative differentials with pattern 0x*000*000*000*000.

STEP
LED64-old LED64-new

Input/Output Difference #{RPs} Input/Output Difference #{RPs}

F0 0x00000000d0008000 40 0x0000000000003000 42

F1
0x0000000000003000 36 0x4000e000c0000000 40
0x000000003000a000

F2 0x000000008000f000 38 0x00000000d0008000 40

F3 0x0000000000003000 42 0x00000000d0008000 40

F4 0x0000000000003000 38 0x00000000d0008000 36

F5 0x0000000000003000 44 0x000000008000f000 46

F6 0x0000000000003000 38 0x7000e00000000000 36
0x000000003000a000

F7 0x0000000000003000 38 0x0000000000003000 36

#{RPs}: The maximum number of right pairs.

Table 7: Iterative differentials with unfixed pattern.

STEP
LED64-old LED64-new

Input/Output Difference #{RPs} Input/Output Difference #{RPs}

F0 0x0089000016000fd0 66 0xd004d00000a0009d 62

F1 0x0089000016000fd0 64 0x010006f000d80009 64

F2 0x00e0c0f0d0009030 62 0x010006f000d80009 76

F3 0x00d3020302500975 68 0x00d3020302500975 70

F4 0x0000070008c000b0 58 0x010006f000d80009 54
0x00e0c0f0d0009030

F5 0x0001700630088000 82 0x0001700630088000 82

F6 0x00d3020302500975 90 0x0001700630088000 68

F7 0x00d3020302500975 90 0x0001700630088000 84

#{RPs}: The maximum number of right pairs.
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B.4 Details for the Non-iterative Differentials
The authors [MRTV12] provided a 4-round differential with 1026 right pairs for the first
STEP function of LED64-old,

0x002280ff00091b30→ 0xbb0b800098050701.

We apply the automatic method to search for the right pairs of this differential, and first
search for all characteristics with probability greater than 2−80. There are 1039 trails,
and the probability distribution of these trails is shown in Table 8. Note that only the
characteristic with EDP 2−54 has right pairs, and the number of right pairs is 1026. We
also test the right pairs of the same differential for LED64-new and observe that not only
the values of right pairs vary but also the number of right pairs reduces. The differential
only possesses 966 right pairs for the first STEP function of LED64-new.

Table 8: Probability distribution for the non-iterative differential in [MRTV12].

Probability 2−54 2−73 2−74 2−75 2−76 2−77 2−78 2−79

#{Trails} 1 4 22 67 142 178 261 364

#{Right Pairs} 1026 0 0 0 0 0 0 0

Theoretically, the probability of 4-round differential characteristics may go up to 2−50

(25 active S-boxes and each with probability 2−2). Thus, we feel that the height of the
4-round differential can be improved and target at finding differentials with more right
pairs. Firstly, by fixing the weight of the trail, we search for 4-round characteristics with
EDP 2−50 by using the method introduced in Section 3. We can obtain more than five
millions of characteristics. Then, we randomly select 100 trails and search for the right
pairs of the 100 differentials corresponding to these trails. In the characteristic-search
phase, we restrict ourselves to search for trails with probability more significant than 2−80.

Among these differentials, one differential has around 215 right pairs for all STEP
functions (F0 − F7) of the two versions, and the differential is

0x0780003ba0007000→ 0x36de4c3562a87eb7.

C A Brief Introduction of Midori64

Midori64 takes the following 4× 4 state as a data expression:
s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 ,
where the size of each cell is 4 bits.

Each layer of the round function updates the state S as follows.

SubCell A 4-bit S-box is applied to every cell of the state.

ShuffleCell The cells of the state are permuted as follows:

(s0, s1, . . . , s15)← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

MixColumn The matrix M is applied to every column of the state S.

KeyAdd The i-th round key RKi is XORed to the state S.
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