
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2016, No. 1, pp. 57–70. DOI:10.13154/tosc.v2016.i1.57-70

Rotational Cryptanalysis in the Presence of
Constants

Tomer Ashur1 and Yunwen Liu1,2∗

1 Department of Electrical Engineering (ESAT), KU Leuven and iMinds, Leuven, Belgium
2 College of Science, National University of Defense Technology, Changsha, China

[tomer.ashur,yunwen.liu]@esat.kuleuven.be

Abstract. Rotational cryptanalysis is a statistical method for attacking ARX con-
structions. It was previously shown that ARX-C, i.e., ARX with the injection of
constants can be used to implement any function. In this paper we investigate
how rotational cryptanalysis is affected when constants are injected into the state.
We introduce the notion of an RX-difference, generalizing the idea of a rotational
difference. We show how RX-differences behave around modular addition, and give a
formula to calculate their transition probability. We experimentally verify the formula
using Speck32/64, and present a 7-round distinguisher based on RX-differences. We
then discuss two types of constants: round constants, and constants which are the
result of using a fixed key, and provide recommendations to designers for optimal
choice of parameters.
Keywords: Rotational cryptanalysis · ARX · RX-difference

1 Introduction
The Addition-Rotation-XOR (ARX) structure is a common design for symmetric-key
primitives. The popularity of the structure stems from the fact that by using only three
operations, namely addition modulo 2n, cyclic rotation, and XOR, good confusion and
diffusion can be achieved. Examples to the large variety of ARX-based cryptographic
primitives include two of the five SHA-3 competition finalists Skein [FLS+10] and BLAKE
[AHMP08], the stream ciphers Salsa20 [Ber08] and ChaCha [Ber], block ciphers such as
TEA [WN95], XTEA [NW97] and Speck [BSS+15], and the MAC algorithm Chaskey
[MMVH+14].

Like with many other structures, differential cryptanalysis [BS91] and linear cryptanal-
ysis [Mat94] are the two main approaches for the analysis of ARX-based designs, and a
number of heuristic search tools towards finding differential characteristics and linear trails
are proposed, for example, [Leu13,BV14,BVLC16,LWR16]. Along with these two general
methods, rotational cryptanalysis, a dedicated method for analyzing ARX constructions,
drew a lot of attention since its publication. Although the idea of tracking rotational input
pairs can be found before being formalized, see for example, [SPGQ06,DIK08], rotational
cryptanalysis was first proposed as a generic attack technique against ARX-based designs
by Khovratovich and Nikolić in 2010 [KN10] and applied to Threefish, the ARX-based
block cipher underlying the hash function Skein. Most notably, the rotational rebound
attack [KNR10], which is an extension of rotational cryptanalysis, is by far the best attack
against Skein, to date.

In 2015, Khovratovich et al. showed some inaccuracies in the application of the
technique [KNP+15]. More specifically, they pointed out that the independence assumption

∗Corresponding author

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-06-01, Accepted: 2016-08-01, Published: 2016-12-01

https://doi.org/10.13154/tosc.v2016.i1.57-70
mailto:[tomer.ashur,yunwen.liu]@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

in [KN10] does not hold when an output of a modular addition is directly given as input
to another modular addition. They refer to this event as a “chained modular addition”,
and show that when such a chain exists, the transition probability over both additions is
not independent. The latter result does not invalidate the rotational rebound attack since
the probability was estimated experimentally. However it does show that further research
is needed before rotational cryptanalysis is fully understood.

Similar to the modular chains, another issue that was not rigorously analyzed in [KN10]
and its subsequent works, is the injection of constants. The impact of constants to ARX
systems is noticed in, for example, that the designers of the block cipher SEA [SPGQ06]
assert that their construction can resist rotational cryptanalysis due to the nonlinear
key schedule and the injection of pseudo-random constants. When an ARX structure
includes the injection of constants it is called ARX-C, and it was proven in [KN10] that
this structure is complete, i.e., that any function can be implemented through an ARX-C
construction. In most papers on rotational cryptanalysis, heuristic experiments are made
to address the influence of constants.

In this paper, we present a novel way to compute the rotational probability of a pair of
inputs when constants are injected into the state. We do so by combining the propagation
rules of differences through modular addition, with those of rotational cryptanalysis.
Informally speaking, when applying rotational cryptanalysis to an ARX primitive with the
XOR of constants, it can be regarded as a merge of rotational cryptanalysis and differential
cryptanalysis. We verify our results empirically using Speck32/64 and present a 7-round
distinguisher based on this technique. As a result, we can propose countermeasures against
rotational cryptanalysis, which can serve as guidelines for future ARX designs.

The rest of this paper is organized as follows: in section 2 we describe our notation,
and briefly recall the basis of rotational cryptanalysis. A closed formula for calculating the
rotational probability in ARX-C is presented in section 3. In section 4 we experimentally
verify our results, and discuss possible countermeasures. Finally, section 5 concludes the
paper.

2 Preliminaries
2.1 Notations
We present our notations in Table 1.

Table 1: The notations used throughout the paper.

x = (xn−1, · · · , x1, x0) An n-bit boolean vector; x0 is the least significant bit
xi ∧ yi The bitwise AND operation between the bit in xi and the bit in yi
x||y The concatenation of x and y
|x| The hamming weight of the boolean vector x

SHL(x) A non-cyclic left shift of x by one bit
x|y The vector bitwise OR operation

x≪ γ A cyclic left shift of x by γ bits
←−x x≪ 1

1x4y A characteristic function which evaluates to 1 if and only if xi ≤ yi for all i
1i The ith bit of the n-bit string 0 . . . 01, i.e., 1i = 1 for i = 0 and 0 otherwise

(I ⊕ SHL)(x) x⊕ SHL(x)
L(x)∗ The γ most significant bits of x
R(x)∗ The n− γ least significant bits of x
R′(x)∗ The γ least significant bits of x
L′(x)∗ The n− γ most significant bits of x

∗ Note that x = L(x)||R(x) = L
′ (x)||R′ (x).

58

2.2 Rotational Cryptanalysis
Similar to differential cryptanalysis, rotational cryptanalysis takes advantage of the high
probability in the propagation of rotational pairs (x, x≪ γ) through the ARX operations.
The following proposition provides a general way to compute the propagation of a rotational
pair through the modular addition:

Proposition 1 ([Dau05]). For x, y ∈ F2n , and 0 < γ < n,

Pr[(x� y)≪ γ = (x≪ γ)� (y≪ γ)] = (1 + 2γ−n + 2−γ + 2−n)/4.

The probability is maximized to 2−1.415 when n is large and γ = 1.
Whenever the two inputs to the round modular addition are independent and uniformly

distributed, the probabilities of consecutive modular sums can be directly multiplied.
However, as was shown in [KNP+15], if a modular chain exists, the probability requires
an adjustment to the formula, and the resulting probability is in fact smaller. A similar
effect was noticed for linear cryptanalysis in [NW06], and for differential cryptanalysis
in [KRRR98].

2.3 Description of SPECK
Speck is a family of lightweight block ciphers designed by the NSA in 2013 [BSS+15].
A member of the family is denoted by Speck2n/mn, where the block size is 2n for
n ∈ {16, 24, 32, 48, 64}, and the key size is mn for m ∈ {2, 3, 4}, depending on the desired
security.

The round function of Speck receives two words x(i) and y(i), and a round key ki, all
of size n, and outputs two words of size n, x(i+1) and y(i+1), such that

(x(i+1), y(i+1)) = Fki
(x(i), y(i)) = (fki

(x(i), y(i)), fki
(x(i), y(i))⊕ (y(i) ≪ β)),

where fki
(·, ·) is

fki(x(i), y(i)) = ((x(i) ≫ α)� y(i))⊕ ki.

The Speck key schedule algorithm uses the same round function to generate the round
keys. Let K = (lm−2, ..., l0, k0) be a master key for Speck2n, where li, k0 ∈ F2n . The
sequence of round keys ki is generated as

ki+1 = fct(li, ki)⊕ (ki≪ β)

for
li+m−1 = fct(li, ki),

with ct = i the round number starting from 0.
The rotation offset (α, β) is (7, 2) for Speck32, and (8, 3) for the larger versions. A

single round of Speck with m = 4 is depicted in Figure 1. For more details, we refer the
interested reader to the original design [BSS+15].

With regards to cryptanalysis, the longest distinguishers for Speck32/64 are a linear
distinguisher for 9 rounds with correlation 2−14 due to Yao et al. published in [YZW15], and
a 9-round differential distinguisher with probability 2−30 due to Biyukov et al. published
in [BVC16].

3 Rotational Cryptanalysis in the Presence of Constants
In [KN10], it was shown that ARX-C, i.e., an ARX construction with constants, is complete.
This means that any function can be implemented using the ARX-C operations. In most

59

�

n �

o ↵

�

�

�

n �

o ↵

�

�

xi�1 yi�1

xi yi

ki�1li�1lili+1

i � 1

Figure 1: One round of Speck

cases, the constants are injected into the state either through an XOR operation or through
modular addition. When the constant c is rotational-invariant, i.e., c = c≪ γ, for some
γ, XORing with c does not change the rotational property of a rotational pair (x, x≪ γ).
However, whenever c is not rotational-invariant, the properties of the output require further
inspection.

In general, when a constant c that is not rotational-invariant is XORed into a rotational
pair (x, x≪ γ), the output pair (x⊕ c, (x≪ γ)⊕ c), no longer form a rotational pair. If
this pair is given as an input to the modular addition, the basic formula in Proposition
Proposition 1 for computing the propagation of the rotational property can no longer be
used.

In the sequel, we define a ((a1, a2), γ)-rotational-XOR-difference (or in shorthand
notation ((a1, a2), γ)-RX-difference and RX-difference when (a1, a2), γ are clear), to be a
rotational pair with rotation γ under translations a1 and a2, i.e., (x⊕a1, (x≪ γ)⊕a2); we
call such a pair an RX-pair. Note that when a1 = a2 = 0, they simply become a rotational
pair. Our goal is to estimate the transition probability with respect to modular addition
of two input RX-differences, to an output RX-difference. Without loss of generality, we
consider the case where the input rotational pairs are (x⊕a1, y⊕ b1) and (←−x ⊕a2,

←−y ⊕ b2),
and compute the probability of

←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2.

Theorem 1. Let x, y ∈ F2n be independent random variables. Let a1, b1, a2, b2,∆1,∆2 be
constants in F2n . Then,

Pr[
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2]

= 1(I⊕SHL)(δ1⊕δ2⊕δ3)⊕1�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−3

+ 1(I⊕SHL)(δ1⊕δ2⊕δ3)�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−1.415,

(1)

where
δ1 = R(a1)⊕ L

′
(a2),

δ2 = R(b1)⊕ L
′
(b2),

and
δ3 = R(∆1)⊕ L

′
(∆2).

60

Note that when all the constants are 0, i.e., a1 = a2 = b1 = b2 = ∆1 = ∆2 =
0, Theorem 1 predicts Pr[←−−−x� y = ←−x � ←−y], which is the normal case for rotational
cryptanalysis.

Before moving to prove Theorem 1, we introduce the following two lemmata:

Lemma 1 ([SG13]). Let ζ1, ζ2, ζ3 ∈ F2n be constants. Let x, y ∈ F2n be independent
random variables. The probability of the differential equation

x� y = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 (2)

is
1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))|. (3)

Proof. The complete proof can be found in [SG13].

The following example is provided for a better understanding of Lemma Lemma 1.

Example 1. Let n = 8, ζ1 = E16, ζ2 = 916 and ζ3 = F716, we have

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3) = 1016,

SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3)) = FE16,

and
|SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3))| = |FE16| = 7.

We evaluate the characteristic function 1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)4SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)), and see
that it is equal to 1 since no bit in (I⊕SHL)(ζ1⊕ζ2⊕ζ3) is larger than the respective bit in
SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)). The probability is then computed to be 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| =
2−7.

Lemma 2. Let ζ1, ζ2, ζ3 ∈ F2n be constants. For independent random variables x, y ∈ F2n ,
the probability of

x� y � 1 = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 (4)

is
1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)⊕1�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))|. (5)

Proof. Let c be the carry vector of x� y (i.e., c = (x� y)⊕ x⊕ y), z the output vector
of x � y (i.e., z = x � y), h the carry vector of z � 1 (i.e., h = (z � 1) ⊕ z ⊕ 1), and
e = c⊕ 1⊕ h. Then,

x� y � 1 = (x⊕ y ⊕ c)� 1 = x⊕ y ⊕ c⊕ 1⊕ h = x⊕ y ⊕ e.

Denote the i-th bit of the binary expansion of 1 by 1i. Then the i-th bit of h, hi can be
computed recursively through

hi =
{

0 i = 0,
zi−1 ∧ hi−1 ⊕ zi−1 ∧ 1i−1 ⊕ hi−1 ∧ 1i−1 i > 0.

We get that,

hi =

0 i = 0,
z0 ∧ h0 ⊕ z0 ∧ 10 ⊕ h0 ∧ 10 = x0 ⊕ y0 i = 1,
zi−1 ∧ hi−1 ⊕ zi−1 ∧ 1i−1 ⊕ hi−1 ∧ 1i−1 = (xi−1 ⊕ yi−1 ⊕ ci−1) ∧ hi−1 i > 1.

61

Hence e0 = c0 ⊕ 1⊕ h0 = 1 and

ei+1 = ci+1 ⊕ hi+1

= xi ∧ yi ⊕ xi ∧ ci ⊕ yi ∧ ci ⊕ (xi ⊕ yi ⊕ ci) ∧ hi
= xi ∧ yi ⊕ xi ∧ (ci ⊕ hi)⊕ yi ∧ (ci ⊕ hi)⊕ ci ∧ hi
= xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei ⊕ (xi−1 ∧ yi−1 ⊕ xi−1

∧ ci−1 ⊕ yi−1 ∧ ci−1) ∧ (xi−1 ⊕ yi−1 ⊕ ci−1) ∧ hi−1

= xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei ⊕ xi−1 ∧ yi−1 ∧ ci−1 ∧ hi−1

= xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei

(6)

The last equation holds since c0 ∧ h0 = 0 and therefore ci ∧ hi = 0 for all i. In other
words, when computing x� y � 1 we can calculate the carry bit entering position i+ 1 as
a function of xi, yi, and the previous carry bit, ei by means of Equation 6. Notice that
the recursive formulae for computing c = (x� y)⊕ x⊕ y and e = (x� y � 1)⊕ x⊕ y are
similar except that they start with different initial values, we will use S-function to derive
the probability of the differential equation which is analogous to the XOR-differential
probability of addition [MVDCP10].

An S-function updates a list of states S[i], 0 ≤ i ≤ n− 1 and outputs an n-bit value b
with n-bit inputs a1, a2, . . . , ak by

(bi, S[i+ 1]) = f((a1)i, (a2)i, . . . , (ak)i, S[i]), 0 ≤ i ≤ n− 1

We define an S-function for the differential equation x� y� 1 = (x⊕ ζ1)� (y⊕ ζ2)⊕ ζ3
as follows.

(t1)i = xi ⊕ yi ⊕ ei
ei+1 = xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei
(t2)i = (xi ⊕ (ζ1)i)⊕ (yi ⊕ (ζ2)i)⊕ gi
gi+1 = (xi ⊕ (ζ1)i) ∧ (yi ⊕ (ζ2)i)⊕ (xi ⊕ (ζ1)i) ∧ gi ⊕ (yi ⊕ (ζ2)i) ∧ gi

(7)

where e0 = 1, g0 = 0. Let S[i] = (ei, gi), the S-function is defined as

((t1)i ⊕ (t2)i, S[i+ 1]) = f(xi, yi, (ζ1)i, (ζ2)i, S[i]), 0 ≤ i ≤ n− 1 (8)

where f follows from Equation 7. Define ωi = (ζ1)i||(ζ2)i||(ζ3)i, 0 ≤ i ≤ n − 1, L =
(1, 1), C = (0, 1)T and eight 2×2 matrices as

A000 =
[
1 0
0 0

]
, A001 = A010 = A100 = 1

2

[
0 1
0 1

]
,

A111 =
[
0 0
0 1

]
, A011 = A101 = A110 = 1

2

[
1 0
1 0

]
.

Using the directed acyclic graph method [MVDCP10], the probability of Equation 4 can
be determined by LAωn−1 · · ·Aω1Aω0C. From [MVDCP10] we know that the probability
of the differential equation x� y = (x⊕ ζ1)� (y⊕ ζ2)⊕ ζ3 is LAωn−1 · · ·Aω1Aω0C

′ , where
C
′ = (1, 0)T . The probabilities of Equation 2 and Equation 4 can be fully determined by

the same automaton as shown in the Appendix.
We first discuss the condition for the probability to be nonzero, so we omit the value

1/2 which may occur in the multiplications for now. Since the product of L with any
matrices Aj can only be (1, 0), (0, 1) or (0, 0), the probability of Equation 2 (Equation 4
resp.) is nonzero when LAωn−1 · · ·Aω1Aω0 equals to (1, 0) ((0, 1) resp.). Therefore the
probability of Equation 4 will be nonzero when the first n−2 multiplications do not lead to

62

(0, 0), meanwhile the LAωn−1 · · ·Aω1 = (0, 1) and w0 = 1, 2, 4, 7, or LAωn−1 · · ·Aω1 = (1, 0)
and w0 = 1, 2, 4. Comparing with the probability of Equation 2 in the previous lemma,
the probability of Equation 4 is nonzero if the following condition is satisfied

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3)⊕ 1 � SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3)).

Once the probability is nonzero, it is determined by the number of times that ωi ∈
{001, 010, 100, 011, 101, 110}, and each time it contributes 1/2 to the overall probability
except the first multiplication LAωn−1 , therefore the probability is 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))|

since it encounters such matrices when (((ζ1)i ⊕ (ζ3)i)|((ζ2)i ⊕ (ζ3)i)) = 1 for certain
i, 0 ≤ i ≤ n− 1. Therefore the probability of Equation 4 is given by

1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)⊕1�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))|.

which leads to the conclusion.
We can now prove Theorem 1.

Theorem 1. Let x, y ∈ F2n be independent random variables. Let a1, b1, a2, b2,∆1,∆2 be
constants in F2n . Then

Pr[
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2] =

1(I⊕SHL)(δ1⊕δ2⊕δ3)⊕1�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−3+
1(I⊕SHL)(δ1⊕δ2⊕δ3)�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−1.415

(9)

where δ1, δ2, and δ3 are as before.

Proof. Let C1 be the carry vector of (x ⊕ a1) � (y ⊕ b1) and let C1
n−γ be the carry bit

in position n− γ (i.e., C1
n−γ is the most significant carry produced by (R(x)⊕R(a1))�

(R(y)⊕R(b1))). We write
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 from Equation 9 as the concatenation

of its left and right parts.

←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1

=
←−−
((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1

n−γ)⊕ L(∆1)||

((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1)
= ((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1)||

((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1
n−γ)⊕ L(∆1).

Similarly, let C2 be the carry vector of (←−x ⊕ a2)� (←−y ⊕ b2), and C2
γ the carry bit in

position γ (i.e., C2
γ is the most significant carry produced by ((L(x)⊕R′(a2))� (L(y)⊕

R
′(b2)). we can write (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2 from Equation 9 as the concatenation of

its left and right parts.

(←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2

= ((
←−−−−−−−
L(x)||R(x))⊕ a2)� ((

←−−−−−−−
L(y)||R(y))⊕ b2)⊕∆2

= ((R(x)||L(x))⊕ (L
′
(a2)||R

′
(a2)))� ((R(y)||L(y))⊕ (L

′
(b2)||R

′
(b2)))⊕∆2

= ((R(x)⊕ L
′
(a2))� (R(y)⊕ L

′
(b2))� C2

γ)⊕ L
′
(∆2)||

((L(x)⊕R
′
(a2))� (L(y)⊕R

′
(b2)))⊕R

′
(∆2).

63

We get that
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2

if and only if

((R(x)⊕ L
′
(a2))� (R(y)⊕ L

′
(b2))� C2

γ)⊕ L
′
(∆2) =

(R(x)⊕R(a1))� (R(y)⊕R(b1))⊕R(∆1),
(10)

and

((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1
n−γ)⊕ L(∆1) =

((L(x)⊕R
′
(a2))� (L(y)⊕R

′
(b2)))⊕R

′
(∆2).

(11)

Replacing

R(x†) = R(x)⊕ L
′
(a2)

R(y†) = R(y)⊕ L
′
(b2),

we can rewrite Equation 10 as

R(x†)�R(y†)� C2
γ =

(R(x†)⊕R(a1)⊕ L
′
(a2))� (R(y†)⊕R(b1)⊕ L

′
(b2))⊕R(∆1)⊕ L

′
(∆2).

(12)

Similarly, by setting

L(x∗) = L(x)⊕ L(a1)
L(y∗) = L(y)⊕ L(b1),

Equation 11 reduces to

L(x∗)� L(y∗)� C1
n−γ =

((L(x∗)⊕ L(a1)⊕R
′
(a2))� (L(y∗)⊕ L(b1)⊕R

′
(b2)))⊕R

′
(∆2)⊕ L(∆1).

(13)

We can compute the probability of Equation 12 and Equation 13 by means of Lemma
Lemma 1 and Lemma Lemma 2 based on the values of C1

n−γ and C2
γ .

Case 1: C2
γ = 0, the probability is the difference propagation probability and can be

calculated by means of Lemma Lemma 1.
Case 2: C2

γ = 1, we solve the differential equations using Lemma Lemma 2.
Similarly,
Case 3: C1

n−γ = 0, the probability is the difference propagation probability and can
be calculated by Lemma Lemma 1.

Case 4: C1
n−γ = 1, we solve the differential equations using Lemma Lemma 2.

When γ = 1, L(·), R′(·) represent a single bit, hence,

C1
n−γ = L(a1)⊕ L(b1)⊕ L(∆1)⊕R

′
(a2)⊕R

′
(b2)⊕R

′
(∆2).

In addition, notice that the carry bit of L(x) � L(y) is independent with that of
R(x)�R(y) when x, y are independent random variables, we have for large n and γ = 1,
Pr[C2

γ = 0] = 3/4 and Pr[C1
n−γ = 0] = 1/2, since the carry for 1-bit addition is biased,

however, for the addition of two random bit strings, the most significant carry bit can be
regarded as balanced. Then,

64

Pr[C2
γ = 0, C1

n−γ = 0] = 2−1.415

Pr[C2
γ = 0, C1

n−γ = 1] = 2−1.415

Pr[C2
γ = 1, C1

n−γ = 0] = 2−3

Pr[C2
γ = 1, C1

n−γ = 1] = 2−3.

Therefore, the probability is calculated as

Pr[C2
γ = 0, C1

n−γ] · Pr[x� y = (x⊕ δ1)� (y ⊕ δ2)⊕ δ3]+
Pr[C2

γ = 1, C1
n−γ] · Pr[x� y � 1 = (x⊕ δ1)� (y ⊕ δ2)⊕ δ3],

which concludes the proof.
Remark 1. The above theorem shows the propagation of RX-differences through a modular
addition and how to compute its probability. Given that the inputs are (x⊕a1, y⊕ b1) and
(←−x ⊕a2,

←−y ⊕b2) with RX-differences (((a1, a2), 1), ((b1, b2), 1)). Let z = ((x⊕a1)�(y⊕b1))
and z′ = ((←−x ⊕ a2)� (←−y ⊕ b2)), then the formula predicts the probability that z, z′ forms
a ((0,

←−
∆1 ⊕∆2), 1)-RX-difference.

4 Experimental Verification
Note that the theoretical probability formula in Theorem 1 holds for any ARX-C systems,
in this section we verify our results empirically using the round function of Speck32/64 as
an example. Note that the distinguisher we present in this section covers only 7 rounds of
Speck32/64, and is not intended to improve the cryptanalysis of Speck rather than to show
that the proposed technique works in practice. We then discuss design recommendations
for future ARX designs. All the necessary code for repeating the experiments described in
this section can be found at [AL].

4.1 Application to SPECK32/64
Using a greedy algorithm, we obtained a 6-round trail with RX-differences for the key-
schedule of Speck32/64. In Table 2 we compare the probability predicted by Theo-
rem 1 and the probability obtained by iterating all 232 possible (x, y) with a fixed tuple
(a1, b1,∆1, a2, b2,∆2). As is evident from Table 2, the values match perfectly. In Table 3 we
present the empirical probability of the trail over 233 uniformly chosen keys. Interestingly,
the probability of the full trail is lower than the one predicted by simply multiplying the
round probabilities, suggesting that the left and right inputs to the round function are not
independent. Nevertheless, this trail suggests that a weak-key class of size 2−25 · 264 = 239

exists, leading to a 7-round distinguisher for Speck32/64.
We used this trail to construct a 7-round distinguisher for Speck32/64. We started

by generating a 64-bit random master-key and checked if it belongs to the weak-key class
(i.e., if the resulting subkeys satisfy the trail in Table 3). Once an appropriate key was
found, we used it to encrypt 232 chosen plaintexts with a ((0, 0), 1)-RX difference. Using
Theorem 1, we found a possible trail taking into account the RX-difference propagation
through the modular addition, and the RX-difference coming through the key injection.

We repeated this experiment using 27 keys. The average number of keys we had to
discard before finding a “good” key was 35538653 = 225.1, suggesting that the weak-key
class is indeed of size 239. In Table 4 we present the trail, the predicted probability, and the
average empirical probability. The average number of input pairs with a ((0,0),1)-difference
following the full 7-round trail is 1.33, suggesting a probability of 2−31.58, whereas this
probability should be (2−32)7 = 2−224 for a random permutation. Moreover, when taking
the differential effect into account (i.e., only checking how many pairs satisfy the required

65

Table 2: A table comparing the transition probability predicted through Theorem 1 and
the empirical probability for uniformly chosen x and y, and a fixed (a1, b1,∆1, a2, b2,∆2).
All RX-differences are in hexadecimal notation.

Round a1 b1 ∆1 a2 b2 ∆2 Predicted Empirical Accumulated
Prob. Prob. Prob.

1 0 0 0 0 0 0 2−1.415 2−1.415 2−1.415

2 0 0 0 0 0 0 2−1.415 2−1.415 2−2.83

3 0 1 0 0 1 2 2−2.415 2−2.415 2−5.245

4 0 2 6 0 0 8 2−2.415 2−2.415 2−7.66

5 0 D C4 0 B 78 2−6.415 2−6.415 2−14.075

6 0 F4 0 1000 50 1088 2−7.415 2−7.415 2−21.49

Total 2−21.49

Table 3: A table describing a 6-round trail, leading to a weak-key class of size 239 in
Speck32/64. All RX-differences are in hexadecimal notation.

Round a1 b1 ∆1 a2 b2 ∆2 Empirical
accumulated Prob.

1 0 0 0 0 0 0 2−1.415

2 0 0 0 0 0 0 2−2.873

3 0 1 0 0 1 2 2−7.243

4 0 2 6 0 0 8 2−9.632

5 0 D C4 0 B 78 2−18.016

6 0 F4 0 1000 50 1088 2−25.046

RX-difference in the last round), we see that the average number of such pairs is 3.83,
suggesting a probability of 2−30.06.

Table 4: A table describing the RX-distinguisher for 7-round Speck32/64. All RX-
differences are in hexadecimal notation, and γ (i.e., the rotation amount) is 1.

Round Input diff. Key diff. Output diff. Predicted Empirical
(left,right) (left,right) accumulated Prob. accumulated Prob.

0 0, 0 0 0, 0 2−1.415 2−1.415

1 0, 0 0 0, 0 2−2.83 2−2.85

2 0, 0 3 3, 3 2−4.245 2−4.27

3 3, 3 4 607, 60B 2−8.66 2−8.68

4 607, 60B 11 40E, 1C22 2−15.075 2−15.01

5 40E, 1C22 1B8 3992, 491A 2−21.49 2−21.44

6 3992, 491A 1668 333F, 1756 2−31.905 2−31.6

4.2 Discussion
When designing a new primitive using the ARX structure, constants can come in two
forms: known round constants or unknown constants resulting from the key injection.

When open-key attack models are considered (i.e., related-key, weak-key, and known-
key), the resistance against rotational cryptanalysis depends on the quality of the key-
schedule and its round constants. For example, Skein’s underlying block cipher, Threefish,
uses constants of low Hamming weight in its key schedule. Along with the fact that the key

66

is only injected once every four rounds, the RX-differences can propagate with relatively
high probability or even be canceled under certain circumstance, leading to attacks against
round-reduced Threefish. When taking this approach, designers can use Theorem 1 to find
how many rounds are required before the number of “good” keys drops to 0.

When open-key attacks are not allowed and uniformly distributed round keys are
XORed into the round function, Theorem 1 can be used to derive average case security
bounds, similar to other statistical attacks such as differential cryptanalysis and linear
cryptanalysis. In this case, the round constants should be chosen to ensure that RX-
differences in consecutive rounds cannot be easily canceled by the key injection.

5 Conclusion
As a recently proposed cryptanalytic technique, the impact of rotational cryptanalysis on
ARX constructions is not yet well-understood. In this paper, we generalize the notion of a
rotational-pair into a pair with RX-difference, and show a rigorous approach to calculate
the probability of rotational cryptanalysis when constants are injected into the round
function. We test our results and present a 7-round distinguisher with RX-differences for
Speck32/64. As a result, we propose countermeasures against rotational cryptanalysis
which would be beneficial for future ARX designs. Future research may extend this analysis
to cases where the constants are injected through modular addition instead of XOR, and
to cases where the rotation amount differs from 1. We note that we did not try to find the
longest RX-difference trail for Speck32/64, and it may be possible that automatic search
tools can extend it. Another interesting research direction is to apply our formula to the
larger versions of Speck.

Thanks
The authors would like to thank Vincent Rijmen, Marc Stevens, and the anonymous
reviewers for their useful comments. This work was supported in part by the Research
Council KU Leuven: C16/15/058. In addition, this work was partially supported by
the Research Fund KU Leuven, OT/13/071, by the Flemish Government through FWO
Thresholds G0842.13 and by European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644052 HECTOR and grant agreement No H2020-
MSCA-ITN-2014-643161 ECRYPT-NET. Yunwen Liu is partially supported by China
Scholarship Council (CSC 201403170380) and National Natural Science Foundation (No.
61672530).

Appendix
The automaton representation of computing the probability of Equation 2 and Equation 4
is shown in Figure 2. It starts at state (1, 1), reads ωi = (ζ1)i||(ζ2)i||(ζ3)i from i = n− 1
to 0 by regarding ωi as the binary representation of a decimal number and updates the
automaton. The probability of Equation 2 (Equation 4 resp.) is nonzero if the automaton
ends at state (1, 0) (state (0, 1) resp.), and every time it passes through a full line, the
probability is halved.

67

(1,1) (0,1)

(0,0) (1,0)

start

7

0,1,2,…,7

1,2,4,7

0,3,5,6 0

7

0

1,2,4

3,5,6

1,2,4 3,5,6

Figure 2: Automaton representation of the probability of differential equations

References
[AHMP08] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W Phan.

SHA-3 proposal BLAKE. Submission to NIST, 2008.

[AL] Tomer Ashur and Yunwen Liu. Auxiliary Package for this Pa-
per. http://homes.esat.kuleuven.be/~tashur/Rotational_
Cryptanalysis_in_the_Presence_of_Constants.zip.

[Ber] D. J. Bernstein. ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.
html.

[Ber08] Daniel J Bernstein. The Salsa20 family of stream ciphers. In New stream
cipher designs, pages 84–97. Springer, 2008.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of Cryptology, 4(1):3–72, 1991.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The Simon and Speck lightweight block ciphers.
In Proceedings of the 52nd Annual Design Automation Conference - DAC
2015, pages 175:1–175:6. ACM, 2015.

[BV14] Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails
in ARX ciphers. In Topics in Cryptology - CT-RSA 2014, pages 227–250.
Springer, 2014.

[BVC16] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic Search
for the Best Trails in ARX: Application to Block Cipher Speck. In Thomas
Peyrin, editor, Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers,
volume 9783 of Lecture Notes in Computer Science, pages 289–310. Springer,
2016.

[BVLC16] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search
for the best trails in ARX: Application to block cipher Speck. Cryptology
ePrint Archive, Report 2016/409, 2016. http://eprint.iacr.org/.

[Dau05] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD
thesis, Ruhr-Universitochum, 2005.

68

http://homes.esat.kuleuven.be/~tashur/Rotational_Cryptanalysis_in_the_Presence_of_Constants.zip
http://homes.esat.kuleuven.be/~tashur/Rotational_Cryptanalysis_in_the_Presence_of_Constants.zip
http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html
http://eprint.iacr.org/

[DIK08] Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A differential-
linear attack on 12-round Serpent. In Progress in Cryptology-INDOCRYPT
2008, pages 308–321. Springer, 2008.

[FLS+10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein hash function
family. Submission to NIST (round 3), 2010.

[KN10] Dmitry Khovratovich and Ivica Nikolić. Rotational cryptanalysis of ARX.
In Fast Software Encryption, pages 333–346. Springer, 2010.

[KNP+15] Dmitry Khovratovich, Ivica Nikolić, Josef Pieprzyk, Przemysław Sokołowski,
and Ron Steinfeld. Rotational cryptanalysis of ARX revisited. In Fast
Software Encryption, pages 519–536. Springer, 2015.

[KNR10] Dmitry Khovratovich, Ivica Nikolić, and Christian Rechberger. Rotational
rebound attacks on reduced Skein. In Advances in Cryptology-ASIACRYPT
2010, pages 1–19. Springer, 2010.

[KRRR98] Lars R Knudsen, Vincent Rijmen, Ronald L Rivest, and Matthew JB Rob-
shaw. On the design and security of RC2. In Fast Software Encryption,
pages 206–221. Springer, 1998.

[Leu13] Gaëtan Leurent. Construction of differential characteristics in ARX designs
application to Skein. In Advances in Cryptology - CRYPTO 2013, pages
241–258. Springer, 2013.

[LWR16] Yunwen Liu, Qingju Wang, and Vincent Rijmen. Automatic search of linear
trails in ARX with applications to SPECK and Chaskey. In International
Conference on Applied Cryptography and Network Security, pages 485–499.
Springer, 2016.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances
in Cryptology - EUROCRYPT 1993, pages 386–397. Springer, 1994.

[MMVH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: an efficient MAC algorithm for
32-bit microcontrollers. In Selected Areas in Cryptography–SAC 2014, pages
306–323. Springer, 2014.

[MVDCP10] Nicky Mouha, Vesselin Velichkov, Christophe De Canniere, and Bart Preneel.
The differential analysis of S-functions. In International Workshop on Selected
Areas in Cryptography, pages 36–56. Springer, 2010.

[NW97] Roger M Needham and David J Wheeler. TEA extensions. Technical report,
1997.

[NW06] Kaisa Nyberg and Johan Wallén. Improved linear distinguishers for SNOW
2.0. In Fast Software Encryption, pages 144–162. Springer, 2006.

[SG13] Ernst Schulte-Geers. On CCZ-equivalence of addition mod 2n. Designs,
Codes and Cryptography, 66(1-3):111–127, 2013.

[SPGQ06] François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques
Quisquater. SEA: A scalable encryption algorithm for small embedded
applications. In Smart Card Research and Advanced Applications, pages
222–236. Springer, 2006.

69

[WN95] David J Wheeler and Roger M Needham. TEA, a tiny encryption algorithm.
In Fast Software Encryption - FSE ’95, pages 363–366. Springer, 1995.

[YZW15] Yuan Yao, Bin Zhang, and Wenling Wu. Automatic Search for Linear
Trails of the SPECK Family. In Javier Lopez and Chris J. Mitchell, editors,
Information Security - 18th International Conference, ISC 2015, Trondheim,
Norway, September 9-11, 2015, Proceedings, volume 9290 of Lecture Notes
in Computer Science, pages 158–176. Springer, 2015.

70

	Introduction
	Preliminaries
	Notations
	Rotational Cryptanalysis
	Description of SPECK

	Rotational Cryptanalysis in the Presence of Constants
	Experimental Verification
	Application to SPECK32/64
	Discussion

	Conclusion

