112 research outputs found

    Automatic SIMD vectorization for Haskell

    Get PDF
    Expressing algorithms using immutable arrays greatly simplifies the challenges of automatic SIMD vectorization, since several important classes of dependency violations cannot occur. The Haskell programming language provides libraries for programming with immutable arrays, and compiler support for optimizing them to eliminate the overhead of intermediate temporary arrays. We describe an implementation of automatic SIMD vectorization in a Haskell compiler which gives substantial vector speedups for arange of programs written in a natural programming style. We compare performance with that of programs compiled by the Glasgow Haskell Compile

    Pure functions in C: A small keyword for automatic parallelization

    Get PDF
    © 2017 IEEE. The need for parallel task execution has been steadily growing in recent years since manufacturers mainly improve processor performance by scaling the number of installed cores instead of the frequency of processors. To make use of this potential, an essential technique to increase the parallelism of a program is to parallelize loops. However, a main restriction of available tools for automatic loop parallelization is that the loops often have to be 'polyhedral' and that it is, e.g., not allowed to call functions from within the loops.In this paper, we present a seemingly simple extension to the C programming language which marks functions without side-effects. These functions can then basically be ignored when checking the parallelization opportunities for polyhedral loops. We extended the GCC compiler toolchain accordingly and evaluated several real-world applications showing that our extension helps to identify additional parallelization chances and, thus, to significantly enhance the performance of applications

    Pure functions in C: A small keyword for automatic parallelization

    Get PDF
    © 2020, The Author(s). The need for parallel task execution has been steadily growing in recent years since manufacturers mainly improve processor performance by increasing the number of installed cores instead of scaling the processor’s frequency. To make use of this potential, an essential technique to increase the parallelism of a program is to parallelize loops. Several automatic loop nest parallelizers have been developed in the past such as PluTo. The main restriction of these tools is that the loops must be statically analyzable which, among other things, disallows function calls within the loops. In this article, we present a seemingly simple extension to the C programming language which marks functions without side-effects. These functions can then basically be ignored when the automatic parallelizer checks the parallelizability of loops. We integrated the approach into the GCC compiler toolchain and evaluated it by running several real-world applications. Our experiments show that the C extension helps to identify additional parallelization opportunities and, thus, to significantly increase the performance of applications

    An interface between single assignment C and vector Pascal

    Get PDF
    This dissertation contains an overview of the research I’ve been doing over in Glasgow University, which is mainly a project of developing an interface between two array programming languages, Single Assignment C and Vector Pascal, to combine them together by using the Vector Pascal code generator for Single Assignment C. Single Assignment C provides support for multi-threading but it doesn’t contain any utilization of SIMD technology, and Vector Pascal implements array operations with the help of SIMD instruction sets of modern general processors. Thus my hypothesis is that this combination will let the program enjoy higher run-time performance compared to the one which is only compiled by using Single Assignment C’s compiler. This dissertation explains the detail of designing and implementing this interface between these two languages; and the system to manipulate the three parts, i.e. the interface and the two languages’ compilers together to make them work automatically. The interface is generally developed based on traversal over Syntax Tree and involves works of vectorization and loop unrolling. Meanwhile, a benchmark testing system to validate my hypothesis is created and introduced in this dissertation too, which is accompanied with the testing results and analysis

    Generating renderers

    Get PDF
    Most production renderers developed for the film industry are huge pieces of software that are able to render extremely complex scenes. Unfortunately, they are implemented using the currently available programming models that are not well suited to modern computing hardware like CPUs with vector units or GPUs. Thus, they have to deal with the added complexity of expressing parallelism and using hardware features in those models. Since compilers cannot alone optimize and generate efficient programs for any type of hardware, because of the large optimization spaces and the complexity of the underlying compiler problems, programmers have to rely on compiler-specific hardware intrinsics or write non-portable code. The consequence of these limitations is that programmers resort to writing the same code twice when they need to port their algorithm on a different architecture, and that the code itself becomes difficult to maintain, as algorithmic details are buried under hardware details. Thankfully, there are solutions to this problem, taking the form of Domain-Specific Lan- guages. As their name suggests, these languages are tailored for one domain, and compilers can therefore use domain-specific knowledge to optimize algorithms and choose the best execution policy for a given target hardware. In this thesis, we opt for another way of encoding domain- specific knowledge: We implement a generic, high-level, and declarative rendering and traversal library in a functional language, and later refine it for a target machine by providing partial evaluation annotations. The partial evaluator then specializes the entire renderer according to the available knowledge of the scene: Shaders are specialized when their inputs are known, and in general, all redundant computations are eliminated. Our results show that the generated renderers are faster and more portable than renderers written with state-of-the-art competing libraries, and that in comparison, our rendering library requires less implementation effort.Die meisten in der Filmindustrie zum Einsatz kommenden Renderer sind riesige Softwaresysteme, die in der Lage sind, extrem aufwendige Szenen zu rendern. Leider sind diese mit den aktuell verfügbaren Programmiermodellen implementiert, welche nicht gut geeignet sind für moderne Rechenhardware wie CPUs mit Vektoreinheiten oder GPUs. Deshalb müssen Entwickler sich mit der zusätzlichen Komplexität auseinandersetzen, Parallelismus und Hardwarefunktionen in diesen Programmiermodellen auszudrücken. Da Compiler nicht selbständig optimieren und effiziente Programme für jeglichen Typ Hardware generieren können, wegen des großen Optimierungsraumes und der Komplexität des unterliegenden Kompilierungsproblems, müssen Programmierer auf Compiler-spezifische Hardware-“Intrinsics” zurückgreifen, oder nicht portierbaren Code schreiben. Die Konsequenzen dieser Limitierungen sind, dass Programmierer darauf zurückgreifen den gleichen Code zweimal zu schreiben, wenn sie ihre Algorithmen für eine andere Architektur portieren müssen, und dass der Code selbst schwer zu warten wird, da algorithmische Details unter Hardwaredetails verloren gehen. Glücklicherweise gibt es Lösungen für dieses Problem, in der Form von DSLs. Diese Sprachen sind maßgeschneidert für eine Domäne und Compiler können deshalb Domänenspezifisches Wissen nutzen, um Algorithmen zu optimieren und die beste Ausführungsstrategie für eine gegebene Zielhardware zu wählen. In dieser Dissertation wählen wir einen anderen Weg, Domänenspezifisches Wissen zu enkodieren: Wir implementieren eine generische, high-level und deklarative Rendering- und Traversierungsbibliothek in einer funktionalen Programmiersprache, und verfeinern sie später für eine Zielmaschine durch Bereitstellung von Annotationen für die partielle Auswertung. Der “Partial Evaluator” spezialisiert dann den kompletten Renderer, basierend auf dem verfügbaren Wissen über die Szene: Shader werden spezialisiert, wenn ihre Eingaben bekannt sind, und generell werden alle redundanten Berechnungen eliminiert. Unsere Ergebnisse zeigen, dass die generierten Renderer schneller und portierbarer sind, als Renderer geschrieben mit den aktuellen Techniken konkurrierender Bibliotheken und dass, im Vergleich, unsere Rendering Bibliothek weniger Implementierungsaufwand erfordert.This work was supported by the Federal Ministry of Education and Research (BMBF) as part of the Metacca and ProThOS projects as well as by the Intel Visual Computing Institute (IVCI) and Cluster of Excellence on Multimodal Computing and Interaction (MMCI) at Saarland University. Parts of it were also co-funded by the European Union(EU), as part of the Dreamspace project

    AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC LANGUAGES

    Get PDF
    A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement of programmer productivity and hardware computational efficiency. The challenge has been exacerbated by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been able to hand-code domain-specific data transformations and vectorization schemes needed to extract the best possible performance on such architectures. In this research, we examined the possibility of automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL approach extends C++14 by embedding into it a high-level data-parallel array language, and by using a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-space transformation algebra within this high-level array language to manipulate array data-layouts and data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization strategy by up to 40% for stencil computations. The compiler also automates distributed data movement with overlapping of local compute with remote data movement using polyhedral integer set analysis. Along with these main innovations, we developed a new technique using C++ template metaprogramming for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate representation that simplifies data flow analysis of abstract DSL constructs. We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing production C code for selected kernels. This gain in performance was obtained while using less than one-tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized and hand-vectorized code, and is an order of magnitude better than existing production DSLs.Doctor of Philosoph

    Voodoo - a vector algebra for portable database performance on modern hardware

    Get PDF
    In-memory databases require careful tuning and many engineering tricks to achieve good performance. Such database performance engineering is hard: a plethora of data and hardware-dependent optimization techniques form a design space that is difficult to navigate for a skilled engineer --- even more so for a query compiler. To facilitate performance-oriented design exploration and query plan compilation, we present Voodoo, a declarative intermediate algebra that abstracts the detailed architectural properties of the hardware, such as multi- or many-core architectures, caches and SIMD registers, without losing the ability to generate highly tuned code. Because it consists of a collection of declarative, vector-oriented operations, Voodoo is easier to reason about and tune than low-level C and related hardware-focused extensions (Intrinsics, OpenCL, CUDA, etc.). This enables our Voodoo compiler to produce (OpenCL) code that rivals and even outperforms the fastest state-of-the-art in memory databases for both GPUs and CPUs. In addition, Voodoo makes it possible to express techniques as diverse as cache-conscious processing, predication and vectorization (again on both GPUs and CPUs) with just a few lines of code. Central to our approach is a novel idea we termed control vectors, which allows a code generating frontend to expose parallelism to the Voodoo compiler in a abstract manner, enabling portable performance across hardware platforms. We used Voodoo to build an alternative backend for MonetDB, a popular open-source in-memory database. Our backend allows MonetDB to perform at the same level as highly tuned in-memory databases, including HyPeR and Ocelot. We also demonstrate Voodoo's usefulness when investigating hardware conscious tuning techniques, assessing their performance on different queries, devices and data
    • …
    corecore