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Abstract—The need for parallel task execution has been
steadily growing in recent years since manufacturers mainly im-
prove processor performance by scaling the number of installed
cores instead of the frequency of processors. To make use of this
potential, an essential technique to increase the parallelism of a
program is to parallelize loops. However, a main restriction of
available tools for automatic loop parallelization is that the loops
often have to be ‘polyhedral’ and that it is, e. g., not allowed to
call functions from within the loops.

In this paper, we present a seemingly simple extension to
the C programming language which marks functions without
side-effects. These functions can then basically be ignored when
checking the parallelization opportunities for polyhedral loops.
We extended the GCC compiler toolchain accordingly and eval-
uated several real-world applications showing that our extension
helps to identify additional parallelization chances and, thus, to
significantly enhance the performance of applications.

I. INTRODUCTION

Processor vendors can no longer improve performance cost-
effectively by simply scaling processor frequencies. Instead,
they have to increase the number of cores per processor.
Furthermore, vector units like SSE or AVX are integrated
to perform multiple arithmetic operations in parallel. Both
architectural trends are evidence for the rising importance of
parallel processing over the last years.

To make use of these capabilities, programs have to run ‘as
parallel as possible’. One approach is to split programs into
many parallel threads and distribute them among the processor
cores. For this, programmers can use libraries and application
programming interfaces, such as OpenMP, OpenACC, or
Cilk++ [1], [8], [19]. Unfortunately, threads and vector units
are typically insufficiently used as programmers need a deep
understanding of these libraries and parallelism in general.

Several research projects are focused on automatic paral-
lelization tools that transparently transform sequential source
code into parallel code. Existing tools, such as Par4all, PIPS,
and PluTo, are able to parallelize sequential program parts
at certain conditions [3], [6], [25], [27]. For instance, PluTo
is capable of transforming a nested loop if it is polyhedral,
i.e., all array accesses within the loop are affine functions of
the loop iterators (for details see Section III-0c). Under these
circumstances, it is possible to create the polyhedral model
of the nested loop and perform loop nest transformations and
optimizations. Library-specific pragmas for parallelization and

vectorization are automatically inserted and, in some cases,
even memory accesses can be optimized to achieve a better
cache usage [10], [11].

Although there has been significant progress on automatic
parallelization, the tools still induce a number of restrictions:
1) Sections to be parallelized are generally not allowed to
contain functions calls. 2) Current transformers can only
transform polyhedral codes which requires complete knowledge
of memory accesses at compilation time. 3) Many transformers
require parallel section candidates to be marked manually by
the programmer (however, this is not always necessary [4]).

Besides using libraries and parallelization tools, there are
several other approaches to extend programming languages for
automatic parallelization. Functional languages like Haskell,
for example, inherently allow the parallel execution of func-
tions [20], [22]. They benefit from their paradigm’s property
that (most) functions have no side-effects. But at the same
time, they suffer from their lower performance compared to
languages normally used in high performance computing like
Fortran and C [13].

On the other hand, functions in Fortran and C can have
side-effects which makes it difficult or impossible to parallelize
them (automatically). For this reason, Fortran introduced the
pure keyword. Pure functions are guaranteed to be free of
side-effects and allow Fortran compilers to parallelize more
code segments automatically. Prior to this work, such a feature
was not available for C. One reason is that testing if a function
is free of side-effects is more difficult than in Fortran.

This work adds the pure keyword to the C language and
shows how programs and source-to-source transformers can
benefit from it. The new keyword is used similarly to other
existing function prefixes or modifiers such as static or
inline. For this we developed an additional compiler pass
which verifies that functions marked as pure do not change
the state of any variable outside their scope. Thus, it ensures
that these functions have no undesired side-effects. Using the
PluTo framework [6], we demonstrate the power of this new
feature and test our approach with real-world applications.

Like other polyhedral code transformers, our solution re-
quires slight code modifications, but using the new keyword
has additional benefits. The compiler’s optimizer can, e.g.,
exploit that parameters and their content will never be modified.
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Moreover, the pure keyword can also mark library functions
as side-effect-free with the effect that even library function
calls can be used in automatically parallelized program parts.

II. RELATED WORK

In this section, we discuss C and Fortran language extensions
and tools that support automatic parallelization.

A. Fortran and C Language Extensions

There are different extensions and features of program-
ming languages enabling or supporting automatic paral-
lelization of program parts. Fortran provides two con-
cepts: the pure keyword [7] and co-arrays, which became
part of the Fortran 2008 standard [21], [24]. C provides
the function attributes __attribute__((const)) and
__attribute__((pure)) [2] which, however, are mere
programmer hints to the compiler. In comparison to our
compiler chain, there is no further semantic analysis to verify
the ‘const-ness’ of a function so that side-effects are possible.

High Performance Fortran (HPF) is a language extension
which is not part of the Fortran standard. HPF reads directives
from the code and tells the compiler how data have to be
distributed and processed [17].

B. Parallelization Tools

Our compiler chain includes tools that automatically trans-
form, optimize and parallelize C source code based on the
polyhedral model. This model has been well studied and
numerous source-to-source compilation tools have evolved,
such as PluTo [5], PPCG [27], Par4ALL [25], or the ROSE
compiler infrastructure [23] with its PolyOpt/C optimizer.
These frameworks traditionally aim for an automatic OpenMP
and SIMD parallelization of sequential CPU codes; some (e.g.,
PPCG) are also capable of generating CUDA or OpenCL code
for GPUs. Our code generator is a consolidation of PluTo and
its SICA extension (available from the ‘SICA’ branch of the
PluTo Git repository). SICA extends the PluTo framework in
terms of highly optimized SIMD and multi-core code generation
(here denoted as PluTo-SICA) [10], [11].

III. THE INTEGRATION OF PURE FUNCTIONS INTO C
When functions in a computer program are executed in

parallel, they may interfere with each other, e.g., by altering
shared class variables. However, if functions do not have such
side-effects, it is generally fail-safe to run them in parallel.
Nevertheless, most polyhedral source-to-source transformers
are not able to parallelize loops that contain side-effect-
free function calls as they are not encapsulated in a larger
framework, which holds additional information about ‘the
outside’ of their concrete scope. This is due to memory accesses
that must be known during the transformation process, but
function calls mask this information. By introducing the pure
keyword, we allow the programmer to mark side-effect-free
functions and the compiler to verify that these functions are
really pure, i.e., free of side-effects. The transformer can
consider this and ignore dependencies within these functions
to, finally, potentially parallelize surrounding loops.

Listing 1. Valid and invalid operations in pure functions.

int* globalPtr;
void func1();
pure int* func2(pure int* p1, int p2) {
int a = p2;
int* c = (int*) malloc(3*sizeof(int));
pure int* ptr = p1;
int* extPtr1 = globalPtr; // invalid
pure int* extPtr2 = (pure int*)globalPtr;
func1(); // invalid
pure int* extPtr3 = (pure int*)func2(p1,p2);
return c;

}

a) Language Extension: Many functional languages allow
automatic parallelization by exploiting the properties inherent
in this programming paradigm. In such languages, a function
can be seen as a black box: It is supplied with parameters as
input and returns a result. By construction, there are no side-
effects. This usually does not hold for imperative programming
languages like C. A C function is not a function in the
mathematical sense because it can affect program parts outside
of the function’s scope.

We extended C with an additional function modifier: pure.
Functions of this type mimic the behavior of functions in
functional programming languages as they have no impact on
the program’s state except for the results of the performed
computation. All elements of the surrounding program have
the same state after the execution as they had prior to the
function call.

The pure keyword is placed in front of a function to label
it as pure as well as in front of pointers, like that:

pure int* func(pure int* p1, int p2);

It is important to note, that pure pointers cannot be
modified, nor can their content. They can only be assigned
once. Therefore, it is generally not necessary to allocate their
memory dynamically with the malloc function to make it
accessible to the outside.

Listing 1 shows allowed and denied operations in pure
functions. pure functions can only call other pure functions.
Global pointers (e.g., globalPtr) can be used after being
type-casted and assigned to a local pointer (extPtr2).

b) Compiler Pass: The implementation of our additional
compiler pass is almost exclusively based on standard tools,
e.g., the GCC tool chain and the AntLR 4.5 compiler (or parser
generator). The AntLR repository provides a C grammar built
from the C11 specification. We can, therefore, assume that the
C programming language standard is not harmed.

Our compiler pass must perform a syntactical and semantical
analysis. It receives a C file that has been preprocessed by our
own and the GCC preprocessor. Hence, all required headers
are included, all defines are substituted, etc. This file is
submitted to our preprocessor to generate an abstract syntax
tree (AST). The AST is traversed while most of the code is
ignored, unless a function declaration or implementation is
marked as pure or a for-loop is traversed.

If a function is declared or implemented pure, the function
name is added to a set containing all these functions. The set
is required to check if a pure function only calls other pure



functions or appropriately defined side-effect-free functions.
We initialize the set with the C standard functions that have
no side-effects (e.g., sin, cos, log, etc.). Additionally, we
have to insert malloc and free to the set although these
functions are not strictly free of side-effects to return more
complex structures.

The compiler pass also verifies that assignments do not
modify function-external data: If a pointer assigns function-
external data (e.g., in form of parameters or global data), it must
be declared pure, and the assigned data requires a respective
type cast with the prefix pure.

If data is stored somewhere in the function, our compiler
pass checks for storage initialization in the function’s scope as
well. If the target was declared outside of the scope, it would
initiate a side-effect and therefore trigger a compilation error.

If our compiler pass finishes without errors, it is ensured
that the pure functions do not have any undesired side effects.
However, the pure keyword would cause a compiler error in
the classical GCC tool chain and must be removed or exchanged
before proceeding. The prefixes of the pointers in a function’s
parameter list can be replaced by const. Additionally, the
function prefix must be removed.

An important property of our extension is that it does not
negatively influence the C programming language. Removing
it does not affect the results of a program other than that it
might not be as parallelizable as before.

c) Automatic Parallelization: During the compiler pass,
each internally called function in a for-loop is analyzed and
checked if it only calls pure functions. If this is the case,
we surround the loop by the keywords #pragma scop and
#pragma endscop. Such loops are not allowed to contain
function calls in the following stages of the compiler chain to
ensure that they can be processed by the parallelization tools.
Hence, we substitute function calls in such loops by special,
unique words to make the function calls appear as if they were
constants. This way, the marked sections can be checked (in
our case, by PluTo in polycc) whether they are polyhedral. If
such a section is polyhedral, the transformer inserts pragmas
for OpenMP and for vectorization.

A valid (legal) transformation of nested loops results in
a new execution order of the iteration points respecting the
data-dependencies in the underlying polyhedral model [9] [14]
[15]. In other words, the original ordering is preserved if an
iteration point computes results that are needed as an input to
another iteration point. The transformation may include the
manipulation of loop dimensions (index variables) leading to
a deformation of the polyhedron such that computations can
be processed in parallel.

After the polyhedral transformer has finished its tests and
(if necessary) its transformations, the previously substituted
function calls are adapted and reinserted into the source code.
Since PluTo inserts new program parts, including preprocessor
directives, we start the GCC toolchain from the beginning with
the program file built at the end of our compiler pass.

Automatic code parallelization tools require that accesses
made within a nested loop are affine and statically comprehen-

sible. Listing 2 shows one counterexample as the function call
is not statically analyzable by PluTo. This issue of a relatively
limited view of many source-to-source tools can partially be
solved by using pure annotations together with our compiler
pass. For each parameter of a pure function, the compiler
pass checks whether it also appears on the left-hand side of an
assignment operator in the loop nest and, therefore, recognizes
these write dependencies. If this is the case, the code cannot
directly automatically parallelized.

Yet, the compiler pass can be tricked by aliases. Similar
to other performance-relevant optimizations suffering from
aliasing, this construct disrupts our approach as well. Aliasing
obscures using the same memory region under different names.
Although there are static code analyzers for detecting such
pointers at compilation time, there are situations where these
tools fail, e.g., if the alias depends on runtime conditions [16]
[28]. Other tools instrument program codes and detect (at
runtime) if an array is accessed by using different pointers [12].

IV. EVALUATION

We evaluated our approach by applying it to two different
program codes. The first application multiplies two matrices
with 4096 × 4096 elements each. The pure version uses a
nested function calculating a dot product. This version cannot
be parallelized by standard polyhedral transformers. As a
result, the dot product is manually inlined in the competing
PLuTo / PluTo-SICA version to allow any comparison at all.
Additionally, we ran the matrix-matrix multiplication with a
hand-tuned version of the Intel Math Kernel Library (MKL).

The second application is a standalone version of the ELL
sparse matrix vector multiplication function extracted from the
LAMA library [18]. We used the Boeing/pwtk1 data set as input
which contains a symmetric matrix consisting of over 217K
rows and columns with 11.5 million non-zero elements (about
155 MiB). The loop nest of the LAMA function contains a
function call and indirect addressing (because of the sparseness
of the matrices). Finally, the inner pure function computes
the dot product of two vectors.

A. Test Environment

The tests were performed on a computer equipped with four
AMD Opteron 6272 processors (16 cores @2.1 GHz each) and
512 GiB of RAM. The application were compiled with GCC
4.4.7 20120313 (Red Hat 4.4.7-3) and Intel C/C++ Compiler

1http://www.cise.ufl.edu/research/sparse/MM/Boeing/pwtk.tar.gz

Listing 2. Invalid use of a pure function. The function call within the loop
nest violates the properties of polyhedral loops.

pure int func(pure int* _a, int _idx) {
return _a[_idx-1]+_a[_idx];

}
void main() {

int arr[100];
...
for (int i = 1; i < 100; i++) {

arr[i] = func(arr, i); // invalid assignment
}

}
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Fig. 1. Execution time of the matrix-matrix multiplication using GCC.

(ICC) 16.0.2 and used the -O2 flag in all cases to retain
accuracy and comparability to the O2-compiled MKL.

B. Scaling Tests

We evaluated the scaling behavior of the applications. For
each program we exponentially increased the number of parallel
cores from 20 to 26 and measured the average runtime over
20 application runs.

a) Matrix-matrix multiplication: Using the GCC-based
compiler chain for the matrix-matrix multiplication, the first test
compares the different parallelization tools with each other and
with the corresponding MKL version compiled with the Intel
compiler (see Fig. 1). The sequential GCC-compiled version
took 21.97 seconds (dashed line).

With an increasing number of utilized cores, the execution
time is strictly decreasing when our compiler chain is used
(pure bars). It temporarily increases scaling from 16 to 32
cores when the PluTo polyhedral transformer is used on its
own (PluTo bars). Furthermore, the pure version is always
significantly faster the the ‘simple’ PluTo parallelization.

At first glance, the results may seem counter-intuitive as
pure uses PluTo to parallelize the code in its tool chain.
Furthermore, PluTo inlines the function, which is typically
considered to be faster than calling the function [26]. We
therefore analysed the parallelized source code and found out
that another program part was parallelized using the pure-
directive although it was not planned to run concurrently: As
mentioned, the malloc operation is one of the C standard
functions that we mark pure, and a loop allocating the matrices
with malloc was therefore parallelized, too.

Nevertheless, our automatic parallelization using the GCC
compiler chain cannot compete with PluTo-SICA and is much
slower than the hand-tuned MKL. This is because PluTo-SICA’s
code and the MKL implementation can make exhaustive use
of SSE/AVX directives and cache-align the data better.

The pure version experiences a significant performance
advantage when ICC is used while the PluTo version does
not benefit from it (see Fig. 2) on only a few cores for our
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Fig. 2. Execution time of the matrix-matrix multiplication using ICC.

tested matrix size. The performance improvement is higher for
smaller core numbers, while the performance of pure together
with the ICC compiler converges to the performance of the
GCC compiler chain for core counts higher than 16 cores. The
performance of these two parallelization approaches is only
faster than the ICC single-core version when more than two
cores are used. PluTo-SICA is only able to (clearly) outperform
the pure directive for eight or more cores.

The comparison with the matrix-matrix multiplication using
MKL shows that the hand-tuned code can still significantly
outperform all other program versions and that there is still
optimization potential for automatic parallelization tools. The
MKL version is 7.28 times faster than the pure version for a
single core and 5.82 faster in the case of 64 cores.

b) LAMA (ELLMatrix): For the LAMA application, we
can only provide results for manually modified code and for
code automatically generated with our pure compiler chain.
The PluTo and the PluTo-SICA tools are unable to parallelize
this code without our compiler pass.

The runtimes for the ELL sparse matrix vector multiplication
with an increasing number of cores are shown in Fig. 3. While
the versions compiled with Intel’s ICC are more efficient than
the corresponding GCC versions for less than 16 cores, they are
less efficient for more than 16 cores. Generally, our automatic
parallelization achieves a performance comparable to the one
of the manually built executable.

V. CONCLUSION

We have introduced the pure keyword for the C program-
ming language which marks side-effect-free functions and
helps to automatically parallelize C programs. Prior to our
implementation, polyhedral transformers were generally unable
to parallelize any loops that contain function calls. With our
extension, it is now fail-safe for polyhedral transformers to
ignore pure functions so that it becomes possible to parallelize
more classes of loop-nests. In our evalution we have shown
that our preprocessor automatically accelerates programs if
their main computation is embedded in a polyhedral loop.

Although there exist other language extensions, this is the
first working C compiler pass which guarantees that a function
has no side-effects. In the future we will integrate the pure
keyword into the C++ programming language and also provide
a tighter coupling between pure and PluTo-SICA to provide
better cache alignment and better support for code vectorization.
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