15,361 research outputs found

    OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets

    Get PDF
    In this work we present the Object Labeling Toolkit (OLT), a set of software components publicly available for helping in the management and labeling of sequential RGB-D observations collected by a mobile robot. Such a robot can be equipped with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot observations to generate a 3D reconstruction of the scene from which object segmentation and labeling is conveniently accomplished. The annotated labels are automatically propagated by the toolkit to each RGB-D observation in the collected sequence, providing a dense labeling of both intensity and depth images. The resulting objects’ labels can be exploited for many robotic oriented applications, including high-level decision making, semantic mapping, or contextual object recognition. Software components within OLT are highly customizable and expandable, facilitating the integration of already-developed algorithms. To illustrate the toolkit suitability, we describe its application to robotic RGB-D sequences taken in a home environment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish grant pro- gram FPU-MICINN 2010 and the Spanish projects TAROTH: New developments toward a Robot at Home (DPI2011-25483) and PROMOVE: Advances in mobile robotics for promoting independent life of elders (DPI2014-55826-R

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    Face Recognition from Sequential Sparse 3D Data via Deep Registration

    Full text link
    Previous works have shown that face recognition with high accurate 3D data is more reliable and insensitive to pose and illumination variations. Recently, low-cost and portable 3D acquisition techniques like ToF(Time of Flight) and DoE based structured light systems enable us to access 3D data easily, e.g., via a mobile phone. However, such devices only provide sparse(limited speckles in structured light system) and noisy 3D data which can not support face recognition directly. In this paper, we aim at achieving high-performance face recognition for devices equipped with such modules which is very meaningful in practice as such devices will be very popular. We propose a framework to perform face recognition by fusing a sequence of low-quality 3D data. As 3D data are sparse and noisy which can not be well handled by conventional methods like the ICP algorithm, we design a PointNet-like Deep Registration Network(DRNet) which works with ordered 3D point coordinates while preserving the ability of mining local structures via convolution. Meanwhile we develop a novel loss function to optimize our DRNet based on the quaternion expression which obviously outperforms other widely used functions. For face recognition, we design a deep convolutional network which takes the fused 3D depth-map as input based on AMSoftmax model. Experiments show that our DRNet can achieve rotation error 0.95{\deg} and translation error 0.28mm for registration. The face recognition on fused data also achieves rank-1 accuracy 99.2% , FAR-0.001 97.5% on Bosphorus dataset which is comparable with state-of-the-art high-quality data based recognition performance.Comment: To be appeared in ICB201

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr

    SegICP: Integrated Deep Semantic Segmentation and Pose Estimation

    Full text link
    Recent robotic manipulation competitions have highlighted that sophisticated robots still struggle to achieve fast and reliable perception of task-relevant objects in complex, realistic scenarios. To improve these systems' perceptive speed and robustness, we present SegICP, a novel integrated solution to object recognition and pose estimation. SegICP couples convolutional neural networks and multi-hypothesis point cloud registration to achieve both robust pixel-wise semantic segmentation as well as accurate and real-time 6-DOF pose estimation for relevant objects. Our architecture achieves 1cm position error and <5^\circ$ angle error in real time without an initial seed. We evaluate and benchmark SegICP against an annotated dataset generated by motion capture.Comment: IROS camera-read
    • …
    corecore