8,639 research outputs found

    Structural Surface Mapping for Shape Analysis

    Get PDF
    Natural surfaces are usually associated with feature graphs, such as the cortical surface with anatomical atlas structure. Such a feature graph subdivides the whole surface into meaningful sub-regions. Existing brain mapping and registration methods did not integrate anatomical atlas structures. As a result, with existing brain mappings, it is difficult to visualize and compare the atlas structures. And also existing brain registration methods can not guarantee the best possible alignment of the cortical regions which can help computing more accurate shape similarity metrics for neurodegenerative disease analysis, e.g., Alzheimer’s disease (AD) classification. Also, not much attention has been paid to tackle surface parameterization and registration with graph constraints in a rigorous way which have many applications in graphics, e.g., surface and image morphing. This dissertation explores structural mappings for shape analysis of surfaces using the feature graphs as constraints. (1) First, we propose structural brain mapping which maps the brain cortical surface onto a planar convex domain using Tutte embedding of a novel atlas graph and harmonic map with atlas graph constraints to facilitate visualization and comparison between the atlas structures. (2) Next, we propose a novel brain registration technique based on an intrinsic atlas-constrained harmonic map which provides the best possible alignment of the cortical regions. (3) After that, the proposed brain registration technique has been applied to compute shape similarity metrics for AD classification. (4) Finally, we propose techniques to compute intrinsic graph-constrained parameterization and registration for general genus-0 surfaces which have been used in surface and image morphing applications

    Face image super-resolution using 2D CCA

    Get PDF
    In this paper a face super-resolution method using two-dimensional canonical correlation analysis (2D CCA) is presented. A detail compensation step is followed to add high-frequency components to the reconstructed high-resolution face. Unlike most of the previous researches on face super-resolution algorithms that first transform the images into vectors, in our approach the relationship between the high-resolution and the low-resolution face image are maintained in their original 2D representation. In addition, rather than approximating the entire face, different parts of a face image are super-resolved separately to better preserve the local structure. The proposed method is compared with various state-of-the-art super-resolution algorithms using multiple evaluation criteria including face recognition performance. Results on publicly available datasets show that the proposed method super-resolves high quality face images which are very close to the ground-truth and performance gain is not dataset dependent. The method is very efficient in both the training and testing phases compared to the other approaches. © 2013 Elsevier B.V

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    Multiple RF classifier for the hippocampus segmentation: method and validation on EADC-ADNI harmonized hippocampal protocol

    Get PDF
    AbstractThe hippocampus has a key role in a number of neurodegenerative diseases, such as Alzheimer's Disease. Here we present a novel method for the automated segmentation of the hippocampus from structural magnetic resonance images (MRI), based on a combination of multiple classifiers. The method is validated on a cohort of 50 T1 MRI scans, comprehending healthy control, mild cognitive impairment, and Alzheimer's Disease subjects. The preliminary release of the EADC-ADNI Harmonized Protocol training labels is used as gold standard. The fully automated pipeline consists of a registration using an affine transformation, the extraction of a local bounding box, and the classification of each voxel in two classes (background and hippocampus). The classification is performed slice-by-slice along each of the three orthogonal directions of the 3D-MRI using a Random Forest (RF) classifier, followed by a fusion of the three full segmentations. Dice coefficients obtained by multiple RF (0.87 ± 0.03) are larger than those obtained by a single monolithic RF applied to the entire bounding box, and are comparable to state-of-the-art. A test on an external cohort of 50 T1 MRI scans shows that the presented method is robust and reliable. Additionally, a comparison of local changes in the morphology of the hippocampi between the three subject groups is performed. Our work showed that a multiple classification approach can be implemented for the segmentation for the measurement of volume and shape changes of the hippocampus with diagnostic purposes
    • …
    corecore