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ABSTRACT OF THE DISSERTATION

STRUCTURAL SURFACE MAPPING FOR SHAPE ANALYSIS

by

Muhammad Razib

Florida International University, 2017

Miami, Florida

Professor Wei Zeng, Major Professor

Natural surfaces are usually associated with feature graphs, such as the cortical

surface with anatomical atlas structure. Such a feature graph subdivides the whole

surface into meaningful sub-regions. Existing brain mapping and registration meth-

ods did not integrate anatomical atlas structures. As a result, with existing brain

mappings, it is difficult to visualize and compare the atlas structures. And also exist-

ing brain registration methods can not guarantee the best possible alignment of the

cortical regions which can help computing more accurate shape similarity metrics

for neurodegenerative disease analysis, e.g., Alzheimer’s disease (AD) classification.

Also, not much attention has been paid to tackle surface parameterization and reg-

istration with graph constraints in a rigorous way which have many applications in

graphics, e.g., surface and image morphing.

This dissertation explores structural mappings for shape analysis of surfaces us-

ing the feature graphs as constraints. (1) First, we propose structural brain mapping

which maps the brain cortical surface onto a planar convex domain using Tutte em-

bedding of a novel atlas graph and harmonic map with atlas graph constraints to

facilitate visualization and comparison between the atlas structures. (2) Next, we

propose a novel brain registration technique based on an intrinsic atlas-constrained

harmonic map which provides the best possible alignment of the cortical regions. (3)

After that, the proposed brain registration technique has been applied to compute

vi



shape similarity metrics for AD classification. (4) Finally, we propose techniques to

compute intrinsic graph-constrained parameterization and registration for general

genus-0 surfaces which have been used in surface and image morphing applications.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Surface mapping is the process of flattening a 3-dimensional (3D) surface to a unit

sphere or to a 2-dimensional (2D) planar canonical domain such as a unit disk or

a rectangle. The primary objective of the mapping is to create a simpler repre-

sentation of the complex 3D surface to a more regular and less complex domain

to carry further geometric analysis tasks. It is a fundamental task in computer

graphics, computer vision and medical imaging fields which facilitates many other

applications including visualization, texture mapping, surface modeling, matching,

registration, morphing, and so on. In medical imaging fields especially in neuro-

science, brain surface mapping is used to map the convoluted 3D brain surface to

a unit disk or a unit sphere for anatomy visualization and comparison of the brain

structures. In computer graphics field, the mapping, commonly known as parame-

terization, usually maps the surface to a planar canonical domain. Parameterization

provides a way to map surfaces with different coordinate systems to a common co-

ordinate system which can be used to establish one-to-one correspondence between

two surfaces. The process of establishing the correspondence between the surfaces

is known as surface registration. For human brains, surface registration is typically

used for computing shape similarity metrics for group analysis purposes; the method

is particularly useful in brain morphometry analysis to identify or classify different

psychological or neurodegenerative diseases, e.g., Alzheimers disease (AD), where

the brain structure or geometry is highly affected and changed. The registration pro-

cess helps to quantify the similarity and differences among the brains by mapping

similar portions of different brains to the similar position in the mappings. Surface

1



registration also plays key role for many other geometry processing applications.

One such important application is surface morphing which shows the transition of

transforming one geometric shape or surface to another; morphing is widely used in

animation and motion picture industries.

(a) graph on (b) structural (c) graph on (d) graph-constrained
brain surface brain mapping facial surface parameterization

Figure 1.1: Feature graphs, and mappings of the surfaces. (a) and (c) show brain
surface and human facial surface; (b) and (d) show the structural brain mapping and
graph-constrained parameterization of the facial surface respectively. The anatom-
ical regions of the brain surface are color coded.

This dissertation explores structural mapping for shape analysis of surfaces using

the novel feature graphs naturally embedded in the brain and other surfaces. The

feature graph subdivides the whole surface into meaningful sub-regions that can be

used as constraints in the mapping. For example, the human brain is divided into

several anatomical regions based on their functionality, and geometric structures

which can be used combinedly to define a topological graph, each of these regions is

inter-connected to several other regions; together they create the brain atlas. The

curvy connection among these regions can be used as the edges of the graph, and

the junctions of these anatomical regions can be used as the nodes of this graph;

together they create the atlas graph (see Fig. 1.1(a)).

A crucial step of brain analysis is the visualization of the brain atlas, and compar-

ing the connecting patterns of the regions and geometry between the brain surfaces.

But due to the highly convoluted structures of the brain, 3D brain surface is not

2



useful for the exploration, visualization, and comparison of the brain structures. So

effective visualization technique is required for easy exploration and visualization of

the whole brain; brain mapping was introduced for this purpose. But in existing

brain mappings atlas boundaries (connecting curves between the regions) appear

highly curvy as they did not integrate the anatomical atlas structures into the map-

ping, which makes the visualization and comparison tasks very difficult. In this

dissertation, we present a novel brain mapping method using the anatomical atlas

graph to provide a well-structured view for straightforward visualization and com-

parison among the brain structures (see 1.1(b)). The method maps the brain cortical

surface onto a planar convex domain using the classical Tutte embedding [137] and

minimizing harmonic energy where the anatomical regions are mapped to convex

subdivisions.

One important aspect of the proposed brain mapping is that it can be applied

to compute the registration between the brain surfaces. Moreover, the straight lines

and the convex faces from the mapping can be used to map similar faces of the

two surfaces to similar positions in the registration process. However, for good

registration result, the mapping should consider the original geometry of the 3D

surface efficiently. Otherwise, the registration may suffer from stretches and fold

over triangles. So, a rigorous method is required to compute the mapping which

can preserve the intrinsic property of the surface as much as possible; then the

mapping can be used efficiently to compute the atlas-constrained brain registration.

It is required to map similar faces of the atlas graphs to similar convex faces on the

map to register brains with optimal shape similarity. It would be a trivial task if

the atlas graphs of the brains were consistent (with same nodes and connectivity).

But the atlas graphs among the brain surfaces are not guaranteed to be consistent

which have been verified experimentally in this dissertation. To solve this problem,

3



we propose graph-refinement procedure to make the atlas graphs consistent in the

registration process. The proposed graph refinement procedure performs minimal

changes to the atlas-graphs to register different regions of the brains as much as

possible.

The brain registration method provides a powerful way to analyze the structural

difference or similarity among the brains. The idea is to co-register the brains and

then define the similarity metric using the registered brains to find out the difference

between the normal brains and brains with diseases. The proposed brain registration

method guarantees optimal alignment of the cortical regions which can be used to

compute optimal shape similarity metrics to classify brains. In this dissertation,

we have presented a framework using this registration technique to classify patients

with Alzheimer’s disease (AD). The method uses the supervised learning techniques

to build models from the training dataset using the geometric attributes of the brain

surfaces as features, which is used to predict whether the input brains have AD or

not.

The graphs are also found on other natural surfaces. For example, in human

or animal facial surfaces the graphs can be extracted from the surfaces using the

prominent feature points, e.g., eye and mouth corners, nose tips, etc., as the nodes,

and the landmark contours and curves, e.g., eye and mouth contours, etc., as the

edges (see Fig. 1.1(c)). Moreover, similar objects may have similar feature graphs,

e.g., two different human facial surfaces may have similar feature graphs which can

be used to compute the registration between them. These graphs can be used as

constraints to parameterize similar surfaces onto similar canonical convex domains.

Like brain mapping, these parameterized surfaces then can be used to compute

registration between the two surfaces. But most of the existing methods either

use points or curves in the parameterization and registration process. However, for
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surfaces with consistent feature graphs, it is worthy to deal with the graph as a

whole rather than split the graph into separate points and curves as the graph is

equipped with both global and local information, which serves as a skeleton structure

of the surface. But to date, not much attention has been paid to tackle surface

parameterization and registration with graph constraints in a rigorous way. So, at

the end of this dissertation, we have presented methods to compute intrinsic graph-

constrained parameterization (see Fig. 1.1(d)) for genus zero surfaces with graph

structures to map them onto planar convex domain which considers the intrinsic

geometric structures of the surface as much possible. The curvy edges are mapped

to straight lines and the closed regions consisting with the curvy edges (which form

the faces of the graphs) are mapped to the convex subdivisions in the parameter

domain. The method is a generalization of the intrinsic atlas-constrained harmonic

map for the brain surfaces. After that, the parameterization is used to compute the

registration between two surfaces. We have applied the proposed graph-constrained

parameterization and registration methods to generate surface and image morphing

sequences, which show the usefulness and effectiveness of the proposed methods.

1.2 Research Questions

The main research questions that this dissertation aims to answer are as follows:

1. How to generate brain surface mapping with atlas constraints?

2. How to compute brain registration with atlas constraints?

3. How to apply brain registration to large-scale brain classification?

4. How to compute parameterization and registration with graph constraints?
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1.3 Solutions and Contributions

In this dissertation, we provide computational solutions to the questions mentioned

above. We divide this dissertation into four main chapters which contain the solu-

tions to these four questions. (1) First, we present structural brain mapping using

a novel atlas graph to map the brain cortical surface onto planar convex domain

using Tutte graph embedding and harmonic map to create a well-structured view

for efficient visualization and comparison between the atlas structures. (2) Next,

we present a novel brain registration method using atlas-constrained harmonic map

with graph refinement strategy to create consistent atlas graphs among the brain

surfaces which guarantees the best possible alignment of the anatomical regions

of the brains. (3) After that, we present a framework for classifying AD patients

from normal patients using the proposed brain registration method to compute

the similarity metric by co-registering the brains. (4) Finally, we present a graph-

constrained registration method for general genus zero surfaces using the intrinsic

graph-constrained parameterization technique which is applied to surface and image

morphing.

As this dissertation is based on the human brain and 3D surface representation,

below we provide an overview of the basic construction of the human brain modeling

and 3D surface representation.

Human brain. The human brain consists of the three major parts, i.e., the cere-

brum, the brainstem and the cerebellum. The cerebrum is the largest part among

them, which is divided into two parts known as the left hemisphere and right hemi-

sphere. Various parts of both the left and right hemisphere perform and contribute

to different neurological functions, e.g., cognition, reasoning, learning, memory, etc.

Based on these functionality and geometric structures, these two hemispheres can
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be divided into several inter-connected regions. The labeling and mapping of these

regions are performed on the images of the brains captured with brain imaging tech-

niques. One of these imaging techniques is Structural Magnetic Resonance Imaging

(sMRI or simply MRI) which is widely used for capturing the image of static anatom-

ical structures of the brain. These images are used by the physicians to diagnose the

patients having brain-related diseases or disorders. The labeling and mapping of the

regions can be performed manually or by some advanced automatic pipelines on the

MRI image. Automating this process requires a considerable amount of research,

but techniques have been developed to automatically label the regions of the brain

with high accuracy. MRI normally provides volume image data which is a series of

2D slice images that captures the picture of the whole 3D space of the brain. The

images are captured at a regular interval, e.g., one slice image in every one millime-

ter and each of the slice images has the same resolution, e.g., 1024x1024 pixels (pixel

on the slice image is known as voxel which has x, y, z position and one intensity

value). After some cleaning operations, the volume image can be used directly in

the analysis and is called volume-based analysis in literature. Another way is to use

the cortical, i.e., the outer layer of the brain, or sub-cortical surface extracted from

the 3D volume image (hence, the brain surface is often termed as cortical surface)

for the analysis. This kind of analysis technique is known as surface-based analysis.

Several automatic methods and mapping techniques have been proposed to auto-

matically label the brain regions and extract surface from the volume image, among

which Freesurfer [36], Brainsuite [113], etc., are widely used. In the literature, both

volume-based [5, 6, 27, 32, 50] and surface-based [37, 59] analysis have been proved

to be very effective for different brain analysis purposes. This dissertation proposes

methods and performs surface-based analysis of the human brain.
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3D surface. The surface is a 2-dimensional manifold embedded in 3D (R3)

space. In computer graphics, the 3D surface is discretized with a set of planar

polygons each consisting of discrete points. The set of points are known as vertex

set, and the set of polygons are known as face set; such a discretization of the surface

is known as a mesh. Typically, triangles are used as faces to discretize the surface

known as a triangular mesh (in some cases tetrahedrons or other polygons are also

used). The surfaces used in this dissertation have been discretized with points and

triangles.

In the following sections, we provide overviews of our presented solutions and

our key contributions to each of the methods.

1.3.1 Structural Brain Mapping

Brain mapping is the process of flattening the 3D convoluted brain cortical surface

onto a canonical domain, e.g., disk conformal map, so that the hidden details of the

brain surface is fully exposed onto that domain. It generates better visualization for

the convoluted brain geometry, and the whole brain surface can be explored more

easily. But in existing brain mapping methods, e.g., conformal mapping onto a disk,

the anatomical atlas boundaries appear highly curvy on the mapping. It is hard

to compare the anatomical atlas structures between the brains from such mapping.

Therefore, a canonical map with canonical atlas structure is highly desired, which

can be used directly for atlas visualization and comparison, and further for brain

registration and brain morphometry analysis. So, we propose structural brain map-

ping which maps the brain cortical surface with atlas division (i.e., brain regions)

to a convex subdivision domain. The method takes into consideration the whole

anatomical atlas structure and defines a novel graph based on the connectivity of

the cortical regions which we call brain net graph. This graph is different from the

8



existing brain graph in [19]. In our definition, the nodes are the junctions of the

anatomical regions and the edges are the common boundaries of the neighboring

regions (see Fig. 1.1(a)). The method first extracts the brain-net graph from the

3D brain surface and then embeds the graph onto a 2D convex domain using Tutte

embedding where each face of the graph is also mapped as a convex polygon inside

the convex domain. In the second step, the whole brain surface is mapped inside

the 2D convex domain using harmonic map with the convex subdivision constraint.

Contributions. The major contributions of our brain mapping method have been

summarized below:

1. Our proposed brain mapping is first to use the whole anatomical atlas structure

as a graph in the mapping. As a result, the method can capture the global

topology and local geometry of the whole cortical surface. The proposed graph

is a novel graph different than the existing ones.

2. The method provides a better visualization tool to compare the local and

global relationship among the regions of the two brains. The important prop-

erties of the proposed graph are that its a planar and 3-connected graph (after

minor filtering). So according to Tutte embedding theorem [137], the graph

can be embedded onto the plane without crossing edges, and every face of

the graph is convex. Also, the computation of the graph embedding is linear.

One important property of the proposed mapping is that it is theoretically

guaranteed to be diffeomorphic and the computation of the mapping is also

linear.

3. The method has been verified on a total of 290 brains from two brain databases;

one is our own captured 250 MRI brain scans processed by Freesurfer, and the
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other one is 40 manually labeled brain scans from publicly available LPBA40

dataset.

1.3.2 Atlas-Constrained Brain Registration

In brain study, the dense registration between cortical surfaces is highly desirable in

neuroscience, medical imaging, cognitive neuroscience, and psychology fields which

finds out one-to-one correspondence between the source and the target cortical sur-

face. The process aims to generate the optimal diffeomorphism between the surfaces.

Diffeomorphic cortical surface registration can give a detailed guidance for locating

the deformation areas for progression measurement and morphology analysis of the

brain structure. The registration process is designed to map the similar structures

of the brains to the closest position so that their overall similarity measurement is

maximized. After that, one can define the shape similarity metrics globally for brain

comparison, classification and for finding patterns among the brains of different sub-

jects. Therefore, it has broad applications for brain disease diagnosis and treatment,

such as brain tumor/abnormality growth tracking, radiotherapy monitoring, surgery

outcome evaluation, personal health monitoring, etc.

Although there are some brain registration techniques in literature, but none of

the existing methods consider the whole anatomical atlas structure into the compu-

tation. As a result, none of the methods can guarantee the best possible alignment

of the cortical regions which can help computing more accurate shape metrics. In

this dissertation, we propose a novel cortical surface registration method by fully

considering the anatomical atlas structure by using the atlas graph proposed in

structural brain mapping. For the registration, atlas graphs between the source and

the target need to be consistent to map the source and the target to the same 2D do-

main. But it has been verified experimentally on the manually labeled brain dataset
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that the atlas graphs may not be consistent among the brains. So, we propose a

graph refinement method on the triangular mesh to make the graphs consistent

while keeping the modification as low as possible. The method then generates 3D

to 2D canonical parameterization of the source and the target using the intrinsic

atlas-constrained harmonic map. The mapping minimizes the harmonic energy with

atlas-graph constraints by considering the intrinsic geometric structures of the sur-

face. The positions of the graph nodes and graph edges are determined intrinsically

by their local graph neighborhood instead of the mesh vertex neighborhood, thus

removing the use of graph embedding step. Finally, we register the source to the

target surface using the harmonic map with graph constraint. To minimize the dis-

tortion due to the graph modification we propose a relaxation procedure after the

registration. The proposed method can more accurately align the cortical regions

and the region boundaries, and perform better than the existing registration method

in terms of the overlap of the regions, i.e., Freesurfer [36], as measured by the Dice

coefficient.

Contributions. The major contributions of our brain registration method have

been summarized below:

1. We provide a novel brain registration framework using the atlas graph con-

sidering the whole anatomical atlas structure. None of the previous methods

consider the whole atlas structure for registration.

2. We provide a novel graph refinement procedure to make the atlas graphs con-

sistent among the brains. The modification is done on the very few triangles of

the cortical surface and is kept as few as possible. As a result, the method can

generate registration with the best possible alignment of the cortical regions.
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3. We also provide a novel atlas-constrained map minimizing the quadratic con-

vex harmonic energy considering the local graph neighborhood for the vertices

of the graph nodes and graph edges. The method respects the intrinsic geomet-

ric structures of the surface and does not require any initial graph embedding

(Tutte embedding) which is heuristic and not intrinsic. The proposed mapping

has been proved to be unique, globally optimal and diffeomorphic.

4. The proposed registration with consistent feature graphs (if not consistent,

then the graphs are made consistent with graph refinement strategy) has been

proved to be globally optimal, unique and diffeomorphic. The registration

method has been tested on the manually labeled brain databases, LPBA40

[114] and Mindboggle [72]. Registration results show significant improvement

with our method over Freesurfer’s registration method as measured by the

Dice coefficient which is used to measure the overlap of the cortical regions of

the cortical surfaces.

1.3.3 AD Classification using Atlas-Constrained Brain Registration

The human brain is the center of the nervous system which functions as the bridge

or signal provider behind all of our neurological and psychological activities. Any

change or abnormality in any part of the brain may result in a different psycholog-

ical behavior, or the extreme case may result in neurological or neurodegenerative

diseases, e.g., Alzheimers disease (AD) and Parkinsons disease, or psychological dis-

orders, e.g., schizophrenia, epilepsy, acute depression, etc. So, these diseases have

a direct relation to the underlying biological structures of the brain. Biological

structures can be affected due to the changes of the biological fluid of the brain,

e.g., gray matter and white matter volume, or neural cell loss. In most cases, if

the biological structure of the brain is changed, this change is also reflected on
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the geometric structures of the brain, which in turn changes the structure of the

cortex of the brain, i.e., cortical surface. Detecting and analyzing these structural

changes in the brain can help early detection and prevention of many of these dis-

eases or disorders. Many researches, especially in neuroscience and medical imaging

fields, have given tremendous efforts to find and establish a rigorous relationship

between the geometric structures of the brain and neurological diseases. Many dif-

ferent geometric analysis methods have been proposed which have been found to

be very effective for identifying these geometric changes and classifying brains hav-

ing these diseases, e.g, AD [42, 87, 140, 151, 161], schizophrenia [14, 43, 94, 98, 99],

epilepsy [88, 106,138,146,147,147], acute depression [78,117], etc.

Brain morphometry analysis refers to the study of the size and shape of the

brain structures and functions and their relations to the development and evolution

of the brain due to aging, learning, diseases, etc. Analysis method also studies

the best suited geometric attributes and features to find out the optimal structural

differences between the two brain surfaces. The process typically uses brain mapping

and registration methods to establish the relationship between the brains. Once the

registration is computed, some shape similarity metrics can be used for finding

the shape difference between the cortical surfaces. Different geometric attributes

or features can be used as the metrics, e.g., normal, curvature, area, gray/white

matter thickness, volume, etc., using the one-to-once correspondence between the

vertices to compute the metric similarity and difference between the surfaces. This

difference of the measurement can be used to investigate the abnormality in the

diseased brain different from the normal brain.

Alzheimers disease is a premier example of a disease where the atrophy of the

gray matter or white matter fluids in the brain cortex is significant, and it al-

ters the geometric structure of the brain. Registering the brains help us to define
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some shape similarity metric to analyze the difference between the brains. As the

atlas-constrained brain registration considers more regional geometry of the brain,

it can be used to compute the optimal shape metrics. In this dissertation, we have

presented a framework using atlas-constrained brain registration for Alzheimers dis-

ease classification. The process takes one brain as the source and deforms that to

all other brains using atlas-constrained brain registration. After that, we use super-

vised learning methods to classify the brains into two categories, normal brains, and

brains with the AD. In the process, we show the use of various types of geometric

measurements that can be used as the shape metric. We also show the detailed use

of different machine learning classifiers. Among the methods, K-NN shows the best

results with 88.0% accuracy with 10-fold cross-validation.

Contributions. The major contributions of the proposed brain analysis framework

for AD have been summarized below:

1. We provide a framework based on the co-registration of brain cortical surfaces

using the atlas-constrained brain registration process for AD classification. As

the atlas-constrained brain registration technique can guarantee registration

with the best possible alignment of the cortical regions, the proposed analysis

framework can provide optimal alignment of the two brain surfaces so that

their similarity measurement is maximized; as a result, similar brains can be

grouped more accurately.

2. We show the use of several types of features for AD classification using super-

vised learning based classification algorithms, e.g., K-NN and SVM with k-fold

Cross-verification. We compute the best combination of features by feature

selection algorithm for AD classification. We also show the detailed analysis

of the best models for the classification.
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1.3.4 Intrinsic Graph-Constrained Surface Parameterization and Regis-

tration

Many natural surfaces have similar anatomical structures represented as graphs, e.g.,

two human facial surfaces have same topological graphs consisting with the similar

prominent feature points, e.g., eye, nose tip, mouth corners, etc. This similar or

isomorphic graphs between the two surfaces can be used as constraints to register

the surfaces. The idea is to compute the graph-constrained parameterization that

maps the surface to a canonical convex domain, and then register the surfaces on

this domain. But to obtain good registration results, the graph-constrained param-

eterization need to retain the original geometry as much as possible. The registered

surfaces can be used for many applications in computer graphics; one such important

application is morphing used to deform one geometric shape to another.

In this part of the dissertation, we generalize the atlas-constrained mapping

of the cortical surfaces to compute the quasiconformal mapping of the graph con-

strained surface (genus-0 surface with single boundary) intrinsically by the adaptive

harmonic map which we call intrinsic graph-constrained parameterization. After

that, we compute the graph-constrained registration based on this parameterization

to register two surfaces. The proposed registration method has been applied to

generate morphing sequence by interpolating the shapes between the source and the

deformed source surface (generated from the target).

Contributions. The major contributions of the proposed parametrization and

registration method have been summarized below:

1. We provide a graph-constrained registration technique based on the intrinsic

graph-constrained parameterization method for general genus-0 surfaces with

a single boundary. The method can be used for surfaces having isomorphic
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graph structures embedded on the surface. Like the atlas-constrained map-

ping and registration of the cortical surfaces, the proposed mapping in the

proposed parameterization and registration method for genus-0 surfaces are

unique, globally optimal and diffeomorphic.

2. We have applied the proposed parameterization and registration methods on

various surfaces and images, and also applied the registration to surface and

image morphing. Experiments show that the morphing method based on the

graph-constrained parameterization and registration can generate high-quality

morphing sequences for surfaces with complicated geometry, and also for im-

ages having single and multiple objects.

1.4 Related Publications

This dissertation has been written based on the following list of publications:

1. Wei Zeng, Yi-Jun Yang, and Muhammad Razib. Graph-Constrained Surface

Registration Based on Tutte Embedding. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops, June 2016

2. Muhammad Razib, Zhong-Lin Lu, and Wei Zeng. Structural Brain Mapping.

In Medical Image Computing and Computer-Assisted Intervention–MICCAI

2015, pages 760–767. Springer, 2015

3. Wei Zeng, Muhammad Razib, and Abdur Bin Shahid. Diffeomorphism Spline.

Axioms, 4(2):156–176, 2015

The following two manuscripts are currently under review:

1. Muhammad Razib, Yi-Jun Yang, Zhong-Lin Lu, and Wei Zeng. A Novel Brain

Registration Framework by Atlas-Constrained Mappings. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.
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2. Muhammad Razib, Yi-Jun Yang, and Wei Zeng. Intrinsic Parameterization

and Registration of Graph Constrained Surfaces. In Graphical Models, 2018.

1.5 Organization of the Dissertation

This dissertation involved research in the areas of brain mapping, brain registration,

brain morphometry analysis, and surface parameterization, registration, and mor-

phing. We discuss a comprehensive list of the related works involving all of these

topics in chapter 2. Section 2.1 discusses the related works of brain mapping, section

2.2 discusses the related works of brain registration, section 2.3 discusses the related

works of brain morphometry analysis, and section 2.4 discusses the related works of

surface parameterization, registration, and morphing. We also discuss the novelty,

and key difference of our works form the existing works with each of these sections.

In chapter 3, we present structural brain mapping. Section 3.1 provides an

introduction, section 3.2 discusses the background information and motivation, sec-

tion 3.3 provides an overview of our approach, section 3.4 discusses some theoretic

background, section 3.5 elaborates the computational algorithm, section 3.6 shows

the experimental results with some discussion and provides comparison with other

approaches, and section 3.7 provides a summary of the method.

In chapter 4, we present atlas-constrained brain registration method. Section

4.1 provides an introduction, section 4.2 discusses the background information and

motivation, section 4.3 provides an overview of our approach, section 4.4 elaborates

the computational algorithm, section 4.5 shows the experimental results with some

discussions, and section 4.6 provides a summary of the method.

In chapter 5, we present the method for AD classification using atlas-constrained

brain registration. Section 4.1 provides an introduction, section 4.2 discusses the

background information and motivation, section 4.3 provides an overview of our
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approach, section 4.4 elaborates the computational algorithm, section 4.5 shows the

experimental results, and section 4.6 provides a summary of the method.

In chapter 6, we present graph-constrained parameterization, registration and

its application to surface and image morphing. Section 6.1 provides an introduc-

tion, section 6.2 discusses the background information and motivation, section 6.3

provides an overview of our approach, section 6.4 elaborates the computational al-

gorithm, section 6.5 shows the experimental results with discussion, and section 6.6

provides a summary of the method.

Finally, we present a summary of this dissertation and future research directions

in chapter 7.
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CHAPTER 2

RELATED WORK

This dissertation proposes novel solutions for brain mapping, brain registration and

brain morphometry analysis, and graph-constrained surface parameterization, reg-

istration and their applications to morphing. Below we discuss the related works of

each of these topics; we also provide the key differences of our methods with existing

methods.

2.1 Brain Mapping

Brain mapping was introduced to map the genus zero 3D brains cortical surface

(usually brain hemisphere) onto a unit sphere [12, 39, 53, 54] or a planar canonical

domain (e.g., a unit disk [144], a rectangle domain [55, 67]), so that the convoluted

and invisible cortical folds are flattened, and the geometric details are fully exposed

onto the canonical domain. For the genus-0 closed surface, the surface is mapped

to the sphere. For mapping the brain surface to disk or rectangular domain, one re-

gion (normally the region named unknown region) of the brain is cut open to create

the boundary. A plausible category of the methods is conformal mapping, which

preserves angles (local geometric shapes) and therefore, is highly desired for brain

morphometry study in neuroscience and medical imaging fields. Several methods

have been proposed to conformally map the brain cortical surface onto a canoni-

cal domain. Angenent et al. [3] summarized earlier works on conformal mapping

of the brain cortical surface. In recent years several methods also have been pro-

posed for computing conformal brain mapping. Spherical harmonic mapping [53]

conformally maps the cortical surface onto the sphere. Ricci curvature flow [144]

conformally maps the cortical surface onto the unit disk with cutting brain regions
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mapped to holes inside the disk. Riemann surface structure [143] divides the whole

cortical surface into several patches and then conformally maps each patch sepa-

rately to a rectangle. Hacker et al. [54] presented finite element approximation of

the Laplace-Beltrami operator for computing parameterization of the cortical sur-

face conformally to a spherical domain. Hurdal and Stephenson used circle packing

method [61] which flattens the cortical surface conformally onto the sphere, disk or

a rectangular domain by an iterative approach. They also proposed some metrics,

e.g., extremal length metrics, calculated based on the circle packing for computing

anatomical differences for cortical regions of different subjects. Ju et al. [69] pre-

sented a solution for computing conformal mapping of the cortical surface based on

the so-called least squares method [69]. The method can conformally flattens the

cortical regions by fixing two points onto a planar domain where other vertices on

the boundary of the regions can move freely. The method can also generate a con-

formal map of the cortical regions onto the disk or the whole cortical surface onto

the sphere. The method is comparatively faster than the circle packing method [61]

as it solves the linear system of equations. Another interesting method is conformal

slit mapping [142] which maps the cortical surface onto the disk or rectangle domain

while mapping the landmark curves as straight lines or concentric arcs inside the

domain.

In some cases, the conformal mapping may introduce high area distortions in

the mapping which creates difficulty in shape analysis for the cortical surface, so

area-preserving mapping is required. Some methods have been proposed based on

the optimal mass transportation theory [55,126] for computing area-preserving brain

mapping. However, it is well known that such mappings cannot be both conformal

and area preserving.
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There are other methods which try to minimize a combination of metric(linear),

angular and areal distortions by adding the distortion terms to the energy functional,

e.g., Fischl et al. [38] proposes an energy functional combining geodesic distance

term and area distortion term in the energy function. Another interesting method

is p-harmonic energy minimization method [66] where the energy function is defined

with the pth norm of the harmonic energy function.

Brain anatomical landmarks including gyri and sulci curves are used to help brain

surface matching, shape registration, and analysis applications. Surface matching

is used to map corresponding cortical regions of two brains to a similar location of

a canonical domain to visualize and compare the geometry. Typically brain map-

ping is first used to map the surfaces to a canonical domain and selected landmark

curves, e.g., gyri and sulci curves, are placed to the similar location in the map-

ping by minimizing their Euclidean distance in the domains. For example, spherical

harmonic mapping [53] was applied to brain cortical surface matching applications

using these landmark curves. The method first maps the brain cortical surfaces onto

the spheres, and then the Euclidean distance between the corresponding landmark

curves (discretized with points) of the two brains is minimized by an optimal Möbius

transformation for optimal matching between the two surfaces for visualizing the dif-

ferences. Another approach [144] is to slice the brain surface open along these curves,

and map the new surface to a unit disk with circular holes or a hyperbolic polygon;

the curves are mapped to circular holes or hyperbolic lines for generating intrinsic

shape signatures and then to use in brain matching. The other method [162] maps

the whole brain surface with interior curve straightening constraints based on the

holomorphic 1-form method, without changing surface topology; the interior curves

are mapped to canonically-shaped segments, e.g., straight lines in a rectangle or

circular arcs in a unit disk.
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Our method. Although there are some existing brain mapping methods, in

existing mappings anatomical atlas boundaries appear highly curvy as they did

not consider the anatomical atlas graphs which is not useful for straightforward

visualization and comparison of the atlas structures. Our brain mapping method

integrates the whole anatomical atlas graph into mapping by defining a novel atlas-

graph based on the connectivity of the cortical regions to map the cortical surface

onto the planar convex domain with convex subdivisions. The method provides a

very useful and efficient way to visualize and compare the atlas structures. The

mapping is guaranteed to be unique, globally optimal, and diffeomorphic.

2.2 Brain Registration

Brain registration is an important step for shape analysis of the brains. The process

can be used for registering one brain to another directly. In some group analysis,

often the brains are registered to a template brain. The template is created by

creating an average brain by an iterative process of a number of brains from the

study. Klein et al. [71] suggested to use the same algorithm for creating this average

pattern which is used for brain registration in brain analysis. There are two types

of registration used for the analysis, (i) volume image registration and (ii) cortical

surface registration. In literature, both volume-based and surface-based analysis has

been proved to be very effective for different analysis purposes. Below we review both

of these techniques, but we focus more on the surface registration methods as our

proposed registration is also a cortical surface registration method. A comparison

between the volume-based and surface-based brain registration can be found in [71].

Volume image registration. Volume based registration method tries to align

the whole brain volume images. Normally in volume image registration procedure,

both source and the target volumes are considered to be of the same resolution,
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i.e., same number of 2D images in the volume with each 2D image having the same

dimension of pixels (typically known as voxel for volume image) resolution; if not, in-

terpolation is used to make the volumes as same resolution. In 1973, Talairach [130]

first proposed a volumetric alignment method based on the piecewise linear transfor-

mation. But it results in relatively poor alignment [2] due to the use of a limited set

of landmark constraints and linear transformation which ignores complex geometry

of the cortical folds and only use the rigid transformation. So non-rigid transforma-

tion with nonlinear deformation is required for registering very folded anatomical

brain structures. In recent years, it has been well established that linear registration

process of any kind may suffer from such poor alignment of the brain structures, so

some nonlinear image registration methods have been proposed. Typically in these

methods, a linear transformation is used as an initial or starting position for further

nonlinear alignment procedure, e.g., ART [4]. To improve the alignment between

the anatomical structures, manual labeling of the similar anatomical structures on

the brain images can be performed by the neurologists to establish correspondence

manually. But the method requires a considerable amount of efforts and time, and

also it is not practical for large set of data, so automatic methods are required.

Several intensity based automatic alignment methods [7, 149] have been proposed

which allow non-rigid transformation with nonlinear deformation technique. John-

son and Christensen [64] proposed an image registration method combining both

landmarks and intensity. The corresponding landmarks are identified manually and

then used as constraints combining with the intensity; the correspondence is com-

puted using the landmarks near the areas of the landmarks and intensity is used for

the areas away from the landmarks. Shen et al. [118] proposed a method based on

mass-preserving and hierarchical attribute-based deformation mechanism.
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One important but challenging property of the registration is diffeomorphism.

Some recent methods can ensure diffeomorphic mapping which can handle large

deformations and can improve the alignment accuracy, e.g., SyN [11] ensures dif-

feomorphic mapping where the cross-correlation is maximized within the space of

diffeomorphic maps. Diffeomorphic Demons [139] can also handle large deforma-

tion with faster computation while ensuring diffeomorphism. But as the volumetric

registration methods do not constrain to align cortical features, they often suffer

from poor alignment of cortical features in the registered volumes. To better align

the brain structures and geometry, methods have been proposed [68] to use cortical

surface registration as constraints for computing brain image registration. Klein et

al. [70] provided detailed comparison among 14 non-linear volumetric registration

methods. The accuracy is measured by comparing the overlapping and the distance

measures of the anatomical regions. According to their study, ART [4] and SyN [11]

provide the best result for volumetric brain image registration.

Cortical surface registration. Cortical surface registration method aligns the

geometric features on the cortical surfaces. In past, some studies [8,38,105,131] indi-

cated the usefulness of the cortical surface registration. Some recent studies [37,59]

also show the effectiveness of the surface registration methods. The methods can be

broadly divided into two categories: (i) curvature or convexity based optimization

method in which shape metrics or geometric attributes like cortical convexity, cur-

vature, and conformal factor computed over the whole surface are best aligned. For

example, Fischl et al. [39] proposed a curvature alignment method which first maps

the brain surfaces onto the spheres with curvature pattern mapped onto it and then

uses a 2D warping on the source sphere so that the curvature patterns of the two

brain surfaces are best aligned. The mapping process on the sphere is constrained

by adding a distance and an areal term to the energy functional to minimize the
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total distortion. The distance term gives the surface some local stiffness to prevent

excessive shear, and the areal term prevents folds and significant compression or

expansion. The method is widely used with Freesurfer [36] package. BrainVoyager’s

method [49] also uses a similar curvature alignment approach implemented with the

iterative gradient-descent method.

Another category is, (ii) landmark-based or constrained brain registration meth-

ods in which cortical landmarks or features such as sulci or gyri curves or points

are used as constraints in the registration process [15, 22, 74, 121, 135, 162]. Again,

constrained brain registration can be categorized as follows: 1) Point-constrained

methods. The challenge here is to guarantee diffeomorphism. Recently, progress

has been made to ensure diffeomorphism. A recent work [135] generates the exact

landmark alignment and guarantees diffeomorphism based on hyperbolic orbifold

model. The LDDMM [15] and diffeomorphism geodesic [74] methods compute the

registration while generating the deformation. 2) Curve-constrained methods [22].

Most common works discretize curves to points for registration, but cannot guar-

antee the point interval alignment. Rigorous methods to handle curve constraints

have been presented based on the hyperbolic harmonic mapping model [121] and

the curve constrained quasi-conformal mapping model [162]. They can guarantee

the exact alignment of curves with harmonic energy (stretches) minimized in the

meanwhile. Recently, spectral methods have been applied [89, 90] for registration

which can register brain surfaces very fast while achieving good accuracy.

Automatic curvature based methods are suitable for large-scale studies, as no

manual help from an expert is required for labeling, but they can suffer from inac-

curate alignment. On the other hand, landmark-based methods can use automatic

or semi-automatic methods which require some user interactions for landmark de-

tection or selection, but it can provide better alignment of the landmarks. Joshi et
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al. [67] proposed a method which first parameterizes the brain surfaces to the square

domain and then aligns the manually traced sulcal landmarks in the registration by

minimizing an elastic energy function using the sulcal curves as constraints. The

method employs a parameter to control the amount of alignment of the sulcal curves,

but the method is not bijective. Although manual labeling can produce accurate

labeling of landmarks, but are often time-consuming and sometimes may suffer from

inter-rater variability. To minimize the effort for manual labeling, a minimal set of

sulci curves (6 curves instead of 26) [65] have been proposed to use in the registration

which can also achieve high accuracy. Pantazis et al. [100] provided comparisons be-

tween manual landmark-based methods using 26 consistent landmarks curves, and

automatic methods of the Freesurfer and BrainVoyager for brain registration. Their

comparison is based on the curvature overlap measure and curve alignment mea-

sure using Hausdorff distance [33] which calculates the distance between two curves.

They concluded that although automatic method tries to best align the curvature,

but still sometimes landmark-based method performs well in curvature alignment.

Also, they find find few cases, where the landmark curves do not align perfectly in

the landmark-based methods.

Our method. Existing brain registration methods do not consider the connec-

tivity between the regions of the surfaces. As a result, the methods can not guarantee

the best alignment of the cortical regions in the registration. Our proposed brain

registration method uses a novel intrinsic atlas-constrained mapping technique with

minimal graph refinement strategy to align the cortical regions among the brain

surfaces as much as possible. The proposed registration framework is based on the

automatic computation of landmark curves. Instead of using the landmark curves

separately we employ the whole atlas graph as constraints in the registration. To

make the atlas graphs consistent among the brains, we have proposed strategy which
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guarantees minimal changes in both graphs to match them completely and also en-

sures that the 3-connected property of the graph is maintained. The mapping and

registration is guaranteed to be unique, globally optimal and diffeomorphic.

2.3 Brain Morphometry Analysis

Brain morphometry analysis from brain MRI is a well known and widely used pro-

cedure for the physicians. Physicians normally look for any abnormality in the

brain image or surface manually. But the task is heavy time consuming for even

an expert physicians, and in some cases, an expert physician is not even available.

Also, it is not practical to depend on the manual procedure of the physicians for

a large volume of data analysis, so computer-aided automatic morphometry anal-

ysis is required. To automate the process, researchers use both volume based and

surface-based analysis approach. Volume-based approach normally uses 2D image

processing techniques on individual images (the images contain the inside picture

of the brain) and then combine the results on the whole volume image. On the

other hand, surface-based analysis usually looks for the changes in the geometric

shape of the brain in the 3D surface. The analysis often develops or finds the

appropriate geometric attributes useful for identifying abnormalities on the brain

cortical surface. Both approaches have been used for different morphpmetry anal-

ysis tasks. Volume-based analysis have been found very effective for identifying

and classifying scizophrenia [32], autism [62], depression [18], etc. Surface-based

analysis also has significant importance for morphometry analysis as indicated by

earlier researchers [38,131] and recently have been used successfully for many other

applications such as AD classification [161], schizophrenia [28], brain growth trajec-

tories in childhood [9], identifying developmental disorder [133], etc. Ashburner et

al. [8] showed that in many cases surface-based analysis might be more useful than

27



volume-based analysis. As this dissertation is based on the surface-based analysis,

we focus the discussion on the surface based morphometry analysis. Although our

work is on AD classification, we also discuss some other surface based brain analysis

works using geometric attributes of the cortical surfaces.

For brain surface analysis, some approaches propose different types of shape

measurement strategies using various surface mapping approaches. Some other ap-

proaches compute the shape metrics by mapping the genus-0 closed brain surface to

a sphere or a region (normally unknown or black region) is removed to make the sur-

face open and mapped to a disk. For example, Zeng et al. [161] proposed a method

which uses the contours around the brain regions to compute the features for shape

analysis. Their method computes the 3D shape signatures by mapping the contours

as holes inside a disk domain using Ricci curvature flow. Gerig et al. [48] proposed

ventricular shape descriptor via spherical harmonics for brain analysis of twins.

Chung et al. [24] proposed tensor-based morphometry analysis via weighted spheri-

cal harmonics which is a generalization of the previous method. Tosun et al. [133]

proposed a combined shape measures using cortical gyrification index, curvedness,

and L2 norm of mean curvature to analyze the folding pattern of a developmen-

tal disorder called Williams syndrome, and to quantify the difference with normal

brains. Liu et al. [85] proposed shape spaces for general topological space, and used

the cost to interpolate between the shapes as shape metrics; they show the use of

the shape metrics for brain surfaces. Qiu et al. proposed [104] momentum maps

to analyze the difference in the brain’s hippocampusamygdala network of the elders

and young adults. Other shape analysis approaches include metamorphosis through

Lie group [134], conformal invariants [141] for AD classification, etc.

For some diseases, it is identified by the expert physicians which regions of the

brain are most affected due to the disease, e.g., for the AD, cortical regions like
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entorhinal, hippocampal, supramarginal, etc., are most affected and different geo-

metric statistics on these regions are used for the classification. Other approaches

use the statistics on the whole cortical surface, often try to find out experimentally

which kinds of feature or features of which regions are the most significant discrim-

inators for the classification. Davies et al. [28] proposed a method by computing

the parameterization of the hippocampal region and aligning the surfaces onto the

parameter domain minimizing the distance between them. They find out a subset

of shape parameters from the correspondence by using minimal description length

principle and use that as shape descriptor in the linear discriminant analysis for

classifying schizophrenia patients.

Different types of approaches have been presented for AD classification. Desikan

et al. [30] proposed a method for MCI (mild cognitive impairment, which is consid-

ered to be the earlier stage of AD) and AD classification using the ROI (region of

interest) based comparison of some measurements, e.g., entorhinal cortex thickness,

hippocampal volume, and supramarginal gyrus thickness. The approach uses the

measurements over the whole regions and uses those measurements in the classifica-

tion with logistic regression. Marcus et al. [95] proposed a similar approach based on

the region based statistics using the regression analysis. In their study, the best dis-

criminatory features were the entorhinal cortex thickness, the supramarginal gyrus

thickness, and the hippocampal volume. Also, several methods have been proposed

based on hippocampal region’s shape measurement to classify MCI and AD. For

example, the coefficient of spherical harmonics was used as the shape measurement

feature of the hippocampal in [47], and volume of the hippocampal was used in [25].

Cuingnet et al. [26] provided detailed comparisons among the ten methods for AD

classification. Cortical network-based analysis has also been used recently for AD
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classification. For example, Yao et al. [151] finds the presence of abnormal cortical

networks in the patients with mild cognitive impairment (MCI) and AD.

Our method. Our approach uses the atlas-constrained brain registration method

proposed in this dissertation to co-register the brains which guarantees the best pos-

sible alignment of the cortical regions. As a result, the method can generate more

optimal shape similarity metrics. The method uses the attributes of the whole cor-

tical surface or parts of the surface to compute the similarity metrics. The method

uses the feature selection strategy to find out the best set of features to classify

brains.

2.4 Surface Parameterization, Registration and Morphing

2.4.1 Surface Parameterization

Surface parameterization was first introduced to computer graphics as a method for

mapping texture onto the surface [17, 93] and has gradually become a useful tool

for many geometry processing applications, such as detail mapping, synthesis and

transfer, mesh editing and compression, remeshing, fitting, morphing, and so on

[29,116]. Surface conformal mapping as the most popular surface parameterization

method has its nice property, angle preserving, and has been widely used for various

shape analysis applications [112]. It has been intensively studied over the last two

decades, including the harmonic energy minimization [41], least square conformal

maps [79], holomorphic differentials [51], discrete curvature flows [16, 63, 124], and

so on [34,44,81,83,84,97,109,110]. As a general mapping, quasiconformal mapping

has been arousing more and more attention recently [145,162]. The auxiliary metric

method was presented with the 1-form and curvature flow methods [154, 158]. The

holomorphic Beltrami flow method [92] was introduced using a variational principle.
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2.4.2 Surface Registration

3D surface registration is a fundamental task in Computer Graphics which has a

broad range of applications including shape matching and recognition, shape mod-

eling, morphological study and animations. In the past decade, surface registration

methods have been intensively explored [45,60,76,125,129,150]. Most existing meth-

ods directly deal with non-rigid deformations, but always stop at a local optima and

hardly get a global solution. Recently, a lot of research focuses on surface confor-

mal and quasiconformal mapping based methods [91, 128, 156, 157, 162]. According

to surface uniformization theorem [35], any arbitrary surface can be conformally

mapped to one of three canonical domains, the unit sphere, the Euclidean plane or

the hyperbolic disk. By mapping surfaces to 2D canonical domains, the problems

of 3D surface registration is reduced to a 2D image registration problem. In real

applications, landmark constraints are usually prescribed to guide the surface reg-

istration, which may introduce fold singularities in the resultant mapping. Among

the various feature landmarks (points, curves, and graphs), the feature graph plays

an important role in the constrained surface registration. For the surfaces with

feature graph, it will introduce more benefits to treat the feature graph as a whole

rather than split it into separate curves, and apply the traditional curve based meth-

ods [155,162]. Zeng [163] presented a method to parameterize and register surfaces

with graph constraints. However, it determined the weights of the tutte embedding

by a heuristic method.

2.4.3 Surface Morphing

There have been a lot of research on image morphing in the past (e.g., see survey pa-

per [148]). Some methods automatically find the correspondence between the images

for morphing, e.g., optimal mass preserving mapping [164] and other optimization
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technique [115]. Recently, Liao et al. [82] presented a semi-automatic method which

provides some artistic control in morphing. The method uses the structural simi-

larity, and user-provided points similarities as constraints. With the advance of 3D

graphics in recent years, morphing between 3D surfaces have also been used exten-

sively in animation and motion picture industries. Some patch-based methods have

been proposed [13, 77] earlier which use harmonic maps on the patches separately,

but merging the patches are hard. Recently, Zaharescu et al. [153] presented a sur-

face evolution method for high genus surfaces which is applied to surface morphing,

but the method does not match feature points or curves between the surfaces.

Our method. Most existing constrained parameterization method only uses

points or curves which is later used as constraints in the surface registration process.

Recently, Zeng [163] presented a method to parameterize and register surfaces with

graph constraints. But the parameterization method first computes the planar graph

embedding using Tutte embedding, and then in the next step computes a harmonic

map which tries to fit the map inside the canonical domain obtained from the graph

embedding. Therefore, the final parameterization and registration highly depend on

the chosen weights during the Tutte embedding computation, which is heuristic and

not intrinsic. On the other hand, our graph-constrained parameterization method

computes the quasiconformal mapping of the graph constrained surfaces intrinsically

by an adaptive harmonic map, which can be formulated by sparse linear systems.

The method is general, easy to implement and the entire process is automatic, which

straightens the graph curves, and preserves the local and global shape of the original

surface as much as possible. The proposed graph-constrained parameterization and

registration method has been applied to generate morphing sequence of surfaces and

images.
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CHAPTER 3

STRUCTURAL BRAIN MAPPING

3.1 Introduction

Brain mapping plays an important role in neuroscience and medical imaging fields,

which flattens the convoluted brain cortical surface and exposes the hidden geome-

try details onto a canonical domain. In this work, we present a novel brain mapping

method to efficiently visualize the convoluted and partially invisible cortical surface

through a well-structured view, called the structural brain mapping. In computa-

tion, the brain atlas network (node - the junction of anatomical cortical regions, edge

- the connecting curve between cortical regions) is first mapped to a planar straight

line graph based on Tutte graph embedding, where all the edges are crossing-free

and all the faces are convex polygons; the brain surface is then mapped to the con-

vex shape domain based on harmonic map with linear constraints. Experiments

on two brain MRI databases, including 250 scans with automatic atlases processed

by FreeSurfer and 40 scans with manual atlases from LPBA40, demonstrate the

efficiency and efficacy of the algorithm and the practicability for visualizing and

comparing brain cortical anatomical structures.

3.2 Background and Motivation

Brain networks, the so-called brain graphs [19], have been intensively studied in

neuroscience field. Bullmore et al. [19] gave thorough reviews and methodologi-

cal guide on both structural and functional brain network analysis. In this work,

we focus on brain structural network on cortical surface, i.e., cortical network. It

has been used to discover the relation of its disorganization to diseases such as

Alzheimers disease [58]. One important task within this is brain network visualiza-
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tion and comparison. Existing methods such as conformal mappings didnt consider

the anatomical atlas network structure, and the anatomical landmarks, e.g., gyri

curves, appear highly curvy on the canonical domains. Using such maps, it is diffi-

cult to recognize the connecting pattern and compare the atlases. To date, it still

needs a lot of efforts to explore a more perceptively straightforward and visually

plausible graph drawing. In summary, the motivation of this work is to provide

a well-structured convex shape view for convoluted atlas structure, which is more

accessible for reading than pure surface mapping (e.g. conformal) views with curvy

landmarks and more efficient for anatomical visualization and comparison.

3.3 Approach overview

This work presents a novel method for brain cortical anatomical structure mapping

using the cortical network. But the cortical network studied in this work is different

from the definition of structural brain graph in [19], where the node denotes the

cortical region, the edge denotes the connectivity between two cortical regions, and

it is completely a topological graph. In this work, we define the node as the junc-

tion of anatomical cortical regions and the edge as the common curvy boundary of

two neighboring cortical regions. This anatomical graph (see Fig. 3.1(b)) is em-

bedded on the 3D genus zero cortical surface, has physically positioned nodes and

crossing-free curvy edges, and therefore is planar in theory [75]. For simplicity and

differentiation, we call it brain net. In terms of topology, it is the dual graph of the

brain graph in [19]. We have verified this in our experiments. In this work, brain

net is used to drive a canonical surface mapping (the regions and the whole domain

are convex). We call this technique brain-net mapper. The mapping employs the

special properties of the anatomical brain net: 1) planar and 2) 3-connected (after

testing and minor filtering). The computational strategy is to employ the planar

34



graph embedding as guidance for structural brain surface mapping using constrained

harmonic map. In detail, first, the 3-connected planar brain net graph is embedded

onto the Euclidean plane without crossing graph edges and every face is convex

based on Tutte embedding theorem [137]; then, using the obtained convex target

domain with convex subdivision as constraints, a harmonic map of the brain surface

is computed. The mapping is unique and diffeomorphic, which can be proved by

generalizing Radó theorem [111]. The algorithm solves sparse linear systems, there-

fore is efficient and robust to topology and geometry noises. The resulting mapping

exposes invisible topological connectivity and also details cortical surface geometry.

(a) cortical surface (c) conformal mapping (e) Tutte embedding
M φ(M) φ(G)

(b) cortical net (d) structural mapping (f) conformal embedding
G h(M,G) η(G)

Figure 3.1: Brain net embeddings for brain A1 (left hemisphere).

Figure 3.1 gives an example where regions are denoted in different colors (a).

The brain net G (b) is mapped to a planar polygonal mesh (e), where each face is

convex and assigned with the corresponding regions color. The planar representation
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(f) is the final map guided by (e), with visually plausible structure, i.e., planar

straight lines and convex faces with interior surface harmonically flattened (stretches

minimized). It illustrates the cortical anatomical structure (a). We call this mapping

structural brain mapping. In contrast, conformal map (c) generates the planar graph

embedding but with curvy graph edges (d).

To our best knowledge, this is the first work to present a structural view of brain

cortical surface associated with anatomical atlas by making all anatomical regions

in convex polygonal shapes and minimizing stretches. Experiments were performed

on 250 brains with automatic parcellations and 40 brains with manual atlas la-

bels to verify the 3-connected property of brain nets (anatomical connectivity) and

test the efficiency and efficacy of our algorithm for brain cortical anatomical atlas

visualization and further cortical structure comparison.

3.4 Theoretic Background

This section briefly introduces the theoretic background.

Graph embedding. In graph theory, a graph G is k-connected if it requires

at least k vertices to be removed to disconnect the graph, i.e., the vertex degree of

the graph deg(G) ≥ k. A planar graph is a graph that can be embedded in the

plane, i.e., it can be drawn on the plane in such a way that its edges intersect only

at their endpoints. Such a drawing is called the planar embedding of a graph, which

maps the nodes to points on a plane and the edges to straight lines or curves on

that plane without crossings.

A 3-connected planar graph has special property that it has planar crossing-free

straight line embedding. Tutte (1963) [137] gave a computational solution, the classi-

cal Tutte embedding, where the outer face is prescribed to a convex polygon and each

interior vertex is at the average (barycenter) of its neighboring positions. Tutte’s
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spring theorem [137] guarantees that the resulting planar embedding is unique and

always crossing-free, and specially, every face is convex.

Harmonic map. Suppose a metric surface (S,g) is a topology disk, a genus

zero surface with a single boundary. By Riemann mapping theorem, S can be

conformally mapped onto the complex plane, D = {z ∈ C||z| < 1}, φ : S → D,

which implies g = e2λ(z)dzdz̄, where λ is the conformal factor.

Let f : (D, |dz|2) → (D, |dw|2) be a Lipschitz map between two disks, z =

x + iy and w = u + iv are complex parameters. The harmonic energy of the

map is defined as E(f) =
∫

D
(|wz|

2 + |wz̄|
2)dxdy. A critical point of the harmonic

energy is called a harmonic map, which satisfies the Laplace equation wzz̄ = 0.

In general, harmonic mapping is unnecessarily diffeomorphic. Radó theorem [111]

states that if the restriction on the boundary is a homeomorphism, then the map

from a topological disk to a convex domain is a diffeomorphism and unique.

3.5 Computational Algorithms

The computation steps include: 1) compute graph embedding; and 2) compute

harmonic map using graph embedding constraints (see Algorithm 3).

The brain cortical surface is represented as a triangular mesh of genus zero

with a single boundary (the back-side black unknown region is cut off), denoted

as M = (V,E, F ), where V,E, F represent vertex, edge and face sets, respectively.

Similarly, the brain net is denoted as a graph G = (VG, EG, FG) (3-connected and

planar, embedded on M) (see Fig. 3.1(b)). Thus, we use (M,G) as the input.

Step 1: Isomorphic Graph Embedding The first step is to compute a straight

line convex graph embedding of G, η : G → Ĝ by Tutte embedding [137]. We first

place the graph nodes on boundary ∂M onto the unit circle uniformly, and then

compute the mapping positions η(vi) for interior nodes vi as the barycenters of
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Algorithm 1: Graph Embedding for Surface Mapping

Require: A triangular mesh with decorative graph (M,G)
Ensure: A planar triangular mesh with straight line decorative graph (Ω, Ĝ)
1: Compute Tutte embedding η : G→ Ĝ

2: Compute harmonic map φ : (M,G)→ (Ω, Ĝ) with constraints φ(G) = Ĝ

the mapping positions of neighboring nodes vj, {η(v̂i) = Σ(vi,vj)∈EG
λijη(v̂j)}. We

use λij = 1/deg(vi), where deg(vi) denotes the degree of node vi in G. Solving

the sparse linear system, we obtain the Tutte embedding result Ĝ, which defines a

convex planar domain Ω (see Fig. 3.1(e)).

Step 2: Constrained Harmonic Mapping The second step is to compute a

surface mapping h : (M,G) → (Ω, Ĝ) to restrict graph G to the planar Tutte

embedding result Ĝ by a constrained harmonic map (see Fig. 3.1(f)). We map

the whole surface M onto the convex planar domain Ω by minimizing the dis-

crete harmonic energy under graph constraints, formulated as min{E(φ(vi)) =

Σ[vi,vj ]∈Ewij(φ(vi) − φ(vj))
2, ∀vi ∈ V }, s.t., φ(lk) = l̂k, ∀lk ∈ G, l̂k = η(lk), i.e., lk

is the curvy edge of graph G, and l̂k is the corresponding edge on the planar graph

embedding Ĝ. The solution to the harmonic energy minimization problem is equiva-

lent to solving the linear system ∆φ = 0 (∆ is the Laplacian operator), descreterized

as the linear equations {Σ[vi,vj ]∈Ewij(φ(vi)− φ(vj)) = 0, ∀vi ∈ V }.

We only specify the target positions for the two end vertices of lk. Other interior

vertices on lk are constrained to l̂k through a linear combination of two neighbors

on l̂k. The linear constraints between coordinates x, y on straight line l̂k can be

plugged into the above system. We employ the mean value coordinates to guarantee

the edge weight wij to be positive. Then in our construction, for each vertex there

is a convex combination of neighbors. According to Tutte’s spring theorem [137],

Radó theorem [111] and generalized Tutte embedding [40], the solution achieves a

unique and diffeomorphic surface mapping.
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pial surface MA2

convex mapping ΩA2

pial surface MB1

convex mapping ΩB1

pial surface MB2

weighted convex ΩB2

(a) brain A2 (lh) (b) brain B1 (lh) (c) brain B2 (lh)

Figure 3.2: Structural brain mappings driven by graph embedding.

3.6 Experiments

The proposed algorithms were validated on two databases with different atlas types:

1) the own captured 250 brain MRI scans, we use FreeSurfer to automatically extract

triangular cortical surfaces and anatomical atlas (see Figs. 3.1, 3.2(a)); and 2) the

public 40 brains with manual atlas labels provided by LPBA40 [114] (see Fig. 3.2(b-

c)), we use BrainSuite to correlate the triangular cortical surface with manual labels.

All the brains come from human volunteers.

3.6.1 Brain Net Extraction

We extract the brain nets from cortical surface using anatomical region id or color

assigned. To employ Tutte embedding, we then test the 3-connected property of all
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Table 3.1: Statistics on brain nets, meshes and time. lh (rh) - left (right) hemisphere.

Data FreeSurfer (lh) FreeSurfer (rh) LPBA40 (lh) LPBA40 (rh)

#region,#node 33∼35, 62∼70 33∼35, 64∼72 24∼28, 41∼52 20∼22, 39∼55

#triangle,time 277k, 20 secs 279k, 20 secs 131k, 10 secs 131k, 10 secs

#good (a-b) 57 250 5 33
#bad (i/ii/iii) 193/0/0 0/0/0 24/10/1 7/0/0

the brain nets using two conditions: (a) every node has ≥ 3 neighboring regions;

(b) every region has ≥ 3 boundary nodes. If both are satisfied, then the brain net

is 3-connected, a “good” one.

Our tests show that all brain nets satisfy condition (a). All the “bad” regions

detected contain 2 nodes, i.e., 2 boundary edges, which contradicts (b). There may

be (i) 1, (ii) 2, or (iii) 3 bad regions. Table 4.1 gives the number of brains for each

above case. We use (lh, rh) to denote the percentage of left and right hemisphere

brain nets satisfying both (a-b): FreeSurfer (22.8%, 100%), LPBA40 (12.5%, 82.5%),

both (21.4%, 97.6%). The tests give that most exception cases are with 1 ∼ 2 “bad”

regions, for which we only map one boundary edge to straight line and ignore the

other in next structural brain mapping procedure. If the region is totally interior,

we randomly select one; if it is adjacent to the brain surface boundary, then we

select the boundary one, as shown in Fig. 3.2(b-c).

3.6.2 Structural Brain Mapping

The algorithms were tested on a desktop with 3.7GHz CPU and 16GB RAM. The

whole pipeline is automatic, stable and robust for all the tests. Table 4.1 gives the

averaged running time. Figures 3.1-3.2 show various results, by which it is visually

straightforward to figure out local topology (adjacency of regions) and tell whether

two atlases are isomorphic (or topologically same); in contrast, it is hard to do so in
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a 3D view. Note that the polygonal shape is solely determined by the combinatorial

structure of the brain net. Brains with consistent atlases are mapped to the same

convex shape (see brains A1, A2), which fosters direct comparison. Brains B1, B2

from LPBA40 are with different brain nets, especially around the exception regions.

Even though the unselected edges of the bad regions appear irregular, the mapping

results are visually acceptable and functionally enough for discovering local and

global structures and other visualization applications, such brain atlas comparison.

3.6.3 Discussion

This work focuses to present a novel brain mapping framework based on Tutte

embedding and harmonic map with convex planar graph constraint. For better

understanding the method and its potentials, we have the discussions as follows.

Convex shape mapping. The cortical surface can be directly mapped to

canonical domains such as conformal map to a disk [144] (Fig. 3.1(c)) and har-

monic map to a convex domain [53] (Fig. 3.3(b)). Each map can define a planar

straight line graph embedding (Fig. 3.3(a,c)) by simply connecting the nodes on the

planar domain, but it may generate concave and skinny faces and cannot guaran-

tee “crossing-free” and further the diffeomorphic brain mapping. Our method can

solve these, and the diffeomorphism property has been verified in all the tests. If

the graph is not 3-connected, we use valid subgraph for guiding the mapping. The

unselected part is ignored and won’t affect the diffeomorphism.

Topology and geometric meanings. This work studies “graph on surface”

and its influence to surface mapping. The convex map preserves the topology of

the graph on the canonical domain and minimizes the constrained harmonic en-

ergy (preserving angles as much as possible under constraints), therefore is more

accessible and perceptually easy to capture global and local structures.
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(a) straight line (b) convex harmonic (c) straight line
drawing of Fig. 3.1(c) mapping of Fig. 3.1(a) drawing of (b)

Figure 3.3: Straight line graph drawings induced by conformal and harmonic map-
pings.

Advantages. In theory, the method is rigorous, based on the classical Tutte

graph embedding for 3-connected planar graphs (Tutte’s spring theorem [137]), and

the harmonic map with linear convex constraints with uniqueness and diffeomor-

phism guarantee (Radó theorem [111], generalized Tutte embedding [40]). In prac-

tice, all the algorithms solve sparse linear systems and are easy to implement, prac-

tical and efficient, and robust to geometry or topology noises. The framework is

general for surfaces decorated with graphs.

Extensions. This method is able to reflect more original geometry by introduc-

ing weighted graph embeddings, and can be extended to handle high genus cases by

using advanced graph embeddings.

Potentials for brain mapping and other biomedical research. The

structural brain mapping can help understand anatomical structures and monitor

anatomy progression, and has potential for brain cortical registration with atlas

constraints. This anatomy-aware framework is general for other convoluted natural

shapes decorated with feature graphs (e.g., colons), and can be applied for their

anatomy visualization, comparison, registration and morphometry analysis.
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3.7 Summary

In this chapter, we present a brain cortical surface mapping method considering the

whole cortical anatomical structure, such that the complex and convoluted brain

cortical surface can be mapped in a well-structured view, i.e., a convex domain with

convex subdivision. The algorithms based on Tutte embedding and harmonic map

are efficient, practical, and are extensible for other applications where 3-connected

feature graphs are associated. In next chapters, we will introduce strategies to reflect

more original geometry in the mapping, and show the application of the proposed

mapping in brain registration and brain analysis.
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CHAPTER 4

ATLAS-CONSTRAINED BRAIN REGISTRATION

4.1 Introduction

In this chapter, we present a novel cortical surface registration method by fully con-

sidering the anatomical atlas structure, where the atlas graph (as presented in chap.

3) is extracted as feature constraints. Our experiments on brain databases with

manual atlas labels have verified that atlas graphs are not guaranteed to be consis-

tent over brains. In order to align the atlas graphs as much as possible and keep the

graphs consistency in registration, we modify the graphs on triangular meshes as

local as possible by pruning and splitting operations. We then employ the 3D-to-2D

canonical parameterization method to carry out the registration: 1) compute an in-

trinsic graph-constrained harmonic map for each cortical surface, which maps curvy

3D atlas graph to a 2D planar straight line graph (PSLG) in a 2D convex subdivi-

sion domain; and 2) compute the alignment over the 2D domains using the PSLG

constraints, with a relaxation procedure to minimize the distortions introduced by

graph modification. Experiments on various brains demonstrate the efficiency and

efficacy of the algorithm and the practicability for registering cortical anatomical

structures.

4.2 Background and Motivation

In brain study, the dense registration between cortical surfaces is highly desirable

in neuroscience, medical imaging, cognitive neuroscience, psychology, etc. It aims

to create an optimal diffeomorphism (one-to-one, onto, bijective mapping) between

cortical surfaces. Diffeomorphic cortical surface registration can give a detailed

guidance for locating the deformation areas for progression measurement and brain

44



(a) 3D brain (b) harmonic map (c) uniform map-
ping

(d) our mapping

Figure 4.1: Cortical surface mappings, where the atlas labels are color encoded.

structure morphology analysis. In addition, based on the registration, one can define

the shape similarity measurements(distance, metric) globally for brain comparison

and classification. Therefore, it has broad applications for brain growth develop-

ment measurement [132], shape-function variability in retinotopy [89], language lat-

eralization analysis [52], and disease diagnosis, e.g., Alzheimer’s disease [30, 120],

Autism [23], etc.

There have been a lot of research on brain surface registration; some of the meth-

ods use geometric mappings and feature constraints. The existing constrained brain

registration methods use either sulci/gyri curves or points as constraints. Here, we

will introduce a novel method taking into account the whole cortical anatomical

atlas graph as constraint. The cortical atlas graph is embedded on the 3D cortical

surface and has geometry, i.e., the nodes are the junctions of the anatomical corti-

cal regions, and the edges are the connecting curves of the adjacent regions. The

atlas graph, as an anatomical feature, is used to drive the registration to make the

anatomical regions well aligned.

This work is motivated by presenting a novel brain registration framework through

the alignment of atlases and is inspired by the uniform convex mapping based on

graph embedding presented in chap. 3, which generates a convex subdivision domain
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(where each face is convex) for a cortical surface with atlas graph. In this work, we

use the intrinsic convex subdivision mapping instead of the uniform convex mapping,

without using graph embedding, to achieve the atlas-based registration, where 3D

curvy graph constraint is converted to linear straight line constraint. Since brains

may not have consistent atlases [10] (verified by our experiments), in theory, there is

no perfect atlas alignment. One criterion is that we can make the atlas regions regis-

tered as much as possible. Therefore, we need to make changes as minor as possible

to the graphs to make them isomorphic (having one-to-one corresponding nodes and

edges among the graphs). The registration result is evaluated by the comparison to

the results using only the common atlas graphs and FreeSurfer registration.

(a) B0 (b) φ0(B0, G0) (c) Gc
0 (d) G′

0 (e) φ′
0(B0, G

′
0)

(f) B1 (g) φ1(B1, G1) (h) Gc
1 (i) G′

1 (j) φ′
1(B1, G

′
1)

Figure 4.2: Registration of cortical surfaces Bk with atlas graphs Gk. Gc
k: the

common subgraphs, G′
k: the refined consistent graphs, φ: the graph-driven convex

mapping, and φ′: the graph-driven convex mapping with refined graph.
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4.3 Approach Overview

The overall solution is based on the intrinsic graph-driven harmonic map along with

graph modification and mapping relaxation techniques. Without considering graph

constraint, the harmonic map is intrinsic, but the graph appears highly curvy on

the planar domain (see Fig. 4.1(b)), which cannot be used directly as constraint in

the registration. In our intrinsic convex harmonic map, the positions of the mesh

vertices on atlas are computed based on the adjacent mesh edges on the graph.

Here we set the boundary vertices onto the unit circle. This ensures that the atlas

graph is straightened to be convex (see Fig. 4.1(d)). Importantly, the positions of

the graph-nodes are computed automatically, intrinsically determined by the surface

and graph geometry. In contrast, in the uniform convex mapping (presented in chap.

3, see Fig. 4.1(c)), the positions of the graph-nodes are given by the uniform Tutte

embedding, which are not intrinsic without considering graph geometry; the final

embedding is constrained by the initial Tutte embedding [137] which is heuristic

and not intrinsic.

Given the source and target cortical surfaces to be registered, first, we perform

the atlas graph consistency check and make changes as minimal as possible to make

the graphs 3-connected (node degree ≥ 3) and isomorphic (with same nodes and

edges connectivity). Then, we construct the registration over the intrinsic convex

subdivision domains by the graph-constrained harmonic map with the convex sub-

division constraint. This process maps both the source and target surface in the

same parameter domain. Finally, we perform a relaxation algorithm to minimize

the distortions introduced by graph modification around the unmatched areas. The

resulted registration is guaranteed to be unique and diffeomorphic based on the
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generalized Radó theorem [111] and Floaters convex combination theorem [41]. The

method is linear and implemented by solving sparse linear systems.

Figure 4.2 illustrates the pipeline of the registration for cortical surfaces B0, B1.

The atlases are denoted by coloring (see Col. 1). From the convex mapping visual-

ization (see Col. 2), it is obvious that the atlas graphs are inconsistent in the two

brains but with common subgraphs (see Col. 3). In order to match all the regions

as much as possible, the graphs are locally modified around unmatched edges and

two-edged regions (as shown in the red rectangles, final graph modification is shown

in Col. 4). We can observe that the two-edged regions become three-edged regions

and the graphs are mapped to convex subdivisions. Using the modified graphs as

constraints, we generate two convex mappings with consistent graphs (see Col. 5).

Experiments were performed on LPBA40 and Mindboggle data sets with manual

atlas labels to verify atlas inconsistency and to evaluate the algorithm performance.

4.4 Computational Algorithms

The major steps for registration include: 1) check atlas consistency and refine atlas

graph if inconsistent; 2) compute intrinsic atlas-constrained harmonic maps; and

3) register the two harmonic map domains and relax the mapping due to atlas

modification.

The cortical surface is represented as a triangular mesh of genus zero with a single

boundary (the back-side unknown region is cut off), denoted as M = (V,E, F ),

where V,E, F represent vertex, edge, and face sets, respectively. The atlas graph

is denoted as G = (VG, EG, FG), where VG, EG, FG represent graph node, edge and

face sets, respectively. Thus, we use (M,G) to denote an atlas-constrained surface.
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4.4.1 Graph Consistency Check and Modification

We first check if the two atlas graphs are consistent. Graph consistency is checked

by matching the same nodes on both graphs. If two nodes in both graphs have

exact same surrounding regions, they are matched. If all the nodes in two graphs are

matched, they are consistent, otherwise the graphs we perform refinement operation

to create consistent graphs (see Fig. 4.3). For creating the consistent atlas graphs

between source and target, we detect the matched and unmatched edges from both

the graphs. There are two cases we need to consider to meet the requirements of

the framework which is described as follows:

Case 1: Unmatched Edge. The operation to handle this is edge pruning. Two

graph-edges in both atlases are matched, if they have the same left and right neigh-

boring regions; Otherwise, they are unmatched. We remove the unmatched edge

by moving two nodes to the middle. The original graph-edge is then divided into

two segments. Each segment is shifted to every side by one triangle away from the

original position. Repeat edge pruning until there is no unmatched edge. This oper-

ation wont introduce new connectivity between regions. It is equivalent to merging

two edge nodes to one. As shown in Fig. 4.3(a), we select the middle vertex v of

the graph-edge e as the new node. We then select the closest vertex vik on each

graph-edge eik rooted at the two nodes vek of e. Then we perturb the curves con-

necting v, vik by one triangle away from the original position towards the interior of

the corresponding region of each.

Case 2: Two-Edged Region. The operation to handle this is edge splitting. These

regions have only two graph nodes and edges (see Fig. 4.2), and need to be refined

as 3-connected (degree ≥ 3), required in convex embedding. We first split the

interior edge at the middle vertex to segments and then perturb one segment by one

triangle away from the original (see Fig. 4.3(b)). Thus the region becomes three
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(a) edge pruning (b) edge splitting

Figure 4.3: Graph consistency modification. The nodes and edges in dark red are
newly added. The ones in grey are deleted.

sided. The selections of the interior edge for splitting and the segment for perturbing

are remembered for consistent operation over atlases. As shown in Fig. 4.3(b), the

region f has two nodes vf 1, vf 2 and graph-edges ef 1, ef 2. We need to refine these

regions to guarantee the 3-connected (node degree ≥ 3) property required in convex

graph embedding. We select the middle vertex v of ef 1 and select the closest vertex

v1 on the first neighboring edge e1 of node vf 1. Then similarly, we perturb the graph

curve connecting v1, vf 1 to v by one triangle away from the original. The original

face f becomes triangular.

We first extract the unmatched graph-edges in both the source and target atlas

graphs and run edge pruning operations in Case 1 to get consistent graphs, and

then detect consistent two-edged regions and run edge splitting operations in Case

2. This guarantees the graphs are consistent with 3-connected property.

There are some special cases which may arise during the edge pruning: (i) If one

of the nodes vek of the edge e is on the boundary and the other is inside, we select

the node which is on the boundary (see Fig. 4.4(d)), otherwise some portions of
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the boundary may go outside the domain. (ii) If both the nodes of the edge e are

on the boundary, then for the boundary edges that are connected to the two nodes

vek, instead of perturbing the connection, we just use the original graph-edge path

(see Fig. 4.4(e)) as there is no other path outside the boundary. (iii) If there are

multiple connected edges ej to prune, an iterative edge pruning can be performed.

We can first prune one edge, after that we detect if there is any edge to prune in

the newly formed edge e
′

j. The procedure continues until there is no edge to be

pruned. Alternatively, we can also select the middle vertex v of the multiple edges

ej considering all the ejs as one edge and select all vik for all ej to connect to the

middle vertex v of all ejs. So in the final pruning, node v in the refined graph will

have more than 4 edges to connect (see Fig. 4.4(f)). Note, if node v does not have

enough degree to connect, another node from the unmatched edge can be chosen or

edges around v can be splitted.

4.4.2 Intrinsic Graph-Constrained Harmonic Map

We map the cortical surfaceM onto the convex subdivision domain Ω, φ : (M,G′)→

(Ω, Ĝ′), by minimizing harmonic energy (stretches) with the atlas graph constraints.

The critical point of harmonic energy is a harmonic map. The energy is formulated

as

min{E(φ(vi)) = Σ[vi,vj ]∈Ewij(φ(vi)− φ(vj))
2, ∀vi ∈ V }, (4.1)

where wij is the edge weight; in our method, we use the mean value coordinates [107]

as edge weights.

We map the outer boundary of the brain surface to the unit circle. The discrete

harmonic map in eqn. 4.1 can be computed by the convex combination map with

the Dirichlet condition, where each interior vertex v0 can be expressed as a linear
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(a) edge pruning (source) (b) edge pruning (target) (c) edge splitting

(d) boundary
case

(e) boundary
case

(f) pruning
multiple edges

Figure 4.4: Edge pruning, edge splitting, and special cases for graph refinement.

combination of its neighboring vertices vi as follows


























v0 =
k
∑

i=1

λivi i = 1, · · · , k

k
∑

i=1

λi = 1

λi > 0

, (4.2)

where λi are the harmonic weights. For the convex combination map, we have the

following lemma.

Lemma 1. (Convex Combination map [136])Given a simply connected triangular

mesh M and a convex domain Ω, if the map : φ : M → Ω is a convex combination

map, i.e. for every interior vertex, it satisfy the conditions in Equation (4.2), and

φ maps ∂M to ∂Ω homeomorphically, then φ is one-to-one.
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(a) vertex on graph-edge (b) zoomed view of (a) (c) intrinsic map of (a)

(d) vertex on graph-node (e) zoomed view of (d) (f) intrinsic map of (d)

Figure 4.5: Adaptive mean value coordinate. Top row and bottom row show the
two cases of the vertex lying inside the interior of the graph-edge and graph-node,
respectively. The blue points are the one ring graph neighborhood of the green ones.

For the cases k = 2, 3, the weights λi can be determined automatically by Equa-

tion (4.2); they are the barycentric coordinates. For the general cases k > 3, the

mean value coordinate can be obtained by approximating the harmonic energy using

the Circumferential Mean Value Theorem at each interior vertex [41]

ωi =
tan(αi−1/2) + tan(αi/2)

|vi − v0|
, (4.3)

where the αi−1 and αi are the adjacent angles in triangles [vi−1, v0, vi] and [vi, v0, vi+1],

respectively.

We employ special handling to automatically and intrinsically map the curvy

graph G′ as a PSLG on the unit disk which can be used to simplify and improve

methods of surface registration. To compute this map, we modify the mean value

coordinate adaptively according to the atlas graph such that the convex combination

map defined in Eqn. (4.2) satisfies the Circumferential Mean Value Theorem [41] at
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every interior vertex, and it straightens the atlas graph to a PSLG in the canonical

domain. The key observation is that all vertices move to the weighted barycenter of

their one-ring neighbors during the harmonic minimization. For a vertex on the atlas

graph, we define its one-ring graph neighborhood as its adjacent vertices lying on the

graph while the one-ring neighborhood includes all adjacent vertices. For the vertices

on the atlas graph, we utilize their one-ring graph neighborhood instead of one-ring

neighborhood during the computation of the adaptive mean value coordinate, and

the interior points of the graph curves will move to the linear interpolation of their

two adjacent graph neighbors on the atlas curves instead, which will result in a

PSLG in the canonical domain. Furthermore, the PSLG forms a convex subdivision

of the 2D canonical domain. In detail, to compute the intrinsic harmonic map of

graph constrained surfaces, we compute the harmonic weights adaptively as follows.

If the vertex v0 is

1. not on the graph, we utilize the mean value coordinate as the weight.

2. lying inside the interior of the graph-edge, the barycentric coordinate is applied

to its one-ring graph neighborhood instead. Let v1 and v2 denote its two

adjacent neighboring vertices on the graph. The adaptive harmonic weight is

defined as w1 =
|v2−v0|

|v2−v0|+|v1−v0|
and w2 =

|v1−v0|
|v2−v0|+|v1−v0|

.

3. the graph-node, the Circumferential Mean Value Theorem is applied to its

one-ring graph neighborhood to compute the adaptive harmonic weight.

For the intrinsic harmonic map, we have the following theorem.

Theorem 1. The intrinsic harmonic map, which maps the atlas graph to a PSLG in

the canonical domain, is unique, globally optimal and diffeomorphic when the target

domain is convex. Furthermore, the PSLG forms a convex subdivision of the 2D

canonical domain.

54



Algorithm 2: Intrinsic Graph-Constrained Harmonic Map

Input: A triangular mesh with graph (M,G)
Output: A mapping φ : (M,G′)→ (Ω, Ĝ′), such that Ĝ′ is a convex subdivision

on convex domain Ω.
1: Set weights wij of the edges in Eqn. 4.1 using adaptive mean-value weight.
2: Compute mapping using these altered weights of edges using energy

minimization Eqn. 4.1.

For the vertices lying outside the atlas graph, according to the adaptive scheme,

it is the same as the mean value coordinate defined in [41]. By using the one-ring

graph neighborhood during the weight computation for the vertices lying on the

atlas graph, and removing the pulling to other directions, the graph curves will be

straightened to canonical shapes (straight line segments) in the intrinsic harmonic

map, and the atlas graph will become a PSLG in the canonical domain. At the

same time, the formulated harmonic energy remains to be convex, and each vertex

can be expressed as a convex combination of its one ring neighborhood. According

to Lemma 1, the intrinsic harmonic map is a diffeomorphism when the boundary is

a convex polygon. Furthermore, it is unique and a global minima of the Dirichlet

energy under the graph straightening constraints. Finally, the vertices on the atlas

graph are expressed as the convex combinations of the vertices which are only on

the graph. Thus, the PSLG is a 2D embedding in the canonical domain, and forms

a convex subdivision.

4.4.3 Diffeomorphic Atlas-Constrained Registration

Registration is performed on the two convex domains. Given two cortical surfaces

(M1, G1), (M2, G2) as the source and target to be registered, the goal is to find an

optimal diffeomorphism f : (M1, G1) → (M2, G2), such that atlases G1 and G2 are

aligned as constraint. If the graphs G1, G2 are not consistent, we modify them as
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little as possible to be consistent, i.e., G′
1, G

′
2, and then the registration becomes

f : (M1, G
′
1)→ (M2, G

′
2).

The registration employs the 3D-to-2D mapping strategy, which maps 3D sur-

faces to 2D canonical domains and then simplifies 3D surface registration prob-

lems to 2D ones. We first compute the intrinsic graph-driven harmonic maps

φk : (Mk, G
′
k)→ (Ωk, Ĝ

′
k), where G′

k are canonicalized to be planar convex subdivi-

sions Ĝ′
k on the unit disk Ωk. Then we compute the mapping h : (Ω1, Ĝ

′
1)→ (Ω2, Ĝ

′
2)

via a constrained harmonic map, followed by an operation η to relax the distortions

introduced by atlas modification. Because consistent graphs have the same form of

uniform embedding results, the two 2D domains (Ωk, Ĝk) can be aligned directly to

generate the mapping h. Therefore, the registration f = φ−1
2 ◦ η ◦ h ◦ φ1, as shown

in Diagram (4.4).

(M1, G1)
f

−−−→ (M2, G2)

φ1





y





y

φ2

(Ω1, Ĝ1)
h

−−−→ (Ω2, Ĝ2)

(4.4)

With the refined consistent atlas graphs, the source (M1, G
′
1) and target (M2, G

′
2)

are mapped onto the disk domains with interior convex subdivision by the above

intrinsic harmonic map. We then register the two planar domains, h : (Ω1, G
′
1) →

(Ω1, G
′
2), by minimizing the harmonic energy. We specify the positions of the bound-

ary vertices (by interpolation) and the graph-nodes as the corresponding ones on the

target, and set the combinations for the vertices on graph-edge only using adjacent

edges on graph. For the surface registration, we have the following theorem.

Theorem 2. The surface registration f is unique, globally optimal and diffeomor-

phic.

As the registration f can be expressed as a combination of mappings f =

φ−1
2 ◦ h ◦ φ1, and the intrinsic parameterization φ1 and φ2 are proved to be unique,
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Algorithm 3: Atlas-Based Cortical Surface Registration

Require: Two triangular meshes with atlas graphs (M1, G1), (M2, G2)
Ensure: A mapping f : (M1, G1)→ (M2, G2)
1: Check consistency of graphs: if !(G1 ∼ G2), then modify G1, G2 to G′

1, G
′
2

respectively, such that G′
1 ∼ G′

2

2: Compute intrinsic graph-constrained harmonic map φk : (Mk, G
′
k)→ (Ωk, Ĝ

′
k) such

that φk(G
′
k) = Ĝ′

k, for k = 1, 2 using Algorithm 2
3: Compute f := φ−1

2 ◦ h ◦ φ1

globally optimal and diffeomorphic by Theorem 1, we only need to demonstrate

that the constrained intrinsic harmonic map h is unique, globally optimal and dif-

feomorphic. The detailed proof is described as follows. As we adopt the one-ring

graph neighborhood during the weight derivation for the vertices on the atlas graph,

the map h can be divided into two sequential steps. First, the atlas graphs are ex-

actly aligned by the map h, where the graph-nodes of the source atlas graph Ĝ1

are mapped to the corresponding ones of the target atlas graph Ĝ2, and the inte-

rior vertices on the graph-edges in the source domain are mapped onto the target

graph-edges automatically by constrained harmonic map. The interior vertices of

the graph-edges in the source domain can slide along the corresponding graph-edges

in the target domain. According to Theorem 1, the PSLG subdivides the canoni-

cal domain into convex subregions, which are then registered using the constrained

harmonic maps. As the boundary of each convex subregion is a subset of the atlas

graph, and the two atlas graphs are already exactly aligned, the problem of register-

ing two corresponding subregion is reduced to the problem of mapping a 2D surface

to a convex domain with fixed boundaries by a harmonic map, which is unique,

globally optimal and diffeomorphic.
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(a) 1-ring (b) 2-ring (c) 3-ring

Figure 4.6: Different levels of neighborhood and relaxation for brain cortical surface.
Top row shows the relaxation scalar; the minimum value 0 is color coded with blue
and the maximum value 1 is color coded with red.

4.4.4 Relaxation for Virtual Curves.

The virtual curve by atlas refinement may introduce fake alignment. Thus we relax

the mapping h to lower the distortions. We first set η = h. At each step, we compute

the gradient of vertex vi ∈ V1 as, △η(vi) =
∑

vi,vj∈E
wij(η(vi) − η(vj)), and update

the position of vertex η(vi) as,

η(vi)← η(vi)− λ(vi)×△η(vi), (4.5)

where λ ∈ [0, 1] is a movement scalar function. In detail, (1) for the graph-nodes

and the vertices on the graph-edges which are on both original and refined graphs

of M1 and boundary vertices, we set λ = 0 (i.e., exactly aligned by h and fixed);

(2) for the vertices which are on virtual curves, we set λ = 1. To further smoothen

the mapping at the end areas of virtual curves, we set λ = d
r
for the vertices inside,

where d is the distance to endpoint, r is the radius of the range; and (3) for the

resting mesh vertices, we set λ = 1 (i.e., with full movement). The size of local range

needs to be carefully selected, depending on the length of the virtual curve. We have

flipping check during the relaxation procedure, and reduce movement scalar or stop
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moving if the movement produces flip. In this relaxation, each step reduces the

constrained harmonic energy, and therefore this iterative process converges. The

process stops when the energy minimization reduces to a certain limit or maximum

number of iteration is reached. The composed mapping η◦h gives a diffeomorphism.

Along with the φk, we can generate the diffeomorphic registration f between the

3D atlas-constrained cortical surfaces, under the optimality criterion of minimizing

stretches.

Different neighborhood vertices (e.g., 1-ring, 2-ring, 3-ring, etc.) will produce

different movement results. Figure 4.6 (a-c) shows the color-coded movement scalar,

where 0 is the minimum scalar which is colored as blue, and 1 is the maximum scalar

which is color coded as blue.

Algorithm 4: Relaxation

Input: A triangular cortical surface mesh with decorative graph (M,G), its
parameterized 2D mesh, φ(ω, Ĝ), neighborhood size (e.g. 1-ring, 2-ring, 3-ring
etc.), V is the vertex set which includes all the mesh vertices, vi

Output: Modified vertex set, η(V )
1: η ← h
2: iter ← 0
3: Eprev(V )←∞
4: Compute current energy, Ecurrent(V ) using Eqn. 4.1
5: while Eprev(η) - Ecurrent(η) < ǫ ‖ iter < MAX ITER do

6: for all vertices φ(vi) of φ(ω, Ĝ) do
7: Compute movement scalar, λ
8: Compute new position η(vi) using Eqn. 4.5
9: if new η(vi) does not generate flipping then

10: η(vi)← new η(vi)
11: end if

12: end for

13: Eprev(V )← Ecurrent(V )
14: Compute Ecurrent(V )
15: iter ← iter + 1
16: end while

59



(a) LPBA40 (b) Mindboggle

Figure 4.7: Histograms of unmatched edges.

4.5 Experiments

The proposed algorithms were validated on two publics human brain databases with

manual atlas labels: 1) 40 brains from LPBA40 [114] (processed by Brainsuite) and

2) 95 brains from Mindboggle [72]. The two databases have different human cortical

labeling protocols and generates different atlases, so we perform registration within

each own database. The cortical surfaces are denoted as triangular meshes with

colored atlas regions.

4.5.1 Atlas Consistency Analysis and Refinement

With the consistent labeling protocol, each database generates the fixed number

of cortical regions with its own anatomical interpolations, but there is no further

consideration on the junctions (nodes of atlas graphs) of the neighboring anatom-

ical regions. We extracted the cortical atlas graphs and analyzed them for both

databases.

Each database corresponds to a consistent number of cortical regions, but has no

further consideration on the junctions (graph-nodes) of anatomical regions. Topo-

logically, we have done statistics on the two databases, as follows: 1) all the graphs

are embedded on the hemispherical cortical surfaces and are intrinsically planar;
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Table 4.1: Statistics on cortical atlas graphs of left hemispheres: G - original graph,
Gc - maximum common subgraph, and G′ - refined consistent graph over all brains.

Data Mindboggle (lh) LPBA40 (lh)

G-#node/edge/face 59-71/89-103/31 46-48/68-72/25
Gc-#node/edge/face 0/0/0 0/0/0
G′-#node/edge/face 25/47/23 19/40/22

#triangle, time 293k, 50 secs 131k, 20 secs

#avg unmatched edge 25.10 25.85
#avg two-edged face 0 1.175

2) LBPA40 data has at most 2 two-edged regions, violating 3-connected property,

and Mindboggle data has none; and 3) atlas graphs are not consistent (isomorphic)

among brains, and there is no common subgraphs in each data set, therefore the

connection types at junctions are diverse. We further excluded the unmatched edges

to find out the common subgraphs.

Geometrically, we analyzed the length of unmatched edges and modified the

atlas graph on triangular meshes to solve Cases 1-2. The length here is computed

as the number of vertices (hops) along the curvy edge based on the observation that

the triangular mesh is relatively uniform. The histogram of the unmatched edge

lengths within each database (see Fig. 4.7) shows that in most cases the differences

of atlases are restricted in a local range. By edge pruning and splitting operations,

the original regions won’t disappear. For example, in Fig. 4.2, the consistent refined

graph for brain pair < B0, B1 > has 45 nodes, 70 edges, and 26 faces (same as the

original). Table 4.1 gives the statistics of the numbers of edges, nodes, and regions

of the original graph G, and the average numbers of node degree, two-edged regions

and unmatched edges over all the brains in each database.
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(a) target B2 (b) φ′
0(B0, G

′
0) (c) φ′

2(B2, G
′
2)

(d) target B3 (e) φ′
0(B0, G

′
0) (f) φ′

3(B3, G
′
3)

Figure 4.8: Registration for experiment I of brains B0 to B2 and B3. Note that the
parameterizations φ′

0(B0, G
′
0) is different for these two cases as the refined graph is

different.

4.5.2 Atlas-Constrained Brain Registration

We implemented the algorithms in C++ and use Matlab as sparse linear system

solver. Tests were performed on a desktop with 3.7GHz CPU and 16GB RAM. All

the computations are automatic, stable and robust for all the tests without human

intervention. The method is efficient and practical. Table 4.1 gives the averaged

running time. gives the averaged running time for registering one pair of cortical

surfaces. The method is efficient and practical. Here, for illustration, we co-register

four brains, (B0, G0), (B1, G1), (B2, G2), (B3, G3). We register B0 (as a reference)

to every other brain, to achieve the co-registration among all brains. Two ways
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(a) source B0 (b) target B1 (c) target B2 (d) target B3

Figure 4.9: Visualization of registration for experiment I by refining atlases for each
pair < B0, Bk >, k = 1, 2, 3 separately. For the visualizations of texture mappings,
we transfer the texture coordinates of disk harmonic map of B0 to all other brains.

of atlas refinement are as follows: I. Refine atlases to be consistent for each pair

separately. II. Refine atlases to be consistent for 4 brains together. We show the

results of both the experiments below. We find out the unmatched edges among all

atlases and prune them iteratively. By the registration, we can transfer the texture

coordinates (e.g., using disk harmonic map parameters in Fig. 4.1) of B0 to all other

brains, then the one-to-one registrations can be visualized by the consistent texture

mappings (see pink circle areas in Fig. 5).

Experiment I. We compute the refined atlas graphs between pairs of brains

(e.g., (B0, B1), (B0, B2), (B0, B3), etc.) and register one to the other by parame-

terizing them to a common domain using the intrinsic graph-constrained harmonic

map. Figure 4.9 shows the result of the registration for (B0, B1) that is used in Fig.

4.2. Figure 4.8 shows registration results between another two pairs,(B0, B2) and

(B0, B3).

Experiment II. We compute the refined atlas graphs among multiple brains

(e.g., (B0, B1, B2, B3)) which we use as a template graph to embed all the brains to

a common domain. After that we compute the registration between the pairs in that

common domain. For this case, we first find out the unmatched edges among all

4 brains iteratively. We start from (B0, B1) and subsequently identify which edges
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Figure 4.10: Visualization of registration of B0 to multiple brains, B1, B2, B3 us-
ing the common refined graph with fi : (Bi, G

′
i) → (B0, G

′
0) for experiment II.

Row 1: common refined graphs; Row 2: mappings with common refined graphs as
constraints.

to be pruned for all the brains. The final refined graph is topologically same for

all the brains. Figure 4.10 shows the registration results and figure 4.11 shows the

visualization of registration by texture mappings.

4.5.3 Registration Accuracy.

Numerically, we compute the registration accuracy metric with the dice coefficient

which measures the overlap between the regions M i
k. It is defined as,

Dc(M1,M2) = 2 ∗

∑

i A(M
i
1) ∩ A(M i

2)

|A(M1)|+ |A(M2)|
,

where A is the area function. The larger value indicates more accurate registration.

1. For the pair < B0, B1 >, we evaluate the performance under two cases of

graph constraints: 1) the maximum common subgraph, and 2) the consistent refined
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(a) source B0 (b) target B1 (c) target B2 (d) target B3

Figure 4.11: Visualization of registration by texture mappings for experiment II.
We transfer the texture coordinates of disk harmonic map of B0 to all other brains
for the visualizing registration.

Table 4.2: Comparison of registrations with different labels of relaxation.

Original Ring 1 Ring 2 Ring 3

B1 0.9582 0.9590 0.9589 0.9589
B2 0.9604 0.9611 0.9610 0.9609
B3 0.9625 0.9628 0.9628 0.9627

graphs, with the registration accuracy Dc = 0.8832,0.9582 (without relaxation),

respectively. This shows that the refined graph registration performs better and

verifies the intuition.

2. For the three pairs < B0, Bk >, we test different smoothness levels in relax-

ation by selecting 1-ring (no interior vertices, no control on smoothness), 2-ring and

3-ring local ranges. For example, for the pair< B0, B1 >,Dc = 0.9590,0.9589,0.9589,

for 1, 2, 3-ring respectively. The 1-ring gives the highest result due to less restriction

to the movement. Registration with relaxation shows better results than the initial

one. We choose the 2-ring one to balance smoothness and accuracy. Table 4.2 shows

the registration results without relaxation and with 1-ring, 2-ring, 3-ring movements.

Table 4.2 shows the registration accuracy with different relaxation levels.

3. For the three pairs < B0, Bk >, we compare our methods I, II with 2-ring

relaxation with the well-known FreeSurfers method [36]. In all cases, our registration

method demonstrates better results (see Tab. 5.6).
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Table 4.3: Comparison of registrations.

Brain Pairs (B0, B1) (B0, B2) (B0, B3)

Dice coeff. (Freesurfer) 0.8123 0.8820 0.8838

Dice coeff. (Ours, Exp. I) 0.9589 0.9610 0.9628
Dice coeff. (Ours, Exp. II) 0.9595 0.9560 0.9612

4.5.4 Discussion

Property of the registration. The proposed registration aligns the common

graph-edges as much as possible and at the same time minimizes the harmonic

energy, which preserves local shapes as much as possible under the constraints.

Topologically, if the brains have no consistent atlas graphs, in theory, there will be

no solution to atlas-based registration. In our tests, atlas graphs were verified to

have partial graphs in common, but most regions are combined together. It is still

challenging to find the registration for the common areas for each anatomical region

within the combined regions. We introduced the edge pruning and splitting opera-

tions to register the brain areas and align the atlas graphs as much as possible. The

thin-sliced neighborhoods around unmatched nodes/edges are merged to existing

regions or separated as new regions (see Figs. 4.3). Geometrically, The introduc-

tion of one-triangle wide pieces (the smallest unit in triangular mesh) minimizes the

distortions from the original atlas and preserves atlas geometry on cortical surface

as much as possible. The relaxation procedure reduces these distortions.

The proposed method is rigorous, based on the classical classical the harmonic

map with linear convex subdivision constraints with uniqueness and diffeomorphism

guarantee. Compared with other works, it is novel to intrinsically map cortical

surface with atlas graph to a convex subdivision domain, and register brains using

the whole cortical atlases as constraint. Practically, the algorithms are easy to
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implement, practical and efficient, and robust to geometry or topology noises. With

this framework, some sophisticated methodology and optimization criteria, e.g., the

minimization of angle or area distortions, can be introduced to refine the registration

which will be explored in our future work.

Potentials for biomedical research. The graph-driven atlas-based brain reg-

istration will help brain morphology study and monitor anatomy progression, and

has potential to deal with large-scale dataset to explore the relationship of the brain

anatomical structure to diseases, such as Alzheimer’s disease which will be discussed

in the next chapter. This anatomy-aware framework is general for other biomedical

data such as human facial surfaces for their anatomy registration and classification.

4.6 Summary

In this chapter, we present a novel method to register cortical surfaces with atlas

constraints. We first perform atlas consistency check and refinement, then map

the surfaces to 2D convex subdivision domains by the intrinsic graph-driven har-

monic maps, and finally compute the registration over the 2D domains, followed

by a relaxation procedure. The mapping is unique and diffeomorphic. The whole

process is automatic. Experiments on co-registering brains in two public databases

have demonstrated the efficiency and practicality of the algorithms. The registra-

tion method has potential to deal with large-scale brain morphometry analysis for

medical and cognitive problems, e.g., disease classification, behavioral analysis, etc.

In the next chapter, we will show the application of this registration framework for

Alzheimer’s disease classification.

67



CHAPTER 5

AD CLASSIFICATION USING ATLAS-CONSTRAINED BRAIN

REGISTRATION

5.1 Introduction

Many psychological diseases affect the structure of the brains which can be detected

by analyzing the structural or geometric changes of the brain. Brain surface reg-

istration provides a robust way to establish a one-to-one correspondence between

the brains to measure the changes for finding out any abnormalities in the brain

due to the diseases. The registration process is generally used to define shape sim-

ilarity metrics among the brains for group analysis to identify abnormal groups.

Alzheimer’s disease (AD) is a well-known disease which shows significant geometric

changes in the brain cortical surface. In this chapter, we present a framework for

Alzheimer’s disease (AD) classification using the atlas-constrained brain registration

described in the previous chapter.

First, we apply the atlas constrained brain registration procedure to co-register

the brains. We select one brain as the source and register that to all other brains.

Then we compute the same kind of geometric attributes for each brain by inter-

polating the attributes from the target brain to the registered brains. After that,

we apply supervised learning algorithms to classify healthy control subjects (CTL)

and subjects with AD. For the experiments, we took 50 CTL and 50 patients with

AD from the Alzheimer’s disease neuroimaging initiative (ADNI) dataset, and apply

K-nearest neighbor(K-NN), support vector machine (SVM) and random forest (RF)

classifiers for the classification. For K-NN and SVM, the result is cross validated

with K-fold cross-validation and for random forest out-of-bag (OOB) prediction er-
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ror is used to compute the accuracy. The result shows a classification rate of 88.0%

using K-NN algorithm with 10-fold cross-validation.

5.2 Background and Motivation

Human brain goes through many biological changes at different stages of brain

development. Changes may occur due to the growth of the brain, tissue loss or gray

matter or white matter reduction due to some psychological disorders or diseases,

development of tumor inside the brain, synaptic connection loss due to aging or for

other diseases. It is well known that biological changes of any kind also changes

the geometric structures of the brain which in turn affects the geometric structures

or shapes of the cortical surface (outer layer of the brain). Different diseases may

affect different parts of the brain, sometimes the changes propagate throughout the

whole brain, and result in shape changes for a large portion of the cortical surface

or the whole surface.

Although the changes are obvious, due to high complexity and convoluted ge-

ometry of the brain, capturing these changes is not a trivial task. In many cases,

sophisticated geometric analysis methods are required to calculate the group dif-

ference with the most discriminating ability. Among the attributes that are used,

the most common attributes are cortical gray matter and white matter thickness,

area, volume, surface normal, curvature, sulcal depth, etc. In some cases, several

geometric attributes, e.g., normal, curvature, area, etc. are combined to compute

an amplified shape measure. Some approaches propose different types of shape

measures using different surface mapping approach. Some approaches compute the

shape metrics by mapping the genus-0 closed brain surface to a sphere or a re-

gion (normally unknown or black region) is removed to make the surface open and

mapped to a disk. Region-based approaches to classification have been used previ-
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ously by some researchers for AD classification [25, 47] where the similarity metric

is computed based on different geometric attributes of some cortical regions, e.g.,

entorhinal, hippocampal, supramarginal, etc. Other approaches use the statistics

on the whole cortical surface, often try to find out experimentally which kinds of

attributes or attributes of which regions are the most significant discriminators for

the classification.

This work is motivated by the atlas-constrained brain registration work which

provides a rigorous way to co-register the brains by the best possible way of aligning

the cortical regions and develop similarity metric based on the per-vertex attributes

of the cortical surfaces. The advantage of this method is that different geometric

attributes can be used for the vertices and shape difference can be computed for

the whole brain surface or some specific regions of the brain. The method can also

be used to find out which attributes are the most significant discriminator or the

attributes of which regions are most affected due to AD. As the atlas-constrained

brain registration method can guarantee optimal alignment of the cortical region,

the method can be used to define more optimal shape metrics for the classification.

5.3 Approach Overview

The process uses the source to target brain registration technique described in the

previous chapter. MRI volume images of the brains are parcellated through auto-

mated pipeline to extract cortical surfaces with atlas map. Among the brains, one

brain is selected as the source, and it is registered to all other target brains in the

dataset. After the registration, all the brains will have one-to-one correspondence.

Using the one-to-one correspondence, vertex wise geometric attributes of the target

surfaces are interpolated and assigned to the registered surfaces.
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After that, we use vertex to vertex attribute distance of the source brain and

target (registered) brains to compute the shape similarity metrics for the brains; the

distance from source to source is considered 0. We use the distance as features for the

brains in learning based classification algorithms to classify brains with K-NN, SVM,

and RF algorithms. The models are cross validated with K-fold cross-validation. We

apply different strategies to select the best set of features to use in classification.

(a) A0 (b) At1

(c) φ0(A0, G
′
0) (d) h(A0, G

′
0) (e) φt1(A0, G

′
0)

Figure 5.1: Registration of two AD brain surfaces. Top row shows the parcellated
source brain surface and a target brain surface. (c) and (e) show atlas-constrained
mappings with refined graph of A0 and At1 respectively, (e) shows atlas-constrained
registration of A0 to At1

.

5.4 Computational Algorithm

The computational algorithm has three main steps, (i) register the source brain

surface to all other brain surfaces, (ii) compute and interpolate the attributes of the
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target to the registered surface, and (iii) classify brains using supervised learning

methods.

5.4.1 Atlas-Constrained Brain Registration

The method uses one brain surface, A0 = (V,E, F ), as the source, and it is registered

to all other target brain surfaces, Atk = (V,E, F ), k = 1, 3...n−1, where n is the total

number of brains using atlas-constrained brain registration described in 4.4.3. The

process follows the graph-refinement, computing intrinsic graph-constrained map-

ping and registration. The registration process generates one-to-one correspondence

between the vertices of the brain surface pairs. As the same source is registered to all

the brains, the process creates one-to-one correspondence among all the registered

brains. Figure 5.1 shows an example of registration between two brains.

5.4.2 Interpolation of the Attributes

After the registration, the deformed source coordinates can be interpolated using the

barycentric coordinates from the faces of the target. This process maps each vertex

of the source to another vertex in the deformed source (target). The geometric

attributes of the target can be interpolated using the same process. For this, same

kind of attributes are computed for each vertex of each surface. Attributes may

include area, curvature, volume, thickness, sulcal depth, different curvature metrics,

etc. After that, the geometric attributes associated with each vertex are interpolated

from the target to the registered surface using the same barycentric coordinates.

5.4.3 Classification using Supervised Learning

After computing one-to-one correspondence and interpolation, each brain surface

will have the same set of vertices with each vertex having the same set of attributes.
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At1
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Figure 5.2: AD brain registration pipeline; source brain A0 is registered to brains,
At1 , At2 ...Atn−1

. The corresponding deformed surfaces are A′
t1
, A′

t2
...A′

tn−1
; the at-

tributes of the vertices are interpolated from the target to the deformed surfaces.
All the deformed surfaces have the same set of vertices.

Vertex attributes are used to compute features for each brain. We used two strategies

to use the features. First, we use all attributes for all vertices as the features

for the brain. Another strategy is to compute the region based attribute distance

between the source brain and the registered brain, and use this as the features for

the registered brain; we used Euclidean distance between the brains. For source,

A0, and target, Ati , then for region r and attribute attr, the distance between them

for region r is computed using the following equation,
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dr
attr(A0, Ati) =

∑

V

||attr(v0)− attr(vti)||
2, (5.1)

where V is the set of vertices.

After this, supervised learning methods are used to classify the brains. For this,

the data is divided into two sets, (1) training set which is used to train the model

of the supervised learning algorithm and (2) test set which is used to measure the

performance of the model.

5.5 Experiments

We applied the proposed registration method on ADNI dataset to classify AD pa-

tients from normal patients. The results are described below.

5.5.1 Brain Processing and Data Preparation

Data source. Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public-private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.

Data preparation. We processed a total of 100 brains from the ADNI dataset.

We processed the same number of brains for both groups to remove any bias during

classification. We processed 50 brains with AD and 50 CTL brains (Age: AD:

56.5 - 86.7, CTL: 59.9 - 89.6; MMSE score: AD: 20 - 27, CTL: 26 - 30). All the

brains were processed by Freesurfer’s [36] automated pipeline to generate parcellated
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surfaces. Freesurfer parcellated brains in 36 regions [30], which in our experiment we

numbered from 0, 1,...35. We cut off the region named unknown region (numbered

0) for registration, so we have the attributes for 35 regions. For registration, we

randomly select one brain as the source, and register that to all other 99 brains

(see Fig. 5.2). After the registration, all the brains will have one-to-one vertex

correspondence. We used a total of 17 attributes for each vertex. The attributes

are, (1) area on the pial surface, (2) area on the mid cortical surface, (3) Gaussian

curvature on the white surface, (4) Gaussian curvature on the pial surface, (5)

average curvature on the white surface, (6) sulcul depth on the white surface, (7)

cortical thickness on the white surface, (8) cortical volume on the white surface, (9)

bending energy (BE) on smooth white matter surface (smoothwm), (10) curvedness

(C) on smoothwm, (11) folding index (FI ) on smoothwm, (12) mean curvature (H)

on smoothwm, (13) Gaussian curvature (K) on smoothwm, (14) maximum curvature

(K1) on smoothwm, (15) minimum curvature (K2) on smoothwm, (16) sharpness

(S) on smoothwm, and (17) atlas region. Mean curvature, H is defined as 1/2 ×

(K1 +K2); Gaussian curvature, K is defined as K1 ×K2; Curvedness, C is defined

as,

√

K2
1 +K2

2

2
; bending energy, BE is defined as K2

1 + K2
2 ; folding index, FI is

defined as |K1|× (|K1|− |K2|) [102]. The attributes are interpolated from the target

to the registered surfaces using the correspondence from the registration process.

5.5.2 AD Classification

For the classification purpose, we created two types of data, Type 1 and Type 2,

and applied classification algorithms separately on both types. For both types, we

applied K-NN and SVM for classification. We used Matlab implementation of both

the algorithms. The result is cross validated with K-fold cross-validation, where the

value of K is chosen to be 5, 7, 9, 10, etc. Other larger folds have not been used as
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that creates folds with more training data and less testing data which may introduce

bias in prediction. For all tests, the training and testing sets are chosen randomly

to prevent bias. The value of K-NN parameter, ’K’, and SVM parameters, ’Boxcon-

straints’ and ’Kernelscale’ were obtained by using the Bayesian hyper-parameters

optimization [123] process. Table 5.4 shows the selected parameters for SVM and K-

NN for different experiments. For SVM we used different types of kernel, e.g., ’rbf’,

’linear’, ’polynomial’, etc. As the Type 2 data provides better result, we selected

that for further investigations. We applied different feature selection algorithms to

select the most significant features for classification using Type 2 data. We also ap-

plied random forest algorithm with different feature selection algorithms for Type 2

data.

Type 1 data. In this type, we used each vertex as an independent variable

and use all of the above 17 attributes for each vertex. So for each brain, we had a

total of vn ∗ 17 attributes, where vn is the total number of vertices which is same for

all surfaces after the registration. The Euclidean distance between the attributes of

the surfaces are used to measure similarity between the two surfaces. We noticed

that not all of these 17 attributes are positively correlated to classification and may

sometimes result in wrong classification. If we use all of the above attributes for the

vertices, then the maximum classification rate with K-NN is only 50.0% and 68.18%

for SVM algorithm. The reason behind this poor classification rate is that not all

the attributes are positively correlated to the classification and some attributes of

some regions may differ due to a different reasons other than Alzheimer’s effect.

To identify which features are most useful and improves classification rate, we

search over these 17 attributes. We experimented by selecting all combinations

of 5,6, or 7 attributes from these 17 attributes. Table 5.1 show the summary of

the experiments. Among the different number of folds, in general, 10-fold cross
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Table 5.1: Classification using type 1 data. Selected attributes have been expressed
with the numbers as described in the data preparation section.

K-NN/SVM(%)
No of feat. Selected attributes 5-fold 7-fold 9-fold 10-fold

all all 45.0/48.0 42.4/68.1 40.9/60.60 50.0/65.0

5 (2,3,5,6,7) 75.5/77.0 80.30/81.5 81.5/75.5 83.0/80.0

6 (2,3,5,6,7,10) 77.0/78.5 80.30/80.30 80.30/75.5 84.0/81.0

7 (1,3,5,6,7,10,12) 72.0/77.0 80.30/78.5 75.75/75.75 80.0 /81.5

validation provides better result in most of the cases. The best result for Type 1

data is 84.84% using K-NN classifier with 10-fold cross-validation.

Type 2 data. We computed the distance between the source and the regis-

tered source for all the 17 attributes for each region (total 35 regions excluding the

black/unknown region, as obtained by Freesurfer) and used those as the features for

the classification. The source brain here is used as the reference and all the distance

metrics of the source are 0. For the attribute region, we assign 0 for the similarity

and 1 otherwise; for all other attributes, we used the Euclidean distance using eqn.

5.1. Therefore, we get a total of 35 × 17 = 595 features for the 35 regions. (ii)

For each region, we compute the distance between all the (17) features. First, we

run the classification using all these features using K-NN and SVM algorithm. The

maximum classification rate that we get is 74.0% for K-NN with 7-fold and 77.0%

for SVM with 10-fold validation.

As the type of features is large, we use feature selection strategy for reducing the

number of features. To identify which features are most significant for classification,

we used three types of feature selection algorithm: (1) forward sequential feature

selection (FSFS) algorithm [73] which is a wrapper approach to select important

features to improve classification accuracy, (2) correlation based feature selection

(CFS) [56] algorithm which selects features that are highly correlated for predicting
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the class labels but have low intercorrelation between themselves, and (3) VSurf

[46] which selects the important variables based on random forest algorithm. We

used Matlab implementation of FSFS, sequantialfs, Weka implementation of CFS

cfssubsetEval, and R implementation of VSurf, vsurf package. For FSFS, we selected

a total of 200 features out of these 595 features. After that, we searched over

the 200 features incrementally to identify the best combination of features for the

classification..

Table 5.2 show the result of the classification using K-NN and SVM algorithm

with K-fold cross validation, for K = 5,7,9,10. For FSFS, we only show the result for

the number of selected features which produce the best result and fig. 5.4 shows the

complete graphs of classification result using a different number of features (1-200).

Also for FSFS, the number of selected attributes that provide the best result is not

the same for different folds. So for this algorithm, we show the number of selected

attributes besides the classification rate.

Figure 5.3: Result of feature selection using FSFS with K-NN for 5-fold, 7-fold,
9-fold, and 10-fold cross validation

3-fold 5-fold 7-fold 9-fold

Figure 5.4: Result of feature selection using FSFS with SVM for 5-fold, 7-fold,
9-fold, and 9-fold cross validation.
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Table 5.2: Classification using type 2 data.

K-NN/SVM(%)
Feat. selection algo./
Number of feats.

5-fold 7-fold 9-fold 10-fold

all 70.0/75.0 74.0/74.0 73.0/75.0 71.0/77.0

FSFS/98− 194
87.0(103)/
86.0(106)

85.03(194)/
83.0(98)

86.95(108)/
84.0(73)

88.0(98)/
86.0(98)

CSF/16 78.0/79.0 81.0/81.0 80.30/80.0 81.5/81.0

VSurf/3 80.0/82.0 77.0/79.0 80.97/80.0 81.0/82.0

The classification accuracy for SVM is 86.0%, and accuracy for K-NN is 88.0%

with 10-fold cross-validation. Both algorithms achieved the best accuracy with 98

features. We further computed the false positive rate (FPR) and false negative rate

(FNR) for the best results for both K-NN and SVM. For K-NN, false positive rate,

FPR = 8.0% and FNR = 20.0%, and for SVM, FPR = 8.0% and FNR = 20.0%

(see Tab. 5.3). To visualize the trade-off between the true positive rate (TPR) and

FNR, we used Receiver Operating Characteristic (ROC). Figure 5.5 shows the ROC

curve for SVM and K-NN; area under curve (AUC) value for SVM is 0.856, and for

K-NN is 0.882.
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Figure 5.5: ROC curves.

Algorithm FPR% FNR% Accuracy%

K-NN 6.0 18.0 88.0

SVM 8.0 20.0 86.0

Table 5.3: Accuracy with K-NN and SVM.

Table 5.4 shows the selected parameters for K-NN (number of neighbors, and dis-

tance metric) and SVM (Kernel Type, BoxConstraints, and KernelScale) for classi-

fication using type 1 and type 2 data. The parameters were selected by optimizing

the parameters using Bayes optimizer.
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Table 5.4: Parameters used for K-NN and SVM with 10-fold cross validation.

K-NN SVM
Parameters n dist KernelType BoxConstraints KernelScale

Type 1
All 3 Euclidnean rbf 2.11 6.22

Var Select 3 Euclidnean rbf 2.11 6.22

Type 2
All 7 Euclidnean rbf 0.44 34.62

FSFS 5 Euclidnean rbf 2.71 3.63
CFS 5 Euclidnean rbf 0.89 0.73
VSurf 5 Euclidnean rbf 0.69 0.85

We also used random forest algorithm for Type 2 data with feature selection using

FSFS, CSF and VSurf algorithm. Instead of using K-fold cross-validation, we used

out-of-bag (OOB) error to calculate the prediction error. OOB error is the average

estimate of the prediction error for each sample from the original dataset. While

predicting OOB error for a sample, RF does not consider the bootstrap datasets

which contain that specific sample. Then we calculate the classification error from

OOB using (1-OOB)*100.

Figure 5.6: RF with FSFS.

Feat. selection

algo.

Number of

feats.
Accuracy

- all 78.00

FSFS 19 83.0

CFS 16 79.0

VSurf 3 80.0

Table 5.5: RF accuracy.

Table 5.5 shows the result using random forest classification. Figure 5.6 shows the

FSFS results for different number of selected variables. The best accuracy is 89.4%

using Vsurf algorithm
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Table 5.6: Classification accuracy comparison with Freesurfer registration using
same set of features

Reg. method SVM% K-NN%%

Freesurfer 82.0 78.0

Ours 86.0 88.0

Comparison We compared the AD classification accuracy using our method

with the Freesurfer’s registration method. We used the same setting for both SVM

and K-NN for which we got the best results, and used the same number of features

with the same number of anatomical atlas regions (excluding the black/unknown

region as before). Using the same 98 features, classification accuracy using Freesurfer

registration is 82.0% with SVM, and 78.0% with K-NN (see Tab. 5.6). For both

algorithms, our registration method performs better as it provides better alignment

of the similar atlas regions in the registration process.

5.6 Summary

In this chapter, we present a framework for classifying AD patients from normal pa-

tients based on atlas-constrained brain registration technique. Per-vertex attributes

are used for the surfaces to define the similarity metric by computing the Euclidean

distance between the features of the source surface and the registered surface. One

surface is selected as the source, and it is registered to all other surfaces. We used

different machine learning classifiers and feature selection algorithms for the classifi-

cation. Among the algorithms, K-NN classifier (K = 5) with 10-fold cross validation

gives the best result (88.00%). The proposed surface registration based framework is

general and can be explored for other disease or psychological behavior classification

in future.
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CHAPTER 6

INTRINSIC GRAPH-CONSTRAINED SURFACE

PARAMETERIZATION AND REGISTRATION

6.1 Introduction

The natural surfaces are usually associated with feature graphs which can be used

as constraints in the process of intra-surface correspondence (registration) com-

putation. In chap. 4, we presented a method to compute brain cortical surface

registration using the intrinsic graph-constrained harmonic map. In this chapter,

we generalize the method to compute diffeomorphic registration between genus zero

surfaces with consistent feature graphs. First, the graph constrained surfaces are

mapped to canonical domains by the intrinsic harmonic map, which extends the

atlas-constrained harmonic mapping for cortical surfaces to graph constrained sur-

faces in a rigorous and consistent way. The feature graph on the 3D surface is

straightened to a planar straight graph, which forms a convex subdivision of the

canonical domain. The parameterization exists, and is unique and intrinsic to the

surface and its feature graph. Then the 3D surfaces with consistent feature graphs

are registered by matching the straightened graphs and their associated convex

regions in the canonical domain by constrained harmonic maps. The method is

theoretically rigorous, and computationally efficient and robust. The application of

surface morphing on various surfaces and images demonstrates the efficiency and

practicality of the proposed methods.

6.2 Background and Motivation

Surface parameterization and registration play important roles in many geome-

try processing applications such as texture mapping, surface modeling, morphing,
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(a) 3D face (b) conformal map (c) intrinsic map

Figure 6.1: Parameterization of 3D facial surfaces with feature graphs. Given a
happy facial surface decorated with a 3-connected feature graph in (a), (b) and (c)
shows the conformal parameterization and the intrinsic parameterization, respec-
tively.

matching, and so on. In practice, feature landmarks are widely used, and play an

important role in the above applications. Anatomical landmarks are used in med-

ical image analysis applications, for example, facial symmetry curves in adolescent

idiopathic scoliosis and autism diagnosis, and brain sulci landmarks in Alzheimer’

disease diagnosis and brain morphometry analysis. The anatomical landmarks on

the surfaces usually form a 3-connected graph with nodes and curvy edges (see Fig.

6.1), where the nodes are the feature points (e.g., eye and mouth corners, nose tips),

and the curvy edges are the landmark contours and curves connecting the nodes

(e.g., eye and mouth contours). The primary goal of our paper is to compute the

intrinsic parameterization and registration of graph constrained surfaces.

Most methods only focus on surface parameterization and registration with fea-

ture point constraints [22, 103, 159] and curve constraints [155, 162]. For a surface

with feature graph, it is worthy to deal with the graph as a whole rather than split

the graph into separate points and curves as the graph has both global and local in-

formation, and serves as a skeleton structure of the surface. To our best knowledge,

not much attention has been paid to tackle surface parameterization and registra-
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tion of surfaces with graph constraints. Recently, Zeng [163] presented a method

to parameterize surfaces with graph constraints, and register two 3D surfaces with

consistent graphs. The parameterization method first compute the planar embed-

ding of the feature graphs using the Tutte embedding, and then tries to compute a

harmonic mapping to fit the graph embedding in the canonical domain. As a result,

the final parameterization and registration highly depend on the chosen weights

during the Tutte embedding computation, which is heuristic and not intrinsic.

In this chapter, we present intrinsic parameterization and registration methods

for graph constrained surfaces by extending the mean value coordinate adaptively

according to the associated feature graphs. The parameterization provides an intrin-

sic representation for surfaces with feature graphs, where the curvy feature graph is

straightened to a planar straight line graph (PSLG) in the canonical domain, and

its shape is determined intrinsically by the surface geometry and its feature graphs.

The parameterization is globally optimal, and has the guarantee of existence and

uniqueness, based on which the canonical domains are registered by aligning the

two consistent PSLGs using the constrained harmonic map, which is diffeomorphic.

For two surfaces with same topological graphs, these graphs serve as guidance for

the correspondence computation between them. The nodes of the source graph are

mapped to the corresponding ones of the target graph while the interior points of the

source graph can slide on the corresponding target graph curves, and their positions

are computed automatically by the intrinsic registration method.

6.3 Approach Overview

As before, 3D surface is represented as a triangular mesh denoted as M = (V,E, F ),

where V , E, F represent vertex, edge, and face sets, respectively. The method uses

the intrinsic graph-constrained parameterization method which is used to compute
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registration between surfaces with isomorphic feature graphs. The graphs can be

extracted from natural surfaces automatically or manually [152], which are defined

as 3-connected (i.e., each vertex connectivity ≥ 3) graphs. The nodes of these graphs

are the dominant feature points of the surface, and the edges of the graphs are the

curves between them. To distinguish with the vertex and edge of the mesh, we

use graph-node and graph-edge to denote the node and edge of the graph in the

remainder of the paper, respectively.

In this chapter, we present method to compute the intrinsic harmonic map of

graph constrained surfaces, which maps the feature graph on the surface to a PSLG

in the parameter domain, and maintains the geometry of the original surface as

much as possible (see Fig. 6.1). The harmonic weights are computed by applying

the Circumferential Mean Value Theorem adaptively according to the associated

feature graph as described in chap. 4. Like the cortical surfaces, for vertices lying

on the graph-edges, we adopt the one-ring graph neighborhood instead of the tra-

ditional one-ring neighborhood to derive the harmonic weights, which extends the

mean value coordinate to graph constrained surfaces. The intrinsic parameteriza-

tion is diffeomorphic, globally optimal, and respects the feature graph constraints.

To register two surfaces with consistent feature landmarks, the PSLGs and their

associated convex subregions in the canonical domain are exactly aligned by a con-

strained harmonic map, which is unique, globally optimal, and diffeomorphic. The

registration method presented in this chapter can be applied to generate morph-

ing sequences between surfaces and images with consistent feature graphs, which

demonstrate the efficiency and practicality of the proposed methods.
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6.4 Computational Algorithms

In this section, we first present a method to compute the intrinsic harmonic map

of graph constrained surfaces, and then describe how to obtain the diffeomorphic

registration based on the intrinsic maps.

6.4.1 Intrinsic Parameterization of Graph Constrained Surfaces

From the triangulated surfaceM = (V,E, F ), we extract the graphG = (VG, EG, FG)

which is a 3-connected graph (node degree ≥ 3). The graph-nodes VG are the dom-

inant feature points on the surface. Each graph-edge is embedded on the surface,

and therefore is a curve, denoted as a chain of surface vertices which connect the

graph-nodes. For the simply connected surface (surface with a single boundary),

we parameterize the surface to a canonical domain using graph-constrained param-

eterization. The algorithm is similar to the one as described in 2 where we adapt

the weights of the harmonic energy function in eqn. 4.1. The 3D surface is parame-

terized to a disk domain and the surface generated from image is parameterized to

a rectangular domain. The harmonic map used in the parameterization is unique,

globally optimal and diffeomorphic, which can be proved similarly as described in

1.

6.4.2 Diffeomorphic Registration of Graph Constrained Surfaces

The goal is to find a diffeomorphic registration between two 3D surfaces with con-

sistent feature graphs such that the curvy graphs are exactly aligned. The main

strategy is to employ the above intrinsic harmonic map to convert 3D surfaces with

irregular shaped decorative graphs to PSLGs in the canonical domain. Thus the

desired registration can be efficiently obtained by minimizing constrained harmonic

energies to align the two PSLGs in the canonical domain.
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(a) source, M1 (b) φ1(M1, G1)

(c) h(M1, G
′
1) (d) φ2(M2, G2) (e) target, M2

(f) t = 0.00 (g) t = 0.20 (h) t = 0.40

(i) t = 0.60 (j) t = 0.80 (k) t = 1.00

Figure 6.2: Human facial surface parameterization, registration and morphing. Row
1 and 2 show the surface registration between the female face surface and the male
face surface. Row 3 and 4 illustrate the morphing results, where parameter t shows
the progress of morphing.
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Given two graph-constrained surfaces, (M1, G1) and (M2, G2), where M1 =

(V1, E1, F1) andM2 = (V2, E2, F2), with isomorphic 3-connected graphs as the source

and target, our goal is to find an optimal diffeomorphism f : (M1, G1) → (M2, G2)

such that graphs G1 and G2 are strictly aligned. The registration is computed simi-

larly as the cortical brain surfaces as described in the section 4.4.3. The difference is

that no graph-refinement is required as the graphs G1 and G2 are isomorphic by con-

struction. The surface registration f is unique, globally optimal and diffeomorphic,

which can be proved similarly as 2.

After the graph constrained surfaces are registered, we can obtain the deformed

source M
′

1 = (V
′

1 , E1, F1) by computing the vertex positions V
′

1 on the target surface

M2. Note that the edge set and face set of M1 remain the same, only the positions of

the vertices are changed. The above registration can be applied to surface morphing

between two different surfaces with consistent feature graphs. The idea is to create

intrinsic registration of the graph-constrained surfaces, and generate the deformed

source 3D surface, M
′

1. After that, morphing sequence is computed by interpolation

between the source M1 and the deformed source M
′

1. The morphed surface M
′

t =

(V
′

t , E1, F1) is computed using the following equation:

V
′

t = V1 × (1− t) + V
′

1 × t,where 0 ≤ t ≤ 1, and M
′

0 = M1.

The parameter t controls the progress of morphing. If t = 0, it generates the

source surface M1, and it generates the deformed source surface M
′

1 when t = 1.

6.5 Experiments

We tested the proposed intrinsic parameterization and registration algorithms on

morphing of various surfaces and images. Experiments demonstrate that the intrin-

sic parameterization provides a rigorous shape representation for graph constrained
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Algorithm 5: Graph-Constrained Surface Morphing

Input: Two triangular meshes with isomorphic graphs (M1, G1), (M2, G2)
Output: Morphed triangular mesh M

′

t = (V
′

t , E1, F1), 0 ≤ t ≤ 1
1: Compute parameterization φk:(Mk, Gk)→ (Ωk, Ĝk), k = 1, 2
2: Compute the registration, f = φ−1

2 ◦ h ◦ φ1 and generate deformed surface
M

′

1 = (V
′

1 , E1, F1)
3: Compute morphed mesh M

′

t = (V
′

t , E1, F1) using Eqn. 6.4.2

surfaces, and the intrinsic registration method is efficient and effective, and therefore

is promising for morphing applications.

6.5.1 Applications to Morphing

Graph Design and Generation. For human facial surfaces, we employ the promi-

nent features including the points, curves and contours around the eyes, mouth, nose

and eye brows, and geometric features such as the symmetry axis and boundaries

to form the graph. These features can be either extracted automatically or man-

ually labeled (e.g., BU3DFE [152]). The graph is constructed by connecting the

prominent and geometric features using the shortest paths. Various graphs can be

constructed using different connecting patterns. The key idea here is to build 3-

connected isomorphic graphs for the source and the target. For facial surface in our

experiments, we refer to the natural muscle group of facial surfaces to divide the

whole human facial surfaces (see Fig. 6.2(a,e)) and animal’s facial surfaces (see Fig.

6.3(a,e)).

Parameterization and Registration. Fig. 6.2 shows the intrinsic param-

eterization and registration of the source and target face surfaces of two different

persons. We can see that the intrinsic parameterization in Fig. 6.2(b,d) well keeps

the shape and geometry of the feature graph, and maps the 3D curvy graphs to

PSLGs, which form convex subdivisions of the canonical domain. Fig. 6.2(c) illus-

90



(a) source, M1 (b) φ1(M1, G1)

(c) h(M1, G
′
1) (d) φ2(M2, G2) (e) target, M(2)

(f) t = 0.0 (g) t = 0.20 (h) t = 0.40

(i) t = 0.60 (j) t = 0.80 (k) t = 1.0

Figure 6.3: Surface parameterization, registration and morphing of the lion and cat
facial surfaces. Row 1 and 2 show the registration between the lion’s facial surface
and the cat’s facial surface. Row 3 and 4 illustrate the morphing results, where
parameter t shows the progress of morphing.
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trates the deformed source domain after the surface registration, and the deformed

3D surface is shown in Fig. 6.2(k), which is visually the same as the target surface

in Fig. 6.2(e). Based on the intrinsic registration of the human facial surfaces, we

compute the morphing sequence shown in Fig. 6.2(f-k), which generates a smooth

transition between the source and target surfaces, and demonstrates the efficacy of

our intrinsic registration method. Both geometry and texture are blended during the

surface morphing. Our method can also work for surfaces with significantly different

shapes. Fig. 6.3 gives another example for the registration and morphing between

a lion’s facial surface and a cat’s facial surface. Both the two examples generate

satisfying surface registration and morphing sequences, which visually demonstrate

the efficiency and practicality of the proposed methods. To further verify the su-

periority of our presented method, experiments on 2D images are performed, and

described as follows.

We apply our intrinsic parameterization and registration for image morphing in

Fig. 6.4-6.6. The graph is first extracted from the images as a 3-connected graph

using the dominant features, e.g., segment, edge, corner, which can be computed

automatically using the detection algorithms [20, 31, 57, 101, 108, 122]. After that,

the image is then triangulated [119] to generate the surface, and our proposed reg-

istration method is applied to the graph constrained surfaces. An example of image

morphing between a star and a maple image is given in Fig. 6.4. For the image

with single object in Fig. 6.4, image corners are used as the graph vertices, and

the segmented star/maple portions form the faces of the graph. Another morphing

example between cows is given in Fig. 6.5. Furthermore, our intrinsic registration

method can be applied to handle morphing of images with multiple objects shown

in Fig. 6.6. From the above examples, we can see that our intrinsic registration

method provides a general framework to deal with the correspondence computation

92



between graph constrained surfaces, and is promising for the morphing of surfaces

and images.

6.5.2 Algorithm Performance

We measure the time cost of the registration and morphing for all the examples

presented in this paper. For morphing, we show the average time for 20 morphing

sequences from t = 0.05 to t = 1.0 with a step size of 0.05. Table 6.1 shows the

statistics, where Vn, Fn, En denote the number of vertex, edge, and face set in the

mesh; and V G
n , FG

n , EG
n denote the vertex, edge, face set of the graph, respectively.

From Table 6.1, we can see that both the registration and the morphing methods

are fast, and the registration takes less than 2 seconds for surfaces with 16k vertices

and 35 graph-nodes.

Table 6.1: Algorithm Performance

Model Mesh Graph Time (s)

Vn Fn En V G
n FG

n EG
n Regi. Morph

female, male 16k 33k 50k 35 28 61 1.5 2.2

lion, cat 11k 23k 34k 35 27 60 1.0 2.0

brazil1, brazil2 3k 6k 9k 17 11 26 0.5 1.1

cow1, cow2 2.6k 5k 7.7k 23 13 34 0.5 1.1

star, maple 3k 6k 9k 12 7 17 0.5 1.1

6.5.3 Comparison

3D surfaces can be mapped to the planar domain using other parameterization

techniques, such as conformal mapping and harmonic maps. However the feature

graph becomes irregular planar graphs in the canonical domain (see Fig. 6.1(b)),
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source, M1 φ1(M1, G1) h(M1, G
′
1) φ2(M2, G2) target,M2

t = 0.0 t = 0.25 t = 0.50 t = 0.75 t = 1.0

Figure 6.4: Image morphing between star and maple images.

source, M1 φ1(M1, G1) h(M1, G
′
1) φ2(M2, G2) target,M2

t = 0.0 t = 0.25 t = 0.50 t = 0.75 t = 1.0

Figure 6.5: Image morphing between two images of cow, cow1 and cow2. Image is
collected from Microsoft image understanding database [1].

source, M1 φ1(M1, G1) h(M1, G
′
1) φ2(M1, G1) target,M2

t = 0.0 t = 0.25 t = 0.50 t = 0.75 t = 1.0

Figure 6.6: Image morphing between two images of Brazil, brazil1 and brazil1, which
is collected from [82].
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which makes the 2D registration difficult. Intuitively, these maps can define a planar

straight line graph embedding by simply connecting the nodes on the planar domain,

but cannot guarantee crossing-free (with self-flipping) property and may generate

concave faces, and skinny faces (not perceptively pleasing). Therefore there is no

guarantee of generating a diffeomorphic surface mapping using such straight line

graphs. The convex combination map using Tutte embedding [163] maps the fea-

ture graphs to a PLSG in the canonical domain, which is a two step procedure, and

determines the weights of vertices on the graph using a heuristic method. As a re-

sult, the final parameterization and registration are not globally optimal, and highly

depend on the chosen weights during the Tutte embedding computation, which may

introduce additional distortions. Numerically, we compute the registration accuracy

metric as d(M1,M2) =
1
n

∑n

i ||g(vi)− g(f(vi))||
2), where f(vi) is the corresponding

vertex in the deformed source mesh and g denotes the gauss curvature. Table 6.2

shows the comparison between our method and the convex combination map using

Tutte embedding [163], which demonstrates the superiority of our intrinsic regis-

tration method. Compared with the Tutte embedding based method, our intrinsic

registration method generates better results for the 3D surfaces in Fig. 6.2 and 6.3.

The lion and cat faces in Fig. 6.3 have more different shape than the faces in Fig.

6.2, which introduces larger registration accuracy metric as shown in Table 6.2.

Table 6.2: Comparison with Tutte embedding based method [163]

Model d(M1,M2)

our intrinsic
method

Tutte based
method

faces in Fig. 6.2 0.00327 0.00371
lion and cat in Fig.

6.3
0.014396 0.016253
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6.5.4 Discussion

This work proposes an efficient and flexible way to generate graph-constrained sur-

face parameterization and registration while achieving minimal distortion in the

process and apply that for morphing.

Novelty. This work solves the problem of graph-constrained surface parameter-

ization in one step with flexible uses of energy functions. The parameterization pro-

cess creates straight line graph embedding in the parameter domain. The method

does not depend on any initial parameterization which may severely distorts the

mapping. Positive edge weights can be used for all the edges to generate flipping

free parameterization. If the mesh is good, cotangent weights wij, can be all positive,

otherwise some mesh refinement can be employed to make all the weights positive.

Also using mean value coordinates [41], weights can be made all positive. Using

positive weights results in a mapping where each vertex is a convex combination

of its surrounding vertices. This guarantees uniqueness and diffeomorphism of our

parameterization.

Energy modification. Different energy functions can be used in our method

which maintains different intrinsic properties of the surface, e.g., conformal param-

eterization [80,96], discrete area preserving parameterization (DAP) [29], harmonic

map, etc. The energy function in Eqn. 4.1 can be replaced with other energy func-

tions by altering the weights of the edges; special care may need need to be taken

to generate flipping free parameterization.

Efficiency. The method is efficient in the sense that it does not depend on

any initial embedding for computing graph-constrained parameterization. Also in

the computation, it makes minimal changes to the edge weights used in the energy

function. The method minimizes the harmonic energy under constraints and the

resulted map is as smooth as possible.
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Flexibility. The proposed framework is general and highly flexible. Based

on the application need, different energy functional can be adapted to the method

without making much modification in the process. In this work, we used two different

types of energy functions in the parameterization and used the one which show

visually better parameterization.

Application and extension. Graph-constrained parameterization can be used

in many applications where correspondence between surfaces with graph constraints

are desired, e.g., surface and image animation and morphing, matching, etc. The

idea is to parameterize the surfaces to convex domains using harmonic map with

graph constraints and then compute a constrained harmonic map between the pa-

rameterizations of the source and the target which generates the registration. After

the registration, animation and morphing can be done easily. Also, the method

can be used in biomedical research where the surfaces are naturally associated with

graphs, e.g., facial surface analysis for autism.

6.6 Summary

In this chapter, we present an intrinsic method to compute the parameterization of

graph constrained surfaces by substituting the one-ring neighborhood with the one-

ring graph neighborhood for vertices on the feature graph during the computation

of harmonic weights, which extends the mean value coordinate to graph constrained

surfaces, and straightens the feature graph to a PSLG in the canonical domain.

Based on the intrinsic harmonic map, we provide a general framework to regis-

ter surfaces with consistent feature graphs, which exactly aligns the guided feature

graphs, and is globally optimal and diffeomorphic. The application of surface mor-

phing on various surfaces and images demonstrates the efficiency and practicality of

our parameterization and registration methods.
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CHAPTER 7

CONCLUSION

This chapter provides a brief summary of the dissertation and discusses possible

future research directions based on this dissertation.

7.1 Summary

In this dissertation, we have presented methods for brain mapping, brain registra-

tion, brain morphometry analysis, and graph-constrained surface parameterization,

registration and their application to surface and image morphing using the feature

graph naturally embedded on the surface. First, a novel brain-net graph was defined

using the connectivity of the brain regions which was then used as constraints to

generate a convex-shaped mapping for brain cortical surface using Tutte embedding

and harmonic map that maps each cortical region to a convex subdivision. The

method minimizes convex energy function which is guaranteed to be unique and

diffeomorphic. The method solves the sparse linear system, and all the computa-

tions used in the process are linear. Our experiments on a total of 290 brains have

demonstrated the efficiency and efficacy of the proposed method.

Next, we have presented an atlas-constrained brain cortical surface registration

technique based on a novel atlas-constrained harmonic map using adaptive mean

value weight considering the local graph neighborhood for the vertices on the atlas-

graph. As the atlas graphs among brain surfaces are not consistent (not isomorphic),

we proposed a graph-refinement process to make the graphs consistent among the

brain surfaces by performing minimal changes to the brain surfaces; the registration

process was followed by a relaxation process to minimize the distortions introduced

by the graph refinement. As the method considers internal structures or regions of
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the brain surfaces, it can produce more accurate alignment of the brain regions as

verified by the Dice coefficient and comparing the results with existing Freesurfers

[36] method.

The proposed registration method was then applied for Alzheimer’s disease clas-

sification by co-registering the brain surfaces to compute shape similarity metrics

using per-vertex attributes of the surfaces. The method used one cortical surface as

the source, and it is registered to all other target cortical surfaces so that all the sur-

faces have one-to-one correspondence among them. The method then interpolated

the attributes from the target surfaces using this registration, and assigned them to

the corresponding registered surfaces. After that, we used supervised machine learn-

ing technique, e.g., K-NN, SVM and Random forest algorithms to classify normal

brains from the brains with AD. The accuracy of the method was 88.0% using K-NN

classifier (K=5) with 10-fold cross validation for a dataset of 50 normal subjects and

50 subjects with AD.

In the end, we have presented methods to compute intrinsic graph-constrained

parameterization and registration for general genus-0 surfaces by extracting isomor-

phic feature graphs from the source and the target surface. The harmonic map in

the parameterization and registration process are unique, globally optimal and dif-

feomorphic. Finally, the parameterization and registration process was applied to

generate morphing sequences between the source and the target shape. Experiments

on various surfaces with complicated geometry, and images having single and multi-

ple objects show the effectiveness of the proposed parameterization and registration

method and practicability in generating morphing sequences.
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7.2 Future Works

The proposed brain mapping method provides a useful way for the brain structures

and anatomy visualization. It will be interesting to see how the abnormalities of

the brains induced by the diseases are mapped on the domain; other color-coded

geometric attributes along with normal information can be assigned to the vertices

of the brain surface to facilitate the visualization. Another future work will be to

check if the method can be used for other anatomical organs visualization, e.g.,

hearts, colon, etc.

The proposed method may also help visualization and shape analysis of the 3D

volume image of the brain. In future, brain graph can be explored for facilitating

visualization of such volume image. For graph extraction, the local neighborhood

of the voxels can be used, or the volume image can be tetrahedralized to build the

local relationship. Brain surface registration may also be used as constraints for

volume image registration of the brains which can improve the Dice coefficient.

The proposed brain analysis framework has been applied to AD classification in

this dissertation. However, the geometry of the brain cortical surface is also changed

for many other psychological diseases, e.g., autism disorder, schizophrenia, etc. In

future, the use of this brain analysis framework can also be explored for other disease

classification as well. Also, other advanced machine learning algorithm, e.g., deep

learning, can be used for improving the classification accuracy with a large amount

of brain data.

One very interesting work will be to explore the use of this brain analysis frame-

work for human behavioral analysis, e.g., IQ, creative talents, etc. There are exist-

ing evidence that human behaviors including intelligence (IQ) [127] as measured by
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Ravens Progressive Matrices and artistic talents [21] have strong relations with the

morphometrics measures of the brain.

The proposed parameterization method uses the harmonic energy minimization

approach. Different energy functions have been proposed in the literature which

are used to maintain different intrinsic properties (e.g., area, angle, length, etc.) of

the surface in the parameterization process. These energy functions can be used in

future to generate parameterization with less distortions of these properties; special

cares have to be taken to ensure bijective and flipping free mapping as the weights

used in many of these energy functions are not all positives. An exciting exploration

will be the use of ARAP [86] energy function which can generate area-preserving

mapping and also considers angle preservation.

The proposed surface registration has been applied to surface morphing appli-

cation in this dissertation. In future, the use of the proposed registration can be

explored for other geometry processing applications such as animation and model-

ing. The proposed registration method may also help in other biomedical research

such as symmetry curves analysis in adolescent idiopathic scoliosis and facial surface

analysis for autism diagnosis.

The proposed methods in this dissertation have been applied to genus-0 surfaces

with single boundary. For the genus-0 closed surfaces spherical domains can be

used, but unlike disk domains, it will generate geodesics instead of straight lines.

An exciting future work will be to compute graph-constrained parameterization and

registration for such closed surfaces. Also, it can be further explored how to adapt

the proposed methods for high genus surfaces.
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