103 research outputs found

    New Results in Software Model Checking and Analysis

    Get PDF
    This introductory article surveys new techniques, supported by automated tools, for the analysis of software to ensure reliability and safety. Special focus is on model checking techniques. The article also introduces the five papers that are enclosed in this special journal volume

    Probabilistic Program Abstractions

    Full text link
    Abstraction is a fundamental tool for reasoning about complex systems. Program abstraction has been utilized to great effect for analyzing deterministic programs. At the heart of program abstraction is the relationship between a concrete program, which is difficult to analyze, and an abstract program, which is more tractable. Program abstractions, however, are typically not probabilistic. We generalize non-deterministic program abstractions to probabilistic program abstractions by explicitly quantifying the non-deterministic choices. Our framework upgrades key definitions and properties of abstractions to the probabilistic context. We also discuss preliminary ideas for performing inference on probabilistic abstractions and general probabilistic programs

    On Verifying Complex Properties using Symbolic Shape Analysis

    Get PDF
    One of the main challenges in the verification of software systems is the analysis of unbounded data structures with dynamic memory allocation, such as linked data structures and arrays. We describe Bohne, a new analysis for verifying data structures. Bohne verifies data structure operations and shows that 1) the operations preserve data structure invariants and 2) the operations satisfy their specifications expressed in terms of changes to the set of objects stored in the data structure. During the analysis, Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations of formulas. To synthesize loop invariants of this form, Bohne uses a combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision procedures (currently CVC Lite), and an automated reasoner within the Isabelle interactive theorem prover. This architecture shows that synthesized loop invariants can serve as a useful communication mechanism between different decision procedures. Using Bohne, we have verified operations on data structures such as linked lists with iterators and back pointers, trees with and without parent pointers, two-level skip lists, array data structures, and sorted lists. We have deployed Bohne in the Hob and Jahob data structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and apply it in the context of larger programs. This report describes the Bohne algorithm as well as techniques that Bohne uses to reduce the ammount of annotations and the running time of the analysis

    Differentially Testing Soundness and Precision of Program Analyzers

    Full text link
    In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-of-the art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers

    Automatic Abstraction in SMT-Based Unbounded Software Model Checking

    Full text link
    Software model checkers based on under-approximations and SMT solvers are very successful at verifying safety (i.e. reachability) properties. They combine two key ideas -- (a) "concreteness": a counterexample in an under-approximation is a counterexample in the original program as well, and (b) "generalization": a proof of safety of an under-approximation, produced by an SMT solver, are generalizable to proofs of safety of the original program. In this paper, we present a combination of "automatic abstraction" with the under-approximation-driven framework. We explore two iterative approaches for obtaining and refining abstractions -- "proof based" and "counterexample based" -- and show how they can be combined into a unified algorithm. To the best of our knowledge, this is the first application of Proof-Based Abstraction, primarily used to verify hardware, to Software Verification. We have implemented a prototype of the framework using Z3, and evaluate it on many benchmarks from the Software Verification Competition. We show experimentally that our combination is quite effective on hard instances.Comment: Extended version of a paper in the proceedings of CAV 201

    Subsumer-First: Steering Symbolic Reachability Analysis

    Full text link
    Abstract. Symbolic reachability analysis provides a basis for the veri-fication of software systems by offering algorithmic support for the ex-ploration of the program state space when searching for proofs or coun-terexamples. The choice of exploration strategy employed by the anal-ysis has direct impact on its success, whereas the ability to find short counterexamples quickly and—as a complementary task—to efficiently perform the exhaustive state space traversal are of utmost importance for the majority of verification efforts. Existing exploration strategies can optimize only one of these objectives which leads to a sub-optimal reach-ability analysis, e.g., breadth-first search may sacrifice the exploration ef-ficiency and chaotic iteration can miss minimal counterexamples. In this paper we present subsumer-first, a new approach for steering symbolic reachability analysis that targets both minimal counterexample discovery and efficiency of exhaustive exploration. Our approach leverages the re-sult of fixpoint checks performed during symbolic reachability analysis to bias the exploration strategy towards its objectives, and does not require any additional computation. We demonstrate how the subsumer-first ap-proach can be applied to improve efficiency of software verification tools based on predicate abstraction. Our experimental evaluation indicates the practical usefulness of the approach: we observe significant efficiency improvements (median value 40%) on difficult verification benchmarks from the transportation domain.
    • …
    corecore