12 research outputs found

    Context-aware person identification in personal photo collections

    Get PDF
    Identifying the people in photos is an important need for users of photo management systems. We present MediAssist, one such system which facilitates browsing, searching and semi-automatic annotation of personal photos, using analysis of both image content and the context in which the photo is captured. This semi-automatic annotation includes annotation of the identity of people in photos. In this paper, we focus on such person annotation, and propose person identification techniques based on a combination of context and content. We propose language modelling and nearest neighbor approaches to context-based person identification, in addition to novel face color and image color content-based features (used alongside face recognition and body patch features). We conduct a comprehensive empirical study of these techniques using the real private photo collections of a number of users, and show that combining context- and content-based analysis improves performance over content or context alone

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    Automatic Person Identification in Camera Video by Motion Correlation

    Get PDF
    Person identification plays an important role in semantic analysis of video content. This paper presents a novel method to automatically label persons in video sequence captured from fixed camera. Instead of leveraging traditional face recognition approaches, we deal with the task of person identification by fusing information from motion sensor platforms, like smart phones, carried on human bodies and extracted from camera video. More specifically, a sequence of motion features extracted from camera video are compared with each of those collected from accelerometers of smart phones. When strong correlation is detected, identity information transmitted from the corresponding smart phone is used to identify the phone wearer. To test the feasibility and efficiency of the proposed method, extensive experiments are conducted which achieved impressive performance

    Album-oriented face recognition for online social networks

    Full text link

    Using deep learning for social analysis in egocentric images

    Get PDF
    In this work, we explore in detail and propose a system to cluster faces from unconstrained images. This system can be divided mainly in two big steps: i) align the faces and pass them through a deep convolutional neural network, and ii) cluster the face images by their feature representation

    Enhancing person annotation for personal photo management using content and context based technologies

    Get PDF
    Rapid technological growth and the decreasing cost of photo capture means that we are all taking more digital photographs than ever before. However, lack of technology for automatically organising personal photo archives has resulted in many users left with poorly annotated photos, causing them great frustration when such photo collections are to be browsed or searched at a later time. As a result, there has recently been significant research interest in technologies for supporting effective annotation. This thesis addresses an important sub-problem of the broad annotation problem, namely "person annotation" associated with personal digital photo management. Solutions to this problem are provided using content analysis tools in combination with context data within the experimental photo management framework, called “MediAssist”. Readily available image metadata, such as location and date/time, are captured from digital cameras with in-built GPS functionality, and thus provide knowledge about when and where the photos were taken. Such information is then used to identify the "real-world" events corresponding to certain activities in the photo capture process. The problem of enabling effective person annotation is formulated in such a way that both "within-event" and "cross-event" relationships of persons' appearances are captured. The research reported in the thesis is built upon a firm foundation of content-based analysis technologies, namely face detection, face recognition, and body-patch matching together with data fusion. Two annotation models are investigated in this thesis, namely progressive and non-progressive. The effectiveness of each model is evaluated against varying proportions of initial annotation, and the type of initial annotation based on individual and combined face, body-patch and person-context information sources. The results reported in the thesis strongly validate the use of multiple information sources for person annotation whilst emphasising the advantage of event-based photo analysis in real-life photo management systems
    corecore