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Abstract

Rapid technological growth and the decreasing cost of photo capture means that we are

all taking more digital photographs than ever before. However, lack of technology for

automatically organising personal photo archives has resulted in many users left with

poorly annotated photos, causing them great frustration when such photo collections are

to be browsed or searched at a later time. As a result, there has recently been significant

research interest in technologies for supporting effective annotation.

This thesis addresses an important sub-problem of the broad annotation problem,

namely “person annotation” associated with personal digital photo management. So-

lutions to this problem are provided using content analysis tools in combination with

context data within the experimental photo management framework, called “MediAs-

sist”. Readily available image metadata, such as location and date/time, are captured

from digital cameras with in-built GPS functionality, and thus provide knowledge about

when and where the photos were taken. Such information is then used to identify the

“real-world” events corresponding to certain activities in the photo capture process. The

problem of enabling effective person annotation is formulated in such a way that both

“within-event” and “cross-event” relationships of persons’ appearances are captured.

The research reported in the thesis is built upon a firm foundation of content-based anal-

ysis technologies, namely face detection, face recognition, and body-patch matching to-

gether with data fusion.

Two annotation models are investigated in this thesis, namely progressive and non-

progressive. The effectiveness of each model is evaluated against varying proportions of

initial annotation, and the type of initial annotation based on individual and combined

face, body-patch and person-context information sources. The results reported in the the-

sis strongly validate the use of multiple information sources for person annotation whilst

emphasising the advantage of event-based photo analysis in real-life photo management

systems.
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Chapter 1
Introduction

This chapter begins with an overview of personal photo management in Section 1.1, high-

lighting the need and challenges associated with effective photo management. The mo-

tivation for the research undertaken is described in Section 1.2. Section 1.2.1 presents

an example application scenario, illustrating the nature of the problem at hand whilst

Section 1.2.2 describes the research challenges and market demand associated with this

problem. Research objectives and hypotheses are given in Section 1.3. Contributions

from the research are then presented in Section 1.4, followed by a description of the the-

sis structure in Section 1.5.

1.1 Overview

This thesis addresses the problem of personal photo management using content and con-

text analysis of digitally captured photographs. More specifically, automatic person an-

notation is identified as an important research problem, requiring careful attention from

the research community as a means to facilitate effective management of large personal

photo collections. Several sub-problems associated with person annotation are studied

and solutions are presented in areas such as face detection, face recognition, body-patch

feature analysis, data fusion, and the utilisation of various person-context features.

Personal digital photos are the typical photos taken by an average consumer to record

some events of special significance in their lives. They differ from those taken by profes-

sional photographers who generally work for commercial purposes with loosely associ-

ated context. In general, most personal photo users expect a lifetime store of their pho-

tographs, possibly depicting several hundreds of important events during a period of a

few decades. There may be also users possessing an inordinate number of legacy photos

who desperately need assistance in organising their collections.

The nature of personal photography is changing as the use of digital cameras becomes

1
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increasingly pervasive. Wider availability, lower cost and greater functionality of digital

cameras have caused an increase in the number of more-casual photographers who find

themselves easily becoming hobbyists or enthusiasts in photography. The shift from pa-

per prints to digital images has sparked a number of changes in people’s practice with

their personal collections. One significantly notable change is the size of collections as the

costs of film and printing no longer apply, and the cost of digital storage decreases. Con-

sumers aren’t any longer hesitant about taking multiple shots of the same object or scene

from slightly different viewpoints. Although digital photography makes photo-users’

lives more flexible, it also means that users will have more work to do in organising such

large numbers of photos.

Personal photo management can be interpreted as a process of organising digitally

captured photos by personal and family users, allowing them to reminisce some impor-

tant aspects of their lives that have been recorded in the form of a series of photographs.

Support for organising photos into albums, sharing, browsing, sorting, search and re-

trieval is a crucial feature in personal photo management systems. Considering the facts

that such photo collections are large in size and comprise events that occurred possibly

a long time back, the most important feature that needs to be supported in photo man-

agement is automatic photo-indexing. Content-based technologies have a relatively long

history of being researched in multimedia indexing with limited success due to the well-

known semantic gap problem [5]. It is, however, believed that one way to resolve that

problem is to exploit other information sources that come from outside the image data [6].

Thus, using context information of photos combined with content-based analysis may be

considered as a viable solution to effective photo indexing.

Previous user studies of personal photo management systems carried out by other

authors, such as Rodden and Wood [7], Kirk et al. [8], and Suh and Bederson [9], revealed

that users generally have less motivation to invest the effort in arranging their photos in

semantically meaningful groups but rather prefer keeping them in the form of a folder

based representation. Unless people are explicitly equipped with an automatic photo-

management tool, the organisation of photos would often mean extra work for them,

such as sorting, selecting, annotating, sharing, etc. However, current digital photo man-

agement technologies lack effectiveness in dealing with large personal photo collections,

leaving a large number of users with poorly annotated photos. Thus, there arises a strong

need for effective photo management systems, which can help users organise their photo

collections with minimal effort.

Researchers have also found that home users, when organising and accessing large

photo archives, show strong tendency towards using semantic axes, such as time (Septem-

2
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ber 2004, summer, week-end), location (Melbourne, Dublin, Bangkok), actions and ob-

jects (graduation ceremony, park excursion, beach photos, sunset photos), and people

(Alex, my daughter, my brother, John), which are also known as W4 entries: when, where,

what and who [9–12]. Using photo metadata recorded by modern digital cameras at cap-

ture time enables easily organising the photos in “when and where” dimensions. For

example, all digital cameras provide time information and most camera phones can in-

fer rough location from GPS or Cell ID information [13]. In addition, most digital cam-

era files support location data stored in the EXIF (Exchangeable Image File) header to-

gether with focal length, aperture size, exposure time, camera model, etc. It is also en-

visaged that more services will become available in the future, allowing portable camera

devices to be equipped with location-aware technologies1. Moreover, services are becom-

ing available to the general public to obtain geo-data, such as geographical names and

postal codes from GPS coordinate sets2, meaning that there will be no problem in trans-

lating GPS coordinate sets into real location names. Consequently, digitally captured

photographs using hand-held devices will be automatically tagged with both time and

location information in the future, which are two powerful cues for organising personal

photographs into semantic events [14]. The last two dimensions, i.e. what and who, how-

ever, involve more complex data-processing, and in turn have become really challenging

research problems in personal photo management. Figure 1.1 shows the basic architec-

ture of a personal photo management system, comprising photo-capture, photo-indexing

and user-query modules.

A significant number of research prototypes, including [14–18], and commercial prod-

ucts (Adobe Photoshop Elements, iPhoto, Picasa, ACDSee, etc.) have been proposed and

developed to help users cope with rapidly growing collections, especially with regard

to browsing and searching for photos. An end goal for browsing and search would be,

for example, to show photos to a friend or to place them on a web page. Browsing and

search are also useful functionalities to enable efficient annotation in photo management.

In general, browsing refers to the process of viewing large collections of images where

the user’s goal is not well defined. Novel user-interface techniques, such as zoomable in-

terface [9], scatter plot thumbnail display and drag-and-drop interface [19], seem to have

achieved significant success by supporting elegant browsing functionalities for photo

management. Previous user studies, such as those proposed by Platt et al. [18], Mei et

al. [20], and Suh and Bederson [9], suggest that automatic organisation of photos com-

1For example, the future Galileo system comprising a constellation of 30 satellites could effectively enable
portable digital camera devices be equipped with precise positioning/time information, making it a real
alternative to GPS in the future - http://news.bbc.co.uk/2/hi/science/nature/6294287.stm

2http://www.geonames.org
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WHEN

WHO WHAT

WHERE

  
  Alex

16 September 2004

Melbourne−Australia

Beach Photos

Graduation Ceremony

Photo Capture

Analysis of
Content and Context

Photo Indexing

Search and Retrieval

Saman

Galway−Ireland

04 June 2005

Figure 1.1: Basic architecture of a personal photo management system.

bined with novel graphical user-interface techniques is subjectively more satisfying for

browsing large collections. Search tools, on the other hand, specifically help users to do

goal-directed finding of particular images3.

This thesis investigates the usability of two main descriptive elements, namely the

content and context information of personal photos, that are believed to be potential in-

formation sources for effective person annotation in large personal photo archives. While

the meaning of content clearly relates to image-data itself, exploited through face recog-

nition in this thesis, context information related to digitally captured photographs can,

in principle, be quite broad and elusive to define. This thesis explores the usability of

context information to person annotation in three categories:

• Camera-derived context information: Time and location information related to photo

capture are two important information sources that can be used to describe the con-

text within which the photos were taken [21,22]. These two cues are quite useful in

representing photos in terms of semantically meaningful events. Although know-

ing the location information of photos is not a strict requirement for defining events,

it can be used as an effective feature if the photos need to be organised in terms of

3Outside the context of personal photo management, many web-based photo libraries allow di-
rect searching of photos via the Internet, such as Corbis.com (http://pro.corbis.com/), gettyImages.com
(http://www.gettyimages.com/Home.aspx), and Flickr (http://www.flickr.com/)
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an event/sub-event hierarchy, along the “location” dimension, or described using

person-context estimators such as spatial co-occurrence and spatial re-occurrence.

• Visual context information: In general, visual information of a certain object charac-

teristically identified within a family photo scenario can be exploited to better facil-

itate the photo management task. Visual context information related to the problem

of person annotation in personal photo management refers to the information cap-

tured from the clothing of a person, also termed body-patch matching in this thesis,

facilitating the identification of temporally re-appearing persons within an event.

• Person context information: The likelihood of a person’s presence in a given photo

or an event can be inferred from person context information captured using global,

event, time-neighboring, spatial-neighboring and people-rank estimators by rely-

ing on the probability of previous appearances in the annotated photos [21]. The

intuitive guidelines used to compute these estimators are described in Section 7.1.3

of Chapter 7.

1.2 Motivation for the Research

Digital photography is becoming an integral part of consumers’ lives, converting more-

casual photographers into hobbyists or enthusiasts in photography. While it makes their

lives quite flexible during photo capture and storage, organising such large collections

nevertheless requires more effective photo representation structures. Addressing this

problem by both research and industrial communities has not thus far achieved satis-

factory solutions, thereby leaving a large number of home users with poorly organised

photos. However, the strong interest in finding viable solutions is clearly reflected by

the increasing contributions from the research community and a number of commercial

products already available in the market of which a detailed description can be found in

Chapter 2. In this thesis, it is believed that there is sufficient motivation to devote research

into “personal digital photo management”, with specific emphasis on some challenging

and unsolved problems therein.

In order to illustrate the motivation behind the research carried out in this thesis, an

example scenario for personal photo management is presented together with a descrip-

tion of research challenges and market demand in the following.
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1.2.1 An Example Scenario

An example scenario for photo management can be considered as a typical holiday-

maker’s photo collection, which includes people such as friends, families and couples.

Consider, for example, Derek and Mary Boyle and their two sons Sean and Liam who

happened to spend their summer holidays in France. During the first trip to France,

they visited several cities and a number of coastal villages, including Corsica which they

found very beautiful. Sean and Liam were also hobby-climbers, and thus took the oppor-

tunity to do rock-climbing in the south of France while their parents were enjoying their

time in some coastal villages nearby. Having visited and enjoyed several cities, cliffs,

coastal villages, etc., they returned home to Ireland. However, due to their increasing in-

terest in rock-climbing and eagerness to explore the French countryside, Sean and Liam

together with their parents visited France more regularly. Being playful youngsters and

enthusiasts in photography, Sean and Liam also visited other different countries with

their friends, which led to a process of collecting large numbers of photos during each

trip. As time went on, Sean the elder brother of the two, was interested in reminiscing the

past events he experienced with his family members and friends. He wanted to browse

the photos he took with his parents in France, the photos he took with his brother while

rock climbing, and the photos he took with his best friends when visiting other differ-

ent places in the world. Given such a large and unstructured sets of photos made this

enormously difficult as he tended to forget about the content of photos that he had taken

about 10 years back.

According to the type of problem Sean is facing, it may be sensible to adapt a system-

atic representation of photos in the following four dimensions that would let him easily

organise his large photo collection. Specifically, by allowing him to annotate photos ac-

cording to name of persons (Sean, Liam, Mary, etc.) and important events (rock-climbing,

visiting coastal villages in France in 2006, birthday dinner, etc.), he would be able to ac-

cess them later more directly, without having to browse a large sequentially ordered set.

Date/Time - Using the temporal dimension Sean can view specific photos that were

taken during a specific time period. For example, all photos taken in September

2004 can be easily selected.

Location - The location dimension allows selecting photos taken at a particular location

in the world. For example, photos taken in a coastal village in France can be easily

retrieved.

Person - Labeling person identities as part of photo annotation can help quickly select
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the photos that contain a specific person(s) of interest. For example, once the names

of parents are tagged, those photos can be quickly retrieved from a large collection.

Event/Object - Tagging photos with important moments in life, for example graduation

ceremony, rock-climbing competition, beach photos and mountain photos, is quite

useful for retrieving photos belonging to semantically meaningful events. Such

events can be, in some cases, constructed using the first two dimensions (time and

location). For example, remembering that the 20th birthday was celebrated in year

2005, month September, date 12th and time between 7pm and 11pm in Corsica,

all photos related to that event can be quickly retrieved using the time and location

attributes.

1.2.2 Research Challenges and Market Demand

There are a number of popular commercial systems, such as Adobe Photoshop Elements,

iPhoto, Picasa, and ACDSee, available for personal photo management. A description of

such products can be found in Section 2.2.2 of Chapter 2. However, most products cur-

rently offer relatively basic functionalities, such as hierarchical folder representation, sim-

ple photo-album creation, and photo editing operations, e.g. resizing, cropping, image

enhancement effects, etc. They also allow users to perform basic photo annotation op-

erations, such as inserting keywords in the form of textual captions, and drag-and-drop

of keywords, describing locations, people, and events associated with the photos. As an

advanced annotation feature, Adobe Photoshop Elements 4.0/5.0 additionally supports

batch annotation of people for which an in-built face detection algorithm is used, letting

users tag their photos with peoples’ names more efficiently. Thus, introducing advanced

content-based technologies is clearly becoming a sensible move towards satisfying the

consumers’ requirements in practice.

Recent user studies and current research prototypes (see Chapter 2) have shown that

using content-based image analysis technologies alone cannot fulfil the stringent require-

ments of personal photo management. Alternatively, keyword-based photo search and

browsing are becoming attractive candidate solutions to this problem in which photo

annotation becomes a central component in the process. Annotation corresponds to a

process of labeling the content of photos (or objects in photos) with a set of keywords,

which can be generally performed manually, semi-automatically or automatically. Au-

tomatic annotations are usually inaccurate. However, manual annotation is too slow

and cumbersome a task for home users to perform on large photo collections. Addition-

ally, annotating personal photos would require systems that satisfy consumers’ privacy
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policies, as opposed to existing web-based photo annotation systems, such as LabelMe4,

Flickr5, that are devised to get large photo collections freely annotated by public users.

This also implies that such web-based approaches are an unrealistic solution to personal

photo annotation. In this context, automatic semantic categorisation of personal pho-

tos plays a vital role, in order to reduce the labour-cost barrier associated with manual

annotation.

In a recent study, Kustanowitz and Shneiderman [23] pointed out the importance of

annotation for personal photo libraries. Cui et al. [24] reported that manually annotating

photos with “who” becomes the most boring task for users because they need to recog-

nise people in all the candidate photos and manually verify that the selected ones do

contain a certain person. Suh and Bederson [9] proposed a semi-automatic annotation

method emphasising that, given automatically generated metadata with a reasonable ac-

curacy, such annotation methods are faster and easier than manually adding new meta-

data from scratch . Their user study also revealed that semi-automatically annotating

person identities requires a significantly larger amount of effort than annotating events.

Current person annotation methods, however, show deficiency despite the efforts that

have been made by ceratin researchers in exploiting content-based analysis technologies

in the process. From the study carried out in this thesis (see Section 2.2 of Chapter 2), it

became clear that automatically identifying “who is in the photo” is one of the important

requirements for the development of effective photo management systems. Investigating

solutions to the problem of person detection and recognition, which has been one of the

most difficult research problems in computer vision, hence becomes a challenging task in

personal photo management.

Face detection and recognition in personal photo archives are generally difficult prob-

lems due mainly to the fact that photos are taken in a completely uncontrolled fash-

ion [25]. In personal photo scenarios, faces are typically captured in a wide range of

expressions and orientations, and at different scales (see Section 7.3 of Chapter 7 for a

general description of different face configurations present in personal photo archives).

Lighting conditions can be quite challenging as well, especially in photos containing

shadows and directional sunlight. Thus, in this type of an application scenario, it be-

comes difficult, if not impossible, to identify people in photos using only face informa-

tion. Previous approaches to this problem employ contextual features, such as clothing

appearance, time/location information related to the photo capture process, logical con-

straints (co-occurrence, re-occurrence, different faces in a photo belong to different per-

4http://labelme.csail.mit.edu
5http://www.flickr.com
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sons, etc.) to help better recognise people in personal photos. However, difficulties still

remain due to issues such as occlusion, pose changes and lighting variations, making

person recognition a difficult task to be carried out using face and clothing information

alone in some instances. Ambiguity in clothing information also exists when people wear

similar clothing in the same event.

1.3 Objectives and Hypotheses of the Research

Based on the literature study performed in this thesis and the recent progress on personal

photo management systems, it is believed that supporting effective means for person

annotation is a timely research problem to be addressed. This thesis attempts at finding

solutions by combining content-based and context-based technologies in the form of a

user-assisted person annotation system. To this end, a series of experiments are carried

out to examine a feasible approach to person annotation by varying the amount of initial

annotation, type of initial annotation, and the level of user interaction involved in the

process.

1.3.1 Objectives

• To carry out a review of existing personal photo management systems for identify-

ing strengths and weaknesses of current technologies and accordingly determining

new research directions that would, in turn, contribute to the development of more

effective photo management technologies;

• To identify a suitable face detection approach for detecting people in personal photo

archives;

• To analyse the performance of different skin segmentation techniques and develop

a new model, facilitating efficient face detection in colour images;

• To carry out a thorough performance comparison of colour and texture descriptors

for identifying the best body-patch descriptors for person matching;

• To identify a suitable face recognition technique for person matching;

• To study various fusion schemes for identifying the optimal combination of various

colour, texture and face recognition descriptors for person matching;

• To examine the effectiveness of person-context estimators in semi-automatic person

annotation;
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• To develop a new user-assisted person annotation system using a combination of

content-based and context-based technologies.

1.3.2 Hypotheses

Leveraging some context-based estimators proposed in [21] and employing the content

and visual-context analysis techniques identified in Chapter 6, the following hypotheses

are proposed to be investigated in this thesis using a test data set comprising 9 photo

collections described in Section 7.3 of Chapter 7:

• Hypothesis-I: Using event-constrained person matching leads to more effective per-

son annotation due to the fact that it allows the use of visual context and event-

count person context estimators;

• Hypothesis-II: Using combined content, visual context and person context features

leads to improved person annotation performance compared to any other combi-

nation of the three features;

• Hypothesis-III: Progressive annotation models, which require user intervention to

confirm a name identify for each annotation, result in more accurate name sugges-

tions than non-progressive annotation models.

The definitions of some key-phrases used in this thesis are given in Appendix A.

1.4 Contributions from the Research

Addressing the problem of person annotation for personal photo management applica-

tions, this thesis makes a number of research contributions by spawning the research

ideas of developing and integrating content-based analysis technologies with context in-

formation of the digital photos. The following is a summary of the key contributions

from the research.

The development and implementation of an enhanced face detection technique for

detecting faces in personal photo archives is the first main technical contribution in this

thesis. Of the large number of face detection algorithms available in the literature, the

Bayesian Discriminating Features (BDF) face detection technique is identified as an ef-

fective approach for detecting faces in personal photo management applications where

the photos are typically captured under uncontrolled conditions. However, one major

requirement in adapting the BDF method in this application domain is to improve its

computational efficiency. To this end, a number of additional features are integrated into
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the conventional BDF method, thereby substantially improving the efficiency of face de-

tection. The most significant performance enhancing feature is the histogram-based skin

detection model that is developed and favorably compared against the state-of-the-art

skin detection methods in the literature. This research contribution is the outcome of the

experimental study of various skin detection and face detection technologies performed

in the first part of the thesis.

The second main research contribution of this thesis is the identification of the best

performing body-patch and face descriptors out of a large number of potential descrip-

tors in the literature, and a suitable weighting scheme. The body-patch descriptors stud-

ied in this thesis include colour histograms, spatiograms, colour coherence vectors, colour

correlograms, MPEG-7 dominant colour descriptor (DCD), MPEG-7 scalable colour de-

scriptor (SCD), MPEG-7 colour structure descriptor (CSD), MPEG-7 colour layout de-

scriptor (CLD), MPEG-7 edge histogram descriptor (EHD) and MPEG-7 homogeneous

texture descriptor (HTD), whereas the face descriptors studied include the MPEG-7 HTD,

MPEG-7 EHD, MPEG-7 face recognition descriptor (FRD) and local binary patterns (LBP)

descriptors. This experimental study proves that the MPEG-7 SCD and MPEG-7 HTD are

the best performing colour and texture descriptors for body-patch matching, and the LBP

descriptor is the best performing method for face matching in personal photo archives.

The experiments performed on data fusion show that the “weighted average” method is

the most effective fusion scheme over “similarity score product” and “max score” meth-

ods studied in this research paradigm. This research contribution is the outcome of the

performance evaluation of various colour, texture and face recognition descriptors, and

data fusion schemes performed in the second part of the thesis.

The third main research contribution of this thesis is the identification of an event-

constrained person matching technology for person annotation using combined content,

visual-context and person-context features. The performances of the weighted-average

fusion scheme, and the content, visual-context and person-context features are indepen-

dently tested, illustrating the superior performance of combined content, visual-context

and person-context features in real-world person annotation scenarios. Comparing the

performances of person annotation using event-constrained person matching over global

person matching, it is proven that event-constrained person matching leads to more ef-

fective person annotation in real-world scenarios. This research contribution together

with the additional contributions described in the following text are the outcomes of the

performance evaluation of person annotation experiments carried out in the last part of

the thesis.

Other contributions from the research constitute to experimental evaluation of two
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different annotation models and two different types of initial annotation. The perfor-

mance comparison of the two initial annotation methods, i.e. event-based and person-

based, illustrates that using an event-based initial annotation approach leads to more

effective person annotation in general. Comparing the performances of the two annota-

tion models, i.e. progressive vs non-progressive, it is proven that more accurate person

recognition results can be obtained using progressive annotation models, albeit requiring

a user feedback step for each annotation. Furthermore, the performance of progressive

annotation models is shown to be less reliant on the level of initial annotation compared

to that of the non-progressive approach.

1.5 Structure of the thesis

The thesis is structured in such a way that it first focuses on a review of state-of-the-art

technologies in the first couple of chapters, and then on more practical aspects of the

research in the rest of the chapters.

Chapter 2 is dedicated to a review of personal photo management systems with a

view to understand the state-of-the-art research that has been carried out by other re-

searchers. Existing approaches are studied in the two categories, namely research pro-

totypes and commercial products. A brief description of the MediAssist project is also

presented in this chapter, highlighting its primary features and the contributions from

the author.

A detailed study of existing face detection algorithms is described in Chapter 3. They

are presented in two categories corresponding to frontal/near-frontal and rotation invari-

ant multi-view face detection algorithms, in spite of the fact that the author’s research

contribution is strictly limited to the aspects of frontal/near-frontal face detection. In or-

der to give a brief summary of the literature available for face detection, a comparative

analysis of face detection algorithms is presented towards the end of the chapter.

Research and development of skin modeling and detection techniques carried out by

the author is presented in Chapter 4. Existing approaches are studied in five categories,

namely fixed-boundary thresholding, parametric statistical models, non-parametric sta-

tistical models, lighting compensated methods and adaptive modeling methods. It then

describes the experimental analysis of the characteristics of skin and non-skin data, lead-

ing to a detailed investigation of the problem in this chapter. On identifying the capabil-

ities and shortcomings of each of the categories, a histogram-based non-parametric skin

detection model is proposed as a new model for skin detection in this thesis. Finally,

the decision to choose such a model is validated through a comprehensive performance
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comparison of various skin detection methods.

Chapter 5 covers the details of the work carried out on development and experimen-

tation of face detection algorithms based on the use of skin segmentation, and a state-of-

art appearance-based face detection approach, namely the BDF method. It first describes

the test data sets used for measuring the performance of the proposed face detection algo-

rithm. Then it presents a description of the in-depth research conducted on the BDF face

detection method, together with new features proposed as a means to efficiently detect

faces in colour images.

Chapter 6 is dedicated to the research carried out on identifying content, i.e. face,

and visual context, i.e. body-patch, descriptors for person matching. It first describes the

nature of the problem, and then the proposed approach to deal with the challenges asso-

ciated with this problem. On performing a detailed review of the existing approaches to

identification of person re-occurrence in personal photo archives, the exploitation of three

different descriptors, namely colour, texture and face recognition, is studied through an

extensive performance-evaluation process. The usability of combined descriptors is then

examined using data fusion mechanisms and compared over the performance of any in-

dividual descriptors.

In Chapter 7, the person annotation experiments are carried out to independently test

the technologies developed and identified elsewhere in the thesis. These experiments

also serve as a groundwork to verify the hypotheses set aside in the thesis. Starting with

an overview of the system based on how the combined content and context analysis of

photos could be beneficial for person annotation, two annotation models corresponding

to progressive and non-progressive annotation are first described. Results of the two

models are then presented using all the possible individual and combinations of differ-

ent estimators, such as content features only, visual context features only, person-context

features only, combined content and visual context features, and combined content, vi-

sual context and person-context features. An analysis of the results is then carried out to

verify the hypotheses set aside in the thesis.

Chapter 8 serves as a conclusion to the thesis, highlighting what is achieved and what

remains to be investigated as directions for future research. It first presents a review of

the thesis and then a summary of research contributions. Conclusions drawn in the thesis

and possible directions for future research are then presented, addressing the bottlenecks

that remain as challenges to satisfying the perceived needs of home users in personal

photo management. Finally, some concluding remarks are given to end the chapter.
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Chapter 2
A Review of Personal Photo

Management Systems

This chapter presents a review of personal photo management systems that are avail-

able in the form of research prototypes and commercial products, in order to provide

the broader context for the research detailed in this thesis. It starts with an introduc-

tion in Section 2.1, providing an overview and a number of user studies that have been

carried out by various researchers to understand what users want and need. Existing

photo management systems are then reviewed in Section 2.2 with a breakdown of no-

table approaches under research prototypes and commercial products in Sections 2.2.1

and 2.2.2 respectively. The objective is to investigate the functionalities of these systems

with specific emphasis on the use of content-based analysis technologies and context data

for organising large personal photo collections. Following a discussion given in Section

2.3, a description of the MediAssist photo management system is presented in Section 2.4

with particular emphasis on existing features, leading to the identification of enhance-

ments for effective photo management. The chapter then concludes with a summary in

Section 2.5.

2.1 Introduction

An overview of personal photo management and some of the user studies that have been

carried out by different authors are presented in the following sub-sections. A detailed

analysis of existing user studies is useful to understand how the requirements for man-

aging large personal photo collections could be identified and satisfied.
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2.1.1 Overview of Personal Photo Management

Currently, there are many systems available in research prototypes and commercial prod-

ucts, each taking different approaches to photo management. While some of these sys-

tems support browsing, search, and retrieval in an automatic/user-assisted manner, they

offer users very limited support in effectively organising large photo collections. Users

would like to organise the photos into albums with minimal effort while maximising the

benefit of reminiscing their life-stories in digital form. Research prototypes employ ad-

vanced content-based analysis tools for effective photo management compared to most

existing commercial products that offer relatively basic functionalities, such as hierarchi-

cal folder representation, simple photo-album creation and photo editing operations.

Personal photo management is closely related to the problem of image/video search

and retrieval. Research carried out in this field shows that automatically searching im-

age/video content from a large repository has been a difficult task to date. Content-

based and textual-based search techniques are commonly applied to this problem by the

research community. The textual-based (keyword-based) representation uses alphanu-

meric attributes to describe the context and/or content of an image or video, whereas the

content-based representation attempts to capture and represent content using low-level

attributes, such as colour, texture and shape, measured directly from the image data.

The textual-based search approaches are much more efficient than content-based search,

however they rely heavily on the performance of content annotation, which when man-

ually performed quickly becomes a tedious task for the user. Content-based search, on

the other hand, suffers from inaccurate feature extraction in application scenarios where

significant variations in lighting, background, view-point and image quality are present.

In this context, content-based image retrieval (CBIR) technologies alone will not be suffi-

cient to help organise photos effectively. However, a blend of these two approaches could

provide better performance.

In order to take advantage of the keyword-based search techniques in personal photo

management, content-based analysis technologies can be employed as a potential means

of reducing the labour cost for annotation. However, due to the well-known semantic

gap problem [5], it is not always possible to automatically identify semantic objects and

concepts in a given photo collection. Semi-automatic annotation offers a potential solu-

tion in this regard. For example, users could tag semantic labels to multiple image/video

contents at a time, thereby introducing a useful acceleration step in this labour-intensive

annotation process. Recent user evaluations, such as those conducted by Rodden and

Wood [7], Kirk et al. [8], Suh and Bederson [9], and Cui et al. [24], reveal that users are
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comfortable in annotating photos using semi-automatic annotation technologies.

2.1.2 User Studies

Rodden and Wood conducted a study in the Shoebox photo management system on how

people organise and browse both digital and non-digital photos, involving 13 partic-

ipants [7]. They also investigated how advanced multimedia processing tools can be

useful in effective personal photo management. They found that, in the case of non-

digital photos, many people organise their prints by putting only the good photos into

film-paper albums while the bad ones are either thrown away or kept in the original

packets. Albums are usually organised by events, such as holidays, sports and parties,

with photos in chronological order. When organising digital photos, users place them ei-

ther in event-based folders or in a single folder with default timestamps arranging them

in chronological order. Their study showed that users are more comfortable with the

organisation of their digital collections than non-digital collections. Users did not show

any interest in performing high-level organisation of their photo collections simply be-

cause all the photos were already in one location based on events or timestamps. When

annotating non-digital pictures, they found some users wrote the names of the people

and locations on the back of the print. In many cases, it is the title of the album which

describes the entire set of photos contained therein. Annotation for digital photos was

found to happen on the basis of recording the names of people and locations without any

need for recording the dates. However, they also found that annotation became impor-

tant for photos taken some time ago. Another finding which arose from this study was

that users are not interested in annotating the whole collection but only the most impor-

tant photos. Recording spoken annotations was another feature which was included in

this study. However, most users found it pointless to make spoken annotations without

accurate speech recognition. In this study, participants found that browsing is the most

important feature despite other available functionalities, such as query and search. How-

ever, one important conclusion drawn from this study was that photo annotation, query

and search become more important when collections get larger, and the photos get older

and less familiar to owners.

Kirk et al. performed a study to investigate whether users are actually interested in

CBIR algorithms to search personal photos, and also the browsing methods used right

from capture of the images to the point at which they can be shared with others [8]. They

interviewed 12 home users of digital photos (10 PC users and 2 Mac users) who are rou-

tine users of digital cameras with at least 1,000 images in each of their collections. From

this study, they found that participants who wanted to share photos did not have any
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need to search for specific photos based on some pre-defined criteria. Participants seem

to use recently taken photos for sharing and only infrequently look back through their

collections. This means that looking for a particular picture or even searching for a set

of pictures simply did not arise in this study. However, when they wanted to find a par-

ticular picture to share, they could do in most cases by just using the date-event naming

structure of their files. With regard to the browsing task for photo sharing, participants

wanted to disseminate photos from a recent event that involves reviewing and browsing

photos from only a few folders at most. Overall, users spent a significantly larger pro-

portion of time in browsing-like filtering and triaging1 activities than in search activities.

Considering the time consumption and complexity required, the authors suggest that

search-based enhancement can ease management of increasingly large photo collections,

allowing users to cluster and view photo collections efficiently.

Suh and Bederson carried out a series of user studies using the SAPHARI (Semi-

Automatic PHoto Annotation and Recognition Interface) system to investigate the ef-

fectiveness/usability of semi-automatic annotation techniques and novel zoomable in-

terfaces [9]. This study was carried out in two stages; event-task and face-task. First,

they observed and measured how event-based clustering effects participants’ annota-

tions. Second, they compared person-based annotation using clothing recognition with

manual annotation. In order to provide more realistic tasks, participants were asked to

use their own photo collections when carrying out these studies, allowing them to take

advantage of their personal knowledge of the photos. The time per completion and the

number of items annotated were measured, and some statistics about the photo collec-

tions, such as the number of event groups and the number of face groups, were also

collected in advance. From pre-user study questionnaires, the authors found that par-

ticipants were using directories or folders to organise their photographs. In this study,

participants were provided with two different types of interfaces: a semi-automatic and a

manual annotation interface. Within the event-task, results showed that the participants

performed much better with the semi-automatic interface, whereby they were able to eas-

ily make bulk annotations using automatic results. It also showed that the average time

per annotation dropped from 0.72 seconds to 0.367 seconds when comparing the semi-

automatic method using their zoomable interface with manual annotation. SAPHARI

used two granularities, i.e. Regular and Fine, for event classification whereby a smaller

number of large event groups was generated through ”Regular” grouping and a larger

number of tightly coupled groups were generated through ”Fine” grouping based on

time information. Of the two event categories, 6 out of 7 participants preferred ”Regu-

1Triaging refers to a process of sorting and selecting a subset of photos from a bigger collection.
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lar” grouping and they did not care much about detailed events. Instead, they simply

wanted to do a visual search within ”Regular” groupings to find any detailed activities

that took place. With the face-task, there was only a 6% improvement from the semi-

automatic annotation with clothing-based person recognition compared to the manual

annotation. Overall, the study showed that participants spent a significantly longer time

to annotate faces than events. Moreover, they quickly became tired with the face-task

manual annotation strategy, especially because they had to select target photos one by

one that were scattered in the screen.

The user study carried out by Cui et al. in the EasyAlbum semi-automatic photo an-

notation system comprised 32 volunteers [24]. EasyAlbum employs novel techniques

for cluster annotation, contextual re-ranking and adhoc annotation through innovative

user-interface techniques. The authors used Adobe Photoshop Elements 4.0 as a baseline

to compare the performance of EasyAlbum. The annotation workload was analysed by

comparing the total mouse-cursor movement distance and time consumption of labeling

the whole album. Participants found that one of the most distinctive features of EasyAl-

bum was the support of drag-and-drop between FaceGroups nearby, requiring shorter

mouse movements during face annotation. Results showed that the average time con-

sumption for annotation was reduced by about 30-80 seconds when using EasyAlbum.

Another important finding which arose from this survey was that about 97% believed

it was necessary to organise photos by “who” is in the photo. User-study results also

illustrated that EasyAlbum clearly outperformed Adobe Photoshop Elements 4.0 in both

large and small size photo-collection management. In particular, a scalability comparison

showed the superiority of EasyAlbum when annotating large photo collections.

2.2 Personal Photo Management Systems

Existing photo management systems can be categorised into two groups, namely research

prototype and commercial systems, and are discussed separately in the following sec-

tions.

2.2.1 Research Prototypes

One of the pioneering experimental personal photo management systems, called FotoFile,

was developed by Kuchinsky et al. and published in 1999 [15]. They identified both

users’ perspectives as well as contextual requirements towards building photo manage-

ment systems using a set of focus group sessions as well as analysis of existing tech-

nologies. Based upon their findings, preference was given to keyword-based search and

18



CHAPTER 2. A REVIEW OF PERSONAL PHOTO MANAGEMENT SYSTEMS

automated indexing, and browsing functionalities for effectively organising photo col-

lections. In FotoFile, media objects are described using a set of a priori defined metadata

attributes, such as creation date/time, location, people, title and subject. FotoFile lets

users make small groups of photos, which are called scraplets, corresponding to a single

story. These scraplets can be annotated with text and audio as a group, and hence can be

easily retrieved at a later time. These scraplets also act as additional metadata to organise

content in a given picture collection.

In [26], Gargi et al. argued how camera-related metadata fields, such as time/date

stamp, Aperture FNumber, and SubjectDistance, could be used as additional sources to

resolve the problem of similarity matching for personal photos. An example scenario

is a camera capturing an image at far distance that has a different focal length to an

image captured at near distance, e.g. this might be helpful in distinguishing two colour

objects: blue sky and a blue shirt [26]. Aris et al. presented another approach to photo

management by combining information from map data (GPS), with metadata of photos,

thereby leading to the meaningful creation of trip [14]. Photos can be either viewed via

location maps or based on the timeline. The prototype is built on top of the myLifeBits

infrastructure, which is intended to be a lifetime store of photographs.

As previously discussed, Rodden and Wood presented the Shoebox system that pro-

vides functionalities for organising, annotating, indexing, searching, and browsing of

photo collections [7]. Novel features in Shoebox include functionalities for audio annota-

tion and region-based image analysis, allowing both audio and visual similarity match-

ing in photo archives. With audio annotation, individual or groups of photos can be

described using speech comments so that they can be transcribed and used in a keyword-

based query style. For visual-based image matching, images are segmented into regions

and indexed based on colour and texture. While the use of audio annotation is a novel

feature in Shoebox, it is not clear how effective the proposed approach would be when

organising large personal photo archives.

The photo management system developed by Girgensohn et al. automatically cate-

gorises photos into meaningful events, such as birthday parties, family gatherings and

trips, with an option of subsequent manual adjustments to improve the granularity of

automatic event classifications [17]. Emphasising the use of improved user-interaction

mechanisms using a light table to display all the images as thumbnails and a tree view

to support navigation, sorting and filtering, the photo management task is performed

using categories such as date, location, people, and events. While their system shares

features with other existing approaches, the authors have given preference to making

photo organising and browsing simple and quick while retaining scalability to large col-
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lections. The employed automatic event detection technique makes use of timestamps

and an event categorisation principle assuming that photos belonging to the same event

are taken in close proximity in time. Keyboard shortcuts to give ratings to photos and

functionality to correct capture time by a specified number of days, hours, etc. are some

novel features in this system.

PhotoTOC, which was earlier known as AutoAlbum, is a browser that uses clustering

to automatically group a collection of photos based on their timestamps and colour [18].

The authors emphasised the fact that using only timestamps is unlikely to produce mean-

ingful events because of the inaccuracies associated with timestamps, e.g. wrong clock

settings of the camera and scanned photos with no information about capture time. In

this case, PhotoTOC identifies events based on the order of the photographs and the

colour information. Both PhotoTOC and AutoAlbum use the same automatic photo or-

ganising algorithm but different user-interfaces. Combining automatic organisation algo-

rithms with intuitive user-interface designs has proven to be very useful from the overall

system performance point of view.

Drucker et al. employed various user-interface techniques for visually attractive, easy

to use annotation combined with image processing techniques in their MediaBrowser

system [16]. In order to reduce the daunting task of annotating thousands of photos by

inexperienced home users, more importance was given to designing clear, simple and

user-friendly interfaces rather than offering a large range of other options. The Media-

Browser system retrieves images based on intrinsic metadata (media type, photo capture

date), derived metadata (indoor/outdoor scene, presence of faces) and extrinsic or explic-

itly assigned metadata (keywords). In time clustering, the user can control the number

of clusters so that the system can look for all the images and find the largest time gap be-

tween any two images. In this system, similarity matching between images is performed

using colour histograms. Although a face detector is used to identify faces in images, no

further analysis is performed on such detected faces.

MyPhotos, which was developed by Sun et al., is a prototype system for home photo

management that analyses the content of each photo and categorises them to indoor/out-

door, cityscape/landscape, and presence of faces [27]. If the photos are problematic due

to underexposure, red-eyes, duplicate photos or different orientations, the user will be

prompted and automatic correction options will be provided. To help users search and

browse photos, MyPhotos shows image events in a calender view based on date/time

of photo capture as important information in event classification. For organising pho-

tos, this system allows grouping of photos in numerous ways, for example time-based,

scene-based, location-based, indoor/outdoor, city/landscape, and classification based on
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face detection. The search functionality employed in MyPhotos employs photo metadata,

such as capture time, image visual-similarity, and person similarities based on previous

annotations and face recognition results.

The prototype system proposed by Zhang et al. [12] on semi-automatic annotation

of human faces in family albums combines CBIR technologies with face recognition in

a Bayesian framework. This approach reformulates the problem of face annotation from

purely a recognition problem to a problem of similar face search and annotation propaga-

tion. Facial and body-patch features are used for similarity matching from which the sys-

tem generates a list of name candidates through statistical learning approaches. The user

performs annotation either by selecting a name from the list of candidates or by enter-

ing a new name. Batch annotation is also supported in their approach using similar face

retrieval and relevance feedback. Addressing the real-life difficulties in employing face

recognition technologies alone, they incorporate three types of features, namely contex-

tual body-patch features, face appearance, and facial component features. Following this

work, Zhang et al. [28] proposed an enhanced photo management system using a simpli-

fied face annotation approach. In their approach, users can select a multiple number of

photographs shown in thumbnail views to assign a name to a person who is appearing in

the photos. The system establishes the correspondence between name and face through

similarity matching based on face recognition and CBIR technologies. The initial work

related to this framework was reported by Chen et al. [29] who focused mainly on CBIR

technologies for feature extraction and similarity matching.

Abdel-Motteleb and Chen considered the identity of individuals appearing in pho-

tographs as the most important dimension for photo browsing in addition to other meta-

data, such as date and location that can be obtained from EXIF data [30]. Due mainly

to the fact that automatic face recognition is not mature enough to handle real-life chal-

lenges associated with personal photo archives, other features such as colour and texture

of body-patches are instead employed for computing person identities. This system pro-

vides methods for browsing and organising photos based on human faces and represents

events with a set of composite images.

Naaman et al. employed two of the most prominent camera metadata sources for

search and browsing personal photo collections, namely time and location, which are

considered to be some of the best-remembered features when people are recalling past

events. In the PhotoCompas system they presented, photos are grouped into hierarchies

using location information and time-based events, which in turn get annotated with tex-

tual captions of geographical names [31, 32]. Events are defined based on two assump-

tions, ”story-line” and ”burstiness”. The story-line assumption means that photos are
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taken by a single photographer or alternatively using a single camera, allowing the pho-

tos to be treated as coherent in space and time. The second assumption is based on the

fact that people tend to take photographs in bursts, for example lots of pictures might

be taken at a birthday party, but only a few, if any, may be taken until another signif-

icant event occurs. Capitalising on earlier findings, Naaman et al. [21] also proposed a

semi-automatic person annotation system using temporal, spatial and social contexts. As

the user continues to annotate photos, name suggestions are prompted by the system for

un-annotated persons based on the patterns of re-occurrence and co-occurrence of previ-

ously annotated persons in different locations and events, thereby leveraging the context

available from photo metadata and user input. Annotation efficiency is improved as the

user can select a name from a short list of candidates. For computing name suggestions,

the system takes some intuitive guidelines, such as popularity (some people appear more

often than others), co-occurrence (people that appear in the same photo have a higher

likelihood to appear together in another photo), temporal re-occurrence (within a spe-

cific event, there tend to be multiple photos of the same person), spatial co-occurrence

(people that appear in a certain location have a higher likelihood of appearing again in

that location). They experimented with 4 different photo collections and observed that

as the user continues to annotate persons, more and more accurate name suggestions

are provided by the system. They also showed that the proposed approach is consistent

across different users.

The MiAlbum system presented in [33] performs semi-automatic annotation using

relevance feedback as a mechanism to incrementally update the association of the key-

words and the feedback images. They support annotation of photos with names, places,

objects and events with descriptive keywords of which the coverage and quality are pro-

gressively improved as the practice of search and feedback increases. Upon importing

some images, the system automatically searches the album for visually similar images

using the traditional content-based image retrieval and thereafter the keywords of high

frequency in these similar images are used as annotation for the imported images. Such

annotations are confirmed by the user in a future retrieval-feedback process where they

could be either accepted or rejected. Details of the semi-automatic approach they utilised

in MiAlbum can be found in [34].

Mei et al. presented an event-based home-photo clustering system using a proba-

bilistic multimodel-metadata fusion scheme [20]. Photo events are characterised by the

coherence of multimodality including contextual information (time and camera settings)

and perceptual image content. An EM algorithm is employed to estimate the parameters

of the probabilistic model and the minimum description length principle is used to deter-

22



CHAPTER 2. A REVIEW OF PERSONAL PHOTO MANAGEMENT SYSTEMS

mine the number of events in photo collections. Three event-related camera parameters,

namely aperture, exposure time and focal length, are used to derive contextual informa-

tion of a photo. The perceptual content is described by 3 features; colour, texture and

face number. They carried out user studies on a 14,000 photo collection taken during a 3

year period by 10 amateur photographs. They claim that using the proposed model can

better organise personal photos due to the type of event representations employed that

combine content and contextual information sources. Its performance in terms of search

time, event representativeness and overall usability has been compared and proven to be

better than that of PhotoTOC [18].

Zhao et al. proposed an automated method to annotate family photos using evidence

from face, body, and context information [35]. They first use time and location context in-

formation to cluster photos into events. Within each event, the body information is clus-

tered and then combined with face recognition results using a graphical model. Finally,

the clusters with high confidence values of face recognition and context probabilities are

identified as belonging to a specific person. They employ the context estimators that were

originally proposed by Naaman et al. [21]. For body-patch detection and recognition, ar-

bitrary shaped body regions are used, which are extracted using an automatic image

segmentation algorithm. Experimental results illustrated that combining face, body and

contextual information leads to improved person-identification performance for a photo

collection containing over 1,500 photos with 8 family members.

Suh and Bederson developed the SAPHARI prototype as a semi-automatic approach

to personal photo management, enabling users to update the automatically generated

metadata interactively and incrementally [9]. They proposed hierarchical event-based

clustering using time information and person-based clustering using clothing informa-

tion, enabling bulk annotation within automatically identified event groups. SAPHARI

provides a zoomable interface, allowing zoom-in/zoom-out and quick previewing op-

erations. It is also designed with several other features, such as chronological ordering

of photos within the event layout, easy overriding of event boundaries and person label

association, interactive and incremental annotation functionality, etc. Bulk annotation on

a group of people or a set of photos can be performed with a single action by drag-and-

drop of a name label. The effectiveness and usability of the proposed system have been

analysed through a series of user studies, proving that using the proposed system can

make annotations significantly faster. They also found that participants spent a signifi-

cantly longer time to annotate faces than events.

The EasyAlbum semi-automatic photo annotation system proposed by Cui et al. em-

ployed novel techniques for cluster annotation, contextual re-ranking and adhoc annota-
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tion through novel user-interface techniques [24]. For cluster annotation, automatic clus-

tering first groups faces/photos into different clusters, which are then directly tagged us-

ing pre-defined interactive annotation operations. In the contextual re-ranking stage, the

burden of annotation is significantly reduced by guessing the intention of the user dur-

ing the annotation process and re-arranging similar photos/clusters close to the tagged

photos/clusters so that the user will find it easier to label them together. EasyAlbum al-

lows adhoc photo annotation whereby users can annotate photos while they are brows-

ing or searching. Such annotation information is accumulated gradually and then used

to progressively improve the clustering and search results of unlabeled data. It also al-

lows 5-dimensional photo exploration based on timeline, location, event, member of the

photo (name) and people count in the photo. The task of photo annotation is supported

by event-clustering and face clustering, where the former is based on colour, texture and

time features and the latter is based on face recognition and clothing appearance features.

They conducted a user study to compare the performance of EasyAlbum to that of Adobe

Photoshop Elements 4.0 using 32 volunteers. One important finding which arose from

this survey was that about 97% believed it is necessary to organise photos by ”who” is

in photo. User-study results also illustrated that EasyAlbum clearly outperforms Adobe

Photoshop Elements 4.0 in both large and small size photo-collection management.

Sarin et al. proposed a novel photo annotation system based on users’ personal

(schedules, notes, email, chat, web browsing histories) and public (community news,

tourism sites, online encyclopedia) information combined with time and location camera

metadata sources [36]. A notable contribution from their approach is that it can effec-

tively leverage the background information of users’ daily activities and their ambient

environment to semi-automatically annotate their photographs. This is a novel feature

compared to most other photo annotation methods, which leverage metadata from only

content, camera setting, GPS information or social collaboration. In this approach, poten-

tial semantic keywords are extracted by knowing the time and location information cor-

responding to when and where the photos were taken, and using them to match against

users’ pre-scene (before going for a trip) and post-scene (after going) readily-available

context from their personal and public information sources. These keywords are divided

into two groups; statistics keywords which are relevant to the documents by statistics of

terms frequency, and Named Entity (NE) keywords which are strong and proper noun

identifications found in the relevant documents. They use computer linguistic techniques

to generate NE keywords, such as dates, names of people, location and organisation.

Combining the two types of keywords provides richer and personalised metadata for

photos. They conducted a user study comprising 10 subjects and 313 photos, proving a

24



CHAPTER 2. A REVIEW OF PERSONAL PHOTO MANAGEMENT SYSTEMS

33% time reduction over manual photo annotation.

2.2.2 Commercial Products

In this section, some contemporary commercial photo-management systems are reviewed

with the view to study and analyse the current status of technological advances in the

market. Most of existing systems provide basic but commonly needed functionalities

such as photo editing, slide show, printing, web sharing and emailing, which have, how-

ever, no relevance to the work presented in this thesis. The goal of this review is to inves-

tigate to what extent the existing commercial products benefit from using content-based

technologies and context features.

2.2.2.1 Adobe Photoshop Elements 5.0

The Adobe Photoshop Elements 5.0 photo management system comprises important

functional elements, including face detection, organising photos based on people, places

and events, and fixing photo problems and enhancing them. This product is designed

to gather all photos in the users’ computer, allowing them to see those photos in one lo-

cation, organised by date or any chosen subject. Photos belonging to particular groups

of annotation categories or the entire set of loaded photos are displayed in variable-size

thumbnails so that the user can access individual photos from the collection (see Figure

2.1(a)). Individual photos can be manually tagged to describe the content in terms of a

single attribute or multiple attributes using drag and drop or menu-driven labels. These

attributes and their categories can be defined by the user. For example, a photo can

be tagged with people (using categories like Friends and Family, and subcategories like

John, Michael, Liam), places (Dublin, Lisbon, London), events (Party, Sightseeing, Wed-

ding) or favorites. The annotated images can then be searched by ticking the attributes/-

categories in the checkboxes provided. With in-built content based analysis tools such

as face detection and red-eye reduction, the photo uploading process takes a little while,

especially when a large number of photos are uploaded. However, it is clearly offset by

the time it saves in tagging the people in photos manually (see Figure 2.1(b) showing

automatically detected faces for efficient face tagging).
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(a) Adobe Photoshop Elements 5.0

(b) Face Tagging

Figure 2.1: Adobe Photoshop Elements 5.0 System.
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2.2.2.2 ACDSee

ACDSee (version 9.0) is a photo management system with provision of easy and fast

browsing functionalities based on simple intrinsic photo properties, such as date of cre-

ation, size and name. It allows organising, viewing, enhancing, and sharing digital pho-

tos in an effective manner. The user can organise photos by manually categorising them

into groups such as people, places and albums. Different ratings can also be manually

assigned to photos based on users’ judgment. Photos can also be manually organised by

assigning ratings to them. ACDSee also allows automatically organising photos based

on commonly used properties, such as file size, image type, shutter speed, aperture, etc.

and also based on photo properties including camera model, author, artist and flash in-

formation. It includes a variety of searching tools and a “Compare Images” feature to

eliminate duplicates in a photo collection. Also, ACDSee provides a wide variety of im-

age editing enhancement tools and several image management tools. Despite a wide of

range such functionalities, it does not support any content-based functionalities or any

other high-level camera/image metadata analysis. Figure 2.2 shows a screen-shot of the

ACDSee system.

Figure 2.2: ACDsee Photo Management System.
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2.2.2.3 PhotoFinder

The PhotoFinder system (version 3.0.2) supports visualisation of collections in several

ways, and also offers a drag and drop technique to enable persons’ names to be placed

on a photo or a group of photos. PhotoFinder is built with three viewing panels (see Fig-

ure 2.3), namely library viewer, collection viewer, and photo viewer, allowing the user

to add photos to a collection and organise them using single image and/or batch anno-

tation methods [37]. A photo library is defined as a set of photo collections with each

collection containing a set of photos. This system mainly focuses on the person anno-

tation task through a direct annotation method based on drag and drop of text labels,

making it easier and more enjoyable than the conventional annotation methods, i.e. typ-

ing text into a caption field. Users can drag person-name keywords onto any place on the

photos to save typing. Other interesting features in PhotoFinder are interactive displays,

such as making different colour marks on the images already annotated, and bulk anno-

tation where a number of images are selected and assigned the same label. The search

for persons can be performed by dragging a name from the list and dropping it onto the

collection view. Multiple persons can also be searched by dragging and dropping the

persons’ names onto the search icon provided at the top right hand corner, combined

with boolean AND, OR operations. In addition, photos can be searched using date and

location information as well.

Figure 2.3: PhotoFinder System.
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2.2.2.4 ThumbsPlus

The ThumbsPlus photo management system (version 7.0) provides many features for im-

age browsing, searching, and organising. It provides a viewing panel using a grid-based

light table to display images of the current folder in thumbnail form (see Figure 2.4). This

system allows automatic assignment of image keywords, such as colour, file type, im-

age comments, etc. to photos. More interesting features include user annotation options,

finding images by query using fields such as filename, keyword and image similarity,

batch processing to support resetting file dates and times, and sorting thumbnail images

based on image similarity. Query by image option, which is an automatic content-based

functionality, supports finding images based on colour, shape or both.

Figure 2.4: ThumbsPlus Photo Management System.

2.2.2.5 Picasa

Picasa is a popular photo management system, allowing users to locate and organise

photos with elegant visualisation techniques. When first launched, Picasa searches the

entire storage system on a computer and creates an album per folder. It allows the user

to move (from one folder to another by simple drag and drop operations) and re-name

photos from within Picasa. On the left panel of the screen, the list of albums is arranged

by timeline. Users can use the scroll bars to navigate photo collections. Similar to most
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other commercial tools, it supports slide-show, viewing and sharing, assignment of rat-

ings to photos, etc. Users can also add any keyword to photos manually. One notable

disadvantage in Picasa is that it does not support any content-based or context-based

analysis of the photos for annotation. Figure 2.5 shows a screen-grab of the Picasa photo

management system.

Figure 2.5: Picasa Photo Management System.

2.3 Discussion

The aim of this discussion is to highlight the important findings that have emerged from

the above review. In particular, an attempt is made to identify issues related to person

annotation in existing photo management systems and accordingly determine new re-

search directions that would, in turn, contribute to the development of more effective

photo management technologies.

Some useful information can be found from the user studies that are described in Sec-

tion 2.1.2 as guidelines for future research and development. For example, Rodden and

Wood [7] showed that event-based photo organisation is useful and that annotating loca-

tion and people is an important activity to retrieve photos, particularly when collections

get larger and older. Kirk et al. [8] emphasised that CBIR technologies are useful for or-

ganising large photo collections. Suh and Bederson [9] showed that annotation of photos
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can be improved using clustering and novel user-interface techniques. They also made

it clear that person annotation is more challenging and requires innovative techniques

to make it happen effectively in real photo management systems. Cui et al. [24] pointed

out similar facts that person annotation is an essential component in photo management

systems and hence the need for technologies for converting this labour-intensive job to a

less tedious task.

Most commercial products, including ACDSee, Picasa, PhotoFinder, use manual an-

notation to add metadata. They also do not seem to make drastic changes to existing

functionalities despite being relatively basic and cumbersome for the user. Almost none

of the significant findings that have arisen from user studies, such as the use of advanced

content-based analysis tools and context-based estimators, have yet caused a significant

impact to any of such existing products or appeared in any new product to date. Photo

Elements version 4.0/5.0 which has an in-built face detector, however, shows some po-

tential that employing automatic facial analysis technologies into photo management sys-

tems could be worthwhile. In spite of such slow developments in commercial products,

many ordinary personal-photo users find some of these existing photo management tools

useful for organising their picture collections. What must be clear from the comparison

of the two groups of photo management systems is that the work done in research pro-

totypes has taken a leading role in predicting and addressing the requirements of future

commercial photo management systems. It is also clear that as the users continue to ac-

cumulate more and more photos and tend to forget about the content in older photos,

advanced photo management systems will become a strong requirement, ensuring that

digital photography continues to flourish.

The above review also shows that most recent research prototypes attempt to address

the problem of annotation using clustering technologies, facilitating bulk annotation. Suh

and Bederson use hierarchical event clustering and clothing-based person recognition to

help organise personal photos semi-automatically. Cui et al. support cluster annotation,

cluster splitting and merging while enabling contextual re-ranking and ad-hoc annota-

tion, in order to be able to annotate large photo collections more effectively. In [21],

Naaman et al. suggest that combining context-based estimators with content-based anal-

ysis tools could further improve the performance of person annotation in personal photo

albums. In other recently reported person annotation approaches described elsewhere

in the thesis, Song and Leung [38] and Anguelov et al. [39] employ context-aided per-

son recognition where clothing recognition results are integrated with face recognition to

provide similarity measurements for clustering.

Automatic person annotation has the clear advantage over both manual and semi-
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automatic approaches because it happens with no user intervention. It becomes an at-

tractive candidate considering the fact that motivating the user to add meta-information

to their photo collections is one of the biggest hurdles in manual/semi-automatic ap-

proaches [23]. Such technologies have, however, just begun to emerge from the research

community very recently, e.g. Zhao et al. [35]. What remains interesting is how effective

use can be made of the content-based technologies like person detection and recognition

to fulfill the challenging goals in digital photo management.

Following this discussion, it is evident that supporting effective person annotation

is vitally important to personal photo management. However, it is also clear that, due

to the limitations of current clustering and person recognition technologies, a face clus-

ter cannot be directly mapped to a person’s name without user intervention. In this

regard, this thesis focuses on utilising content-based analysis tools in combination with

various context-based estimators for enabling effective person annotation. Some of the

tools developed as part of the research undertaken in this thesis such as face detection

and body-patch matching technologies have been integrated into the MediAssist photo

management system, which is described below.

2.4 The MediAssist System

2.4.1 Overview

MediAssist is an integrated web-based prototype for viewing, organising and searching

personal photos using content-based analysis tools, context data related to image capture,

user annotation and traditional text indexing techniques. It was originally designed us-

ing event-based automatic photo categorisation based on the two dimensions: when and

where. Identifying the need for employing automatic tools to organise large sizes of per-

sonal photo albums, MediAssist further incorporated a number of content-based analysis

tools, such as person detection, person matching using face and body-patch information,

and detection of the presence of semantically important objects such as buildings. In this

system, image metadata such as location and date/time are readily available when im-

ages are captured from digital cameras with in-built GPS functionality, providing knowl-

edge about when and where the photos were taken. In this way, contextual metadata pro-

vides for a suitably constrained environment within which automatic analysis results can

be usefully leveraged. Location and date/time information is derived from image EXIF

data generated by the camera-GPS integrated system, which in turn allows grouping im-

ages into event categories. The use of date/time and location information also allows

deriving more advanced contextual information such as indoor/outdoor, weather status
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and daylight status. In MediAssist, tagging photos with person identities is carried out

in a semi-automatic manner where automatic content-based analysis techniques are used

to identify re-occurring persons through a process of matching both face and body-patch

features. These technologies collectively enable a person-based photo annotation system

with reduced user interaction as a whole.

Figure 2.6: MediAssist System.

The MediAssist archive contains over 17,000 photos taken with a number of different

camera models, including camera phones. These photos have been taken in about 30 dif-

ferent countries by 29 different users. Of these, about 11,000 photos have been manually

annotated for a number of concepts, such as indoor/outdoor, people and buildings. Such

annotations serve as groundtruth for evaluating automatic content-based analysis tools.

In MediAssist, photos are first grouped into meaningful events based on time and

location information upon uploading them to the computer. For easy viewing, photos

are arranged in event/sub-event hierarchy according to a breakdown of location/time

information (see Figure 2.6). Sub-events are defined by taking advantage of the bursti-

ness property of photos that typically occur within main events. For example, in an event

like ”a trip to Thailand and attending a wedding ceremony of my friend”, a number of

sub-events are likely to happen during which the cake was cut, the couple were danc-

ing, etc. Leveraging such event-based information not only allows efficient browsing

of large photo collections but also enables more effectively devising automatic content-
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based analysis tools to annotate the photos. Each event/sub-event is summarised by

a label (location and date/time) and five representative thumbnail photos as shown in

Figure 2.6.

2.4.2 Context-Based Indexing

Time and location context information is extracted from photo EXIF headers, allowing

efficient viewing, search and organising of photos in MediAssist [22]. Time of capture

is represented by fields such as year, month, day of month, day of week, etc. Such a

representation allows quick viewing and searching of particular sets of photos from a

large collection more efficiently.

Location information is derived by converting latitde/longitude co-ordinates into

physical names of locations on the map using a publicly available gazetteer [22]. Location-

based viewing, search and organising of photos allow the user to work with only a subset

of images from a large collection. Figure 2.7 shows an example for viewing a set of photos

that have been taken in location country Ireland and county Clare.

MediAssist also automatically derives other context-related metadata based on time

and location information, such as whether the photo was taken during daytime, night,

dusk or dawn using standard astronomical equations and whether the photos were taken

on a sunny, rainy, snowy or gloomy day using weather data obtained from the nearest

weather station.

Photos are also automatically tagged with the concept type “indoor/outdoor”, which

is computed based on the ambient light level recorded during the photo capture process

[22].
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Figure 2.7: Viewing Photos Taken in ”County Clare” and ”Country Ireland”.

2.4.3 Content-Based Analysis Tools

MediAssist employs a number of content-based analysis tools to facilitate the organisa-

tion of photos with reduced user interaction. Face detection, face recognition, body-patch

matching and building detection are the content-based tools that have been integrated

into the system, and some of them are briefly described below.

• Face Detection: In MediAssist, face detection is carried out using a modified BDF

method, which can detect in-plane rotated frontal and near-frontal faces [40]. A

statistical skin detection model is integrated into the face detection module to im-

prove both its efficiency and effectiveness, allowing the detection of multiple and

variable sized faces in colour images. It can detect faces of size ranging from 16×16

to any size which is nearly as large as the full image. It outputs the coordinates of

the top left corner of face, width, height and orientation. The author’s research

contribution to face detection can be found in Chapter 5.

• Face Recognition: For face recognition, MediAssist uses a compact and efficient

face recognition descriptor, namely the MPEG-7 face recognition descriptor, which

is built upon an eigenface technology. It allows the extraction of a compact feature
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vector from a face image given precise coordinates of eye locations [41]. The au-

thor’s research contributions related to face recognition can be found in Section 6.6

of Chapter 6.

• Body-Patch Matching: MediAssist employs a body-patch matching technique to

identify person re-occurrences in personal photo archives based on the assumption

that a person re-appearing within an event would be wearing the same clothing as

in previous photos. The appearance of a person’s body is captured using colour

features from the torso area, which is defined relative to the size and location of an

automatically detected face. It uses the MPEG-7 scalable colour descriptor, which

was identified as the best among various other candidate colour descriptors for

this task [40]. The research carried out on identifying body-patch descriptors is

presented in Section 6.5 of Chapter 6.

2.4.4 Semi-Automatic Person Annotation

In MediAssist, person annotation is carried out in a supervised manner using both content-

based analysis and context data of photos. As the user continues to annotate photos,

he/she is prompted with name suggestions in terms of a small list of candidates (see

Figure 2.8). The system uses a body-patch descriptor (described in Section 2.4.3) and a

face recognition descriptor (described in Section 2.4.3) to compute name suggestions. The

person annotation functionality is provided in the Photo Detail View mode where the user

can highlight all the automatically detected faces and change, add or modify any of the

automatically suggested person identities for a single photo at a time. Similarly, the user

can include faces (in case of a missed detection) or remove (in case of a false detection)

faces in/from the photo as required.
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Figure 2.8: MediAssist person annotation in operation.

2.4.5 Text Searching

MediAssist is also equipped with a text-search functionality, which was previously based

on filter-based searching using the photo metadata [42]. The user can enter a text query

by specifying desired locations, times, light status, people present or not, etc. In this

approach, the standard BM25 information retrieval model is used for indexing images as

text documents. MediAssist supports four different views to present the results of text

searches, namely Event List, Event Detail, Individual Photo List and Photo Detail [42]. Event

List is set as the default view, which shows the photos grouped together based on time

burstiness.

2.5 Summary

The review of existing photo management systems carried out in this chapter shows the

fact that most commercially available photo management systems support manual photo

annotation functionalities. They allow users to select photos one by one or manually se-

lect a set of photos that can be then bulk annotated. Some of these systems also support

drag and drop style user interfaces, reducing the amount of user interaction involved

when compared to that of ”type-in keyword” methods. As a special feature, Adobe Pho-
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toshop Elements 4.0/5.0 can automatically detect faces in photos and allow users to di-

rectly label the faces instead of photos. This makes Adobe Photoshop Elements the most

advanced system compared to other popular systems studied in this thesis.

Some of the research prototype systems studied in this thesis revealed that annotat-

ing people in photo collections is a key requirement for effective personal photo manage-

ment [9, 24] and emphasised the use of improved content-based technologies for person

identification to facilitate efficient annotation of people in photo archives. However, very

little success has been achieved by automatic person annotation technologies to date, e.g.

Zhao et al. [35], due to the fact that current technology is far from meeting the challenges

posed by the personal photo management problem. Consequently, there has been more

interest in the application of contextual information related to photo capture, such as time

and location, that can be directly extracted from photos taken using digital cameras. The

use of other varieties of contextual knowledge, such as body-patch features and likeli-

hood occurrences of people, together with richer annotation interfaces and more creative

organisational strategies has also been proposed, enabling a user-assisted type of per-

son annotation in the process. Moreover, exploiting the advantages of combining both

contextual features and content-based analysis tools, more recent photo-annotation ap-

proaches employ clustering technologies to perform automatic grouping of photos into

events based on time and photo perceptual-features, and to separate different people into

distinct clusters based on facial and body appearance features [9,24,35]. Yet, considering

the size and the nature of picture collections home-users have to work with, the extent of

user involvement in the photo annotation process is a major concern for many researchers

and commercial product developers to date.

Amidst recent developments in semi-automatic person annotation methodologies for

personal photo management, it is still not clear if such approaches would be adequate

for satisfying the home-users’ needs who typically put little effort into annotating their

photos. Thus, one of the major challenges that lies ahead includes finding solutions for

person annotation that requires minimal user intervention, keeping the burden of an-

notating photos hidden to the user. The review carried out in the thesis suggests that

developing more advanced person identification technologies combined with the use of

contextual information of photos can be a viable solution in achieving this goal. It is,

therefore, firmly believed that technologies for enabling “effective person annotation”

remain to be investigated, which constitutes the focus of the research presented in this

thesis.
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Chapter 3
Fundamentals of Person Annotation:

Face Detection

This chapter is devoted to a description of face detection as a fundamental problem in

person annotation. It comprises a review of face detection algorithms in still images,

including a comparison of different approaches available in the literature. The chapter

begins with an introduction in Section 3.1. In Section 3.2, a taxonomy of approaches to

frontal/near-frontal face detection is given. Four categories of face detection approaches,

namely knowledge-based, feature-based, template-matching, and appearance-based are

described. Other approaches arising from combination of the above categories are then

described in Section 3.2.5. A taxonomy of approaches to rotation invariant multi-view

face detection is given in Section 3.3. A comparative analysis of face detection algorithms

is then given in Section 3.4, followed by a summary in Section 3.5.

3.1 Introduction

The human face, being a primary subject of attention when communicating between peo-

ple, is one of the most important visual classes in image and video analysis. A human’s

ability to recognise people by face, irrespective of whether they are a child or an adult

even after long years of separation and some drastic changes to visual stimulus due to

aging, expression, viewing conditions, the presence or absence of structural components,

such as glasses, beards and mustaches, is remarkable to say the least. While the emer-

gence of computational models inferring humans’ intelligence is fast growing as com-

puters become faster, more affordable and the technologies become more advanced, the

challenges posed by real-life applications for computer vision algorithms, however, re-

main far too difficult to handle. One important and challenging sub-problem in this area

is face detection, which is a crucial technology to many applications in computer vision.
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Examples include face recognition systems that are being installed and tested at airports

for improved security, and human-computer interfaces that are being employed as ways

to replace the traditional interfaces such as mouse and keyboard [43]. Moreover, applica-

tions such as automated video surveillance [44] [45], image and video retrieval [46], and

personal photo management as considered in this thesis [47] have emerged as dominant

research areas of interest to both academic and industrial communities. However, these

applications include a pre-requisite that all the faces have been located in the given im-

age, describing the location and the extent of the face(s) in the image while minimising

the inclusion of other material from the background.

Face recognition is the most closely related application to face detection where accu-

rate and robust face detection is a major requisite to effective person recognition. Early

research on face recognition focused on well-framed face images, i.e. mug-shots, target-

ing person authentication that required employing only a face localisation step. Com-

pared to face detection, face localisation is a simpler problem in the sense that it aims at

determining the image position of a single face, assuming the input image contains only

one face. The approach proposed by Sakai et al. [48] is the first face localisation method

reported in the literature [49]. Earlier, Turk and Pentland made a significantly important

contribution to using face detection in face recognition applications [50].

Recently heightened security concerns have raised an imperative need for effective

computational models for human face identification where the task of face detection

plays a major role in localising all the faces available in videos. Face recognition lead-

ing to law-enforcement applications using mugshot databases also requires accurately

detecting faces in images of varying quality [45]. Face detection also becomes an im-

portant task for face tracking, which is a crucial component in video surveillance sys-

tems [51] [52]. Fast and accurate face detection is also an important requirement for

applications such as automatic access control [53].

Face detection is obviously a fundamental step in automatic facial expression recog-

nition, which has emerged as an important research topic related to human-computer

interaction applications [43, 54, 55]. Extracting knowledge about the mood of users by a

computer can enable a process of automatic computer-human interaction whereby the

computer can advise the user with certain instructions. Researchers believe that com-

puter animated agents and robots can bring a social dimension to human computer in-

teraction and force us to think in new ways about how computers could be used in daily

life.

Image and video retrieval is a fast growing application area due to increased digital

multimedia content being made available to users in entertainment, education, health, e-
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commerce and many other services in day-to-day activities. Retrieving digitised content

from large archives based on person identities can be immensely useful, resulting in more

effective image and video retrieval [46, 56]. Robust and efficient face detection is a first

step towards such goals, playing a crucial role in the retrieval process particularly due to

the nature of challenges that are posed by the application.

Employing automated object detection technologies in photo management systems is

vitally important to be able to reduce the burden for the user when annotating photos.

One such important object in this application domain is the human face. Automatic face

detection, being a fundamental but a critical part in photo management systems, has

been employed in various photo management systems with varying degrees of accuracy

[12, 15, 16, 26, 30, 47, 57, 58]. Personal digital photos are not generally captured under

controlled conditions, which consequently poses great challenges to face detection.

According to the recent surveys carried out by Yang et al. [59], and Hjelmas and

Low [60], research on face detection has a relatively long history, which spans a large

amount of literature. These algorithms range from simple colour based approaches to

more complex machine-learning based approaches. In a given face detection application

scenario, faces can be available either in frontal or non-frontal (profile). An out-of-plane

rotated face when oriented in the form of half-profile, profile, nodded-up or nodded-

down (see Figure 3.1) depicts a non-frontal face. A frontal face, on the other hand, can

exist in the form of upright, in-plane rotated (see Figure 3.1(g) and 3.1(h)), out of which

upright frontal are the simplest type of faces to detect. However, even in the case of an

upright frontal face, there are still many sources of variability, making them difficult, and

in some cases almost impossible to detect. Examples include facial expression (Figure

3.2), partial occlusion (Figure 3.3) and presence of structural components (Figure 3.5).
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(a) Half profile (left) (b) Half profile (right) (c) Profile (left) (d) Profile (right)

(e) Nodded up (f) Nodded down (g) Upright frontal (h) In-plane rotated

Figure 3.1: Different poses in face images.

(a) (b) (c) (d) (e)

Figure 3.2: Change of face appearance due to facial expression.

(a) (b) (c) (d)

Figure 3.3: Examples for partial/complete occlusions.
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(a) (b) (c)

Figure 3.4: Changes in face appearance due to lighting/texture variations (a) an outdoor

photo with uneven brightness in the face (b) an indoor photo with uneven brightness in

the face (c) Aging effect resulting in a differently textured face.

(a) (b) (c)

Figure 3.5: Change of face appearance due to presence of structural components (a)

beard/mustache (b) glasses with bright reflections (c) glasses causing drastic appearance

changes in colour and shape.

(a) Simple background (b) Complex background

Figure 3.6: Background variations.

The following is a short description of some challenges associated with face detection:

• Pose: Pose variation occurs as a result of changes in relative orientation between the

camera and the face during the photo capture process. Such pose changes can be

43



CHAPTER 3. FUNDAMENTALS OF PERSON ANNOTATION: FACE DETECTION

in-plane rotations or out-of-plane rotations, and as a result, a face may be available

in any of the poses, such as upright frontal, in-plane rotated (eg. upside down), pro-

file, half-profile (45 degree), near profile, nodded-up and nodded-down (see Figure

3.1). Out-of-plane rotations generally cause a larger impact on the appearance. Oc-

currences of pose changes are common in real-life images, and the resulting changes

in face appearance must be, therefore, addressed when detecting faces.

• Facial Expression: Facial expressions are a difficult problem in face detection, and

they directly affect the overall shape of faces. Facial components such as mouth

and eyes are two dominant facial features with a larger impact on overall shape

changes. For example, the same person with two different facial expressions (smile

and sadness) will result in two different face appearances. Figure 3.2 shows some

examples of facial expressions commonly observed in face processing applications.

• Partial Occlusion: A face object may be partially or even completely occluded by

some other background objects or by another face object. The resulting effect would

be some loss of information of the face, which makes face detection a harder prob-

lem in such cases. Some examples for partial occlusion are shown in Figure 3.3,

the last two examples corresponding to complete occlusion, making automatic face

detection almost an impossible task to be performed in such cases.

• Lighting/Texture Variations: The appearance of a face can be subject to changes due

to properties of the object and its environment. Lighting variations, in particular,

are commonly encountered in personal digital photography irrespective of whether

the photos were taken indoor or outdoor (see Figure 3.4). The resulting face can be

of different colour and texture from the actual object. Another cause of surface

texture changes is the aging effect, which is shown in Fig: 3.4(c).

• Face Structural Components: The presence of certain face structural components

has an adverse effect on face appearance. For instance, people wearing glasses or

having a beard/mustache can significantly change the overall appearance of the

face. Some examples are shown in Figure 3.5.

• Background Conditions: The effect of different background conditions on face de-

tection can be quite challenging. The presence of cluttered backgrounds can lead

to increased number of false positives in automatic face detection. Also, detecting

profile faces in cluttered backgrounds can have greater difficulties due to complex-

ities in the object boundaries. Figure 3.6 shows typical examples for simple and

complex backgrounds generally encountered in face detection.

44



CHAPTER 3. FUNDAMENTALS OF PERSON ANNOTATION: FACE DETECTION

The face detection problem is generally solved in two stages, sometimes termed:

focus-of-attention and classify. In the focus-of-attention step, a region that is likely to

contain a face is identified with respect to a decision boundary(s), which in turn can

dramatically reduce the search space. In the classification stage, the possible face candi-

dates are fed to a face verifier to determine if a candidate region corresponds to an ac-

tual face. While most face detection algorithms comprise focus-of-attention and classify

stages, variations exist to which degree an algorithm is devised to apply more empha-

sis on the two stages. Some algorithms allocate more significance to the classifier while

others spend most of their resources on focus-of-attention. For example, if a classifier

is trained with adequate face/non-face discriminative power, the focus-of-attention step

may be given little or no importance at all. In such a case, the face detection algorithm can

apply the face classifier to each and every sub-window in the image, treating all of them

as face candidates with equal importance. In the following taxonomy of face detection

approaches, it can be seen that the face detection problem is defined by manipulating the

focus-of-attention and classify stages in distinct manners.

3.2 A Taxonomy of Approaches: Frontal/Near-Frontal Face De-

tection

Face detection algorithms can be divided into two main categories, namely frontal/near-

frontal and rotation invariant multi-view. Frontal/near-frontal face detection methods

can also be divided into the following 5 classes:

• Knowledge-Based: Using human knowledge about what a face should constitute

can be used to define rules to detect faces. Such rules usually capture the relation-

ship between facial features. For example, a face can be defined to be an object hav-

ing two eyes, one nose and one mouth with their geometrical (distance, symmetry)

and structural (size, shape) relationships hard-coded for a generic face. However,

difficulties arise in translating such knowledge into coded rules, where imposing

either strict rules or soft rules can eventually result in different outputs. Face detec-

tion approaches in this category are mostly devised for colour images, where the

colour cue plays a significant role in identifying facial features;

• Feature-Based: Face detection algorithms of this category attempt to exploit the

possibility of robustly detecting faces based on the presence of prominent facial fea-

tures and skin regions in the image. Facial features such as eyes, eyebrows, mouth

and hair-line, are commonly used in feature-based face detection approaches. They
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are usually extracted based upon the knowledge of low-level image features, such

as edges [61–63], corners [64], colour [65, 66], and regions [66–68]. Algorithms em-

ploying the skin colour feature rely on the principle that detecting skin blobs in

the image and comparing them with pre-defined shape models, such as elliptical

models, lead to robust face detection in general. Feature-based face detection ap-

proaches are considered to be less computationally complex and robust to changes

in pose, view point, lighting conditions and partial occlusion;

• Template Matching: Face detection using template matching refers to computing

the correlation between a set of standard face patterns and the input image, and

comparing the correlation score against a predefined threshold(s). In this category

of approaches, a set of standard face patterns is defined either manually or using

a parameterised function as a whole face or facial features separately. Template

matching, which is generally applied to gray-scale frontal images, is a relatively

simple approach to face detection. However, representing largely varying facial

appearances (due to changes in scale, pose, and shape) using a limited number

of templates is a very difficult task. Such techniques can, therefore, prove to be

ineffective in real-life applications. Two types of templates used in this category are

predefined templates and deformable templates;

• Appearance-Based: The appearance-based category refers to approaches that rely

on learning and modeling the visual appearance of objects using a suitably nor-

malised set of examples. Two types of methods are used in this category, namely

generative methods1 and discriminative methods2. Discriminative methods, when

applicable and properly utilised by focusing on finding a parametric decision bound-

ary, for example using SVM (Support Vector Machines) and FLD (Fisher’s Linear

Discriminant), between face and non-face patterns, usually lead to more accurate

classification performance. However, finding a set of representative non-face sam-

ples in practice is a difficult task though it is relatively easy to gather a set of positive

samples. Although discriminative methods are known to be superior to generative

methods, findings from cognitive psychology indicate that humans generally learn

to remember faces using only positive samples without the need for using any non-

face patterns [69];

• Hybrid Approaches: Methods combining any of the above four categories aim at

1Generative methods estimate a probability distribution over examples using maximum likelihood (ML)
or maximum a posteriori (MAP) [69].

2Discriminative methods, on the other hand, aim to find a decision surface between face and non-face
patterns [69].
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exploiting the advantages of each category and avoiding their drawbacks as much

as possible. For example, using templates alone can be too computationally ex-

pensive considering the number of representative templates required for detecting

faces. It can be, therefore, argued that such computational complexities can be re-

duced if a template matching approach is combined with another feature-based or

a knowledge-based method. Examples to this category include [70–73].

3.2.1 Knowledge-Based Methods

Yang and Huang proposed a knowledge-based face detection method in gray-scale im-

ages, comprising three levels of rules to represent the general appearance of faces at the

highest level and the presence of facial features at the lowest level [74]. The algorithm is

devised in such a manner that the face candidates detected at the lowest resolution are

subsequently validated by detecting facial features in finer resolution images. By averag-

ing and subsampling the original image, a multi-resolution hierarchy of images is created

of which the lowest resolution image is tested with some basic coded rules. At the coars-

est resolution level, the image is progressively scanned and a set of rules is applied at

each location. They include: the center part of the face divided into four cells for uniform

intensity, the upper round part of the face also for uniform intensity, and for a significant

difference in gray levels between the above two parts. In a middle level, face candidates

received from the first level are subject to histogram equalisation. The accepted face can-

didates are then tested with final coded rules, which define the appearance of faces in

terms of facial features such as eyes and mouth extracted using an improved edge detec-

tion method. Evaluated on a relatively small data set of 60 images, correct detections are

reported in 50 images while false occurrences are reported in 28 images.

Kotropoulos and Pitas [75] extended the approach originally proposed by Yang and

Huang in [74]. One significant contribution is the reduction in high computational com-

plexities associated with the original algorithm via inclusion of several key features, such

as rectangular cells as opposed to square cells, pre-processing steps to better fit the mo-

saic model to the image of each person and to reduce the computational complexity, and

the use of general rules that are close to human intuition. One major disadvantage in the

original algorithm is the use of an iterative process to determine the best cell dimensions.

In this approach, such high computation is reduced by processing horizontal and verti-

cal profiles of the image. The horizontal profile of the image corresponds to the average

of all pixel intensities in each image column and the vertical profile corresponds to the

average of all pixel intensities in each image row. The left and right sides of the head

(cheeks) are determined by detecting two abrupt transitions upwards (two local minima)
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in the horizontal profile. The vertical profile image is then processed to determine hair,

eyebrows, mouth and chin. The eyebrows/eye is said to appear at the local minima just

after the first abrupt transition in the vertical profile. Nose tip is said to appear at a sig-

nificant maximum that occurs below the eyes while the steepest minima below the nose

tip is said to correspond to the upper lip. These detected features are used to validate the

pre-determined face candidates. The proposed algorithm has been tested using 37 image

sequences from the ACTS M2VTS (MultiModel Verification for Teleservices and Security

Applications) with a correct detection rate of 86.5%. Each sequence contains only one

face in a uniform background. However, the algorithm has not been tested on multiple

face images or images with cluttered backgrounds.

3.2.2 Feature-Based Methods

Face detection approaches in this category are discussed in two sub-categories, namely

facial features and skin colour.

3.2.2.1 Facial Features

In [66], Hsu et al. proposed a face detection technique in colour images using skin detec-

tion and eye-mouth facial feature extraction. Upon applying a non-linear colour trans-

formation in the Y CbCr colour space and a novel lighting compensation technique, skin

segments are robustly detected in the presence of varying lighting conditions and com-

plex backgrounds. Such skin segments are then considered as face candidates to which

facial feature extraction and face contour extraction techniques are applied. Using some

colour processing and morphological operations then allows detection of eye and mouth

facial features inside the face candidate regions. Combining the detected facial features

in the form of eye-mouth triangles, face verification is performed based on some criteria

such as luma variations and average gradient orientations of eyes and mouth blobs, ge-

ometry and orientation of the triangle, and the presence of a face boundary around the

eye-mouth triangle. The algorithm has been evaluated on test data sets such as the HHI

(Heinrich-Hertz Institute) MPEG-7 image database and the Champion database, in ad-

dition to the images gathered from numerous videos, personal photo archives and web

photos.

A feature-based face detection system in gray-scale images was proposed by Yow and

Cipolla using 6 oriented facial features, such as eyes, eyebrows, nose and mouth [61]. The

6 features are modeled as pairs of oriented edges. The model also incorporates knowl-

edge about cheek regions, which are generally edge free. The model is first divided into

partial face groups (PFG), which are face components consisting of 4 facial features. PFGs
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are further subdivided into components consisting of horizontal and vertical pairs. Face

detection is carried out in two stages. In the first stage, a second derivative Gaussian filter

elongated at an aspect ratio of 3:1 is applied, which indicates the presence and location of

possible facial features at local maxima. In the second stage, edge features are examined

around each of the detected feature points. Edge points are linked based on their proxim-

ity and the similarity in terms of orientation and strength. Regions’ image characteristics,

such as edge length, edge strength and gray-level variance, are measured and compared

with statistically trained models to verify the validity of the detected facial features. The

identified regions are grouped using the knowledge of the face model based on where

they should occur with respect to each other, in the order from feature region to feature

pair, feature pair to PFG, PFG to face candidate. Each facial feature and feature group is

then evaluated using a Belief network, thereby reducing the number of false positives in

the face detection process. The proposed technique also has an advantage of detecting

faces with different orientations and poses. An overall correct detection rate of 85% is

reported on a database of 110 faces at different scale, orientation and viewpoint.

A face localisation method using the Hausdorff distance was proposed by Jesorsky et

al. in [76] for gray-scale images. The motivation of this algorithm is to exploit the advan-

tages of shape matching that is fast and robust to variations in lighting and background

conditions in a scale and orientation independent manner. Instances of candidate faces

based on derived edge maps in the image are compared with a generic face model using

the Hausdorff distance measure. The algorithm is carried out in two stages: coarse and

fine detection. An approximate location of the face is identified in the coarse detection

stage while eye feature positions are computed in the refinement stage. In the fine detec-

tion stage, pupils are sought by a multi-layer perceptron. Test data sets such as M2VTS

and BIOID have been used to evaluate the performance of the algorithm with correct de-

tection rates of 98.4% and 91.8% for the two databases respectively. On a PIII 850 MHz PC

system, an average processing time per image is reported to be 30.5 ms. One limitation

of this algorithm is that it is restricted to be used on frontal-view and single face images

only.

A feature-based affine-invariant face localisation method in gray-scale images was

proposed by Homouz et al. [77] using 10 facial features represented by Gabor-filter based

complex valued statistical models. Using an affine transformation model built upon three

feature points provides evidence for face hypothesis from which only a subset of the de-

tected facial feature triplets are identified. On locating a well-conditioned constellation

of facial features, face candidates are subject to a final appearance-based verification test,

which uses linear and non-linear SVMs in the form of a cascaded classifier. The algo-
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rithm has been evaluated on 3 test data sets, namely XM2VTS, BANCA and BioID, and

compared against the face localisation method reported in [76]. The authors claim that

using facial feature detectors alone does not produce satisfactory performance, however

when combined with the proposed constellation and an appearance-based classification

a dramatic performance improvement can be achieved.

Wu and Zhou proposed a face detection method using eye-analogue segments in

gray-scale images [78]. In this approach, eye feature points are detected using only two

cues; spatial size and a property that eye regions are darker than the neighborhoods at

a given scale. If the detected eye locations conform to the geometrical relationship of a

human face’s two eyes, it signals a face pattern. Based on the detected eye locations, an

upright view of the identified image block is generated, which is then re-scaled to a fixed

size. The normalised image block is of size 30 × 30, with centroid points of the two eyes

positioned at (6,8) and (6,22). The near-boundary pixels of the normalised image block

are then removed by comparing with a histogram-equalised face mask. The face verifi-

cation task is carried out using a template-based face classifier. Overall, this algorithm

uses many heuristics, which may however prove to be problematic when dealing with

complex images. The algorithm has been evaluated on two relatively simple test data

sets, which are mostly head-and-shoulder type of images with simple backgrounds.

A component-based face detection method was proposed by Heisele et al. for detect-

ing frontal and near-frontal faces in gray-scale images [79]. In this approach, two SVM

classifiers are used: first to independently detect facial components, such as eyes, nose

and mouth, and secondly to check the geometrical configuration of the detected facial

components. Facial components are trained using textured 3D head models of size 58×58

pixels. Classifier training has been performed using a total number of 2, 457 and 13, 654

face and non-face samples. A performance comparison of the proposed method has been

performed against the two classifiers, which were trained on the whole face pattern using

a linear and a second-degree polynomial SVM kernal functions. In the performance eval-

uation, a positive test set comprising 1, 834 faces (manually extracted from the CMU-PIE

database [80]) and a negative test set comprising 24, 464 difficult non-face patterns col-

lected from web images have been used. Results showed that the proposed face detection

method outperformed the other two methods. Bileschi and Heisele [81] later improved

this method by incorporating negative samples drawn from the rest of the face into the

component classification process. Additionally, the authors use pair-wise biasing, which

more closely matches the geometrical relationships of the face.

Ichikawa et al. proposed a similar face detection approach, addressing the problem

of detecting partially occluded faces using a decision tree method [82]. They first use the
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Adaboost algorithm to separately train the whole face and face components, and then

linear discriminant analysis to combine the face components. They showed that the pro-

posed system based on Adaboost training performs better than the method based on the

SVM with polynomial kernal presented in [79]. A performance evaluation carried out on

a test set comprising 14, 520 non-occluded faces, 14, 520 eye occluded faces, 14, 520 mouth

occluded faces and 700, 000 non-faces images has shown that the proposed method per-

forms better than the other conventional face detection methods, particularly in the case

of partially occluded faces.

3.2.2.2 Skin Colour

A feature-based face detection method employing colour, structure and geometry was

proposed by Yang and Ahuja [83]. Multi-scale segmentation is first performed in an

image to extract a hierarchy of regions. A Gaussian skin colour model is then used to

perform skin segmentation in the CIE-LUV colour space from which process a region is

classified to be skin if more than 70% of its pixels have skin colours. Such regions are then

merged until the shape of the resulting region is approximately elliptic. A merged skin

colour region becomes a face candidate if the ratio between the major axis and the minor

axis is less than a threshold, i.e. 1.7 in this approach. If the candidate face has some dark

regions or holes inside the resulting region, it is classified to be a face.

Sobottka and Pitas proposed a face detection technique based on colour and shape

information [67] [84]. Their approach characterises faces by their skin colour and oval

shape of skin regions in the image. Skin pixels are first identified through colour segmen-

tation in the HSV colour space. Face detection is performed by analysing each connected

region in the skin segmented image for elliptical shape. The identified face candidates

are verified by searching for facial features, such as eyes and mouth, which are detected

inside the identified face regions. Eye and mouth features, which generally correspond

to low brightness regions, are identified using morphological operations and the minima

of the topographic gray-level distributions.

Using skin colour segmentation and face-texture classification, Garcia and Tziritas

proposed a colour face detection system under complex backgrounds and uncontrolled

illumination [85]. Quantised colour images are segmented using a set of skin-colour

bounding planes in the Y CbCr and HSV colour spaces. Potential face regions are then

identified using an iterative region-merging step based on their homogeneity while ap-

plying constraints related to the shape and size of faces. Such candidate faces are then in-

put to a face/non-face classifier, which analyses face texture using wavelet packet decom-

position. Facial texture is described by vectors composed of simple statistical measures
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(variances) extracted from each sub-band of a discrete three-level wavelet packet decom-

position of the face intensity image. Wavelet packet decomposition, which captures in-

formation regarding visual attributes in space, frequency, and orientation, is found to be

efficient for describing the characteristics of the human face. They use a pair of suitably

chosen conjugate quadrature low-pass and high-pass filters. The extracted feature vec-

tors are then classified as faces or non-faces using the Bhattacharrya distance and some

prototypes of face pattern vectors derived from the training samples. This algorithm

has been evaluated on a test data set comprising keyframes extracted from test videos.

The set of 100 images contains 104 faces (all satisfying the constraint of minimum size)

out of which 10 images do not contain faces. A correct detection rate of 94.23% with 20

false positives is reported and its performance has been favourably compared against the

Rowley’s [86] face detection technique. However, the minimum size of the face that can

be detected using this method is reported to be 80× 48.

A frontal view face detection technique using colour and shape information was pro-

posed by Saber and Teklap [87]. It comprises two steps, namely supervised skin segmen-

tation and shape classification. Skin segmentation is performed using the chrominance

channels of the YES colour space, followed by Gibbs random field model-based smooth-

ing. In the shape classification step, eigenvalues and eigenvectors are computed from

the spatial covariance matrix to fit an ellipse to disjoint skin regions and the Hausdorff

distance is used to measure the shape similarity between the region under study and the

ellipse model.

In [68], a coarse to fine face detection method based on skin colour learning and im-

age segmentation was presented by Sahbi and Boujemaa. An Artificial Neural-network

(ANN) based skin model is constructed using large sets of skin and non-skin samples.

For any given image, a coarse colour segmentation is performed, and each candidate

region is classified to be either skin or non-skin based on an empirical error computed

between the region and the ANN model. Next, a fine Gaussian skin model classifies each

pixel in the region to be skin or non-skin, which are then further examined using a 2-

means fuzzy clustering method to identify more accurate skin regions in the image. Such

skin regions are then classified to be face or non-face based on a shape matching model,

which comprises two histograms corresponding to the horizontal and vertical gray-level

information. The algorithm has been evaluated on a French TV channel database. A sig-

nificant performance improvement is reported due to the use of the ANN skin filter with

0.8 sec. of processing time for a 400× 300 sized frame on a 450 MHz PII PC system.

A colour face detection method using fuzzy theory was presented by Wu et al., al-

lowing detection of faces of varying size and different poses [65]. Using a perceptually
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uniform CIE-XYZ colour space, two fuzzy models are created that are used to describe

skin colour and hair colour. While the skin colours are modeled using chromatic infor-

mation only, the hair colour distribution model contains both brightness and chromatic

information. The appearance of faces is described using 5 head-shape models; one cor-

responding to frontal and the other four corresponding to left diagonal, right diagonal,

left side-view and right side-view. Each head model is a two-dimensional pattern con-

sisting of m × n square cells, comprising manually selected hair part and the skin part.

The frontal-view model contains 10 × 13 cells while others contain 10 × 12 cells. For a

given test image, skin and hair distribution models classify each pixel as hair, face, hair/-

face, and hair/background, thereby generating skin-like and hair-like regions. By using

a fuzzy pattern matching technique, the head shape models are then compared with the

extracted skin-like and hair-like regions in the test image. The rectangular image regions

showing a likeness greater than a predefined threshold are considered candidate faces in

this approach. The algorithm has been tested on 97 colour images containing 223 faces

with size varying from 20 × 24 to 200 × 240 pixels. They claim that the algorithm can

detect large sized faces more accurately than small sized faces, with a 40 ms processing

time per image on a 266 MHz P2 PC system.

3.2.3 Template Matching Methods

Face detection approaches in this category can be divided into two groups, namely pre-

defined templates and deformable templates.

3.2.3.1 Pre-defined Templates

One of the earliest face localisation attempts is the technique proposed by Sakai et al.

in gray-scale photographs using several sub-templates for face contour, eyes, nose, and

mouth [48]. These sub-templates are constructed using line segments, which are ex-

tracted based on the greatest gradient change in the image. The candidate locations of

faces are determined by first matching the contour sub-template with sub-images. Given

a candidate face, face classification is performed by computing the correlation with other

sub-templates (eyes, nose, mouth). However, one significant difficulty which arises in

the proposed approach is that images taken under poor lighting conditions can cause ad-

verse effects on line extraction, resulting in a performance degradation of face detection.

Govindaraju’s approach to detecting faces in newspaper photographs employs edge

features extracted using the Marr-Hildreth detector in gray-scale images [49]. Applying

post-processing operations such as thinning and filtering extracts the contours of which

shape and concavity are studied to determine their relevance to face objects. These con-
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tours are connected by “springs” which are represented by the edge-costs based on prox-

imity and relative orientation. Corner detection is used to allow segmenting the contours

into feature curves. Three types of feature curves are defined corresponding to left side

(L), right side (R) and hair line (H) of the frontal view of a face and their relative sizes

are determined using a golden ratio as reported in [49]. For a given image, groups of

the three feature curves are formed and their similarity is compared against a generic

face template using a cost function. The property of scale invariance is ensured since

the feature curves are defined in terms of a ratio rather than an absolute measurement.

The performance level of the algorithm can be varied by changing the number of feature

curves. The resulting number of false positives is restricted by imposing all three curves,

i.e. L, R and H , however if the number of false negatives are to be minimised only the L

and R curves are used instead. By relaxing the object’s hypothesis from using three sides

to two sides allows detecting as many correct faces as possible at the cost of increased

number of false positives. Venkatraman and Govindaraju [88] presented a similar face

detection method using an edge feature extraction technique based on the zero-crossings

of wavelet transforms.

Miao et al. proposed a hierarchical multi-scale and multi-angle system for detecting

faces in complex backgrounds using a gravity-centre template method [89]. In this ap-

proach, the face template is represented by the gravity centres of edges corresponding to

6 facial components, namely two eyebrows, two eyes, nose and mouth. In order to detect

rotated faces, the image is rotated from -20◦ to +20◦ in steps of 5◦ in a pre-processing

stage. The horizontal edges computed in mosaic images using the Laplace operator are

used to compute the gravity centers of the edges. Such gravity centers become the promi-

nent feature locations in the template. Heuristics are applied based on gray-level and

edge-level matching to determine the presence of faces in the image. The authors claim

that the proposed approach can detect faces of any size in the range of 56× 120 - 18× 18.

A performance figure of 86.7% correct detection rate is reported on a 290 image test data

set, containing single/multiple and frontal/slanted faces.

3.2.3.2 Deformable Templates

The face detection method presented by Kwon and Lobo use templates, which are formed

by edges and facial features [90]. “Snacklets” (n-pixel version of snakes) are used to find

possible face edges through which process candidate face locations are determined based

on a voting method. In the first phase of the algorithm, snacklets are used to find oval

shapes (ellipse) of edges using the Hough transform. Such initial oval candidates are

then used to find the chin areas and the two sides of a face, which are approximated by
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parabolic shapes. At this stage, snacklets are dropped around the boundaries of the initial

oval and the relevant ones are identified through the Hough transform in each of the three

regions. Successful detections of such parabolic boundaries indicate the presence of faces,

which are then verified using a facial feature detection method based on the number of

features detected and ratio-tests computed from the detected feature positions. Facial

features are detected using the method similar to deformable templates proposed in [91].

While no performance evaluation is reported by the authors, the algorithm is said to be

robust when detecting faces across different skin colours, a variety of spatial sizes and

hair-styles.

Cootes and Taylor presented a deformable template method for face detection in

gray-scale images [92]. In this approach, using a robust method for facial feature de-

tection helps finding accurate starting positions for subsequently employed deformable

face models representing the entire face. The system first determines plausible sets of

features using statistical models of relative positions and orientations of the detected fea-

tures. Choosing the best set(s) from the detected plausible sets initiates a process of find-

ing the closest fit to a human face model. They finally use an active shape model, refining

the search for the best fit of the full face. The performance evaluation carried out using

a small test set containing 40 images illustrated that the proposed method could detect

faces in 35 images accurately. The 5 unsuccessful results were due to multiple feature

detection failures.

3.2.4 Appearance-Based Methods

Appearance-based models are generally constructed using knowledge gathered from

large sets of face and non-face training samples. This is in contrast to template-matching

methods where the templates are typically established by experts. The appearance-based

face detection algorithms can be categorised into several groups as follows.

3.2.4.1 Eigenface based Face Detection

A pioneering appearance-based face detection technique in gray-scale images was pro-

posed by Turk and Pentland based on PCA to represent face appearances using a small

set of characteristic feature images, called eigen-faces [50]. These eigen-faces are the prin-

cipal components of the initial training images. In fact, the eigen-face strategy is equiv-

alent to matching with a linear combination of eigen-templates, allowing for a greater

range of distortions in the input signal [93]. Face detection is performed by projecting

a new image into the sub-space spanned by eigen-faces (face space) and computing the

reconstruction error, referred to as distance-from-face-space (DFFS). This is carried out at
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each pixel location in the image, and the presence of a face is indicated by the global min-

imum of the reconstructed errors. The input image is studied at various scales, enabling

detection of different sized faces.

A frontal face detection technique combining colour and an eigen-space approach was

proposed by Menser and Muller [94]. They derive a skin probability image using a Gaus-

sian skin model in the Y CbCr colour space. PCA is then applied to the skin probability

image instead of the luminance image. Applying PCA analysis only to skin-like pixels

not only reduces the computational load of face detection but also reduces the number of

false detections. In this approach, PCA is performed in a 10-dimensional principal sub-

space with combined distance measures, namely DFFS and distance-in-face-space (DIFS).

Detection of faces at multiple scales is facilitated by performing the algorithm on several

scaled versions of the skin probability image. The authors claim that combining PCA

analysis with skin-colour information improves the face detection performance even in

the presence of complex and skin-like background regions.

3.2.4.2 Distribution based Face Detection

Sung and Poggio developed a distribution-based frontal face detection technique from

gray-scale images using face and non-face training clusters (6 in each case) to detect faces

in complex scenes [95]. The twelve clusters are formed by using an elliptical k-means

clustering algorithm. These clusters comprise large numbers of face/non-face training

samples: 4, 150 face patterns and 43, 166 non-face patterns of size 19 × 19 pixels. Each

face and non-face cluster is a multidimensional Gaussian function with a centroid loca-

tion and a covariance matrix that describe the data distribution within the cluster. Some

pre-processing operations, such as image masking, illumination gradient correction and

histogram equalisation, are applied to face/non-face patches during the training and test-

ing processes. Test image patches at each image location and different scales are exhaus-

tively compared against the distribution-based model during the face detection process.

In this approach, a two-value metric combining normalised Mahalanobis distance and

the Euclidean distance is used as the distance measure for discriminating faces from non-

faces. They use a MLP net classifier to finally discriminate faces from non-faces based

on the 12 difference distance measurements it receives from each test image-block. The

performance evaluation carried out using two test data sets shows correct detection rates

of 96.3% and 79.9% with 3 and 5 false detections respectively.

Moghaddam and Pentland [93] extended the face detection method proposed in [50]

using density estimation in complementary subspaces. Two types of density estimates

are used for modeling the training data: multivariate Gaussian for uni-model distribu-
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tions and a mixture of Gaussians model for multi-model distributions. In the extended

approach, the authors emphasise that the DFFS interprets only a marginal component

of the probability density of the object, and the complete estimate must also include a

second marginal density based on a complementary DIFS. Thus, the target density was

decomposed into two parts: the density in the principal subspace and its orthogonal com-

plement. The image location corresponding to the highest likelihood from the maximum

likelihood detection scheme indicates the position of the face. The algorithm has been

evaluated using the FERET gray-scale database. An accuracy of 97% correct detection

rate is reported on a test set containing 2,000 faces from the FERET database.

3.2.4.3 Neural Networks based Face Detection

Face detection methods built upon neural networks have shown great success in the liter-

ature [86] [96] [97] [98] [99] [100]. Among such methods, Rowley et al. pioneered a revo-

lution for effective face detection, addressing relatively difficult imaging conditions [86].

In this method, a set of retinally-connected neural networks is applied at each location in

the image at different scales in a pyramid structure for determining if faces are present in

the image. The outputs from different networks are then combined using an arbitrator.

In this approach, a face score can be obtained by applying different arbitration strate-

gies. Like in [95], they use image pre-processing operations during training and testing

to reduce image variations due to shadow, background and lighting conditions. Simi-

larly, large numbers of face and non-faces samples of size 20 × 20 are used for training

different networks, outputting different weights for the final classification process. Like

in [95], a bootstrap training method is used to generate 9, 000 non-face samples, which

together with 16, 000 face samples exercise the network training task. They use two test

data sets for evaluating the performance of the algorithm, where the first one has been

collected at CMU and the second one corresponds to a subset of the FERET database.

Whilst using different network configurations has resulted in varying degrees of face de-

tection accuracy, the performance of the algorithm compares favourably with that of the

state-of-the-art face detection techniques. However, considering a balance between the

number false detections and the correct detection rate, the authors report a correct de-

tection rate of 86.2% with 23 false detections on the CMU test data set comprising 507

frontal faces. The authors have also subsequently extended the algorithm to detect in-

plane rotated faces [101]. In this method, a sub-block image is input to a different router

network that determines the rotation angle of a possible face. The same router network

used in [86] is then fed with a de-rotated sub-block image for verification. The perfor-

mance evaluation has been performed on two test data sets; MIT-CMU and the CMU

57



CHAPTER 3. FUNDAMENTALS OF PERSON ANNOTATION: FACE DETECTION

rotated set.

Feraud et al. presented a fast and accurate method for detecting frontal and side-view

faces using neural networks [98]. It comprises several filters, such as motion, colour, pre-

network filter3 and a large network filter, with the first two filters enabling fast detection

of faces in video sequences and colour images respectively. A new neural network model,

called constrained generative model, is used in this approach. The use of a conditional

mixture of networks results in detection of side-view faces as well as a reduction in the

number of false positives. The high computational complexity of the model is reduced

by using an efficient search technique. Detection of faces at multiple scales is facilitated

by sub-sampling the original image. The training process includes 6, 000 face and 5, 000

non-face samples each of which is of size 15 × 20 pixels. These samples are subject to

pre-processing operations, such as histogram equalisation and smoothing. They carry

out a performance evaluation using two test data sets where the first set comprises 30 in-

dividual faces each of which has 10 views (between 0 and 90◦) leading to an evaluation of

rotated face detection and the second set is the CMU test set comprising 507 faces leading

to an evaluation of frontal face detection. The authors report an equivalent performance

level against the method presented by Rowley et al. [86]. The comparative performance

analysis also illustrates that both exhaustive and fast versions of the proposed algorithm

are better than that reported in [86]. The authors have also observed that using the colour

filter improves the false detection rate as well as the computation time (approximately 1

second per image) but with 1% performance drop in the correct detection rate.

Garcia and Delakis presented a face detection approach based on a convolutional

neural architecture, targeting face detection in complex real-world gray-scale images [97].

Accurate and efficient face detection is achieved without using costly local pre-processing

operations prior to classification while allowing the detection up to ±20◦ in-plane and

±60◦ out-of-plane rotated faces. Using a convolutional neural architecture allows auto-

matically deriving problem-specific feature extractors from a large set of training sam-

ples, i.e. 3, 702 face and 25, 212 non-face patterns. Similar to other conventional methods,

they use a bootstrap technique to collect non-faces samples. The system, once trained,

acts like a fast pipeline of simple convolutions and subsampling operations for each

scaled image. The face and non-face samples used in the training are of size 32 × 36

pixels including the borders of the face. The authors have carried out a performance

evaluation of this algorithm using three test data sets, MIT-CMU, a web test set contain-

ing a great variety of 215 images with 499 faces, and the Cinema test set comprising 162

images extracted from various cinemas with 276 faces. The algorithm is reported to have

3Feraud et al. term a single multilayer perceptron as a pre-network filter in [98].
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the ability to detect faces at 4 frames/s in 384 × 288 sized images on a 1.6 GHz Intel

Pentium IV PC system. Its performance has also been favourably compared with other

well-known methods, such as [86] [102] [103] [104] [105] [98] [69] [106] [107] [95].

Curran et al. studied the use of neural networks for real-time frontal face detection

in colour images [108]. This algorithm comprises two stages: skin colour segmentation

in the Y IQ colour space and neural-network based pattern recognition. The authors use

a similar neural network to that of Rowley’s [86]. The objective of using skin colour

segmentation in this approach is to test only the regions produced by the colour segmen-

tation stage, thereby cutting down processing time and improving accuracy. The NN

model has been trained using both face and non-face samples collected from the Yale

database. In the training process, 120 face images of size 18 × 27 pixels are used and a

bootstrap method is used to collect a large number of representative non-face samples.

The training and test face images are subject to lighting correction and histogram equali-

sation. Faces of different size are detected at varied scales of the input image. The authors

showed that using different classifier thresholds result in varying values of performance

figures. For example, correct detection rates of 67% and 85% could be achieved at false

detection rates of 15% and 63% from images of varying size, background and quality.

3.2.4.4 Bayesian Model Face Detection

A frontal and profile face detection method in gray-scale images was proposed by Schnei-

derman and Kanade using a Bayesian classifier [109]. In this algorithm, the joint proba-

bility of faces is computed using the local appearance of faces, which generally contain

areas of distinctive detailing, and the position of sub-regions of the face at multiple res-

olutions. The uniqueness of faces is modeled using the statistics of local appearance of

training faces partitioned into a finite number of patterns. Faces of size 64× 64 pixels are

used for modeling and are decomposed into 16× 16 subregions for computing class con-

ditional probabilities. These sub-regions are then projected to a lower dimensional space

using PCA and quantised into a finite set of patterns. The statistics of each projected sub-

region are then estimated from the projected samples to encode local appearance. A total

number of 991 faces and 1, 552 non-faces have been used for training the model in this ap-

proach. The face patterns are further expanded by generating 20 synthetic variations for

each face in orientation, size, aspect ratio, intensity, and background. The evaluation re-

sults show a 93% correct detection rate with 88 false detections on the MIT-CMU data set.

In evaluating the performance of profile face detection, subsets from the FERET database

have been used at 0◦, 15◦ and 22.5◦ by favourably comparing against that of [86]. The

frontal face detection results correspond to detection of faces at 17 levels of magnification
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and for faces from size 18× 18 to 338× 338 pixels. The profile face detection results cor-

respond to detection of faces at 14 levels of magnification and for faces from size 22× 22

to 235× 235 pixels. Schneiderman and Kanade later extended this method to detect faces

(frontal and profile) and cars by representing visual attributes with wavelet represen-

tations [109] [102]. The extended approach uses the AdaBoost algorithm for optimum

training. They have observed that the wavelet-based method performs better on profile

faces while the eigenvector-based detector [110] performs slightly better on frontal faces.

The wavelet-based face detector runs at a speed of 5 seconds per image over a full range

of scalings for 240× 256 sized images on a 450 MHz PII PC system.

Liu proposed the BDF method for multiple frontal face detection in gray-scale images

using discriminating feature analysis, statistical modeling of face and non-face classes,

and a Bayesian classifier [111]. The discriminating feature analysis combines the input

image, its 1-D Haar wavelet and its amplitude projections. Then, statistical modeling

estimates the conditional probability density functions of the face and non-face classes

using multivariate normal distributions. In training the face and non-face models, this

approach uses a relatively small number of face and non-face samples that are of size

16×16 pixels, yet proves to be an effective modeling method when tested on challenging

test data sets. During the face detection process, a given image is processed at multiple

scales to enable detection of different sized faces. The algorithm has been evaluated on

3 test data sets; the first two sets being taken from the FERET database and the third

being taken from the MIT-CMU set [86]. A comparison against [102] shows promising

performance despite the algorithmic slow-down due to the use of a relatively large sized

feature-vector. While a correct detection rate of 96% is reported in [102] with 41 false

detections, the BDF method reports 97.4% with only 1 false detection. However, slow

speed is the major disadvantage of this algorithm, reporting an average of one second to

process a 320×240 image without any scaling on a 900 MHz Sun Blade 1, 000 workstation.

Shih and Liu later extended the BDF method using an SVM for face detection in videos

based on the use of temporal and skin colour information [112]. Inclusion of a SVM

classifier in the BDF method has shown to further improve its performance up to 98.2%

with only 2 false detections on the MIT-CMU data set.

3.2.4.5 Hidden Markov Model Face Detection

Two approaches to detecting frontal faces in gray-scale images were presented by Ra-

jagopalan et al. using higher order statistics (HOS) and HMM (Hidden Markov Models)

methods [113]. In the HOS method, faces are located by scanning the image at all lo-

cations and at different scales using a distribution-based model similar to the approach
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presented in [95]. In the second approach, an HMM learns the face to non-face and non-

face to face transitions. Having estimated the HMM parameters for a given photograph,

faces are detected by examining the optimal state sequence of the HMM. A training set

comprising 2, 004 face samples and 4, 065 non-face samples of size 13× 13 has been used

to train the models studied in this system. A performance comparison of the two ap-

proaches against two other previously reported methods [95] and [86] illustrates that the

proposed approaches achieve improved correct detection performance at the cost of a

higher number of false detections.

The frontal face detection approach proposed by Colmenarez and Huang uses a sta-

tistical visual learning technique to maximise the discrimination between face and non-

face patterns [105]. They use a family of discrete Markov processes to build probabilistic

models for face and non-face classes, which are then used to compute the likelihood ratio

for detecting faces. The Kullback relative information criterion is used to optimise the

discrimination between the two classes. For training the models, 11× 11 normalised face

and non-face patterns collected from the FERET database and a wide variety of images

have been used. In the test phase, a multi-scale search is performed to detect faces at

different scales using a pyramid structure in which process each sub-window is subject

to pre-processing operations and likelihood computation. Comparing the algorithmic

performance against [86] reveals that the proposed approach produces false detections

three times higher than that of Rowley’s approach [86]. One reason for increased false

detections is, however, due to the small size of face/non-face model, i.e. 11× 11, used in

this approach.

Dass and Jain proposed a frontal face detection technique using a Markov Random

Field (MRF) model [114], as a generalisation to the method presented in [105] based on

Markov models. In this method, MRF auto-models are used to represent the distribution

of gray-level intensities of face images. They avoid likelihoods resulting from MRF mod-

els and hence the process of computing the normalising constant by employing pseudo-

likelihoods and pseudo-likelihood ratios. MRF models are trained using 7,200 face and

8,422 non-face samples of size 15× 20 pixels collected from different databases. The per-

formance of the algorithm has been tested on a relatively small set of images, i.e. 102

images from the FERET database, reporting a 100% correct detection rate with 13 false

positives.

3.2.4.6 Support Vector Machines based Face Detection

Face detection based on SVM classification has achieved some success in the recent past

[106] [115] [116] [117] [118] [119]. SVM is seen as a new way to train polynormial, neural
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network, or Radial Basis Function (RBF) classifiers [106].

Applying SVM as the core classification algorithm to show the applicability of SVM,

vertically oriented and unoccluded frontal face detection in gray-scale images was stud-

ied by Osuna et al. [106]. Using a database of face and non-face patterns of size 19 × 19

pixels, they assign the labels +1 and -1 to face and non-face samples respectively. Train-

ing is performed based on an SVM with 2nd order polynormial as kernal function with

an upper bound C=200. Similar to the approach used in [95], a bootstrap method is used

to collect non-face samples in this method. The image patterns are pre-processed prior

to both training and testing, in order to compensate for image variations such as back-

ground influence, lighting effects, and different camera response characteristics. In the

testing process, the classifier is exhaustively applied to overlapping sub-windows of the

image to determine if they correspond to the face or non-face class. Analysing different

scaled versions of the original image allows detection of faces at different sizes. Test-

ing the performance of the algorithm on two data sets and comparing the results with

that of Sung and Poggio [95], the proposed method has shown to be 30 times faster than

the method proposed by Sung and Poggio. While the algorithmic performance has been

favourably compared against that of [95] in terms of correct detection, its false detection

rate is reported to be higher than that of [95]. Romdhani et al. [120] followed this ap-

proach by sequential application of a reduced set of support vectors with an algorithm

determining the order of evaluation to improve the run-time efficiency, claiming 30 times

faster performance than that of [106].

Heisele et al. presented two approaches for detecting frontal and near-frontal faces

from gray-scale images using SVMs. In the first approach, the whole face pattern is

modeled using SVMs while in the second approach face components, such as the eyes,

nose and mouth, are modeled and represented in a two-level hierarchy of SVM classi-

fiers [117]. The authors claim a number of findings from the research, stating that gray-

pixel features are better input features for a SVM-based face detector than Haar wavelets

or gray-gradient values, combining PCA with SVM-based feature selection speeds up

face detection by two orders of magnitude, bootstrapping the system with false posi-

tives is the way to keep the training set relatively small whilst also improving the de-

tection rate by more than 5%, and the component based face detection is more robust

against face rotations than a comparable whole face detector. Also, in terms of the type

of kernal functions used in the SVM, the second-degree polynomial kernal proved to be

a good compromise between computational complexity and classification performance

compared to a linear or Gaussian kernal.

Heisele et al. presented a two-step approach involving a hierarchy of classifiers and a
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feature reduction method to speed up face detection using SVM as the classifier [118]. In

the proposed hierarchical system, a simple and fast classifier analyses the whole image

and rejects large parts of the background at the bottom level, whereas a slower but more

accurate classifier is used at the top level to complete the face detection task. For feature

reduction, they use a new wrapper method on both the input and feature space of a non-

linear SVM, which is placed on top of the hierarchy of linear SVMs. Using gray-level

pixel values as input to the classifiers and reducing the number of features by decreasing

the image resolutions from top to bottom, a five level hierarchy is created with a 19× 19

non-linear SVM on the top level, followed by 19× 19, 11× 11, 4× 4 and 3× 3 linear SVM

classifiers in that order. Linear classifiers consist of 9,662 face and 33,045 non-face training

images at resolution 19×19 pixels. The topmost classifier has been trained independently

using 2,429 face samples and 4,548 non-face samples. Combining feature reduction with

hierarchical classification made the proposed algorithm 335 times faster than a single

non-linear SVM method with almost similar classification performance.

A uniform architecture of an object detection method proposed by Papagergiou and

Poggio use a trainable system for detecting objects such as faces, people and cars [115].

They employ an SVM for training object models with 2,429 positive and 13,229 negative

samples of size 19 × 19 pixels. Local, oriented, multi-scale intensity differences between

adjacent regions are captured using the Haar wavelet transform. The performance of the

algorithm has been measured using different feature representations, such as raw pixels,

histogram equalised pixels, PCA of histogram equalised pixels, gray signed wavelets and

gray unsigned wavelets, proving that gray unsigned wavelets are the best feature for face

detection in this approach. However, this test has been conducted using a relatively small

data set, containing just 105 images.

Waring and Liu presented a face detection method using spectral histograms and

SVMs [121]. Each image window is subject to illumination correction, which are then

represented by spectral histograms using 33 filters. Starting with 4,500 face patterns of

size 21 × 21, the SVM classifier is trained with 8,000 non-face patterns using a bootstrap

method. One distinctive advantage of the spectral histogram representation is that two

images do not need to be aligned for matching, due to the fact that they are not sensitive

to perturbations of local image features. In this approach, Gaussin RBF has been chosen

as the kernal function for the SVM classifier. As the classifier is designed to work on

21 × 21 image windows, the input image is tested at three Gaussian pyramid levels by

successive down-sampling during the face detection process. A detection is marked if it

is found in at least two concurrent levels of the image pyramid. The proposed algorithm

has been tested on two commonly used test data sets; one used by Rowley [86] and the
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other used by Sung and Poggio [95]. An exceptional best overall performance is reported

against [86], [95], [102], [107], [105]. However, its slower speed, which is reported to be in

the range of several minutes per image, is the major drawback of this approach.

Le and Satoh proposed a fast face detection technique by combining AdaBoost and

SVM classifiers [122]. Similar to the method proposed by Viola and Jones [104], this

method uses a cascaded structure of simple-to-complex Adaboost based classifiers, how-

ever the latter layers of the cascade are replaced by SVM classifiers both to maintain a

high detection rate and to control the balance between the training and running times.

The two new additions in the proposed system include: introduction of a new stage to

estimate the face candidate regions by using a large window size and a large moving step

size, and the study of re-using the features selected by AdaBoost in the previous stage for

the SVM classifier in the last stage. The authors claim that fusing AdaBoost with SVM

considerably speeds up the algorithm, making it faster than SVM alone. Evaluating the

performance on the MIT-CMU data set demonstrates that the proposed system outper-

forms the other methods such as [86], [104], [120], [118].

3.2.4.7 Boosted Learning based Face Detection

The first real-time frontal face detection approach for gray-scale images was proposed

by Viola and Jones [104]. In this approach, drastic improvements in speed are achieved

due to the use of an integral image representation when computing face discriminative

features from the original image. These features correspond to some arrangements of ad-

jacent rectangles (two-rectangle, three-rectangle, four-rectangle), which are of same size

and shape, and such features can be rapidly calculated at different scales from an integral

image representation. The AdaBoost method, which is a powerful learning algorithm, is

used to construct classifiers in this approach. Weak classifiers are boosted into strong

classifiers through a linear combination of them. The more complex classifiers are then

combined in a cascade structure by focusing more attention on specific regions of interest

in the image, meaning that more complex processing is applied to potentially positive

regions in the image. This algorithm has been trained using 4,916 hand labeled faces col-

lected from randomly downloaded web images. However, different numbers of non-face

samples have been used for different classifiers in the 32-layer cascade, accounting for

a total number of 4,297 features. Using the MIT-CMU test data set, the performance of

the algorithm has been evaluated at different performance levels of false detection. The

authors claim correct detection rates of 78.3%, 85.2%, 88.8%, 89.8%, 90.1%, 90.8%, 91.1%,

91.8%, 93.3% for false detection at 10, 31, 50, 65, 78, 95, 100, 167, 422 respectively. They

have also presented a performance comparison with other well-known methods, such
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as [86], [102] and [107], claiming that the proposed algorithm is as fast as 15 frames/s on

a 700 MHz Intel Pentium III PC system for 384× 288 sized images.

3.2.5 Hybrid Methods

Qian and Huang presented a probabilistic model combining a template matching method

and a feature-based method, also involving a hierarchical MRF and a MAP probability

estimation for face detection in gray-scale images [71]. This approach assumes that the

probability measure of occurrence of the face and its features are hierarchical, and thus

a MAP estimation can provide the maximum probability of occurrence of the face given

an input image. Specifying a hierarchical MRF to reflect the a priori knowledge about

the face detection application, and estimating the a priori probability of image appear-

ance and its features are the two main tasks involved in this approach. The authors have

accomplished the first task by defining a neighborhood system using cliques and clique

functions, representing the states of occurrence of whole face, left eye and right eye in

a Gibbs distribution. The second task is performed by matching whole targets against

different templates and detecting eye features. For eye detection, they have tested two

methods: the first method is based on PCA while the second method is based on an adap-

tive eye template method. Issues related to scale variations of faces are addressed using

image pyramids, allowing detection of faces at different scales. Orientation variations are

captured using a relatively small number of templates and feature models. They use three

templates representing different views, i.e. one frontal and two half-profile faces, which

are of size 21 × 21 pixels, and also combine with three rotation angles of the pyramid

to deal with rotated faces in the image. Frontal and half-profile templates are generated

by averaging 20 frontal and 20 half-profile faces. The performance of this algorithm has,

however, been evaluated only on a very small data set comprising 108 real images of

complex backgrounds, partial occlusions, position and orientation varying faces, record-

ing a correct detection rate of 91.7% and a false detection rate of 13.9%. Also, the average

processing time of the algorithm is reported to be 2 minutes per 320×240 sized image on

a SGI Onyx workstation, which goes up to 5 minutes on a Sun Sparc 20 system.

A multiple feature combined face detection technique in colour images was proposed

by Wang et al. [72]. This method combines colour information, average face matching

score and horizontal edge matching score, which collectively enable a search procedure

based on the Mean Shift algorithm. A given image is transformed into the HSV colour

space in which H and S components are used for skin colour segmentation and the V

component is used for template matching. Deficiencies in colour alone feature-based

focus-of-attention are addressed by combining with average face templates and horizon-
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tal edge templates. While average face templates capture the variation of global texture,

horizontal edge templates allow the structural information of eyes and mouth inside face

regions to be extracted. Both templates are generated using 299 gray-scale face images

collected from the BioID database. The three probability maps of features are combined

in a product form, providing a confidence value for the classification stage. Upon com-

puting the centers of face candidates based on the Mean Shift algorithm, face classifica-

tion is performed using the view-based face detection approach reported in [95], thereby

generating a face/non-face verification score based upon the candidate faces as well as

their mirrored patterns. The view based classifier has been trained using 6, 599 face pat-

terns and 6,617 non-face patterns of size 19 × 19. Finally, a face is declared based upon

the verification score and the level of correlation between the face candidate and its mir-

rored pattern. The performance of the proposed algorithm has been tested on data sets

containing more than 1,000 images, claiming satisfactory performance.

A frontal face detection technique for gray-scale images was proposed by Huang et al.

using the combination of Gabor features and a polynomial neural network (PNN) clas-

sifier [73]. They employ four Gabor filters to extract facial feature patterns followed by

PCA to reduce the dimensionality, which collectively form a less computationally costly

feature vector in the PNN classifier. Similar to that employed in [95], a pre-processing

operation is applied to alleviate the noise due to variable lighting conditions prior to ex-

tracting Gabor features from the image. The PNN classifier has been trained using 2,990

face samples and about 60,000 non-face samples. For performance evaluation, a subset of

the CMU test set containing 109 images totalling up to 487 faces and a web-crawled test

set containing 270 single face images with simple backgrounds have been used. A per-

formance comparison between Gabor features and intensity-based features has shown

that Gabor features outperform the other. The authors also presented a performance

comparison using different subspaces of Gabor filter feature vectors and claimed that the

performance of the proposed method is comparable with that of [95], yet with fewer false

positives in addition to requiring less computation resources.

Chow et al. presented a frontal face detection technique for detecting faces in colour

images taken under various lighting conditions by combining knowledge from feature-

based and appearance-based approaches [70]. It comprises three steps. In the first step,

images are segmented using the mean-shift algorithm. These image segments are pro-

cessed by a lighting compensation scheme. Skin-colour pixels are then identified using

a maximum likelihood scheme. In the second step, eye candidates are located inside

the segmented skin-colour regions. Finally, the possible face candidates are verified us-

ing a two-step procedure based on an eigenmask, and a face-boundary verification step
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based on a probabilistic model. The regions that are created by the mean-shift algorithm

are represented by the mode of the colour pixels, which is then used to determine if the

region corresponds to skin colour through a mapping criterion to a Gaussian mixture

model. Training of the Gaussian mixture model is carried out using a total of 366,431

skin colour pixels extracted from the 206 HHI images. Using the k-means algorithm first

clusters the face colours to obtain the initial parameters and the number of clusters of

the Gaussian mixture model in the compensated Y CbCr colour space. Having identified

face-region candidates, possible pairs of eye candidates are determined using luminance,

chrominance and edge pattern information formulated into a ratio method. All the face

regions corresponding to the identified eye pairs are then passed on to a face verification

stage where the whole face is represented by two templates; the upper part of the face

containing eyes and the lower part of the face containing the nose and mouth. A face

candidate is classified using a dual eigen-template method corresponding to the upper

and lower parts of the face. These eigen-templates have been trained using 14 male and

6 female images. Finally, a true face is declared only if a candidate face complies with a

face-boundary classifier. The performance of the algorithm has been evaluated using 151

images out of 206 from the HHI MPEG-7 face database, 920 images from the AR database,

and 3,264 images from the CMU-PIE database. The authors report the overall detection

performance figures of 92.7%, 97.6% and 87.6% for the HHI, AR and CMU-PIE databases

respectively. The average processing time for detecting faces in an image varies from 0.5

seconds to 1.5 seconds on a Pentium IV 1.7 GHz PC system.

3.3 A Taxonomy of Approaches: Rotation Invariant Multi-View

Face Detection

A number of prominent approaches to rotation invariant multi-view face detection have

been proposed recently in the literature [98, 102, 123–128]. The need for robust and effi-

cient multi-view face detection has arisen mainly due to emerging multimedia applica-

tions, such as automated surveillance, digital photo management, advanced image re-

trieval, etc. Despite the availability of advanced technologies for frontal face detection,

rigorous requirements of real-life applications are such that faces need to be detected ir-

respective of their orientation. A survey of rotation invariant multi-view face detection

algorithm is presented in the following.

Li et al. proposed a method, called FloatBoost, for statistical learning of multi-view

face detection [103] [129]. FloatBoost uses the concept of AdaBoost [104] while overcom-

ing the monotonicity problem of the sequential AdaBoost learning by incorporating the
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idea of Floating Search. This approach is view-based and it uses a coarse-to-fine, simple-

to-complex detector-pyramid architecture. FloatBoost learns the component detectors in

the pyramid and yields similar or higher accuracy than AdaBoost with a smaller number

of weak classifiers. It deals with three types of head rotations: out-of-plane rotations in

the range of ±90◦, in-plane rotations in the range of ±45◦, and a moderate amount of

up/down nodding rotations. In this approach, multi-view face detection is carried out

in three steps. First, the image is scanned at all possible locations and scales, resulting

in a large number of windows. Secondly, each window is tested for face or non-face.

Thirdly, post-processing is applied to merge multiple detections. The authors have used

6,000 face samples of size 20 × 20, which are rotated up to ±20◦ out-of-plane and ±15◦

in-plane, and a sufficient number of non-face samples collected from 100,000 images for

training the algorithm. In the training set for multi-view face detection, face samples

are created in the same way except for the fact that out-of-plane rotated faces of up to

±90◦ are included. In the testing phase, the authors have used the MIT-CMU test set as

frontal faces and the CMU profile face set, which contains 208 images with 441 faces, as

side-view faces. A performance comparison of frontal face detection against AdaBoost

of Viola and Jones [104] trained using two sizes of face/non-face samples, and CMU-NN

of Rowley et al. [86] has been presented. FloatBoost reports a 83.6% correct detection rate

while [104] (based on 20 × 20 face/non-face samples) and [86] report detection rates of

82.7% and 83.2% respectively, at the expense of 10 false detections. Comparing the num-

ber of features required for the FloatBoost and AdaBoost methods reveals that FloatBoost

requires only 2,546 features compared to 3,872 of AdaBoost. Furthermore, FloatBoost has

the ability to detect multi-view faces in 320 × 240 sized images in 200 ms on a PIII 700

MHz PC system.

Jones and Viola extended the AdaBoost frontal face detector [104] to detect multi-

view faces (out-of-plane and in-plane rotated faces) [128]. Similar to previous works

by Rowley et al. [86] and Schneiderman et al. [102], they build different detectors for

different face views. For detecting in-plane rotated faces, a two stage process comprising

a decision tree constructed using features like those of [104] and N-pose specific Viola-

Jones detectors is used. A decision tree is trained to determine the viewpoint class, such

as right profile or rotated 60◦, for a given window of the image, avoiding the requirement

of applying all the detectors on every window. However, the authors have found that the

three types of rectangle filters used in [104] are not adequate for the estimation of pose

and detection of rotated faces. Thus, a fourth type of filter has been added, focusing on

diagonal structures. For detecting side-view faces, they have also investigated detectors

using an identical two stage approach. To cover the full range of in-plane rotation, i.e.
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360◦, 12 different detectors for frontal faces in 12 different rotation classes are trained,

with each rotation class covering 30◦. The training set for each rotation class consists of

8,356 faces of size 24× 24 and over 100 million non-faces samples. The optimum trained

models have resulted in 35 layers of classifiers. The training set for in-plane rotated pose

estimators comprise 4,000 faces (24× 24) for each of the 12 rotational classes. A decision

tree with 1,024 nodes (11 levels in the tree) is trained to classify a frontal face into one of

the 12 rotation classes. The training set for right profile detector comprise 2,868 manually

cropped 24 × 24 faces and over 100 million non-faces. The effect of in-plane rotation

in profile views is addressed by inclusion of artificially rotated faces of ±15◦ and ±30◦.

The right profile detector uses diagonal filters as well as the three conventional rectangle

filters. The resulting cascade has 38 layers of classifiers. A left profile detector is created

by flipping all the features of the right profile detector. For pose estimation, a decision

tree with 256 internal nodes (9 levels in the tree) has been trained using the same training

samples used in the right and left profile detectors. The proposed algorithm has been

evaluated on the test data set used in [102], reporting an occurrence of 8 false detections

in the process. In the case of rotated face detection, it records a correct detection rate

of 70.4% with 98 false positives. Although the method proposed by Schneiderman and

Kanade [102] is more accurate than the algorithm proposed in this approach, the former

suffers a large penalty in speed. The proposed multi-view face detector processes a 320×
240 image in about 0.12 seconds on a 2.8 GHz Pentium IV PC system.

Li et al. proposed a multi-view face detection system in gray-scale or colour im-

ages/videos using Eigenface and SVM methods [130]. It comprises two main steps: pose

estimation using support vector regression [126] and pose-specific face classification us-

ing combined Eigenface [93] and SVM [106] methods. One a priori step for selective

attention uses motion estimation, skin colour detection and background subtraction de-

pending on the type of input, i.e. image or video, thereby resulting in more meaningful

regions of interest for subsequent processing. Such regions are input to pose estimation

in order to determine the appropriate face classifier for face detection. Pose estimation is

performed using PCA vectors, which are derived from filtered images through two (hor-

izontal and vertical) Sobel operations. Two pose estimators, one for tilt (−30◦, +30◦) and

the other for yaw (−90◦, +90◦), are constructed using SVM regression with the number

of training faces of size 20 × 20 pixels fixed at 1,596 (12 subjects, 133 images of each).

The face view space is segmented into 8 segments: left profile, left frontal, right frontal,

right profile in the horizontal direction, and upper and lower in the vertical direction.

For training pose-specific face classifiers, 2,660 images of 20 subjects have been selected

as positive samples, combining with a boot-strap training method to generate negative
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samples. The proposed face classifier, which is a hybrid method of Eigenface and SVM

technologies, benefits from the inherent advantages of the two methods. Candidate face

regions are first tested using the Eigenface method, and then the SVM method is em-

ployed only if any ambiguous candidates emerge from the first step. In this manner, the

proposed system improves the accuracy of face detection (due to the use of SVM) while

also achieving more efficient performance (due to the use of Eigenface) in the process.

Furthermore, since the SVM classifier is trained using a relatively small set of samples

that are ambiguous to the Eigenface method classification, a more precise and compact

set of support vectors is obtained from the training process, which makes the SVM clas-

sifier perform faster.

A robust multi-pose face detector was proposed by Xiao et al. using a three-step

simple-to-complex strategy [131]. In the first stage, using a linear-filtering algorithm en-

hances the detection performance by removing most non-face like regions early in the

detection process. In the second stage, a boosting chain filter with better convergence

rate based on a linear SVM is applied. Pre-processed image windows subject to lighting

correction and histogram equalisation are processed by a colour filter. In the final stage,

a SVM filter is applied to reduce the number of false detections. The skin detector is

trained in the Y CbCr colour space using a linear SVM. A SVM face/non-face classifier

involving a reduced feature set is used for face/non-face classification in this approach.

An in-plane pose estimator comprising a two-level hierarchy is employed using Haar-

like features to compute the pose angle of faces. A three-step algorithm is built to detect

upright faces, which can undergo out-of-plane rotations up to ±45◦. More than 12,000

non-face patterns and 8,000 multi-view face patterns of size 20×20 pixels have been used

for training the proposed model. By applying random transformations to 8,000 original

face samples, a total number of over 80,000 face samples have been included in the train-

ing process. Evaluation of the frontal face detector has been carried out using two data

sets: first one being the MIT-CMU frontal face test set and the second being a photo set

collected by themselves. Three test sets collected from the CMU-PIE database have been

used to evaluate the non-frontal face detector. The proposed method can handle pose

variations in the range of [−45◦, 45◦], including both out-of-plane and in-plane rotations.

A performance comparison against other existing methods [104], [86], [107], [102] shows

that the proposed approach outperforms the methods reported in [86] and [104]. Also,

the authors claim that the proposed algorithm being approximately 15 times faster than

most approaches available to date, its detection performance is lower than the methods

reported in [107] and [102].

Wu et al. presented a fast rotation invariant multi-view face detection system using
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the real Adaboost algorithm [132]. The real Adaboost method differs from the original

(discrete) Adaboost method in the context that it deals with a confidence-rated weak clas-

sifier. In the proposed approach, rotation invariant detection is supported by performing

face detection in 12 sub-ranges, each covering 30◦ within the full 360◦ range. It also has

the ability to detect 360◦ in-plane, ±90◦ out-of-plane and ±30◦ up-down rotated faces.

The multi-view faces are divided into five categories, such as full left profile, half left

profile, frontal, half right profile and full right profile. The frontal face detector reports

a performance figure of 94.5% correct detection rate with 57 false positives on the MIT-

CMU frontal test data set while the multi-view face detector reports a performance figure

of 89.8% correct detection rate with 221 false positives on the CMU profile test set. The

running times of frontal and multi-view face detections are reported to be about 18 ms

and 80 ms respectively for a 320× 240 sized image on a Pentium IV 2.4 GHz PC system.

A multi-view face detection system was proposed by Wang and Ji using a statisti-

cal learning method, namely a recursive non-parametric discriminant analysis (RNDA)

method based on Fisher and non-parametric discriminant feature analysis [133]. Al-

though Haar features are easy to compute, RNDA features provide better accuracy when

detecting objects of complex shapes. Histograms of RNDA features are learned to rep-

resent the class distributions and to construct probabilistic classifiers. The experiments

carried out in the proposed approach have shown that Fisher features are more powerful

than Haar features, while RNDA features help further improve the accuracy of Fisher

discriminant analysis. However, due to the high computational complexity associated

with RNDA feature computation, Haar features have been used to train the first several

layers at frontal end in this approach. Training data has been collected from the FERET

database and the web for the 5 different poses considered. The frontal face detector has

been evaluated on the MIT-CMU data set, showing that the RNDA based detector could

achieve a comparable accuracy compared to a Haar feature based detector with fewer

weak classifiers. With only RNDA features, a speed of 5 frames/s can be achieved on a

2.6 GHz Pentium IV PC system for 320× 240 sized images. The profile face detector has

been evaluated on the CMU data set, illustrating a favourable performance comparison

against other existing methods.

Huang et al. proposed a rotation invariant multi-view face detection system capa-

ble of detecting 360◦ in-plane rotated, ±90◦ out-of-plane rotated and ±30◦ up-down

faces [127]. They studied several methods to multi-view face detection, including Width-

First-Search (WFS) tree structure, the Vector Boosting algorithm, the sparse features in

granular space, and the weak learner based on the heuristic search method. The WFS

method, which has the ability to make moderate decisions, has been employed to har-
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monise the two tasks: pose estimation and face detection. The vector boosting algorithm

employed in this approach is a novel method to learn strong classifiers. A sparse fea-

ture set is defined as a combination of a number of granules (maximum of 8 in their

experiments), which is more diverse than Haar-like features. Large numbers of training

samples comprising different views of faces have been used to train the face detection

system in this approach. A performance evaluation on the CMU profile test set against

other methods [102], [134], [132] has shown that the proposed method performs best out

of all. The multi-view face detector achieves a speed of 10 fps on average for a 320× 240

sized image on a Pentium IV 2.8 GHz PC system while the rotation invariant multi-view

face detector runs at about 3 ∼ 4 fps.

3.4 A Comparative Analysis of Face Detection Algorithms

The face detection methods reviewed in Sections 3.2 and 3.3 provide a comprehensive

overview of the current status of face detection technology. Based on this review, it is ev-

ident that a transition from frontal/near-frontal to multi-view face detection is currently

taking place. The large amount of literature that exists on frontal/near-frontal face detec-

tion itself indicates the amount of effort that has been invested by researchers on this im-

portant and challenging problem. Non-frontal face detection, on the other hand, has only

recently emerged as a prominent task, receiving a lot of attention from researchers. In this

chapter, most of the prominent face detection algorithms that have been proposed by

various researchers under two main categories, i.e. frontal/near-frontal and multi-view,

were evaluated. Face detection techniques in the frontal/near-frontal category were stud-

ied under 5 sub-categories, namely knowledge-based, feature-based, template matching,

appearance-based and hybrid approaches. Non-frontal face detection techniques are all

based on appearance models where large numbers of positive and negative multi-view

samples are used for the training. Gray-scale based face detection methods have domi-

nated over colour-based approaches in frontal face detection, and a similar observation

can be found in relation to multi-view face detection techniques with most of them being

devised on gray-scale images.

In frontal face detection, knowledge-based methods are designed based on the rules

derived from human knowledge of human faces. Although it is easy to devise rules to

describe a face based on the features and their relationships, these methods are, in prac-

tice, less accurate and robust as the translation of human knowledge into well-formed

rules is non-trivial. If the rules are too restrictive many faces will be ruled out, whereas if

the rules are too general many false positives will occur.
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Template matching methods are relatively easy to implement and robust against clut-

tered backgrounds. One drawback in this category, however, is that they are sensitive

to partial occlusions, and changes in orientation and shape. Detecting faces using prede-

fined templates is usually restricted only to frontal upright views, and therefore detecting

a wide range of rotated faces requires employing a large number of templates and in turn

increases the computational complexity of the algorithm. While deformable templates

are a solution to scale invariance, the initial positioning of such templates must be known

a priori. The level of deformation that can be allowed also relies on the alignment of fea-

ture points, which in turn requires robust detection of feature points. Different levels of

correct/false detection depend on how general/constrained the amount of deformation

allowed in the template.

Feature-based methods are, on the other hand, more robust than knowledge-based

or template matching methods against partial occlusion and orientation changes. These

methods, however, lack robustness in detecting faces in real-life applications as it is dif-

ficult to identify features that are truly invariant when faces undergo large perturbations

due to lighting, pose, expression, background variations in images. Therefore, invari-

ance to scale, rotation and lighting in feature detection is the biggest hurdle to overcome

if such methods are to be applied to real-life face detection problems. For example, robust

feature detection in small sized face images, e.g. (20×20), can be extremely challenging in

real-life applications [77]. Most of the image-based approaches [86] [106] use 20×20 sized

face windows in addition to a number of approaches [111] [105] that use even smaller face

windows. Face detection methods in the feature-based category usually require higher

resolution images than the other categories. For example, 60 × 60 resolution is the min-

imum allowed in [61]. Compared to appearance-based methods, their performances are

relatively poor, especially in the presence of cluttered backgrounds.

Appearance-based methods have key advantages over other categories of face de-

tection. One significant advantage is that they have the ability to detect faces under

challenging conditions, such as varying pose, view-point and background complexities,

which can be generally learnt and modeled using representative sets of face and non-

face samples. Thus, they are not limited by humans’ describable knowledge about faces.

The algorithmic performance is largely determined by the type of training images and

learning models used in the process. The real breakthrough in the appearance-based

face detection category occurred in 2,001 after the emergence of the frontal face detection

technique with real-time performance and high accuracy by Viola and Jones [104]. One

major requirement in appearance-based methods, however, is that they need additional

pre-processing steps to cope with lighting variations. For example, most appearance-
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Table 3.1: Comparison of Frontal/Near-Frontal Face Detection Methods in Gray-scale
Images.

Face Detection Method CMU CMU-125 MIT MIT-20

Colmenarez and Huang [105] 93.9%/8122 - - -
Feraud et al. [98] 86.0%/8 - - -
Yang et al. [69] - 93.6%/74 91.5%/1
Wu et al. [132] 94.5%/57 - - -

Osuna et al. [106] - - 74.2%/20 -
Roth et al. [107] - 94.8%/78 94.1%/3

Rowley et al. [86] 86.2%/23 - - 84.5%/8
Schneid. & Kanade [102] - 94.4%/65 - -

Sung and Poggioet al. [95] - - 79.9%/5 -
Viola and Jones [104] 88.4%/31 - 77.8%/5 -

Wang and Ji et al. [133] 90.2%/64 - - -
Li et al. [103] 90.2%/31 - - -

Liua [111] 97.4%/1 - - -
Waring and Liu [121] - 96.7%/67 - 95.6%/6

Garcia and Delakis [97] 90.3%/8 90.5%/8 90.1%/7 90.2%/5

aOnly 80 images from the CMU database containing 227 faces are used in the evaluation.

based methods employ lighting compensation models, followed by histogram equali-

sation [86, 95, 117], normalisation with zero-mean and unit-norm vector [93, 111], with

rare exceptions like of Garcia and Delakis that avoid such local pre-processing prior to

classification [97].

Table 3.1 gives a performance summary of gray-scale based face detection algorithms.

The Performance figures, extracted from the relevant literature, are given against 4 bench-

mark test data sets, namely CMU, CMU-125, MIT, MIT-20. In this analysis, effectiveness

is used as a measure of comparison between 14 different face detection approaches. Ef-

fectiveness generally refers to a measure, which indicates how accurate an algorithm is in

terms of correct/false detection rates. Since this analysis is purely based on performance

figures reported by different authors corresponding to different data sets and evalua-

tion criteria, a direct comparison of these algorithms, however, becomes an impossible

task. For example, different authors have shown detection performances for different

values of false positives. In this context, it is not possible to compare, for instance, the

two algorithms reported in [105] and [86] with 93.9% and 86.2% correct detection perfor-

mances at 8,122 and 23 false positives respectively. Overall, it shows that the algorithm

presented by Waring and Liu [121] performs best with correct detection/false alarm fig-

ures 96.7%/67 and 95.6%/6 for CMU-125 and MIT-20 respectively. Other methods such

as [97], [103], [107], [104] closely follow the method of Waring and Liu.

Table 3.3 gives a performance summary of face detection algorithms that work on
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Table 3.3: Comparison of Frontal/Near Frontal Face Detection Methods in Colour Im-
ages.

Face Detection Method HHI Video Frames Champion

Hsu et al.a [66] 90.0%/10 - 91.63%/14
Garcia et al. [85] - 94.23%/6 -
Chow et al.b [70] 92.7%/4 - -

aOnly 227 images from the Champion database are used in the evaluation.
bOnly 151 images out of 206 are used in the evaluation. Also no false positive figures have been reported

in the paper

colour images. The performance figures are given for 3 different test data sets, namely

HHI MPEG-7, Video Frames, and Champion. In this analysis, correct detection rate is

used as a measure of comparison between the 3 face detection algorithms. Due mainly

to different data sets used across the performance assessment of different algorithms,

determining the best algorithm even among the above 3 becomes a difficult task. The

two algorithms presented in [66] and [70] are reported to perform with 90.0% and 90.1%

correct detection rates respectively. Although Hsu et al. [66] reports 10 false positives in

the evaluation, Chow et al. [70] do not report anything related to false detection, making a

full comparison between the algorithms impossible. Garcia et al. [85], on the other hand,

use totally different test data that has been gathered from videos.

A summary of performance comparison between multi-view face detection methods

is given in Table 3.4. The performance figures extracted from the relevant literature are

given against 2 benchmark data sets, namely CMU-Profile and CMU-PIE. Eight different

algorithms are studied with a view to identifying the best profile face detection technique.

Similar complications, however, arise in drawing conclusions due to the manner different

authors have reported the performance figures corresponding to different data sets and

evaluation criteria. The figures show that the method presented by Huang et al. [127]

proves to be the best out of all 8 methods. It should be noted that the only algorithm,

which has been evaluated on the CMU-PIE data set, is the one presented by Xiao et al.

[131] in colour images. However, its performance on full profile faces is reported to be

relatively poor.

This review illustrates the fact that frontal face detection technology has made im-

pressive progress, particularly using technologies based on SVM, Haar-wavelet features

and the AdaBoost algorithm, in the methods proposed in [121], [86] and [129]. They have

superceded the previously emerged well-known algorithms, such as the ones based on

neural networks [86,98], distribution based approaches [95] and Bayesian methods [109].

From this literature survey and the study of various application scenarios, it is evident

that the AdaBoost face detector [104] and its variants are being largely employed in recent
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Table 3.4: Comparison of Profile Face Detection Methods.

Face Detection Method CMU profile CMU-PIE
Half profile Full profile

Schneid. & Kanade [102] 75.2%/12 - -
Huang et al. [134] 89.6%/72 - -
Huang et al. [135] 90.9%/82 - -
Huang et al.a [127] 93.5%/100 - -

Wu et al. [132] 89.8%/221 - -
Wang and Jib [133] 82%/200 - -

Xiao et al.c [131] - 90.14%/94.32% 6.175%/63.99%
Jones and P. Viola [128] 83.1%/700 - -

aDetection rate is obtained from the ROC curve provided
bDetection rate is obtained from the ROC curve provided
cSubsets of images from the CMU-PIE database are used in the evaluation and the performance figures

are in recall/precision.

research paradigms, such as those proposed by Sivic et al. [136] and Peker et al. [137].

Multi-view face detection has recently received much attention due to its increasing

demand, particularly in application areas such as surveillance, human computer inter-

action, and image/video search and retrieval. Among the approaches proposed to date,

SVMs have shown promising performance in addressing the problem of multi-view face

detection due to its excellent generalisation capacity. One common drawback of SVM-

based methods is, however, that their detection speed is slow particularly when dealing

with large pose variations.

3.5 Summary

Despite the fact that there are a large number of face detection algorithms presented

by various researchers, only a few promising techniques can be identified as the po-

tentially useful approaches for detecting faces in real-world applications. In carrying

out the comparative performance analysis of face detection algorithms reported in this

chapter, some difficulties persist in identifying the best algorithm for challenging applica-

tions, due mainly to the lack of uniform performance evaluation criteria adopted in face

detection evaluations. Firstly, the lack of test data sets available to the researchers has

become a major problem in performing unbiased comparisons. For example, most of the

benchmark test data sets are available in gray-scale form, restricting comparison of algo-

rithms that work on gray-scale and colour images. Some attempts made in constructing

new colour databases have been hindered due to copyright issues. Consequently, it has

forced algorithm developers to carry out evaluations either using the databases such as

the FERET-colour [138] and HHI [66], which are specifically designed for experimenta-
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tion of face recognition algorithms, or using their personal collections gathered from the

web [66], photo albums [66], video keyframes [85], etc. Evaluation of gray-scale based

face detection algorithms has been mostly carried out using the FERET and MIT-CMU

data sets [69] [78] [111]. The FERET data sets provide the coverage of a broad range of

face types with good lighting and uncluttered backgrounds while MIT-CMU provides

a challenging data set with variable lighting and cluttered backgrounds. However, dis-

crepancies exist due mainly to reasons, such as re-organising test content by removing

some images from the original set, different definitions of correct/wrong detection and

different limits on the minimum size of the face detectable using a particular algorithm.

Research on profile face detection has a relatively short history. The most prominent

techniques proposed to date, including [98, 102, 123–128], use appearance-based model-

ing approaches to solve this problem. Compared to frontal face detection technological

advancement, technologies for profile face detection have just begun to emerge still re-

quiring stronger contributions from the research community, in order to be able to bring

truly powerful and realistic outputs to the community.

Of the large number of frontal face detection algorithms available in the literature,

there are a number of algorithms such as of Viola and Jones [104], Schneiderman and

Kanade [102], Garcia and Delakis [97], Liu [111], and Hsu et al. [66] that can be con-

sidered as potentially useful approaches for detecting faces in personal photo archives.

However, taking into account the two important issues with regards to the need for de-

tecting small-sized faces and in-plane rotated faces in personal photo archives, and the

ability of the algorithm to generate face detection results with such details, the BDF face

detection algorithm, originally proposed by Liu [111], can be considered as one of the

most appropriate approaches to be investigated in this thesis. It has the ability to detect

faces as small as 16 × 16 pixels. More importantly, it can also provide the angle of in-

plane rotation, allowing images be re-oriented prior to extracting body-patch features.

However, the high computational complexity associated with the BDF face detection al-

gorithm makes it a less attractive approach in practice. Therefore, this thesis makes an

attempt to improve its computational complexity by incorporating some performance

enhancing features (see Chapter 5) whilst exploiting the inherent advantages of the BDF

method for detecting faces in personal photos.

The above review also highlights the fact that most of the well-known face detec-

tion algorithms have been developed for use with gray-scale images. Although such

approaches perform satisfactorily on most existing test data sets, the lack of robustness

in real-life scenarios becomes a serious concern to end-users [9]. In this context, inves-

tigating the use of the colour feature for effective face detection can be considered as an
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important research item to be considered in this thesis. To this end, the importance of

skin modeling and detection is taken into account in this thesis, in order to investigate

their influence on the overall performance of frontal/near-frontal face detection. The

work carried out on different skin modeling and detection technologies together with a

performance comparison of state-of-the-art skin segmentation algorithms is presented in

the following chapter4.

4In relation to the research presented on face detection in Chapter 5, it is not, however, intended to carry
out a performance comparison of different face detection algorithms in this thesis, due mainly to the fact
that implementations of the state-of-the-art face detection algorithms in colour images are not available to
us from the original authors and implementing such algorithms from scratch is outside the context of this
research.
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Chapter 4
Human Skin Modeling and Detection

in Still Images

This chapter addresses the problem of human skin modeling and detection with a view

to identifying a suitable skin segmentation approach for face detection in still images. It

starts with a description of different approaches to skin detection, such as fixed-boundary

thresholding methods, parametric statistical models, non-parametric statistical models,

lighting compensated methods, and adaptive models in Section 4.1. An analysis of skin

and non-skin colour characteristics in different colour spaces is presented in Section 4.2

using a variety of skin and non-skin representative samples. A description of a num-

ber of the most notable colour spaces is given in Section 4.2.1, followed by a study of the

characteristics of skin and non-skin colour distributions in Sections 4.2.2 and 4.2.3 respec-

tively. In Section 4.2.4, an analysis of skin and non-skin colour distributions in chromatic

spaces is given. A discussion on important aspects of skin and non-skin colour analysis

and existing skin-segmentation algorithms is given in Section 4.3. A new histogram-

based model is then presented in Section 4.4 as a pixel-based approach to skin detection.

The methodology adopted to train the model is described in Section 4.4.1, followed by a

performance analysis in Section 4.4.2. A performance comparison of different skin detec-

tion methods is then presented in Section 4.5. The chapter concludes with a summary in

Section 4.6.

4.1 Existing Approaches to Skin Detection

Skin segmentation techniques can be generally classified into: (i) fixed-boundary thresh-

olding methods (ii) parametric statistical models (iii) non-parametric statistical models

(iv) lighting compensated methods, and (v) adaptive approaches. In fixed-boundary

thresholding approaches, skin and non-skin pixels are separated by bounded planes,

79



CHAPTER 4. HUMAN SKIN MODELING AND DETECTION IN STILL IMAGES

which are defined using pre-identified thresholds on different components of the colour

space [84,85,139–141]. Both parametric and non-parametric statistical approaches, on the

other hand, employ statistical learning techniques to skin modeling and detection. Exam-

ples of statistical parametric methods include single Gaussian models and Gaussian mix-

ture models [68, 87, 142, 143], whereas histogram analysis and self-organising maps have

been, for example, used as non-parametric skin modeling methods [143–145]. Lighting

compensated methods adhere to the principle of colour correction as a means to compen-

sate for colour changes when images are subject to extreme lighting conditions [66, 146].

Adaptive modeling methods provide an extra functionality to dynamically learn and ad-

just the thresholds or model parameters according to the type of images present in a

given problem [141, 147].

4.1.1 Fixed-Boundary Thresholding Methods

Skin detection methods based on fixed-boundary thresholds rely on the principle that the

colour of a pixel lies inside a defined region constrained by pre-computed boundaries.

Typically, region boundaries are determined using representative samples of skin data.

Such decision boundaries include finding regions of rectangles [84, 139, 140], 3D boxes

[141], a set of bounded planes [85] and ellipses [66, 148].

In a relatively simple and fast technique presented by Chai and Ngan [140], a pixel

is classified as skin if its chrominance values Cb and Cr are within a predefined range as

given in (4.1).

Cb ∈ [Cb min,Cb max] and Cr ∈ [Cr min,Cr max] (4.1)

where Cb min = 77, Cb max = 127, Cr min = 133 and Cr max = 173.

Sobottka and Pitas [84] transformed colour vectors from RGB to HSV and used only

the hue and saturation components to segment candidate face regions based on the fol-

lowing bounded regions.

H ∈ [H min,H max] and S ∈ [S min, S max] (4.2)

where H min = 0◦, Hmax = 50◦, S min = 0.23 and S max = 0.68.

In face segmentation for a speaker identification application carried out by Wark and

Sridharan, simple thresholding on the R
G ratio was employed to identify skin-like re-

gions [149]. Pixels corresponding to a region bounded by two pre-defined thresholds are

classified to be skin based on the criterion given in (4.3).
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Llim ≤ R

G
≤ Ulim (4.3)

where Llim = 1.2, and Ulim = 1.45.

In the skin segmentation technique proposed by Wang and Yuan [150], boundary

thresholds are defined using different components of the normalised RGB1 colour space

as well as the HSV colour space. They used the r and g colour components from the

normalised RGB colour space and all three components from the HSV colour space.

The threshold values used in that approach are given in (4.4) and (4.5).

0.36 ≤ r ≤ 0.465, 0.28 ≤ g ≤ 0.363 (4.4)

0 ≤ H ≤ 50, 0.2 ≤ S ≤ 0.68, 0.35 ≤ V ≤ 1.0 (4.5)

Garcia and Tziritas [85] used adjusted bounding planes in the HSV and Y CbCr colour

spaces, and reported improved results over rectangle type fixed-boundary thresholding

methods. They first quantise the image in the HSV colour space using the k-means

algorithm before the two subspaces with bounding plane equations in both HSV and

Y CbCr are used to assign a given pixel to skin or non-skin label.

4.1.2 Parametric Statistical Models

Gaussian modeling methods follow the principle that, upon training a model with repre-

sentative samples, model parameters can be computed to determine a probabilistic value

for any given colour pixel in the image. Classification is then carried out by simply com-

paring the level of affiliation of a given pixel with a selected threshold value. Single

gaussian models and Gaussian mixture models have been shown to be effective for cer-

tain applications [68, 87, 142]. Overall, the advantage of using the Gaussian models is

that they can be made to generalise well on small amounts of training data [143]. Equa-

tion 4.6 and 4.7 give the mathematical representation of single Gaussian and Gaussian

mixture models respectively. Alternatively, it can be said that Equation (4.6) and (4.7)

provide probabilistic representations for the affiliation of each input pixel x based on a

single Gaussian and a Gaussian mixture model respectively.

P (x) =
1

(2π)d/2|Σ|1/2
exp−

1
2
(x−µ)T Σ−1(x−µ) (4.6)

1Note that the three components of the normalised RGB colour space is conventionally represented by r,
g and b.
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P (x) =
N∑

i=1

ωi
1

(2π)d/2|Σi|1/2
exp−

1
2
(x−µi)

T Σ−1
i (x−µi) (4.7)

where x is a feature vector with dimension d, wi is the scaling factor of the ith Gaus-

sian, and µi and Σi are the mean vector and the covariance matrix of the ith Gaussian

respectively.

Greenspan et al. presented a method for skin colour modeling and segmentation us-

ing a mixture of Gaussian models [151]. They trained the model in the r-g chromatic

space using heterogeneous databases that included both skin-tone variations as well as

natural lighting variations. In order to compute the parameters of the Gaussian mixture

model, they used the EM algorithm. The k-means algorithm was utilized to extract the

data-driven initialisation with the number of clusters (k) set to 2. A given colour pixel in

r-g space is classified as skin by identifying the Gaussian with the highest probability and

then comparing the corresponding value of (x− µi)
T Σ−1

i (x− µi) (see Equation 4.6) with

a predefined threshold. They employed the proposed model in a face detection applica-

tion and showed the benefit of using the Gaussian mixture models over single Gaussian

models.

Yang and Ahuja developed a Gaussian mixture model for skin colour using the Michi-

gan face database, which contains 2,447 images accounting for more than 9.5 million skin

pixels [152]. The mixture model was trained in the LUV colour space by discarding the

lightness value L, in order to reduce the dependence on the lighting conditions. They

used the Hawkins test to answer the questions of normality and homoscedasticity of

the proposed Gaussian components for skin modeling. The number of components re-

quired for the model was tested using a bootstrap method. The EM algorithm was used

to calculate the parameters of the mixture model, such as the mean vectors, covariance

matrices and the weighting factors. The initial labeling was done using the k-means

clustering algorithm with k set to 2, which is the number of components in the mixture

model. Upon comparing the performance of single and a mixture of Gaussian models,

they showed that more effective skin segmentation could be achieved using a Gaussian

mixture model.

Jones and Rehg developed a Gaussian mixture model using large sets of skin and non-

skin data samples obtained from 1,730 skin images and 4,483 non-skin images [143]. De-

signed with 16 Gaussians components in each of skin and non-skin model, they trained

the models using a parallel implementation of the EM algorithm. A complete listing

of the learned parameters for the skin and non-skin mixture models have been made

available in [143]. However, their experiments showed that histogram-based modeling
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methods (see Section 4.1.3) performed better than a mixture of Gaussians despite their

advantage in low-storage cost.

In the person-based image and video retrieval system proposed by Ikizler and Duygulu

[153], a Gaussian skin model was used to improve the face detection performance by re-

ducing the number of false positives. Based on the skin detection experiments carried

out by the authors on two videos, though contradictory with the findings from other au-

thors [143, 144], simple Gaussian skin models were reported to have performed better

than the Bayesian histogram models. In their approach, a single Gaussian model was

modeled in the HSV colour space using representative samples of skin and non-skin

data extracted from 30 key-frames. The class-conditional probability of pixels is then

computed using this model to classify a given pixel as skin or not. However, due to the

lack of evaluation results presented in [153] and the small amount of data samples used in

the training process, further details of the adopted approach would be helpful to justify

their findings.

4.1.3 Non-Parametric Statistical Models

Histograms, Neural networks (NN) and Self-organising maps (SOM) are well-known

techniques for non-parametric statistical modeling. They have been identified as rela-

tively robust skin segmentation methods compared to most other techniques in the liter-

ature.

In histogram-based skin detection, models are typically trained in advance using

large representative samples of skin or both skin and non-skin data. Histogram-based

representation of the skin-colour distribution allows a trivial computation of the proba-

bility density functions of the skin and non-skin classes regardless of the complexity of

the underlying distribution. Given sufficiently large training data sets and a properly

chosen quantisation level, this type of category is considered to be among the best skin

detection methods in computer vision [154].

In this category of skin modeling, each skin pixel from the training set is added to the

bin corresponding to its own colour. The resulting bin counts then give the observed fre-

quency of occurrence of that colour amongst the training pixels. The same process can be

applied to a set of non-skin training pixels to study the pattern of non-skin distributions.

A classifier can then be constructed by identifying a suitable threshold value for given

correct-detection and false-detection acceptance rates.

The classification theory of histogram-based approaches is expressed as a formulation

of the a posteriori probabilities of the two classes: skin and non-skin. A given sample x

can be classified to be skin if the ratio between the two a posteriori probabilities, i.e.
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P (skin|x) and P (nonskin|x), is greater than a pre-defined threshold K, as given in (4.8).

K <
P (skin|x)

P (nonskin|x)
(4.8)

Using Bayes’ rule, P (skin|x) and P (nonskin|x) can be defined as follows.

P (skin|x) =
p(x|skin).P (skin)

p(x|skin).P (skin) + p(x|nonskin).P (nonskin)
(4.9)

P (nonskin|x) =
p(x|nonskin).P (nonskin)

p(x|nonskin).P (nonskin) + p(x|skin).P (skin)
(4.10)

where p(x|skin) and p(x|nonskin) are the conditional probability density functions, and

P (skin) and P (nonskin) are the a priori probabilities of the skin and nonskin classes

respectively2.

By combining (4.9) and (4.10), and also taking the condition P (skin)+P (nonskin) = 1

into account, Equation 4.8 can be rearranged as follows.

P (x|skin)
P (x|nonskin)

> K × 1− P (skin)
P (skin)

(4.11)

where P (skin) =
Nskin

Nskin + Nnonskin
, and Nskin(Nnonskin) are the numbers of skin(nonskin)

pixels in the training data set.

Jones and Rehg used large sets of hand-labeled skin and non-skin data to build three

dimensional histograms in the RGB colour space [143]. To determine if a pixel belongs

to skin or not, an empirically determined threshold parameter value was compared with

the ratio of the conditional probabilities of the skin and non-skin classes. They trained a

histogram-based skin classifier using 6,822 images (4,483 skin and 2,339 non-skin). The

performance of the classifier was then measured using 6,818 images (4,482 skin and 2,336

non-skin)3. Although the classifier performed very well on most test images, its perfor-

mance was found to be poor on highly saturated or shadowed skin-tone pixels. In the

context of identifying a suitable number of bins per colour-channel, they identified 32-bin

as the best histogram resolution for this model. They also compared the performance of

histogram models with that of the Gaussian mixture models, and found that histogram

models were superior in both accuracy and computational cost.

Tsishkov et al. adopted a histogram-based skin segmentation method along with a

data mining technique for face detection in colour images [155]. They illustrated that

2Note that the notation p(x) is used to represent the probability density function of random variable x
while P (x) is used to represent the probability mass function.

3A total number of 13,640 manually labeled skin images and non-skin images are available from the
authors of [143] in the form of a database called the compaq skin database.
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combining a data mining technique with a histogram-based skin model could signifi-

cantly improve the performance of face detection while the computation increase due to

use of skin colour could be kept under 1% of the total computational complexity. For

training the skin and non-skin models, they used the compaq database from [143]. The

manually labeled skin regions were included in the skin model while all the images that

did not contain human skins were included in the non-skin training model. Colour pix-

els corresponding to the complements of the manually labeled images were not used in

the training process. The reason for this was due to inaccuracies that generally occur in

segmentation.

Phung et al. presented a performance comparison of histogram models with other

skin detection methods, such as fixed-boundary thresholds, single Gaussian, Gaussian

mixture and multilayer perceptron [144]. They used 2,500 and 1,500 images from the

ECU skin database for training and testing the histogram model. A total number of 116.6

million skin pixels and 564.1 million non-skin pixels were used for training the classifiers.

The performance of the classifiers were tested using skin and non-skin data sets of size

92.8 and 337.7 million pixels. They showed that the Bayesian histogram classifier and

the MLP classifier produced very similar performances and they were both better than

the other classifiers. They also showed that the performance of the histogram model was

largely unaffected by the choice of the colour space.

The neural-network model proposed by Phung et al. was trained using both positive

and negative samples extracted from 100 images in the Cb-Cr space [156]. By using a MLP

classifier, it was shown that an accurate approximation of the decision boundary for skin

colours in the Cb-Cr planes was achievable with small-sized networks. In the SOM-based

skin detection method proposed by Browns et al. [145], two schemes for classifying skin

and non-skin pixels were proposed - one using only skin samples and the other using

both skin and non-skin training samples. They used 2D intensity invariant vectors from

each colour space transformation to train the SOM model. They found that using both

skin and non-skin training data performed better than the other on skin segmentation,

with no preference to the choice of the colour space. However, the performance of the

SOMs on part of the Compaq database was comparatively lower than that of the results

reported by Jones and Rehg [143].

4.1.4 Lighting Compensated Methods

In addressing the issues related to illumination variations, a priori colour correction is

considered to be a useful operation in skin segmentation [66, 146, 157–159]. Gray World

and white balance algorithms have been widely used as the colour constancy algorithms
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in the literature [158].

Hsu et al. [66] employed a colour constancy technique based on white balancing. They

considered “reference white” to be the top 5% of the luma values in the image. For a given

colour image, lighting compensation is carried out only if the number of reference white

pixels is larger than 100 and the average colour of the image is not similar to skin colour.

The R,G,B values of the entire image are adjusted so that the average gray values of

the reference white pixels are linearly scaled to 255. The corrected R, G, and B are then

subject to a non-linear transformation in the Y CbCr space to reduce the affect of luma

dependency. The transformed pixels are then classified as either skin or non-skin using

an elliptical shape function in the CbCr space.

In the Y CbCr colour space, the chroma Cb and Cr are regarded as a function of the

luma Y , and hence expressed as Cb(Y ) and Cr(Y ). The non-linearly transformed chroma,

which are represented by C
′
b(Y ) and C

′
r(Y ), and modeled by the centers C̄b(Y ) (see Equa-

tion 4.14), C̄r(Y ) (see Equation 4.15) and spreads of the cluster Wcb
(Y ), Wcr(Y ) (see Equa-

tion 4.13), are defined in (4.12).

C
′
i(Y ) =





(Ci(Y )− C̄i(Y )) Wci
Wci (Y ) + C̄i(Kh) if Y < K1 or Kh < Y

Ci(Y ) if Y ∈ [K1,Kh]
(4.12)

Wci(Y ) =





WLci + (Y−Ymin).(Wci )−(WLci )

Kl−Ymin
if Y < K1

WHci + (Ymax−Y ).(Wci )−(WHci )

Ymax−Kh
if Kh < Y

(4.13)

C̄b(Y ) =





108 + (Kl−Y )−(118−108)
Kl−Ymin

if Y < K1

108 + (Y−Kh)−(118−108)
Ymax−Kh

if Kh < Y
(4.14)

C̄r(Y ) =





154 + (Kl−Y )−(154−144)
Kl−Ymin

if Y < K1

154 + (Y−Kh)−(154−132)
Ymax−Kh

if Kh < Y
(4.15)

where Wcb
= 46.97, WLcb

= 23, WHcb
= 14, Wcr = 38.76, WLcr = 20, WHcr = 10,

Kl = 125, Kh = 188, Ymin = 16 and Ymax = 235.

The elliptical model in the transformed C
′
bC

′
r space is described in (4.16) and (4.17).

(x− ecx)2

a2
+

(y − ecy)2

b2
= 1 (4.16)


 x

y


 =


 cos θ sin θ

− sin θ cos θ





 C

′
b − cx

C
′
r − cy


 (4.17)
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where cx=109.38, cy=152.02, θ=2.53 (in radians), ecx=1.60, ecy=2.41, a=25.39 and b=14.03.

Chen and Grecos presented a skin detection algorithm in the normalised RGB colour

space comprising 3 steps, namely lighting compensation, skin colour filter, and mask

refinement with morphological operations [157]. In order to improve the performance of

the gray world algorithm, a modified term for Cstd (see Equation 4.18) was proposed as

given in Equation 4.19.

SC =
Cstd

Cavg
(4.18)

where SC is the scale factor for colour channel C, Cstd is the standard mean gray value

and Cavg is the mean value of the colour channel C.

Cstd =

m∑

i=1

[max(Ri, Gi, Bi) + min(Ri, Gi, Bi)]

2× n
,

n = m−
m∑

i=1

(Ri = Gi = Bi = 0) (4.19)

where m is the number of pixels in the image, n is the number of non-black pixels in the

image, and Ri, Gi, Bi represent the red, green and blue values of the ith pixel respectively.

4.1.5 Adaptive Modeling Methods

The performance of a generic skin detection algorithm usually degrades when perform-

ing under unconstrained environments due to a variety of reasons, including changes

in illuminant colour, illuminant geometry, viewing geometry, camera characteristics and

background conditions. Most existing approaches perform well only in restricted en-

vironments. Even the lighting-compensated skin detection methods may not always

perform well in the presence of drastic changes in lighting conditions [160]. Adaptive

modeling methods are, in this context, proposed by various researchers to dynamically

learn the problem at hand and accordingly adjust the thresholds or model parameters to

improve the overall performance of skin detection.

Sahbi and Boujemaa used an adaptive skin segmentation method to detect faces in

colour images [68]. In the first stage of their algorithm, a coarse colour segmentation

was performed from which skin-like and nonskin-like regions were identified using a

pre-trained ANN. The skin regions obtained from the first stage were used in a second

learning step to provide parameters to a Gaussian mixture model.

Phung et al. proposed a method that used texture characteristics of human skin to
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select appropriate skin colour thresholds [147]. Their hypothesis was that a skin-coloured

region that is a mixture of an actual skin and an adjacent background region tends to

show a non-uniform colour distribution in it. In this approach, a given image is initially

segmented using a lookup table method with a small threshold value, followed by a

homogeneity test on large regions. Failing the homogeneous test increases the threshold

value until a desired level of homogeneity is obtained. The homogeneity measure is

computed based on the standard deviation and the number of edge pixels found within

the region. This approach was later adopted by Zheng and Gao [161] in a fast adaptive

skin detection technique, which works in the compressed domain.

Cho et al. proposed an adaptive skin-colour filter for detecting skin colour regions

using the HSV colour space [141]. The algorithm comprises two stages. In the first

stage, a thresholding box in HSV is updated adaptively using a colour histogram under

the assumption that the area of skin colour regions is comparable to that of seemingly

similar background regions. In the second stage, colour vectors inside the thresholding

box are classified into two groups: skin colour vectors and background colour vectors

through cluster analysis. Finally, the skin colour vectors whose mean vector is closer to

the mean of the skin colour vectors pre-learnt from sample images are chosen as skin

colour vectors. One drawback of this method is that it tends to fail in the presence of

dominant (larger than the actual skin object) skin-like background regions. Also, the

range of ethnic colours it can detect is limited due to the strict thresholding condition

imposed on the H component.

In a framework of objectionable image filtering application, a two-step adaptive skin

detection method in the HS space was presented by Zhu et al., comprising a rough skin

classifier and a refinement step [142]. The pre-trained classifier used in the first stage

defines a skin-similar space, which often contains many non-skin pixels due to the in-

evitable overlap between skin and non-skin pixels. In the second stage, using a refine-

ment step reduces the false positive rate without compromising much on the correct de-

tection rate. They found that a dominant Gaussian corresponding to true skin pixels and

a weak Gaussian corresponding to false skin pixels exist in the skin-similar space. In

order to compute the parameters of the Gaussian mixture model, the standard EM algo-

rithm was used. Then an SVM classifier trained on the spatial and shape features along

with the Gaussian parameters is employed to identify the correct skin Gaussian compo-

nent. They claimed that the proposed adaptive method achieves a significantly lower

false positive rate compared to traditional skin detection methods.

Summarising the above study on existing approaches to skin detection in terms of

their effectiveness and robustness, it is clear that the most recent approaches are largely
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based on histogram based non-parametric methods and adaptive modeling. The need

for colour constancy algorithms has also been emphasised by some authors for compen-

sating the adverse effects on skin appearance due to extreme lighting conditions. Taking

these facts into account, the following research on analysing the characteristics of skin

and non-skin data taken under challenging conditions is carried out to understand how

such data could be accordingly modeled, leading to an effective skin segmentation ap-

proach.

4.2 Analysing the Characteristics of Skin and Non-skin Data

In order to study the problem of skin modeling and detection for different ethnic skin

types and imaging conditions, characteristics of skin and non-skin data are analysed in

this section using representative samples of skin and non-skin data in different colour

spaces. Further analysis of skin and non-skin colour distributions using chrominance

coordinates is also performed to understand the effectiveness of the skin segmentation

methods in chromatic spaces alone.

4.2.1 Colour Spaces

Of a number of existing colour spaces, a few widely used spaces such as RGB, nor-

malised RGB, Y CbCr, HSV and CIE-LAB are chosen to investigate their affect on skin

segmentation in still images. It is believed that the above form a sufficient set of colour

spaces whilst avoiding the use of sibling colour-spaces that share similar characteris-

tics [162]. A brief description for each of these colour spaces is given below (see [163] for

more details).

• RGB: The RGB space is the most basic colour space among all other spaces whilst

being the most frequently used in image processing. Three primary colours, namely

red (R), green (G) and blue (B), are the components of this colour space. The colour

gamut in this space forms a cube with each colour represented by a point either on

the surface or inside the cube. The main diagonal of the cube represents the gray

values from black (R=G=B=0) to white (R=G=B=255).

• Normalised RGB: Normalised colour components of the R, G and B are expressed

by r, g and b as shown in (4.20). They are also known as chromaticity coordinates.

As Equation 4.20 describes, the transformation from RGB to rgb helps eliminating

the affect of illumination intensity. Considering the property of linear dependency

between the three components, i.e. r+g+b=1, this colour space can be represented
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by only two normalised colours, for example using r and g only.

r = R/(R + G + B)

g = G/(R + G + B)

b = B/(R + G + B)

(4.20)

• Y CbCr: The Y CbCr space is one of the television colour spaces, which comprises

a luminance component (Y ) and two chrominance components (Cb, Cr) based on

colour difference signals: B-Y and R-Y . Conversion from/to RGB space involves

a simple linear transformation, making it computationally attractive for certain ap-

plications. Y IQ and Y UV are two similar colour spaces to Y CbCr.

• HSV : In this space, colours are represented by three attributes, namely hue (H),

saturation (S) and value (V ), which involve a non-linearly transformation from

the RGB space and vice-versa. The hue represents the impression related to the

dominant wavelength of the colour stimulus while the saturation defines the rela-

tive colour purity. Intensity varies from minimum to maximum, representing pure

black and pure white respectively. Other similar colour spaces to HSV are HLS

(Hue, Lightness, Saturation) and HIS (Hue, Intensity, Saturation).

• CIE-LAB: The CIE-LAB space is one of the two perceptually uniform colour

spaces recommended by the CIE in 1976, which involves a non-linear transforma-

tion of the tristimulus space [163]. It has a lightness scale (L) and two opponent

colour axes (A and B) corresponding to approximately red-green versus yellow-

blue. CIE-LUV is the other colour space recommended by the CIE together with

CIE-LAB.

4.2.2 Characteristics of Skin Data

An analysis of skin colour distributions related to different ethnic skin types, such as

black, dark and white, in three different colour spaces namely RGB, normalised RGB

and Y CbCr is presented in this section. A moderate sized skin data set comprising 110

images for each ethnic skin type (see Figure 4.1 for some example images) is used for

this analysis. Black ethnic skin comprises people like Africans, while dark ethnic skin

comprises, for example, people from south Asia. The white skin type, on the other hand,

covers a wider range of ethnic skin types comprising, for example, Americans, Euro-

peans, Japanese and Chinese. These images were collected from various sources with

significant variations, thereby allowing them be considered as a true representative set of

skin-data for this study. An analysis of the characteristics of a mixed data set comprising
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(a) Black skin images

(b) Dark skin images

(c) White skin images

Figure 4.1: Example images used in the analysis of human skin characteristics.

all the images in the three categories is also carried out. The number of skin pixels in

the above four data sets correspond to 4,708,362, 3,954,700, 5,440,270 and 14,103,332 for

black, dark, white and mixed categories respectively. Skin colour distribution patterns of

different ethnic skin types in terms of a probability density function are shown in Figure

4.2, 4.3, 4.4 for RGB, normalised RGB4 and Y CbCr colour spaces respectively. A statisti-

cal measure of the skin colour distribution in different colour spaces is presented in terms

of mean and standard deviation in Table 4.1, 4.2, 4.3 and 4.4 for black, dark, white and

mixed ethnic skin types respectively.

The skin colour distribution patterns shown in Figure 4.2 demonstrate that the distri-

bution of R, G and B correspond to a wide spectrum while they tend to exhibit a drift

towards the high intensity range when skin type changes from black to white. It can also

be observed that compared to dark and white skin types, black skin exhibits a relatively

narrow spectrum. In all four categories, i.e. black, dark, white and mixed, the colour

distribution pattern of R looks to be somewhat different from that of G and B. However,

considering the distribution of mixed skin type (from (j) to (l)), the RGB colour space

doesn’t seem to confine the distribution of human-skin colours to a definite range. The

property of wide distribution of skin colours in the RGB colour space is statistically il-

lustrated by the high values of standard deviation shown in the second column of Table

4.1, 4.2, 4.3, and 4.4 for the four skin categories.

As Figure 4.3 depicts, a similar study carried out in the normalised RGB colour space

illustrates a different pattern of skin-colour distributions, with sharp peaks indicating a

4It should be noted that the values of r, g and b are rescaled between 0 and 255 in Figure 4.3, in order to
allow a clear comparison of the colour distributions with that of the other colour spaces.

91



CHAPTER 4. HUMAN SKIN MODELING AND DETECTION IN STILL IMAGES

property of compactness of this colour space. All three components of this space demon-

strate narrow spectrums, with b showing the most compact distribution among the three

chromatic coordinates. Considering the statistical figures given in Table 4.1, 4.2, 4.3, and

4.4, smaller figures of standard deviation of r, g and b further demonstrate that bound-

ing values of the skin-tone region would result in a relatively small range of thresholds.

These figures also show that r produces the largest variation and b produces the smallest

variation in all four different skin categories.

Compared to the above two studies, skin colour distribution patterns in the Y CbCr

colour space (see Figure 4.4) share similar characteristics with both RGB and normalised

RGB colour spaces. As illustrated, the distribution of Y has a similar pattern to that of

RGB and the distribution patterns of Cb and Cr tend to resemble those of normalised

RGB. Statistical characteristics given in Table 4.1, 4.2, 4.3, and 4.4 similarly show high

standard deviation values for Y and relatively low values for Cb and Cr.
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Figure 4.2: Skin colour distribution in the RGB colour space with each row representing

the distributions of R, G and B: (a)-(c) distributions of black skin (d)-(f) distributions of

dark skin (g)-(i) distributions of white skin (j)-(l) distributions of mixed skin.
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Figure 4.3: Skin colour distribution in the normalised RGB colour space with each row

representing the distributions of r, g and b: (a)-(c) distributions of black skin (d)-(f) distri-

butions of dark skin (g)-(i) distributions of white skin (j)-(l) distributions of mixed skin.
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Figure 4.4: Skin colour distribution in the Y CbCr colour space with each row representing

the distributions of Y , Cb and Cr: (a)-(c) distributions of black skin (d)-(f) distributions of

dark skin (g)-(i) distributions of white skin (j)-(l) distributions of mixed skin.

Table 4.1: Characteristics of skin data of black ethnic.

RGB space 
(R,G,B)

# images - 110 
# pixels - 4,708,362

Mean

Normalised RGB space 
(r,g,b)

Standard Deviation

94.98 
73.94 
58.98

36.16 
30.96 
28.02

106.78 
64.88 
81.90 

12.18 
10.60 
5.29 

YCbCr space 

(YCbCr)

82.95 
117.82 
137.80 

27.11 
5.94 
5.69
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Table 4.2: Characteristics of skin data of dark ethnic.

RGB space 
(R,G,B)

# images - 110 
# pixels - 3,954,700

Mean

Normalised RGB space 
(r,g,b)

Standard Deviation

145.75 
102.94 
78.28

51.0 
45.44 
44.86

117.29 
57.21 
79.04 

16.08 
14.50 
5.67 

YCbCr space 

(YCbCr)

112.50 
110.35 
148.05 

39.68 
7.99 
7.65

Table 4.3: Characteristics of skin data of white ethnic.

RGB space 
(R,G,B)

# images - 110 
# pixels - 5,440,270

Mean

Normalised RGB space 
(r,g,b)

Standard Deviation

195.84 
154.59 
131.63

37.72 
40.29 
42.33

105.01 
67.67 
80.85 

11.21 
9.68 
4.35 

YCbCr space 

(YCbCr)

156.63 
111.34 
147.23 

33.28 
7.62 
7.42

Table 4.4: Characteristics of skin data of mixed ethnic.

RGB space 
(R,G,B)

# images - 330 
# pixels - 14,103,332

Mean

Normalised RGB space 
(r,g,b)

Standard Deviation

148.12 
113.18 
92.41

59.48 
52.25 
50.40

109.04 
63.80 
80.69 

14.06 
12.28 
5.19 

YCbCr space 

(YCbCr)

119.66 
113.22 
144.31 

45.89 
7.92 
8.36

4.2.3 Characteristics of Non-skin Data

In order to study the characteristics of non-skin colour distributions and also to investi-

gate the level of separability of the two classes in real-life images, a sample representation

of 733 colour images that did not contain skin pixels was collected, accounting for a total

number of over 462 million non-skin pixels (see Table 4.5 for a description of the data).

These images were randomly selected from various personal photo collections and web

images, ensuring that it included the maximum coverage of non-skin data that exist in

nature. The corresponding colour distribution patterns are shown in Figure 4.5, 4.6, 4.7

for RGB, normalised RGB and Y CbCr colour spaces respectively. It can be seen that
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these distributions poorly characterise a normal Gaussian distribution unlike the skin

colour distributions described in Section 4.2.2. The type of skewed distribution that non-

skin data tends to demonstrate can be further described using their mean and standard

deviation figures given in Table 4.5. Compared to skin data, a larger value of standard

deviation together with a significant deviation of the mean from median indicates that

non-skin data, in general, pose greater challenges for machine learning. Such a popula-

tion of data is generally difficult to be represented using a model defined by only a few

numbers.
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Figure 4.5: Non-skin colour distribution in the RGB colour space (a) R distribution (b) G

distribution (c) B distribution
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Figure 4.6: Non-skin colour distribution in the normalised RGB colour space (a) nor-

malised R distribution (b) normalised G distribution (c) normalised B distribution
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Figure 4.7: Non-skin colour distribution in the Y CbCr colour space (a) Y distribution (b)

Cb distribution (c) Cr distribution

4.2.4 Analysis of Skin and Non-skin Colour Distributions in Chromatic Spaces

In order to investigate the use of chromatic spaces to skin modeling and detection, the

Y CbCr colour space was chosen for further study. The behavior of the skin and non-skin
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Table 4.5: Characteristics of non-skin data.

# images - 733 
# pixels - 462,400,089

Mean

Standard Deviation

RGB space 
(R,G,B)

Normalized RGB space 
(r,g,b)

113.09 
113.00 
106.44

67.93 
67.30 
75.78

88.76 
76.54 
87.16 

29.86 
21.31 
28.91 

YCbCr space 

(YCbCr)

111.94 
124.62 
127.98 

56.56 
16.62 
15.46

colour distributions in the chromatic space is shown in Figure 4.8 as a 3-D plot Cr against

Cb. Considering the patterns of skin and non-skin distributions in the Cb-Cr chromatic

space, the overlap between the two distributions shows the level of ambiguity in dis-

criminating the two classes in chromatic spaces whilst the distribution of skin data more

closely resembles a Gaussian distribution. Considering the strong overlap between the

two distributions, it can be argued that defining fixed-boundary thresholds on chromatic

components, which some of the authors have previously proposed [140, 150], may not

lead to effective skin segmentation in practice.
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Figure 4.8: Skin and non-skin behavior in the Y CbCr colour space (Cr versus Cb) (a) skin

(b) non-skin

4.3 Discussion

Using the above review of existing skin segmentation methods and the study on charac-

teristics of skin and non-skin colour distributions presented in Sections 4.2.2, 4.2.3 and

4.2.4, the following important conclusions can be drawn on skin modeling and detection.

Fixed-boundary thresholding methods generally take into account the fact that the

patterns of skin colour distribution can be defined using a set of threshold values on dif-

ferent colour components. However, the experimental analysis performed on skin colour

distributions illustrates that no definite pattern can be expected when images are sub-
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ject to variations in ethnicity and lighting conditions. The rationale behind the fixed-

boundary thresholding methods could be well due to their simplicity and efficiency.

Consequently, they may lack the required level of robustness when applied to real-life

problems. In this context, other methods such as Gaussian modeling, histogram-based

statistical models and adaptive skin modeling methods may be preferable.

Single Gaussian and Gaussian mixture, in general, are compact skin colour modeling

methods that can generalise and interpolate the training data, so that they are less reliant

on the characteristics of the training data. However, the goodness of fit of parametric

models is dependent on the shape of the skin-colour distribution, and hence the chosen

colour space. This is especially true for single Gaussian models. In the literature, it can

be seen that different authors have chosen varying numbers of components for Guassian

mixture modeling. Although most authors have restricted the number of Gaussians to

2 in describing the skin colour distribution [151, 152], Jones and Rehg [143] employed

16 Gaussian components for each of the skin and non-skin Guassian models they de-

veloped. Caetano et al. [164], on the other hand, found that changing the number of

components from 2 to 8 in Gaussian mixture modeling gave no significant improvement

in accuracy. Interestingly, many authors including Yang and Ahuja [152], Greenspan et

al. [151], Phung et al. [144], Caetano et al. [164] reported the superiority of Guassian mix-

ture models over other techniques on skin modeling and detection. One drawback in

Gaussian mixture modeling, nevertheless, is that they require a more expensive compu-

tation effort, largely restricting their usability in real-life applications.

Non-parametric statistical models generally require large numbers of data samples to

model the characteristics of skin and non-skin data distributions. Histogram-modeling

methods, in particular, have been proposed to be more suitable for numerous applica-

tions [143,144]. The advantage of using histogram models is that the probability of occur-

rence of a particular colour pixel can be trivially computed given sufficiently large sets

of training data. Having computed the probabilities for each colour in the population,

skin detection corresponds to a relatively straightforward task of reading a look-up-table

that contains either a list of probability values or simple binary decisions for each pixel

in a chosen colour space. The most important criterion when developing an effective his-

togram model, however, lies in the process of selecting the training data, identifying a

suitable histogram quantisation level, and a colour space. In this context, it is important

to note that the histogram models proposed in the literature, such as [143, 144], have re-

ported results of varying accuracies, particularly in the context of selecting a quantisation

level and a colour space.

The problem of changes in skin-appearance that occur due to variations in ambient

99



CHAPTER 4. HUMAN SKIN MODELING AND DETECTION IN STILL IMAGES

lighting conditions has been studied under the subject of colour constancy. Numerous

authors have proposed different lighting-compensated skin detection methods by com-

bining conventional skin detection techniques with colour correction algorithms with

limited success [66, 146]. In these approaches, images are first analysed to decide if they

need to be colour corrected based upon some criterion, and then the colours of each pixel

are changed so that the undesired affects on skin appearance are removed. Some authors

including Funt et al [165], however, have argued on some inconsistency issues of such

colour constancy algorithms, which could lead to even worse results when pre-defined

assumptions are not satisfied.

Compared to static skin detection methods, adaptive skin modeling methods, on the

other hand, attempt at capturing the characteristics of skin and non-skin data online. The

goal here would be to, given a set of sample data gathered within the context of the given

problem, update a set of parameters of an existing model so that its performance can be

kept at a desired level. These methods have been widely proposed in scenarios where

lighting conditions tend to affect the overall appearance of skin-tone regions, e.g. adult

content filtering [166].

As Terrillon and Akamatsu discussed [167], the success of a skin segmentation algo-

rithm may depend on the manner a particular algorithm is able to model the distributions

of skin/non-skin colour data in a chosen colour space and the amount of overlap between

the skin and non-skin distributions. In this context, most fixed-boundary thresholding

approaches lack the ability to either sufficiently model the shape of skin colour distri-

butions or to reduce the overlap between the skin and non-skin colour distributions.

Statistical modeling methods, in most cases, can be effective in modeling the skin colour

distributions though they too lack control in addressing the issue of overlap between the

skin and non-skin colour distributions. Lighting compensated skin detection methods

are devised to cope with colour changes that occur due to extreme lighting conditions.

Adaptive skin detection models, on the other hand, are devised to dynamically learn the

problem at hand and adjust the model parameters accordingly irrespective of the type of

content that is to be dealt with on skin detection.

Among the various static skin-segmentation methods discussed above, histogram-

based models have the advantage that they can result in a more general representation of

the colour distribution whilst being a trivial task to perform regardless of the complexity

of the underlying distribution [154]. Due to this advantage of the histogram approaches

and the lack of effectiveness in other skin/non-skin modeling methods, a framework to

develop a new histogram-based skin detection model using diverse sets of training data

is adopted in this thesis.
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4.4 A New Model for Skin Detection

In this section, a new histogram-based skin segmentation model that was trained us-

ing large numbers of skin and non-skin data samples is presented. Previous approaches

to histogram-based skin segmentation, such as by Jones and Rehg [143], and Phung et

al. [144], have taken similar research directions in histogram-model training based on the

use of both skin and non-skin data samples. In the proposed approach, a particular em-

phasis is made to develop an effective skin segmentation model using diverse sets of skin

and non-skin samples, involving a large collection of 4,000 skin images and different sets

of non-skin images that do not contain human skin. In order to experiment with a variety

of non-skin data, three different sets of non-skin images are used as the training data for

the non-skin class, which are described in Section 4.4.1. The performance of the model is

measured using a test data set comprising 1,000 skin-labeled images. Finding the most

suitable histogram quantisation level and the colour space is the major research goal in

these experiments. A performance comparison with other state-of-the-art skin segmenta-

tion algorithms involving fixed-boundary thresholding methods, Guassian models and

lighting compensated techniques is presented, in order to illustrate the effectiveness of

the new histogram model.

4.4.1 Histogram Model Training using Skin and Non-skin Data

For training the histogram-based skin segmentation model, large numbers of skin and

non-skin images with significant variations in lighting, ethnic skin type and viewpoint

were collected. Of the 4,000 skin-labeled images, the first 3,000 images were taken as

the training set and the other 1,000 images were taken as the test data set. The train-

ing set comprised about 950 images from the ECU (Edith Cowan University) skin-image

database [144], about 100 indoor and outdoor photos taken using typical digital cam-

eras, about 100 images from broadcast video, about 450 images from the standard face

databases such as HHI MPEG-7, FERET, Altkom, Champion, and the rest downloaded

from the web. The test set comprised images from the web, typical consumer-photo

archives, FERET database and some test images used by other researchers, e.g. Sigal et

al. [154]. The skin samples used to train the model were obtained through a process of

fully user-assisted segmentation of colour images that included both skin and non-skin

regions in varying proportions. During that process, it was also made sure to discard

the skin patches that were subject to extreme bright illumination and shadowing whilst

maintaining accuracy of the labeling. The Adobe Photoshop image editing tool was used

to label all the 4,000 skin images, which covered a wide range of ethnic skin types such
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Manual labeling of the skin images (a) Jones and Rehg’s method - original
image (b) Sigal’s method - original image (c) Author’s method - original image (d) Jones
and Rehg’s method - skin image (e) Sigal’s method - skin image (f) Author’s method -
skin image.

as Caucasian, Asian and African.

One difficulty that arose in using other researchers’ skin-labeled images was the lack

of consistency and a notable amount of inaccuracy in the segmentation. For example,

Figure 4.4.1 shows some examples for the three different approaches adopted by differ-

ent authors for labeling the skin regions, including the approach presented in this thesis.

It can be seen that the method adopted by Jones and Rehg ignores some important skin

samples in the manual labeling process. Sigal et al. [154] have taken into account that

the pixels in and around the mouth region also belong to the skin class category. The

manual skin-segmentation approach adopted in this thesis is different from the above

two approaches in the sense that it takes maximum care to include the possible skin pix-

els through accurate labeling of images. As can be seen, using this approach excludes

the non-skin pixels around mouth, lips, and nostrils in the skin-labeled images. Conse-

quently, further work was required to rectify the erroneous labeling of skin images that

were obtained from other researchers, such as [154], [144], [143].

The non-skin images used in these experiments were collected from different sources.

The first set called non-skin set A comprises 733 different colour images, which were col-

lected from the ECU database [144] and the MediAssist test corpus [40]. The second set,

i.e. non-skin set B, comprises 7,821 images, which were selected from the non-skin set of

the compaq database upon removal of some images due to image-formatting errors and

accidental inclusion of skin images. The third set, non-skin set C, corresponds to the sam-
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(a) non-skin images from the ECU and MediAssist databases [40, 144]

(b) non-skin images from Jones and Rehg [143]

(c) non-skin images from the complements of the skin labeled images

Figure 4.10: Example images for the non-skin data collected from different sources.

ples collected from the complements of the 3,000 skin-labeled images described above.

Example images for each of the three data sets are shown in Figure 4.10.

Table 4.6 gives a description of the statistical characteristics of the skin and non-skin

training data that were used during the development of the histogram-based skin seg-

mentation model. The skin data set, which was obtained from 3,000 skin-labeled images,

contained over 85 million skin pixels while the complements of the skin labeled images,

i.e. non-skin set C, accounted for about 462.9 million pixels. The first non-skin data set,

i.e. non-skin set A, simply corresponds to the full set of pixels from 733 images that were

obtained from the ECU database and the MediAssist test corpus, containing about 462.9

million pixels. The second non-skin data set, i.e. non-skin set B, comprises all the pix-

els from 7,821 images taken from the compaq non-skin data set, accounting for over 748

million pixels.

Based on these training data sets, the following observations can be made using the

Venn diagrams shown in Figure 4.11. In using the RGB colour space with 8 bits/colour-

channel, a given pixel can belong to any of the 224 unique colours. In the case of non-skin

set A, the percentage occupancy of unique skin colours and unique non-skin colours are

1.0% and 18.1% respectively while the percentage of colours belonging to both classes,

i.e. overlapping colours, is 4.0%. In the second scenario, i.e. using non-skin set B, the

percentage occupancy of unique skin colours and unique non-skin colours are 1.27% and
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Table 4.6: Description of the Skin/non-skin Training Data

Skin/non-skin training model description non-skin set Cnon-skin set A non-skin set B

Total no. of skin pixels

Total no. of  non-skin pixels

No. of  unique skin colours

No. of unique non-skin colours

No. of  unique colours belonging to both 
skin and non-skin classes

No. of unique colours unoccupied by either 
skin or non-skin class

85,445,358

462,611,777

86,643

3,203,083 

758,327

12,729,163

85,445,358

462,400,089

168,181

3,040,562

676,789

12,891,684

85,445,358

748,644,591

212,471

2,565,063 

632,499

13,367,183

15.29% respectively while that of colours belonging to both classes is 3.8%. Using the

complements of the skin-labeled images as the non-skin data for training, i.e. non-skin

set C, results in 0.52%, 19.1% and 4.5% of unique skin, unique non-skin and overlapping

colours respectively. The main reason for a higher overlapping percentage in the third

case is possibly due to some manual skin-segmentation errors that generally can occur in

any user-assisted labeling process. These observations also show that only a very small

cluster of about 4.55% of the RGB space is represented by skin data. It is also interesting

to note that the figures 76.8%, 79.7%, and 75.87% imply that a large part of the entire

space is unaccounted for in all three cases, despite the use of a large amount of training

data. Finally, the main ambiguity that exists in any skin segmentation algorithm tends

to arise from the inevitable skin/non-skin overlap compared to the size of skin-space,

with figures corresponding to 80.0%, 74.8.0% and 89.6% occupancy of unique colours

belonging to both the classes in the three cases respectively (see Figure 4.11).
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Figure 4.11: Probability distribution of skin and non-skin data.
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Figure 4.12: Performance comparison against threshold values (TH) for three different

training data sets: TH corresponds to the term on the right hand side of Equation 4.11.

Table 4.7: Selecting the best non-skin data set for the histogram approach.

nons-skin set A

FDR=10
Data set

nons-skin set B

nons-skin set C

FDR=15 FDR=20

False Rejection Rate (%)

FDR=25

27.23 13.65 9.06 6.71

46.75 17.63 10.01 7.33

14.62 9.60 7.17 5.90

In order to be able to select the best non-skin model, three histogram models with

256 bins/colour-channel were constructed using the skin training set and the three non-

skin training sets. The performance of the three models were then measured using a test

data set that comprised black, dark and white ethnic skin tones as described in Table 4.8.

The first 450 images of this set, many of them being very challenging, were downloaded

from the web. The next 200 images were taken from the FERET colour database, which

included 65 black-skin images, 65 dark-skin images, and 70 white-skin images. About

140 were also taken from personal photo archives, such as the MediAssist test corpus, in

which multiple people are present depicting consumer photo-events, such as meetings,

parties, skiing trips and beach sceneries. Finally, a set of 210 images were collected from

[154] belonging to 21 video sequences, accounting for a total number of 1,000 test images.

Figure 4.12 shows graphs of false detection rate (FDR) and false rejection rate (FRR) against

threshold TH , illustrating the behavior of the histogram models for the three non-skin

data sets. The FDR and FRR indicate the percentage of non-skin pixels wrongly detected

as skin and the percentage of skin pixels wrongly rejected by the classifier respectively. A
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Table 4.8: Description of the test data used.

Black

No. of imagesType of skin colour

192 9,626,190

Dark

White

216

592

10,801,210

15,687,365

No. of skin pixels No. of non-skin pixels

31,083,910

51,020,639

100,243,442

performance comparison of these 3 models shows that using non-skin set C results in the

best skin segmentation model based on the observation that, for a given value of FDR, it

always results in a lower FRR than any of the other two non-skin data sets, i.e. non-skin

set A and non-skin set B. This result can be further verified using the figures given in Table

4.7, which shows the corresponding FRR values for four different values of FDR, i.e. 10%,

15%, 20% and 25%.

4.4.2 Performance Analysis

In this section, experiments are carried out to study the performance of the histogram

model against different ethnic skin types, quantisation steps, and colour spaces. In addi-

tion, issues related to the computational complexity of histogram-based skin segmenta-

tion models are discussed.

4.4.2.1 Different Ethnic Skin Types

To analyse the performance of the histogram model against different ethnic skin types,

the test data set is divided into three subsets: black, dark and white (see Table 4.8 for a

description of the percentage occupancy of unique skin and non-skin colours in different

colour spaces). The histogram model studied in this analysis corresponds to the one

which was trained in the RGB colour space with 256 bins/colour-channel. Figure 4.13

shows the performance of the histogram model for black, dark and white ethnic skin

types. The graph depicts the fact that the model performs equally well on dark and white

skin types up to about 83% of CDR. As the FDR increases, the performance on white skin

degrades slightly compared to the other two skin types. Overall, the model performs

satisfactorily on all three skin types up to about 17% of FDR. For example, at 15% of FDR

the corresponding CDR figures for black, dark and white skin types are 89.95%, 91.92%

and 89.46% respectively.

4.4.2.2 Selecting Histogram Quantisation

Selecting a suitable quantisation value for histogram-based skin segmentation is one of

the most important steps in the histogram-model development process. Towards achiev-
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Figure 4.13: Performance of the histogram model against different ethnic skin types.

ing this goal, a performance analysis of the histogram model against different histogram

quantisation levels is performed in this section. The models studied in this analysis are

trained using the full training data set in the RGB colour space for different quantisation

values. Figure 4.14 shows the behavior of this model in terms of CDR vs FDR for six his-

togram quantisation levels, i.e. 256, 128, 64, 32, 16 and 8 bins/colour-channel. The results

show that the best performance can be achieved using 256 bins/channel quantisation up

to about 16% of FDR. As the FDR increases, the performance of the other models, i.e. 128-

bins, 64-bins, etc, tend to be superior to 256-bins quantisation. In general, the six ROCs

(receiver operating curve) indicate that the finer the quantisation, the better the perfor-

mance of the histogram model. On studying the behavior of these six histogram models,

one useful conclusion can be drawn with regards to the optimum quantisation level for

histogram-based skin segmentation, thereby resolving the contradictory findings previ-

ously reported by authors like Jones and Rehg [143], and Phung et al. [144]. The former

reported the best performance using 32 bins/colour-channel histograms while the latter

reported using 256 bins-colour-channel quantisation. At this junction, the results pre-

sented in this thesis mostly satisfy the findings of Phung et al. Using these results, it can

also be argued that a performance degradation up to 32 bins/colour-channel would be

bearable, given the accuarcy/speed compromise many applications require.

4.4.2.3 Selecting a Colour Space

In order to study the importance of selecting a colour space for histogram-based skin

segmentation approaches, a performance analysis of the histogram model in 4 different

colour spaces is carried out. A short description for each of the colour spaces studied
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Figure 4.14: Segmentation performance for different histogram quantisation levels.

in this analysis can be found in Section 4.2.1. This analysis is also extended to chro-

matic spaces, namely rg, HS, CbCr and AB, in order to identify the effect of using three

colour components versus two colour components from each of these colour spaces. All

the models were trained using the full training data set with 256 bins/colour-channel

quantisation. Figure 4.15 shows the results of the comparison carried out using the test

data given in Table 4.8. One important finding that arises from this analysis is that using

three colour channels results in more effective skin segmentation performance compared

to that of using two colour channels. The graphs also depict that there is a significant

amount of performance variation between some of the colour spaces studied in this anal-

ysis. The best performances are reported in the RGB and HSV colour spaces up to about

13% of FDR. Considering the fact that many applications would require keeping the level

of FDR low, it can be argued that using either RGB or HSV may be the best colour space

for histogram-based skin segmentation despite the fact that the Y CbCr and LAB colour

spaces tend to perform better at higher values of FDR. A similar performance variation

can be observed in the chromatic spaces with rg and HS leading the other two spaces,

i.e. CbCr and AB.

These findings make a significant contribution with respect to the hypothesis of se-

lecting a colour space for histogram-based skin segmentation for which other authors

such as [144], [168] claimed an opposite result. Phung et al. [144] reported that the per-

formance of histogram-based skin segmentation is colour space independent, while Al-

biol et al. [168] claimed that the chosen colour space has no impact on discriminating

the skin and non-skin classes. In order to validate the author’s findings, some figures

related to skin and non-skin data distributions in the four colour spaces are given in Ta-
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Figure 4.15: A performance comparison of histogram models in different colour spaces.

Table 4.9: Characteristics of skin and non-skin distributions in different colour spaces

Skin/non-skin distribution RGB HSV rg HS

Unique skin colours (%)

Unique non-skin colours (%)

Unique colours belonging to both 
and non-skin classes (%)

Unique colours unoccupied by 
either skin or non-skin class  (%)

0.516

19.09

4.52

75.87

0.191

15.71

4.18

79.92

0.0017

11.86

3.46

84.68

0.0015

2.64

0.808

96.55

0.194

49.52

0.189

50.1

0.0

45.95

49.98

4.06

0.0

44.06

12.06

43.90

0.0

20.85

10.58

68.56

YCbCr LAB CbCr AB

ble 4.9. The figures corresponding to the field “unique colours belonging to both skin

and non-skin classes” indicate that there is a significant variation in the overlap of skin

and non-skin colours across different colour spaces. In addition, different numbers of

unique skin colours, unique non-skin colours and unique colours unoccupied by either

skin or non-skin class in different colour spaces indicate that the values of histogram

counts have some relation to the chosen colour space, causing an impact on the perfor-

mance of histogram-based skin segmentation modeling methods.

4.4.2.4 Computational Complexity

Studying the computational complexity of an algorithm provides a measure of efficiency,

which is one of the most important criteria in identifying algorithms for computationally-

challenged applications. Algorithms of high efficiency are in demand in multimedia ap-

plications, such as face detection, face recognition, and gesture recognition, which require
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Table 4.10: Average time taken per pixel by each skin segmentation algorithm.

Segmentation method

fixed-bound. (CbCr) 

lighting compensated (YCbCr) 

single Gaussian (RGB) 

Gaussian mixture (RGB) 

histogram 64-bins (RGB) 

histogram 128-bins (RGB) 

histogram 256-bins (RGB) 2.45

12.35

3.14

0.51

2.24

2.30

0.18

Time taken (micro seconds) per pixel

the ability to process the data in real time. In this context, measuring the efficiency of skin

segmentation algorithms becomes an important aspect when identifying a suitable algo-

rithm for such applications. Table 4.10 shows efficiency figures of seven different skin

segmentation methods, namely fixed-boundary thresholding in CbCr [140], a lighting

compensated method in Y CbCr [66], a single Gaussian in RGB, a Gaussian mixture in

RGB [143], and 3 histogram models with 64,128 and 256 bins/colour-channel in RGB.

Figures given in the table correspond to average time taken in microseconds to clas-

sify a colour pixel into skin/non-skin category obtained from the experiments involving

a test data set of 1,000 images of varying size. All the experiments were carried out using

the Java programming language on a 2.4 GHz Intel(R) CoreTM Duo processor with 2

GB of RAM.

Results given in the table show that the fixed-boundary thresholding method of Chai

et al. [140] with a 0.18 µs/pixel classification time is the fastest among the seven different

methods compared in this experiment. The single Gaussian method, which recorded an

efficiency figure of 0.51 µs/pixel, is the second fastest. Histogram models with 64-bins,

128-bins and 256-bins are ranked in the 3rd, 4th and 5th place with efficiency figures of 2.24

µs/pixel, 2.30 µs/pixel and 2.45 µs/pixel respectively. The lighting compensated method

of Hsu et al. takes 3.14 µs to classify a pixel. The Gaussian mixture modeling of Jones and

Rehg [143] is the least efficient skin segmentation method, recording an efficiency figure

of 12.35 µs/pixel.

4.5 Comparison of Different Skin Detection Methods

In order to compare the performance of some of the state-of-the-art algorithms that were

described in Section 4.1, four different fixed-boundary threshold methods are chosen,

such as that from [84] (HS space), [140] (CbCr space), [150] (HSV and rg spaces) and [149]

(R
G space). From Gaussian modeling methods, single Gaussian models that were trained
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in three different colour spaces, namely RGB, rg and CbCr, are considered in the compar-

ison. A Gaussian mixture model of which the model parameters were obtained from [143]

represents the Gaussian mixture modeling category in the comparison. The lighting com-

pensated method proposed by Hsu et al. [66] is also considered in the performance com-

parison. From the histogram category, the model that was trained in the RGB space

with 256-bin quantisation (see Section 4.4) is chosen. Figure 4.16 shows the performance

comparison results of these skin segmentation methods5.

Of the fixed-boundary skin detection approaches, the method proposed by Chai and

Ngan [140] shows the best performance in CbCr space over other methods in HS space

[84], HSV and rg spaces [150] and R
G space [149]. However, results show that the lighting

compensated method from Hsu et al. does not perform well as compared to that of [140].

Possible reasons for this could be due to the failure in meeting the pre-defined assump-

tion in that algorithm, which was also previously reported by Martinkauppi [158]. It may

be also possible that the performance of the lighting-compensated method is dependable

on the type of test data in which case our data offered less lighting variations compared

to that of the MPEG-7 HHI images used in [66].

The Gaussian modeling methods considered in the comparison comprises single Gaus-

sian methods trained in different colour spaces such as RGB, rg, and CbCr, and a Gaus-

sian mixture model of which the model parameters were extracted from [143]. It can be

seen that the single Gaussian model trained in CbCr space shows the best performance

out of all three single gaussian models as well as, more surprisingly, the Gaussian mix-

ture model that was trained in the RGB colour space [143]. Although one might expect

the Gaussian mixture model to perform better than any of the single Gaussian models,

one possible reason for this would be the type of training data used in [143]. It should

be noted that all three single Gaussian models were trained as part of the research car-

ried out in the thesis using the training data (110 black, 110 dark and 110 white images)

described in Section 4.2.2. In addition, another reason would be due to the representa-

tion of the covariance matrix of the Gaussian mixture model [143] as a diagonal matrix.

Comparing the single Gaussian models in three colour spaces, Figure 4.16 illustrates that

Gaussian modeling in the CbCr chromatic space performs better than in RGB and rg

spaces.

Overall, the results indicate that the histogram model described in Section 4.4 shows

the best performance figures compared to all other methods studied in this system. This

is further illustrated by the performance figures given in Table 4.11 in terms of CDR

5Note that the corresponding ROC curves for the four fixed-boundary threshold methods and the lighting
compensated method show only one point in the graph as they were evaluated at fixed thresholds.
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Figure 4.16: A performance comparison of different skin segmentation methods.

Table 4.11: Comparison of different segmentation methods in terms of CDR vs FDR.

76.6,85.4,90.5

CDR (%) FDR (%)

90.2 19.2

83.3 16.3

83.18 19.8

57.5 9.04

54.7 7.4

71.8,81.1,87.5 10,15,20

68.9,77.6,81.9 10,15,20

10,15,20

64.8,77.2,84.3 10,15,20

85.3,90.5,92.8 10,15,20

Segmentation method

fixed-bound. (CbCr) 

fixed-bound. (HS)

lighting compensated (YCbCr) 

fixed-bound. (R/G) 

fixed-bound. (HSV & rg) 

single Gaussian (RGB) 

single Gaussian (rg) 

single Gaussian (CbCr) 

Gaussian mixture (RGB) 

histogram 256-bins (RGB) 

against FDR. For the sake of comparison, the performance figures of the statistical models

are presented in terms of three different pairs of CDR/FDR by fixing FDR at 10%, 15%

and 20%.

In order to give an indication of the effectiveness of some of the pixel-based skin seg-

mentation algorithms studied in this thesis, some qualitative results for three different

images are presented in Figure 4.17. Although this is an inherently subjective process, the

three examples chosen for this comparison are typically challenging images for skin de-

tection, subject to bright illumination, shadow, ethnic skin variation, and complex back-

ground in indoor and outdoor environments. For the three colour images shown at the

first row of Figure 4.17 , skin detection results of the five different methods, namely CbCr

fixed-boundary [140], lighting compensated [66], single Gaussian in RGB space, Gaus-

sian mixture in RGB space [143] and histogram modeling with 256 bins/colour-channel,

are shown in the 2nd, 3rd, 4th, 5th and 6th row respectively, with red pixels indicating the
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detected skin. Results from the two Gaussian modeling methods, i.e. single and mixture,

and the histogram modeling method were obtained by fixing the FDR at 15%. Com-

paring the results shown in the second and third rows corresponding to two different

algorithms involving the Y CbCr colour space with and without lighting compensation

shows, however, the lack of robustness of the lighting compensated method proposed

by Hsu et al. [66]. Results shown in the 4th and 5th row depict the performance of Gaus-

sian modeling methods (single and mixture) in the RGB colour space, however the mixed

results obtained from these two methods are insufficient to make a clear comparison in

terms of their effectiveness. Comparing the performance of the histogram model that

was trained in the RGB colour space with 256 bins/colour-channel shows that the per-

formance of the histogram model is better than all of the other skin detection methods.

The ability to detect most skin pixels with reduced false detections can be seen as the

distinguishing feature of the histogram model from this subjective comparison.
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Figure 4.17: Skin detection results: original images (1st row), CbCr fixed bound. (2nd

row), lighting compensated (3rd row), Gaussian single (4th row), Gaussian mixture (5th

row), histogram with 256 bins (6th row).
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4.6 Summary

This chapter was devoted to human skin modeling and detection in still images, cover-

ing aspects such as analysis of skin and non-skin colour distributions, development of

a histogram-based skin segmentation model and comparison of different skin segmenta-

tion methods. The analysis carried out in the study of characteristics of skin and non-skin

data with respect to their distributions in different colour spaces illustrated, in general,

the complexity of the skin/non-skin modeling task using existing methods such as fixed-

boundary thresholding and Gaussian modeling. This fact was the basis for the extensive

study and research carried out on histogram modeling in this thesis.

Using large numbers of skin and non-skin training data of varying levels in amount

and variety, led to the development of an effective histogram-based skin segmentation

model in this thesis. Some important contributions related to the performance of the

histogram-based skin model were made with regards to finding a suitable colour space,

quantisation step and the type of training data, and analysing the computational com-

plexity. The performance comparison against the state-of-the-art algorithms proved that

using histogram-based modeling can result in more effective skin segmentation in real-

life images despite a relatively slow performance compared to that of fixed-boundary

thresholding methods. Furthermore, the results presented in this thesis also clarify some

of the conflicting conclusions drawn by different authors, in relation to selecting a colour

space and a quantisation step in histogram-based skin segmentation.

In conclusion, despite favorable performance of histogram modeling techniques over

other skin segmentation methods, it was also observed that some images naturally tend

to make the task of skin segmentation enormously difficult, particularly in the presence

of extreme lighting conditions as well as complex backgrounds (see Figure 4.17). Ad-

dressing the first issue may require more effective lighting compensated techniques that

could correct the image colours before skin segmentation is performed. Solutions to deal-

ing with complexities in the presence of distracting background-objects, such as wood,

clothing, flowers and hats, may require applying some effective post-processing tech-

niques, such as those adopted by Rowley et al. [169] and Lee et al/ [166].

In the following chapter, the histogram-based skin detection approach presented here

is used to detect skin pixels, allowing it be exploited as a performance enhancing feature

in the modified BDF face detection algorithm.
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Chapter 5
Detecting Faces in Colour Images

In this chapter a new approach for face detection in colour images is presented based

on the use of a modified BDF face detection algorithm. It begins with an introduction

in Section 5.1, presenting a short description of the experiments carried out in this chap-

ter. An enhanced BDF face detection algorithm is then presented in Section 5.2. First,

the conventional BDF face detection algorithm is described in Section 5.2.1, highlighting

some drawbacks associated with the BDF method when applied to real-life problems.

Secondly, the modified BDF face detection algorithm is presented in Section 5.2.2, de-

scribing the new features incorporated into the algorithm. A performance analysis of the

proposed face detection algorithm is then presented in Section 5.3. The test data sets used

for evaluating the performance of face detection are described in Section 5.3.1, followed

by a description of the experiments and results in Section 5.3.2. The chapter then ends

with a summary in Section 5.4.

5.1 Introduction

Following the detailed survey on face detection algorithms performed in Chapter 3, the

work presented in this chapter focuses on development and testing of a modified BDF

face detection algorithm by incorporating a number of performance enhancing features,

including the skin segmentation model developed and presented in this thesis.

The BDF face detection method, which was originally presented by Liu [111] for mul-

tiple frontal face detection in gray-scale images, is studied in detail with a view to in-

vestigating its effectiveness in challenging applications, such as personal photo manage-

ment. Issues related to computational complexity and detection accuracy are addressed

in this research. More specifically, the use of colour information in the BDF algorithm is

investigated along with other performance enhancing features, leading to an improved

appearance-based face detection algorithm for face detection in personal photo manage-
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ment applications.

5.2 Exploring the BDF Face Detection Method for Detecting Faces

in Colour Images

Having previously identified the distinct advantages of the BDF face detection algorithm

(see Section 3.5 in Chapter 3), the following research focuses on a detailed analysis of the

conventional BDF face detection algorithm with a view to exploring its usability for face

detection in challenging applications.

5.2.1 Conventional BDF Face Detection Algorithm

The conventional BDF face detection method, which falls into the category of appearance-

based face detection, is a relatively simple algorithm for detecting frontal faces in still

images [111]. It is devised to detect multiple faces of size ranging from 16× 16 pixel (the

smallest) to any pre-defined size through an iterative raster-based scanning process.

The BDF method uses a discriminating feature vector, Y , comprising the input image,

its 1D Haar wavelets and amplitude projections. For a given image I(i, j) ∈ Rm×n, X ∈
Rmn represents the image vector formed by concatenating either the rows or columns of

I(i, j), Xh ∈ R(m−1)×n and Xv ∈ Rm×(n−1) correspond to the vectors formed by concate-

nating either the rows or columns of Ih(i, j) and Iv(i, j), which are the 1D Haar represen-

tations of I(i, j) (see Equation 5.1 and 5.2), and Xr ∈ Rm and Xc ∈ Rn form the horizontal

and vertical projections of I(i, j) (see Equation 5.3 and 5.4). A combined feature vector, Ỹ ,

which is expressed by (5.5), represents the concatenation of the normalised vectors of X ,

Xh, Xv, Xr and Xc. Normalisation of each vector is performed by subtracting the mean of

their components and dividing by the standard deviation. Finally, the normalised feature

vector of Ỹ defines the discriminating feature vector, Y ∈ RN of size 3mn (see Equation

5.6), which is used in the face/non-face conditional PDFs as depicted in (5.7) and (5.8).

Ih(i, j) = I(i + 1, j)− I(i, j) 1 ≤ i < h 1 ≤ j ≤ w (5.1)
Iv(i, j) = I(i, j + 1)− I(i, j) 1 ≤ i ≤ h 1 ≤ j < w (5.2)

Xr(i) =
w∑

j=1

I(i, j) 1 ≤ i ≤ h (5.3)

Xc(j) =
h∑

i=1

I(i, j) 1 ≤ j ≤ w (5.4)
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Ỹ = (X̂t X̂t
h X̂t

v X̂t
r X̂t

c)
t (5.5)

Y =
Ỹ − µ

σ
(5.6)

where Y represents the normalised vector of Ỹ , and µ and σ denote the mean and stan-

dard deviation of the components of Ỹ respectively.

The theory behind the BDF face detection method is built upon the principle that,

by representing the conditional PDF of the face (ωf ) and non-face (ωn) class defined by

Equation 5.7 and Equation 5.8 as a multivariate normal distribution, a Bayesian classifier

can be constructed using the estimated conditional PDFs to detect multiple frontal faces

in an image.

p(Y |ωf ) =
1

(2π)N/2|Σf |1/2
exp{−1

2
(Y −Mf )tΣ−1

f (Y −Mf )} (5.7)

p(Y |ωn) =
1

(2π)N/2|Σn|1/2
exp{−1

2
(Y −Mn)tΣ−1

n (Y −Mn)} (5.8)

where Mf (Mn) are the mean feature vectors of face(non-face) class, Σf (Σn) are the co-

variance matrices of face(non-face) class respectively, and N is the length of the feature

vector Y .

Liu uses the following criterion to classify a given image with its discriminating fea-

ture vector Y ∈ RN into face or non-face class based on the a posteriori probabilities of

the two classes, P (ωf |Y ) and P (ωn|Y ):

Y ∈




ωf if P (ωf |Y ) > P (ωn|Y )

ωn otherwise
(5.9)

Using Bayes’ rule, the a posteriori probabilities, P (ωf |Y ) and P (ωn|Y ), can be com-

puted as follows.

P (ωf |Y ) =
P (ωf )p(Y |ωf )

p(Y )
(5.10)

where P (ωf ) is the a priori probability of face class, and p(Y ) is the mixture density

function.

P (ωn|Y ) =
P (ωn)p(Y |ωn)

p(Y )
(5.11)
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where P (ωn) is the a priori probability of non-face class, and p(Y ) is the mixture density

function.

By combining (5.7),(5.8),(5.9),(5.10) and (5.11), Liu derives a Bayesian classifier for face

detection as follows.

Y ∈




ωf if δf + τ < δn

ωn otherwise
(5.12)

where δf (see Equation 5.13) and δn (see Equation 5.14) denote the two error terms for the

face and non-face class respectively, and τ denotes a constant which functions as a control

parameter of the false detection rate. Note that a detailed description of the derivations

of δf and δn can be found in [111].

δf =
M∑

i=1

z2
i

λ
(f)
i

+
‖Y −Mf‖2 −

∑M
i=1z

2
i

ρ

+ ln(
M∏

i=1

λ
(f)
i ) + (N −M)lnρ (5.13)

where zis are the principal components, ρ is the average sum of the last (N −M) eigen-

values, and λ
(f)
i are the eigenvalues of the face class. The value of M is set to 10 in the

BDF method, enabling the use of only the first 10 principle components in the conditional

density function.

δn =
M∑

i=1

u2
i

λ
(n)
i

+
‖Y −Mn‖2 −

∑M
i=1u

2
i

ε

+ ln(
M∏

i=1

λ
(n)
i ) + (N −M)lnε (5.14)

where uis are the principal components, ε is the average sum of the last (N-M) eigenval-

ues, and λ
(n)
i are the eigenvalues of the non-face class.

τ = 2 ln
[
P (ωn)
P (ωf )

]
(5.15)

In order to further control the rate of false detection, Liu introduces another control

parameter, θ, to the BDF face detection system.

Y ∈




ωf if δf < θ and δf + τ < δn

ωn otherwise
(5.16)

The two constants, θ and τ , are empirically chosen for the face detection system.

In building the face and non-face class models for the BDF face detection system, Liu
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claims to have employed 600 FERET images and 9 natural images, accounting for a total

number of 1,200 face and 4500 non-face samples respectively [111]. Upon evaluating the

performance of the algorithm on a test data set comprising 887 images with a total num-

ber of 1,034 faces, a performance figure of 98.5% correct detection rate is reported, leading

to a favourable comparison with the state-of-the-art face detection algorithms. The con-

ventional BDF face detection method comprises two performance enhancing features,

namely the early exclusion criterion and the single response criterion. However, the exploita-

tion of the BDF face detection method in real-life applications still remains limited due to

its poor efficiency, requiring an average processing time of 1 second per 320× 280 image

without any scaling on a 900 MHz Sub Blade 1000 workstation [111].

5.2.2 Modified BDF Face Detection Algorithm

The modified BDF face detection algorithm proposed in this thesis consists of a number

of performance enhancing features that convert the conventional BDF technique into a

more efficient face detection approach. In addition to the fact that employing a large

sized feature vector in the BDF method causes an adverse effect on the computational

complexity of the algorithm, which is three times the size of the 16× 16 input sub-image,

the high computational complexity associated with the original algorithm is also directly

related to the number of sub-images that need to be analysed in a given image. The con-

ventional BDF method strongly relies on the early exclusion criterion as a simple heuris-

tic to reject non-faces being subject to more expensive processing, and hence to improve

the speed of the algorithm. This simple criterion forces the algorithm to process only

a selected number of sub-images from which the true faces are identified using more

computationally intensive face/non-face classification models. While the early exclusion

criterion adopted by Liu [111] significantly improves the efficiency of the algorithm, the

processing time required for a given image still depends on the complexity of the image,

meaning that the more complex the image the slower the algorithm.

To this end, the modified BDF face detection algorithm employs the histogram-based

statistical skin detection model developed and presented elsewhere in the thesis as a com-

plementary early exclusion criterion for efficient face detection. Additionally, it also in-

cludes a number of other features to help enhance the overall efficiency of the algorithm.

The block diagram of the modified BDF face detection technique is shown in Figure 5.1.

Given a colour image, the skin segmentation model is first applied to create a skin

mask, which is then subject to erosion/dilation morphological operations to remove the

noisy skin pixels. Then, both the original image and the skin mask are rotated by a

desired angle, in order to be able to detect in-plane rotated faces. The rotated image and
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Histogram-based skin detection
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Figure 5.1: The system block diagram.

the skin mask are iteratively sub-sampled to enable detection of faces of size ranging from

16× 16 pixels. The skin image is then read pixel by pixel whereby the presence of a skin

pixel is used to trigger inspection of a 16 × 16 sub-image for verifying its likelihood to

be a face or non-face. A negative response from the skin-based early exclusion criterion

passes on the sub-image to be further verified by the original early exclusion criterion

proposed in [111]. A negative response from this step then allows the current sub-image

to be more accurately classified using the Baysian decision rule, as defined in the original

BDF method. It should be noted that image sub-sampling is iteratively performed by a

ratio of 16
S , with S representing the scaling factor which is varied from a pre-defined limit

targeting the the maximum size of the face to be detected to 16 in steps of 1. It facilitates

detection of all the frontal faces of size k × k available in the image at S=k. The idea of

carrying out image sub-sampling in descending order, i.e. by varying S from large to

small values in iteration, is followed in this research based on the observation that early

detection of large sized faces leads to more efficient detection of faces in the image. A

visual representation of the adopted image sub-sampling pattern is depicted in Figure

5.2.

5.2.2.1 Training Methodology

In this experiment, the BDF model was trained using 1,274 upright face samples and 3,306

non-face samples. The face samples were collected from the FERET colour database and

the ECU database [144], of which some examples are shown in Figure 5.3. The set of 1,274

face samples was obtained by doubling the original number with their mirror images

121



CHAPTER 5. DETECTING FACES IN COLOUR IMAGES

Im
ages 

are
 su

bsam
pled

 in
 th

is o
rder,

 all
owing

dete
cti

on of fa
ces

 in
 desc

ending order

Figure 5.2: Image sub-sampling order: Images are iteratively sub-sampled with a scaling
factor of varying size, allowing detection of faces in descending order.

whilst ensuring the fact that they depict a wide range of face-appearance variations in

terms of facial expression, the presence of glasses, the presence of beards/mustaches, ag-

ing effects and orientation changes. Similar to the face representation principle adopted

in [111], each of these face samples were defined relative to the locations of the eyes in

the image as 16× 16 normalised face images. In the process of identifying the best set of

non-face samples from a pool of 250 MediAssist test images that did not contain human

faces, an initial set of non-faces was collected by applying the face detection algorithm

comprising only the face class error criterion to only a few colour images. Subsequent

execution of the face detection algorithm using both face and non-face error criteria to

other colour images in a bootstrap manner resulted in a total number of 3,306 non-face

samples as the optimum non-face training set in this experiment. An example of the non-

face sample identification process is shown in Figure 5.4, depicting how more meaningful

non-face samples are collected as the training process progresses in time.

5.2.2.2 Performance Enhancing Features

In order to improve the computational performance of the BDF algorithm, the follow-

ing performance enhancing features are incorporated into the conventional algorithm,

enabling detection of faces in a more efficient manner.

• Skin-Based Early Exclusion: The skin-based early exclusion criterion proposed in
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Figure 5.3: Example face samples used for training the BDF model.

this research states that, as the most basic form of early exclusion, the presence

of a skin pixel gives an indication that a sub-image surrounding that pixel may

correspond to a face candidate in the image. Excluding irrelevant sub-images being

subject to more computationally intensive processing in the system, in this manner,

helps improve the efficiency of face detection.

• Statistics-Based Early Exclusion: The early exclusion criterion employed in the orig-

inal BDF method exploits some simple statistics on the gray-scale distributions of

the left eye, nose bar and right eye areas of the face. The regions marked “A”, “B”

and “C” in Figure 5.5(a) are analysed for each sub-image, in order to compute their

mean values (µA, µB, µC) and the average values (mA,mB,mC) with mA and mC

representing the average values of pixels whose intensity values are below µA and

µC in regions A and C respectively, and mB representing the average value of pix-

els whose intensity values are above µB . The early exclusion criterion states that

the sub-image is excluded if mA <= kmB or mC <= kmB , where k is a number

between 0 and 1. This research, on the other hand, employs a simpler exclusion

criterion to improve both accuracy and computational complexity of the algorithm,

stating that the current sub-image should be excluded if µA >= kµB or µC >= kµB .

It was experimentally observed that the accuracy of the algorithm is improved as

the number of false rejections decreases due to the use of a relaxed condition on

early exclusion, whilst the efficiency of the algorithm is also improved due to the

reduced number of computations required in estimating the statistics of the regions.

• Single Response Criterion: Typically, true faces produce a multiple number of high

positive responses around a single face when face detection is executed at consecu-

tive scales. An example of such a scenario is shown in Figure 5.6, with the number

of differently coloured bounding boxes indicating the number of positive responses

observed during the face detection process. The modified BDF algorithm is, how-
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(a) Non-face samples detected at an early stage in the training process.

(b) Non-face samples detected at a latter stage in the training process.

Figure 5.4: Identifying non-faces samples that closely match the the face class at different
stages in the bootstrap training process.
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A B C

(a) Statistics-Based Early
Exclusion Criterion

p

q

Rl

16

16

Rc

(b) Single Response Criterion

Figure 5.5: Improving the computational complexity of the BDF method using two crite-
ria: Early Exclusion and Single Response.

ever, devised in such a manner that it finds an optimum face candidate from all

positive responses, and thus contributes to improving the speed of the algorithm

significantly. Assuming that the image is scanned in the order of left to right and

top to bottom and the point “p” indicates the presence of a face, the search for the

best face candidate is conducted within a 7×7 local search space defined by the area

“Rl” in Figure 5.5(b). Assuming “q” is the optimum point found corresponding to

the best match in the above search, an image area of 16 × 16 located to right and

below “q” can be excluded from further processing. Similarly, another 15× 16 area

located to the left and below “q” can be excluded from further processing at the

current scale. Overall, a total area denoted by “Rc” gets excluded when searching

for other possible faces in the image at the current level of scaling. Furthermore, a

considerable search space reduction can also be achieved when faces are detected at

subsequent scaling levels as depicted in Figure 5.7. It shows that during detection

of the second face, which occurs at scaling level of 25, i.e. S=25 in this particular

example, a region marked in red of size (d + 15)×(d + 15) (see Equation 5.17 for the

definition of d) can be excluded as it has been previously detected as a face region

in the image.

d =
16× Sold

Scur
(5.17)

where Sold and Scur are the previous and current scaling values with which image

sub-sampling is performed to enable detection of faces at varying scales.
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(a) Original image (b) Positive responses
marked in different colours

Figure 5.6: Multiple number of positive responses detected at different scaling levels
(marked in different coloured bounding boxes) around the same face candidate.

5.3 Performance Analysis of the Modified BDF Face Detection

Algorithm

In order to examine the effectiveness of the modified BDF algorithm, experiments are per-

formed to measure the accuracy of face detection in terms of correct detection and false

detection, and the computational complexity in terms of average time taken to process

an image. The following test data sets are used to carry out the performance evaluation

of the proposed face detection algorithm.

5.3.1 Test Data Used for Evaluating the Performance of Face Detection

The test data sets used in this experiment correspond to subsets of images that are taken

from other well-known colour face databases, allowing for thorough assessment of the

algorithm from simple head-and-shoulder type detection to highly challenging face de-

tection, such as personal photo management. Table 5.1 gives a brief description, in terms

of the notations used, and the number of images and faces contained in each data set. Fig-

ure 5.8 shows some example test images for each data set listed in Table 5.1. An extended

description of the test data sets used for this evaluation as well as other benchmark face

databases can be found in Appendix B.
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(a) (b)

15 d

(c)

Figure 5.7: Single response criterion enabling search space reduction when detecting
faces at multiple scales: (a) original image (b) first face detected at S=70 (c) second face
detected at S=25 with region marked in red showing the excluded area from further in-
specting.

Table 5.1: A description of the test data sets used for evaluating the performance of face

detection.

Name of the 
Database

Notation Description

The HHI 
MPEG-7 

Database
HHI-S

Contains 156 colour images of resolution 640X480, each image containing one single 
face subject to various lighting condiitons in frontal, near-frontal and half-frontal view.

The Champion 
Database

Champion-S
Containes 1,247 mug-shot type colour images, each image containg one single face.  
Most of the images are available in resolution 150X200 in frontal, near-frontal and 
half-frontal view.

The ECU 
Database

ECU-S

Contains 499 colour images with some of them containing multiple faces of varying 
spatial size. The resolution of images varies from 352X288 to 800X600. This data set  
closely represents the photos in typical personal photo archives and contain 601 faces 
in frontal, near-frontal and half-frontal view. 

The MediAssist 
Database

MediAssist-S

Containes a small set of 203 colour photos with multiple faces of varying size from the 
MediAssist photo archive. Most of the images are in resolution 720X540. This set 
constitutes to a real data set comprising personal photos taken under uncontrolled  
conditions. Faces are in frontal, near-frontal and half-frontal view.
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Table 5.2: Range of the scaling values used on different test data sets

data set Smax-Smin

Champion-S (64-16)
HHI-S (100-20)
ECU-S (300-20)

MediAssist-S (300-16)

(a) Champion-S (b) HHI-S

(c) ECU-S database (d) MediAssist-S

Figure 5.8: Example images from different databases used in the performance evaluation

of face detection.

It should be noted that all the experiments reported in Section 5.3.2 were carried out

by imposing different limits on image scaling, i.e. Smax and Smin, as shown in Table 5.2.

Images were sub-sampled iteratively by scale factors starting from the highest value and

changing in steps of 1. For instance, when detecting faces in the champion-S data set,

images were first sub-sampled by 64, and then 63, 62, etc. in that order. Note that setting

Smax to 64 and Smin to 16 implies that every image in that data set is analysed 49 times,

thereby allowing the detection of different sized faces in the image.

5.3.2 Experiments and Results

Table 5.3 shows the performance figures of the BDF algorithm with and without the skin-

based early exclusion criterion. In this experiment, all the images were subject to a range

of ±10◦ in-plane rotation in steps of 5◦, accounting for 5 different rotations in total, i.e.

(-5,5,0,-10,10). The objective of this experiment is to study the impact of skin-based early

exclusion on the number of correct and false detections for different types of test images.

Considering the number of correct detections reported in the two scenarios, it can be
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Table 5.3: Performance comparison of the BDF method with and without skin-based early
exclusion criterion.

512

1238  

341

131

88

             97

             15127

# Correct Detections

523

            1241

371

# False Detections

405

327

207  

22 127

Test Data 
Set

# Faces

HHI-S 156

ECU-S 595

Champion-S 1247

MediAssist-S 428

Without skin-based early exclusion

# Correct Detections

With skin-based early exclusion

 # False Detections 

seen that the adverse effect caused due to use of skin-based early exclusion criterion on

the number of correct detections for the first three data sets is not significant. Although

a noticeable performance drop can be observed in the case of MediAssist-S resulting in

a difference of 30 correct detections in the two scenarios, comparing the number of false

detections observed in the two cases it can be argued that the use of skin-based early

exclusion criterion offers a significant advantage in reducing the number of false detec-

tions in the system. It should be also noted that improving the efficiency of the BDF face

detection algorithm is the prime focus of this research with a certain degree of sacrifice

in accuracy.

The results presented in Table 5.4 shows the efficiency figures of the modified BDF

algorithm with and without the skin-based early exclusion criterion. The objective of this

experiment is to examine how much improvement in speed can be achieved using the

skin-based early exclusion criterion in the proposed face detection algorithm. Results are

presented for subsets of the 4 test data sets described in Section 5.3.1. The figures given

in parentheses in the 1st column of Table 5.4 show the number of images used from each

data set for this experiment while the figures given in the 2nd column show the average

size of image in that data set. The figures given in the 3rd and 4th column of the table cor-

respond to average time taken (in seconds) per image with and without the skin-based

early exclusion criterion involving no image rotations in the process. These efficiency

figures were computed by conducting the experiment using the Java programming lan-

guage on a 2.4 GHz Intel(R) CoreTM Duo processor with 2 GB of RAM.

Comparing the two sets of figures given in the 3rd and 4th column of the table, it

can be clearly seen that using the skin-based early exclusion criterion decreases the time

taken to process an image in all 4 data sets, thereby leading to more efficient detection

of faces in all types of images. Face detection efficiency of the BDF algorithm can be ob-

served to be unacceptably poor in the absence of skin-based early exclusion, particularly
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Table 5.4: Computational efficiency of the modified BDF algorithm with and without
skin-based early exclusion.

HHI-S (100)

ECU-S (100)

Champion-S (300)

MediAssist-S (100)

Without skin-based early exclusion With skin-based early exclusion

Average time taken (seconds) per image
Test Data Set

Average size of 
 image

4.97

 8.13

23.0

119.9

2.09

3.72

12.86

32.74

178X178

277X277

380X380

622X622

when applied to large sized test images such as of MediAssist-S. It can be also seen that

MediAssist-S records relatively high figures in terms of average time taken to process an

image. This is, however, due to the fact that it contains the largest average size of image

compared with all other 3 data sets, whist images in that data set are also subject to a

larger range of scaling, i.e. from 300 to 16, meaning that the smallest and the largest face

that can be detected in this data set are 16×16 and 300×300. Overall, the results reported

in this experiment illustrate that the use of the skin-based early exclusion criterion is a

useful feature in improving the speed of the proposed face detection algorithm.

Summarising the results discussed above, it can be seen that using the skin-based

early exclusion criterion significantly improves the algorithmic speed for all types of im-

age data sets studied in this system. The results also show varying figures of correct-

detection/false-detection rates for the 4 test data sets used in the evaluation. For instance,

correct detection rates of 99.3%, 81.4%, 86.0% and 79.6% are reported for the Champion-S,

HHI-S, ECU-S and MediAssist-S test data set respectively, with a varying number of false

detections for each data set. As the results illustrate, the best performance is reported for

the Champion-S data set, which is the simplest among all the 4 data sets used in this ex-

periment. The reason for relatively poor performance reported from MediAssist-S is due

to the presence of faces with a wide range of appearance variations, including people

with sunglasses, different facial expressions, differently oriented faces, subject to con-

siderably dark and bright lighting conditions, etc. Therefore, it makes MediAssist-S the

most difficult test collection to work with in this research. However, this is the nature of

the problem that needs to be solved in real-life scenarios, and in this context, it can be

believed that the proposed modified BDF face detection algorithm performs acceptably

in this highly challenging task.

It is also worth noting that one of the important features of the BDF algorithm is that it

has the ability to detect faces of different in-plane rotations and scales as shown in Figure
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Figure 5.9: Detecting faces of different scales and rotations using the BDF face detection
algorithm: The results show that the algorithm is capable of correctly localising the girl’s
face which is rotated by 10◦ clockwise, and the boy’s face which is frontally upright and
slightly bigger.

5.9, enabling an accurate extraction of body-patch regions from the image.

Finally, some subjective results are presented in Figure 5.10 and 5.11 to give a further

insight into the level of performance achieved from the proposed face detection algo-

rithm. These images include some selected ones from the 4 test data sets described above

as well as from other personal photo archives. Some of these photos contain multiple per-

sons with frontal upright and in-plane rotated faces taken under uncontrolled imaging

conditions. These results also illustrate some problematic issues of the algorithm related

to the occurrence of a number of false detections and false rejections in the system.

5.4 Summary

In this chapter, the BDF face detection algorithm was studied and some performance en-

hancing features were proposed for efficient detection of multiple frontal faces in colour

images. These experiments were carried out in conjunction with the histogram-based

skin segmentation model developed and presented in Chapter 4. The performance eval-

uation of the modified algorithm was carried out using four test data sets, consisting

of photos with varying complexities from relatively simple head-and-shoulder type to

typical personal digital photos.

The experimental results showed that using the proposed algorithm can perform face

detection in an effective manner. It also shows some promising performance in detecting

faces of varying scales and rotations. However, one drawback of this face detection ap-

proach is that it is limited to detection of frontal and near-frontal faces only, which may

lead to a significant portion of the faces undetected in a given collection. In essence, such

erroneous detections need to be corrected by the user by removing false positives and
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manually establishing the false rejections, in order that all the persons of interest in the

collection can be studied in subsequent stages of the system.
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(a) Champion-S data set (b) HHI-S data set

(c) ECU-S data set

(d) MediAssist-S

Figure 5.10: Face detection results.
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Figure 5.11: Face detection results for other miscellaneous images.
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Chapter 6
Identifying Face and Body-Patch

Descriptors for Person Annotation

This chapter is devoted to the research carried out on identifying face and body-patch

descriptors for person annotation in personal photo management applications. It begins

with an introduction in Section 6.1, highlighting the nature of the problem and the pro-

posed approach in Section 6.1.1 and 6.1.2 respectively. A review of body-patch and face

matching techniques is given in Section 6.2. The colour, texture and face recognition

descriptors studied in this research are then described in Section 6.3. The performance

evaluation measure used, namely the Average Normalised Mean Retrieval Rate (AN-

MRR), is described in Section 6.4. Section 6.5 is devoted to a comprehensive analysis of

the behavior of numerous colour and texture descriptors in body-patch matching. The

test data and ground-truth used for the evaluation are described in Section 6.5.1, and a

performance comparison of the colour and texture descriptors is given in Section 6.5.2.

Section 6.6 describes the experiments carried out on face matching using numerous tex-

ture and face recognition descriptors. The type of test data/ ground-truth used for the

evaluation is described in Section 6.6.1 and a performance comparison of the descrip-

tors is given in Section 6.6.2. Fusion of colour, texture and face recognition descriptors is

presented in Section 6.8. The fusion methods studied are first described in Section 6.8.1.

A performance analysis of combined colour, texture and face recognition descriptors is

presented in Section 6.8.2, which is then followed by a discussion in Section 6.8.3. The

chapter concludes with a summary in Section 6.9.

6.1 Introduction

Person annotation is a key problem in personal photo management systems in order that

the content of photo archives can be described in terms of who is in the photo [24, 28].
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Automatic person annotation refers to a process whereby, once a person is enrolled in

the system, the identity of that person is established in all other photos using automatic

recognition technologies. Compared to location and time-based photo annotation, person

annotation plays a key role in describing real-world photo collections where retrieving

photos of people is arguably the most useful search-task for the user [9,24]. Unlike label-

ing photos with location and time information, describing “who” in a given photo is one

of the most challenging problems in computer vision due mainly to the fact that content-

based technologies, namely face recognition, offers only limited success when employed

in uncontrolled environments [24]. Person identification in personal photo archives is a

challenging problem, which needs to be addressed by taking into account the inherent

complexities, such as pose, facial expression and lighting variations (see Section 7.3 of

Chapter 7 for a statistical description of the type of pose variations that generally exist in

personal photo collections).

6.1.1 The Nature of the Problem

Numerous authors have addressed the problem of person recognition in personal photo

management applications using evidence from face and body-patch information sources

[9, 24, 28, 35]. While face-based person identification may be a satisfactory option when

dealing with moderately challenging and small sized photo archives consisting of a small

number of events, it can be very susceptible to pose/illumination variation, occlusion

and poor image-quality when employed in real-world photo archive management. As

a complementary feature to person identification in such scenarios, the use of body-

patch features has been proven to be useful despite its restricted application to event-

constrained environments. The assumption made in the use of body-patch features is

that persons re-appearing within an event would be wearing the same clothing as in pre-

vious photos (see Figure 6.1 for an example of a person appearing 3 times with the same

clothing in an event). Despite the fact that a significant level of success could be achieved

through body-patch feature matching when performed across different subjects within

an event (see Figure 6.2(a) for a typical scenario of two people being present with distinct

body-patch instances), complications occur as some people are likely to change clothing

even during the same event or when changes in clothing appearance occur due to imag-

ing conditions, partially or fully-occluded body regions (see Figure 6.2(b)) and photos

captured in facial view only (see Figure 6.2(b)). Some other difficulties that arise in us-

ing body-patch features include the presence of distinct people with the same type of

clothing, e.g. people wearing uniforms, resulting in conflicting body-patch features in

the person matching process (see 6.2(c) for an example of a group photo of sportsmen).
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the same person appearing three times

similar body patches

Figure 6.1: A person appearing 3 times in a typical personal photo event.

(a) A typical example
for face/body-patch
photo

four different 
faces with conflicting

body patches

(b) Partially/fully
occluded or com-
pletely missing body
regions

(c) Similar body-patch appear-
ances when people wear uni-
form type clothes

Figure 6.2: Typical body-patch/face instances in person annotation.

Therefore, it is clear that given a set of personal photos the presence of some features

may have a higher likelihood than the presence of other features, and they may be com-

plementary to each other when employed collectively in an image matching problem.

To this end, it is clear that investigating methods for identifying the best individual and

combined face/ body-patch descriptors is an important research topic for dealing with

the challenges associated with person annotation in personal photo archives.

6.1.2 The Proposed Approach

Colour and texture are two prominent low-level features that are widely used for describ-

ing images in many applications, including image/video search and retrieval. How-

ever, no definite colour or texture feature has yet been identified as the best descrip-

tive feature for image matching in computer vision. Previous studies have shown that

the performance of different descriptors is likely to vary against the image under study

[40, 170–172], without any solid proof on whether an individual colour or texture fea-

ture, or combined features should be used for describing the image content more effec-

tively. For example, depending on the problem at hand, some objects/image-regions

may exhibit strong colour characteristics (flowers, vehicles) while a different category

of objects/image-regions (trees, buildings) may tend to show strong texture characteris-
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−

Body−Patch Descriptor

− Texture 

Face Descriptor

Face Recognition

Data Fusion

− Colour 

Figure 6.3: The proposed system for person matching using face and body-patch descrip-
tors.

tics. Person matching in large personal photo archives is a task that could pose many

challenges, resulting in a requirement for low-level image features, such as colour and

texture, to be applied as pointed out in Section 6.1.1.

Considering the challenges associated with personal photo archive management, the

presence of face or body-patch of a particular subject could provide useful evidence in the

person annotation process. Despite the fact that exploitation of such information sources

cannot be guaranteed in all cases of a person annotation scenario, a sensible approach for

person matching can be proposed by consolidating the evidence presented by multiple

sources, i.e face and body-patch information sources, in personal photo management

applications.

Following the hypothesis that the use of multiple modalities, i.e. face and body-patch,

can be expected to meet the stringent performance requirements imposed by large per-

sonal photo archives, this part of the thesis focuses on identifying the best colour, texture

and face matching descriptors and their combinations through data fusion. Figure 6.3

shows the basic block diagram of the system, depicting the types of evidence that are

used for person matching in this research framework.

In order to accomplish this, numerous experiments are carried out to identify the

best colour, texture and face recognition descriptors using carefully chosen test data

and ground-truth, established both automatically, i.e. following automatic face detec-

tion, and manually, i.e. through user intervention. These data sets were selected in

such a way that they are representative of real-life challenges, such as the presence of

background regions, occlusions, and variations in pose, scale and lighting conditions.

The investigated colour descriptors include histograms, colour coherent vectors, colour

correlograms, spatiograms, and four MPEG-7 descriptors namely the dominant colour,

colour layout, colour structure and scalable colour descriptor. The investigated texture

descriptors are the gray correlogram, MPEG-7 homogeneous texture, and MPEG-7 edge

histogram descriptor. Two face recognition descriptors, namely the MPEG-7 face recogni-

tion descriptor and local binary patterns descriptor, are studied in this research, in order
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to investigate the use of face recognition technologies for person matching in personal

photo archives. These descriptors were chosen based on their previous successes and

the potential use in body-patch and face matching tasks in personal photo management

applications.

6.2 A Review of Person Identification Techniques using Face and

Body-Patch Information

A number of approaches to person identification using face and body-patch information

have been proposed in the literature, both within and outside the context of personal

photo management. For example, the approaches reported in [15, 28, 29, 35] have been

specifically targeted for person annotation in personal photo management while similar

technologies reported in [173–175] have been applied for automatically naming charac-

ters in TV videos.

Kuchinsky et al. [15] emphasised the use of face detection and recognition technolo-

gies to identify person identities in the FotoFile photo management framework. Based

on the score of similarity matching, it establishes a name for a person depicting his/her

re-appearance in the photo collection. Using automatic face detection and recognition

technologies [50, 86] facilitated the computation of person identities through facial simi-

larity matching. However, one notable disadvantage in their approach is the lack of use

of other content-based and contextual information in computing the similarity between

people.

Girgensohn et al. [57] presented a system for labeling people in photos using face

detection and recognition technologies combined with novel user-interface techniques.

Frontal face detection is first performed, enabling the face recogniser to learn the models

of people as the labeling process progresses. Such models are then subsequently used

to label the remaining faces in the photo collection. However, the authors have given

very little information about the type of face model they constructed and the method-

ology employed in performing the person matching task. Similarly, no other visual or

contextual feature was used to compute similarity in the person matching process.

As a semi-automatic approach to face annotation, Chen et al. [29] proposed a different

discriminative face feature computed using simple colour and texture features combined

with face recognition technologies. In this system, a real-time face detector locates faces

in the photo album which, in turn, allows extracting face and body-patch features from

the image. Based on the performance evaluation results of different feature extraction

methods, such as colour moment, wavelet, correlogram, block wavelet, block correlo-
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gram, and eigen-face, the authors employed the block wavelet and block correlogram as

the facial and body-patch feature extraction methods for person matching. Experiments

also showed that body-patch features outperformed facial features in the proposed semi-

automatic person annotation framework.

In a similar semi-automatic approach proposed by Zhang et al. [12] [28], a Bayesian

framework was used to carry out person annotation in family photo albums. They used a

multi-view face detector [131] for locating faces in the photo collection. Face information

is extracted from 25 × 45 cropped faces and matched using a MAP estimation criterion

built upon two classes of face variations, called intra-personal and inter-personal vari-

ations. Face information is used only if the detected face is in frontal view, otherwise

the system considers it as a missing feature. Body-patch features correspond to com-

bined colour and texture comprising a 50 dimensional banded auto-correlogram and a

14 dimensional colour texture moment. The final feature vector corresponds to two such

64 dimensional colour and texture features extracted from both face and body regions.

These two features are combined in a Bayesian framework to compute the likelihood es-

timation for the person under study. They demonstrated that combining body and face

features improved the performance of person annotation.

In the automatic person annotation of family photo album approach proposed by

Zhao et al. [35], face detection [104] and recognition technologies [176] combined with

body-patch matching are used to identify person re-occurrences. In conjunction with face

detection results, body-patch features are first extracted from all the detected persons in

the collection and then an initial event-based person clustering is performed based on

the similarity of body-patch features. Based upon the evidence from face recognition,

such clusters are then combined together using a graphical model. One notable differ-

ence in their approach lies in the body-patch extraction process where an image segmen-

tation step is employed, enabling extraction of arbitrary-shaped body-patch regions as

opposed to the fixed-shape body-patch segments most other approaches adapt. They

used an LUV colour histogram and an edge directional histogram as feature extraction

methods to represent body-patch regions in colour and texture respectively. The use of

body-patch information combined with face and context information has been shown as

a noteworthy advantage of this system over other uni-model counterparts.

Suh and Bederson proposed a semi-automatic image annotation approach, targeting

efficient bulk annotation of event and person clusters [9]. Person clustering is performed

using clothing information comprising a 4-dimensional (y-distance, r, g, b) feature vector,

with y-distance corresponding to the relative vertical position of a sample and r, g, b

related to red, green, blue colour channels. They also observed that picking samples
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from the upper central part of the clothing provides more robust results than selecting

samples uniformly from all parts of the clothing.

The EasyAlbum semi-automatic annotation system was presented by Cui et al. us-

ing novel features, such as cluster annotation, contextual re-ranking, and ad-hoc label-

ing [24]. Clusters corresponding to different people are automatically created using face

and body-patch features, where faces are modeled using the LBP features and body-

patch segments are represented using colour correlogram features. Due to technological

difficulties in automatically clustering large collections of faces undergoing substantial

variations in appearance, faces are annotated in selected sets of events or time spans.

The user evaluation of person annotation carried out in both small and large sized photo

collections illustrated the importance of person annotation for effective personal photo

management.

In the automatic name tagging system for TV and movie content presented by Ev-

eringham et al. [173], automatic person identification is achieved using face matching,

body-patch matching, speaker identification along with alignment of subtitles and tran-

scripts. Using multiple supervisory cues addresses the complications that usually occur

in computer vision analysis, starting right from face detection. The person matching task

is performed using both face and body-patch features extracted within shots. Facial ap-

pearance is modeled using several facial features together with computation of the local

appearance around each feature point. Such an appearance model is reported to be more

effective than using a global face feature model for person matching. Clothing appear-

ance, on the other hand, is represented using simple colour histograms in the Y CbCr

colour space. The visual cues are combined using a straightforward weighting of the

clothing appearance relative to face appearance, resulting in effective compensation for

changes in clothing appearance that could occur on any given subject in the collection.

Sivic et al. proposed an approach for finding people in video sequences appearing in

the same scene that could correspond to multiple repetitive shots [174]. Similar to other

approaches, they assumed that an individual’s hair and clothing stayed the same within

a short video sequence, and the presence of a person could be detected and recognised

through frontal face detection [104] [177] and body-patch matching. Body-patch features

are extracted using RGB histograms, which are subsequently input to a clustering al-

gorithm to determine similar persons present in the video. They proposed modeling

a person as a pictorial structure using three rectangular components, namely hair, face

and body. The appearance of each component is modeled as a Gaussian mixture model.

The person matching task in this approach, however, is limited to the use of descriptive

features extracted from hair and body-patch components only.
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An automatic person labeling system for video indexing through body-patch match-

ing was presented by Jaffre and Joly [175]. Emphasising the need for addressing the

difficulties in face detection leading to missing body-patch instances, they attempted to

use mean shift analysis in the proposed system. Automatic person labeling is carried out

on a per-shot basis where a shot is assumed to contain very little camera motion during

which no person appearance/disappearance occurs. Similar to other approaches, using

a frontal face detection method [104] locates all the possible persons in a frame which, in

turn, allows extracting the costume parts that are subsequently represented with RGB

histograms. Any missing body-patch instance is then searched by applying more com-

putationally expensive mean shift analysis at various initialisations and scales.

The current state-of-the-art person identification techniques for personal photo man-

agement, therefore, follow the hypothesis that using multiple modalities, i.e. body-patch

and face, can improve the person-matching performance while compensating for the lim-

itations in performance of individual modalities. Keeping this observation in mind, this

research aims at identifying the best feature extraction methods for body-patch and face

matching, thereby allowing them to be employed in the most effective way on the prob-

lem of person annotation.

6.3 Descriptors for Body-Patch and Face Matching

Colour and texture are two prominent low-level features that are widely used in various

multimedia applications [178]. The use of other low-level features, such as shape, has

not proven to be potentially useful, partly due to the requirement for computationally

expensive pre-processing operations [178]. The suitability of colour and texture features

for face and body-patch matching is studied in this thesis, in addition to face recognition

technologies that are naturally the first consideration when identifying people in digital

content. The descriptors evaluated in this study include the MPEG-7 colour descriptors,

MPEG-7 texture descriptors and MPEG-7 face recognition descriptor (see [179] for de-

tailed normative information on each MPEG-7 descriptor), in addition to various other

previously proposed colour and texture descriptors such as histograms, spatiograms,

colour coherent vectors, colour correlograms and local binary patterns.

Identifying a suitable colour space, a quantisation step and a similarity matching cri-

terion becomes a fundamental problem when employing low-level features for image

matching tasks. Traditionally, colour-space transformations from RGB to more percep-

tually uniform colour space such as HSV , CIE-LUV , and Y CbCr are considered to be

advantageous in improving the retrieval performance against minor fluctuations in vi-
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sual properties of images and videos. A colour space is known to be perceptually uni-

form if a similar change in perception occurs due to a small change of colour anywhere

in the colour space. A colour space should then be quantised accordingly, ensuring that

it can save the feature storage cost adequately and at the same time retain a reasonable

level of colour discrepancy for matching. Limitations of the traditional colour spaces

such as the ones mentioned above have been addressed in some recently proposed new

colour spaces, for example HCL (Hue, Chroma, Luminance) [180], HMMD (Hue, Max,

Min, Distance) [179].

A variety of similarity matching criteria have been used for image matching in the

literature [181]. Examples include the Bhattacharya distance [181, 182], histogram inter-

section [178], quadratic form [183], Chi-square distance [184], sum of the absolute dif-

ferences (L1 distance) [185] and sum of the squared differences (L2 distance) [185]. The

use of such similarity matching criteria can be observed in the descriptors studied in this

section.

6.3.1 Colour Descriptors

Colour is one of the most important and easily identifiable features for describing visual

content in many applications, such as image search and retrieval, segmentation, visual

surveillance and object tracking. There are many different types of colour descriptors

available in the literature, including histograms [178], spatiograms [182], colour coher-

ent vectors [185], and correlograms [186]. Following the standardisation of MPEG-7 [1],

there has been a significant increase in the use of more advanced colour descriptors, such

as dominant colour, colour layout, colour structure and scalable colour descriptors, in

numerous applications. For example, Annesley et al. presented a performance com-

parative analysis of four MPEG-7 colour descriptors in a visual surveillance application

scenario, claiming that colour structure is the best colour descriptor for surveillance ap-

plications [172]. Prior to that, numerous researchers used other conventional colour de-

scriptors with varying degrees of accuracy. For example, Swain and Ballard proposed a

CBIR method using colour histograms, describing its advantages such as robustness and

efficiency when indexing multi-coloured objects in large image databases [178]. Birch-

field and Rangarajan compared spatiograms against histograms, and claimed that using

spatiograms leads to improved performance in an object tracking framework [182]. Pass

and Zabih compared the performance of colour coherent vectors against histograms and

showed that colour coherent vectors are generally a more accurate feature representation

method [185]. Correlograms, originally proposed by Huang et al., were proven to be bet-

ter than histograms and even superior to some of the histogram enhancement methods
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such as colour coherent vectors [186].

This research aims at studying in detail the prominent colour descriptors that have

been previously proven to be effective in various multimedia applications. Thus, the

following descriptors were chosen as the most potentially useful candidate descriptors

for body-patch matching.

6.3.1.1 Colour Histograms

Colour histograms are a popular image representation method that have been used in

many image retrieval applications due to their simplicity and efficiency, and the im-

plicit advantage of being able to represent images using relatively small-sized feature

vectors [178]. The inherent property of invariance to occlusion, rotation and scale makes

them a relatively robust descriptor in image matching applications. Given a discrete

colour space, histograms are constructed by counting the number of discrete colour oc-

currences, purely as a global description of an image. The similarity between any two

images can then be measured using a similarity measure criterion such as the L1 dis-

tance, L2 distance, histogram intersection, Bhattacharya distance, etc. However, despite

its advantage of being a simple and efficient feature representation method, one draw-

back is that they are likely to perform poorly when dealing with semantically dissimilar

images/objects having equal amounts of similar spatial colour distributions. In addi-

tion, sensitivity to overall intensity variations and image compression artifacts is another

limitation of histograms [187].

6.3.1.2 Colour Coherent Vectors (CCV)

The colour coherent vector (CCV) descriptor, originally proposed by Pass et al., is a

histogram enhancement technique which incorporates some spatial information of the

colour distribution in an image [185, 187]. One drawback in using conventional his-

tograms is that two images with different textured colour can still result in similar fea-

ture vectors, making them difficult to distinguish. This problem is addressed in CCV by

separating coherent pixels from incoherent pixels in a discretised colour space where a

coherent pixel is defined to be part of a sizeable region. A CCV is thus represented by

the number of coherent and incoherent pixels, thereby preventing coherent pixels in one

image from matching incoherent pixels in another image. Two CCVs can be compared by

using a similarity measure, such as the L1 distance for example, based upon the number

of coherent and incoherent discretised colour pixels available in the two images.

In CCV, given two images I and J , the number of coherent (α) and incoherent (β)

pixels are identified using the 8-neighbor connected pixels. Assuming both images are of
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the same size, the distance between the two images can be computed by

d(I, J) =
N∑

b=1

(|αI
b − αJ

b |+ |βI
b − βJ

b |) (6.1)

where N is the total number of histogram bins, αI
b is the total number of coherent pixels of

the bth bin in I , αJ
b is the total number of coherent pixels of the bth bin in J , βI

b is the total

number of incoherent pixels of the bth bin in I , and βJ
b is the total number of incoherent

pixels of the bth bin in J .

Compared with (6.1), the distance between I and J using two conventional histograms

can be represented by

d(I, J) =
N∑

b=1

|(αI
b + βI

b )− (αJ
b + βJ

b )| (6.2)

From equations 6.1 and 6.2, it becomes clear that CCVs can result in more accurate

results when the bth bin in I and J have the same number of counts, i.e. αI
b+βI

b =αJ
b +βJ

b ,

but with different distributions, i.e. αI
b 6= αJ

b and βI
b 6= βJ

b .

6.3.1.3 Colour Correlograms

Colour correlograms, originally proposed by Huang et al. [186], are an attractive low-level

descriptor, capturing the relative strength of pairs of colours at various distances across

the image. They are also known to be relatively robust against view-point changes, par-

tial occlusions, camera zoom effects and the presence of distracting backgrounds. Cor-

relograms exploit the local colour spatial distribution as well as the global distribution

when compared to conventional histograms that rely purely on global colour distribu-

tion and histogram enhancement techniques that only loosely embeds the information of

combined global and local colour distributions.

In correlograms, the pattern of change in the spatial correlation of a pair of colours,

irrespective of whether they are identical or distinct, is represented in the form of a look-

up table where the kth entry for < i, j > denotes the probability of finding colour j

at k pixels away from colour i. Given any pixel of colour ci in the image I , γk
ci,cj

(I) (see

Equation 6.3.1.3) defines the probability that a pixel at k pixels away from the given pixels

is of colour cj .

γk
ci,cj

(I) , Pr
p1∈Ici ,p2∈I

[p2 ∈ Icj , |p1 − p2| = k]

One notable difficulty in using the correlograms in CBIR applications, however, oc-

curs due to their high computational requirement. In this context, auto-correlograms,
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which capture the spatial correlation of only the identical colour pixels in the image with

a reduced feature vector size from Om2d to Omd, are known to be a relatively simple and

therefore a practically viable alternative for such applications (see (6.3)).

αk
c (I) , γk

c,c(I). (6.3)

Two correlograms can be matched using a similarity measure, for example the L1

distance, which can be represented in the form of:

d(I, J) ,
∑

i,j∈[m],k∈[d]

|(γk
ci,cj

(I)− γk
ci,cj

(J)| (6.4)

6.3.1.4 Colour Spatiograms

Birchfield and Rangarajan recently developed a spatial histogram technique, called spa-

tiograms, that includes potentially higher order moments [182]. Spatiograms preserve

all the features that histograms provide but include additional information about each

bin in the histogram characterised by the spatial locations of pixels in that bin. More

specifically, each histogram bin is weighted by the mean and covariance of the locations

of pixels, making them a richer representation capturing not only the values of pixels but

also their spatial relationships. It is intended that using such an image representation

could more effectively address the fundamental problems associated with conventional

histograms, which lack power in discriminating textured colour images.

Equation 6.5 represents the spatiogram (or a second-order histogram) of an image I

S = h
(2)
I = 〈ηb, µb,Σb〉 (6.5)

where nb is the number of pixels in the bth bin, µb and Σb are mean and covariance of the

coordinates of pixels in the bth bin.

The similarity between two spatiograms, ρ(S,S’), each containing N bins, can be com-

puted as the weighted sum of the similarity between two histograms using

ρ(S, S′) =
N∑

b=1

ψbρn(nb, n
′
b) (6.6)

According to [182], the weighting ψb for each bin b is defined by

ψb = N(µb;µ
′
b, Σ

′
b)N(µb

′;µb,Σb) (6.7)

where N(a; µ,Σ) is a (µ,Σ) Gaussian evaluated at a [188].
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6.3.1.5 MPEG-7 Dominant Colour Descriptor

The MPEG-7 dominant colour descriptor describes a fixed or arbitrary shaped image in

terms of a small number of dominant colours and some statistical properties related to

them [179] [189]. The number of dominant colours used to describe an image can vary

according to the type of image content subject to an upper limit of 8 clusters. The descrip-

tor uses the generalised Lloyd algorithm in the CIE LUV colour space to perform colour

clustering by iteratively computing the distortion rate in each cluster until 8 clusters are

created. The agglomerative clustering algorithm is then used to merge clusters based

upon their similarity, resulting in a number of clusters between 1 and 8. The colour clus-

ters are represented using dominant colour, percentage value and colour variance. The

overall spatial homogeneity of dominant colours is represented by the spatial coherency

measure. When computing the similarity between given two images, the simplest and

most efficient criterion should comprise only the dominant colours and the percentage

values, however combining with spatial coherence and colour variance scores could lead

to a more accurate similarity-matching performance.

6.3.1.6 MPEG-7 Colour Layout Descriptor

The MPEG-7 colour layout descriptor is a compact representation of the spatial colour

distribution of a fixed or arbitrary shaped image, facilitating efficient retrieval of images

in CBIR applications [179,189]. The descriptor extraction process involves first partition-

ing the image into 8 × 8 blocks and then representing them using the average colours in

the Y CbCr colour space. Applying the DCT (Discrete Cosine Transform) to 8 × 8 colour

blocks produces a series of coefficients from which a small number of low frequency co-

efficients are selected through zig-zag scanning. The resulting low-frequency coefficients

are then quantised to form the colour layout descriptor of which the similarity measure is

defined as a function of a weighted sum of squared differences between the correspond-

ing descriptor components.

6.3.1.7 MPEG-7 Scalable Colour Descriptor

The MPEG-7 scalable colour descriptor is a colour histogram, which is encoded using

the Haar wavelet transformation, in the HSV colour space [179,189]. Non-linearly quan-

tised histogram values are input to the Haar transformation that produces a series of

low-pass and high-pass coefficients. The output coefficients are then subject to a linear

quantisation process with different quantisation levels assigned to the H channel so that

it represents a higher percentage compared to the other two colour components. A reduc-
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tion in the descriptor size can be achieved by discarding some or even all of the high-pass

coefficients. Hence, the descriptor can represent an image using a desired number of co-

efficients ranging from 16 to 256 while enabling retrieval accuracy to be balanced against

descriptor-size. The number of bits used can be reduced by scaling the coefficients to

different numbers of bits as well.

6.3.1.8 MPEG-7 Colour Structure Descriptor

The MPEG-7 colour structure descriptor embeds both the spatial structure of the colours

as well as their frequency of occurrence in an image [179,189]. The CSD is defined using 4

different colour quantisation levels, i.e. 32, 64, 128 and 256, in the HMMD colour space.

In the descriptor extraction process, the image is progressively scanned with a 8 × 8

structuring element, counting the number of occurrences of colour values encountered

within the spatial structural element. The best accuracy of the CSD can be achieved using

a feature vector comprising 256 coefficients, implying that compact representations could

lead to lower performance.

6.3.2 Texture Descriptors

Texture has been been studied to a large extent in the literature as a key component of

human visual perception and an important characteristic for the analysis of many types

of images. There are a number of different texture feature extraction approaches that have

been proposed by researchers in application areas such as image retrieval [190] [191] [192]

[2] [193], medical imaging [194] [195] and video surveillance [196].

Ohanian and Dubes carried out a performance evaluation of four textural descriptors

using Markov Random Field parameters, multi-channel filtering features, fractal based

features and co-occurrence features [170]. They claimed that the co-occurrence matrix

feature performs best out of the four descriptors studied. They, however, further stressed

that the feature selection task needs to be performed for each specific problem as there

was no optimally best subset of features for image matching [170]. Other authors such as

Ojala et al. [171], and Howarth and S. Ruger [197] also carried out comparative studies to

evaluate the performance of numerous texture descriptors.

Among the normative descriptors that have emerged as part of the MPEG-7 stan-

dard [179], there has been a consistently increasing trend in the use of texture descriptors,

namely homogeneous texture, edge histogram and texture browsing descriptor for vari-

ous computer vision tasks [172,198]. Based on the suggestions given by other researchers

about the superiority of the MPEG-7 texture descriptors against other conventional de-

scriptors, the following texture descriptors are studied in this research.
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Figure 6.4: Frequency layout of HTD [1].

6.3.2.1 MPEG-7 Homogeneous Texture Descriptor

The MPEG-7 homogeneous texture descriptor classifies texture properties to a fine gran-

ularity, closely relating them to the human visual system. In HTD, the texture properties

of an image are captured using Gabor features, which have previously shown success

in numerous applications such as segmentation, motion tracking and image registra-

tion [179, 191]. One distinct advantage of using Gabor features is that they allow min-

imising the joint two-dimensional uncertainty in space and frequency. Furthermore, they

are considered to be powerful scale and orientation tunable line and edge detectors [191].

The HTD is represented with mean and standard deviation of the image pixel inten-

sities, along with energy and energy deviations extracted from a frequency layout across

5 scales and 6 orientations as shown in Figure 6.4. Thus, using 30 Gabor filters makes the

full feature vector a 62-element long texture description of the image. Extraction of the

HTD involves applying the Radon transform, followed by 1D Fourier transform.

The Gabor function, Gs,r, defined at sth radial index and rth angular index is given by

Gs,r(ω, θ) = exp[
−(ω − ωs)

2

2σ2
ωs

].exp[
−(θ − θr)

2

2σ2
θr

] (6.8)

The energy values and energy deviation values are defined by ei and di as follows.

ei = log[1 + pi] (6.9)

where

pi =
1∑

ω=0+

360∑

(θ=0◦)+
[Gs,r(ω, θ).|ω|.F (ω, θ)]2 (6.10)

di = log[1 + qi] (6.11)
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where

qi =
1∑

ω=0+

360∑

(θ=0◦)+
{[Gs,r(ω, θ).|ω|.F (ω, θ)]2 − Pi}2 (6.12)

The 62-element HTD feature vector is represented by

TD = [fDC , fSD, e1, e2, e3, ..., e30, d1, d2, d3, ....., d30] (6.13)

Similarity matching between two descriptors, TDi and TDj , can be computed by

d(TDi, TDj) =
∑

k

|w(k)[TDi(k)− TDj(k)]
αk

| (6.14)

6.3.2.2 MPEG-7 Edge Histogram Descriptor

The MPEG-7 edge histogram descriptor captures the composition of edge distributions

in still images, which is considered to be a strong perceptual cue in representing object

semantics [2,179]. MPEG-7 defines the use of local edge distribution as a normative part,

and the global and semi-global edge distributions as optional. Won et al. argued that us-

ing only local edge distribution may not be sufficient for image retrieval, but combining

with global distributions could significantly improve the retrieval performance [2].

In EHD, the local edge distribution is represented using 5 types of edges derived

from a sub-image in the original image. These edges are defined as vertical, horizontal,

45◦−diagonal, 135◦−diagonal and non−directional as shown in Figure 6.5. Sub-images

are created by dividing the image into 16 (4× 4) non-overlapping parts for each of which

a histogram is generated (see Figure 6.6). Hence, the normative part of the descriptor

corresponds to a 80-bin histogram that represents the local distribution of frequency and

directionality of intensity changes in a given image. Each histogram bin is normalised

by dividing the total number of edge occurrences of each bin by the number of image-

blocks in the sub-image so that the descriptor is scale invariant. The edge information is

extracted from image-blocks that are the basic units in the descriptor extraction process.

Identifying the dominant edge type out of the five types for each image-block triggers

each edge bin of the histogram to be increased by 1. These edge bins are normalised

by the total number of image-blocks irrespective of whether they represent any of the 5

predefined edge types or not.
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(a) (b) (c) (d) (e)

Figure 6.5: Five types of edges considered in EHD (a) vertical edge (b) horizontal edge
(c) 45-degree edge (d) 135-degree edge (e) non-directional edge [2].
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Figure 6.6: Extracting Edge Histogram Descriptor [2].

6.3.3 Face Recognition

Face recognition has been an active research topic for over 30 years, leading to the emer-

gence of many algorithms in application areas such as law enforcement, advanced video

surveillance, image/video search and retrieval, video compression, and digital content

management. As new applications emerge in which people are the center of attention,

the need for more effective face recognition algorithms becomes increasingly important.

Although many algorithms have been proposed by various researchers to date, the ef-

fectiveness of them largely relies on the conditions on which they are applied [199–202].

The major technological difficulties that remain challenging for automatically recognis-

ing people in such applications include variations in illumination, facial expression and

pose.

Two types of face recognition descriptors, namely the MPEG-7 face recognition de-

scriptor and the LBP descriptor, are examined in this experimental study, in order to

identify a suitable face recognition descriptor for recognising people in personal photo

archives.

6.3.3.1 MPEG-7 Face Recognition Descriptor

The MPEG-7 face recognition descriptor, built upon Eigenface technology, is a compact

face descriptor that facilitates efficient face recognition in images [41,179]. It is described

using 48 eigenvectors and a mean face vector, representing a normalised luminance face-

image of size 46 columns and 56 rows. Face normalisation is performed in such a way
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Figure 6.7: MPEG-7 face recognition descriptor extraction.

that the two central eye feature points lie in the 16th and the 31st columns at the 24th row

of a horizontally aligned face image as shown in Figure 6.7.

MPEG-7 defines the mean face vector Ψ and the basis matrix U of 48 eigenfaces, al-

lowing them to be directly used when employing the MPEG-7 FRD for face recognition.

The normalised facial image vector is projected onto the space represented by U , and

hence the feature vector W can be obtained by

W = UT (Λ−Ψ). (6.15)

Similarity matching of the MPEG-7 FRD is performed by computing the weighted dis-

tance between features of two FRDs as proposed in [1]:

δ(Λ1,Λ2) =
47∑

i=0

ai|w(Λ1)
i − w

(Λ2)
i |, (6.16)

where w
(Λk)
i denotes the ith feature value in a feature vector describing facial image Λk

and ai is a weighting factor. Weighting values for ai are given in [1].

6.3.3.2 Local Binary Patterns

Local Binary Patterns, originally proposed by Ojala et al. [171], are non-parametric and

computationally simple yet effective features for describing the textural characteristics of

images. Motivated by the fact that faces can be considered as a composition of micro-

patterns, Ahonen et al. [184] applied the LBP operator to the problem of face recognition

yielding excellent results. Following that work, it has been employed in other research

problems such as face detection [203, 204], face recognition/authentication [3, 205] and

facial expression recognition [206, 207] with significant success. One distinct feature of

the LBP descriptors is that they are invariant to monotonic gray-scale transformations,

which makes them a potentially robust feature representation method against illumina-

tion variations.

In LBP-based face representation, a face is modeled as a collection of LBP histograms.

Extracting LBP features from a face image requires first partitioning the image into small
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Figure 6.8: Extracting LBP features [3].

binary decision upon 
     comparing with 
       center value

92

25

81

24

68

73

32

47

17

clockwise  
 reading LBP code

1

0

1

0

1

0

0

0

binary: 10000110

decimal: 134

Figure 6.9: The basic LBP operator.

regions and then computing a description for each region , i.e. a local histogram, using

LBP codes (see Figure 6.8). These local histograms are then concatenated into a spatially

enhanced histogram or a feature vector.

The LBP operator is a non-parametric N × N kernel that enables the local spatial

structure of an image be to described in the form a histogram. For a given pixel location

(xc, yc), a series of binary numbers are computed by thresholding with the pixel intensity

of its neighboring pixels (see Figure 6.9). An ordered set of binary comparisons then

defines the value of LBP codes. In the original approach proposed by Ojala et al. [171], a

3× 3 (N=3) neighborhood was used, resulting in an 8-bit LBP code that can be expressed

in decimal form as

LBP (xc, yc) =
7∑

n=0

s(in − ic)2n (6.17)

where ic corresponds to the gray value of the center pixel (xc,yc), in to the gray values of

eight surrounding pixels, and s(x) is defined as

s(x) =





1 if x ≥ 0

0 if x < 0
(6.18)

Later, Ojala et al. [4] extended the neighborhood of the LBP operator to different sizes

using circular patterns, allowing the use of any value of radius and number of pixels (see

Figure 6.10 for a neighborhood with 8 sample points on a circle of radius 2). The general

notation of the LBP operator is denoted by LBPP,R, referring to a neighborhood size of
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Figure 6.10: A circular (8,2) neighborhood - the gray values of neighbors falling outside
the center of pixels are estimated by interpolation [4].

P equally spaced pixels on a circle of radius R and yielding a number of 2P local binary

patterns. In an LBP description, the number of LBP codes can be reduced by using only a

subset of the 2P codes that correspond to a small number of bitwise transitions from 0 to

1 and vice versa [4]. Patterns comprising only a small number of bitwise transitions are

called uniform patterns, and the occurrence of such patterns is a distinct characteristic

of facial images. A uniform pattern corresponding to a maximum of two bitwise transi-

tions is denoted by u2. Some example u2 patterns for an 8-bit LBP code include 11111111,

00000000, 00010000 and 11110011. Thus, a more general representation of the LBP opera-

tor can be denoted by LBP u2
P,R that describes the frequency of patterns having more than

2 transitions in a single bin and all the uniform patterns in separate bins, accounting for

less than 2P bins in a local histogram.

Assuming a face image is divided into m regions and a local histogram comprises

n histogram bins, the concatenated (the spatially enhanced) histogram, representing a

global description of the face, corresponds to a histogram of size m× n.

To compute the similarity matching between two LBP descriptors, Ahonen et al. used

the Chi-square measure:

χω
2(x, ξ) =

∑

j,i

ωj
(xi,j − ξi,j)

2

xi,j + ξi,j
(6.19)

where x and ξ are the normalised enhanced histograms to be compared, indices i and j

refer to ith bin in histogram corresponding to the jth local region and ωj is the weighting

factor for region j [184].

6.4 Performance Measure Criterion

In this thesis, the retrieval performances of the body-patch and face descriptors are eval-

uated using the Average Normalised Mean Retrieval Rate (ANMRR) measure. It was

chosen due to its distinct advantage of representing the retrieval performance in the form

of a single numerical value as opposed to other conventional pair-wise quantitative mea-

sures, such as the precision/recall [208] and FAR/FRR graphs [209].
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6.4.1 ANMRR Measure

ANMRR is an extensively used performance evaluation measure in the MPEG-7 exper-

imental evaluation systems [189]. It takes into account not only the number of correct

items retrieved for a given query but also how highly they are ranked in the list of re-

trieved items. ANMRR is defined as the average of NMRR values taken over a range of

queries. NMRR is given by:

NMRR(q) =

∑NG(q)
k=1

Rank(k)
NG(q) − 0.5−NG(q)/2

K + 0.5−NG(q)/2
(6.20)

where NG(q) denotes the number of ground-truth items marked as the result images

for the query q, Rank(k) is the ranking of the ground-truth item in the list of retrieved

items. K is defined as min(4 · NG(q), 2 · GMT ), where GMT is the maximum value of

ground-truth items for all queries. The values of ANMRR always lie in the range [0,1],

with smaller values representing better retrieval performances.

6.5 Identifying Body-Patch Descriptors

A significant number of potentially powerful colour and texture descriptors are studied

in this experiment, in order to identify the best colour and texture descriptor for body-

patch matching. Colour descriptors include four MPEG-7 descriptors, namely dominant

colour, colour layout, colour structure and scalable colour in addition to four other con-

ventional type of colour descriptors, namely histograms, spatiograms, colour coherent

vectors and correlograms. In order to study the effect of the chosen colour space on

the performance of conventional colour descriptors, their performances are also studied

in four different colour spaces, namely RGB, HSV , CIE-LUV and CIE-LAB. Three

different types of texture descriptors, i.e. the MPEG-7 HTD, MPEG-7 EHD, and gray

correlograms, are studied in this research.

When extracting body-patch segments relative to automatic face detection results,

they are considered to be double1 the size (width and height) of detected faces as shown

in Figure 6.11, i.e. the size of body-patch corresponds to 2W × 2W for a face of size

W ×W . This is to ensure that inclusion of background regions are kept to a minimum.

Body-patch segments are also considered to be located d pixels below the lower level of

the face (see Figure 6.11). In order to determine the optimum value of d, the performance

of these colour and texture descriptors is studied for different values of d as a function of

face height W .

1Note that this criterion was chosen arbitrarily, bearing further experimentation on identifying the best
relationship of body-patch scaling.
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As it is possible to achieve different performance figures from using descriptors of

varying feature vector sizes, it was ensured that all the descriptors studied in this research

adhered to some pre-determined sets of parameters enabling a fair comparison between

them. A brief description of the chosen parameters for each of the colour and texture

descriptor is given below.

For colour descriptors, each colour channel in the RGB space was quantised using

a value of 32 resulting in 8-bins/colour-channel for histograms, spatiograms, CCV, and

correlograms. The H colour channel in the HSV space was quantised using a value of

8 and the other two channels, i.e, S and V , were quantised using a value of 64 for his-

tograms, spatiograms, CCV, and correlograms. The four colour descriptors in the LUV

and LAB colour spaces were quantised using a value of 128 on the L channel and 32

each on the two chrominance channels. In order to obtain the best performance from the

four MPEG-7 colour descriptors, the descriptors parameters were chosen accordingly. In

the case of the DCD, the similarity matching was performed using spatial coherence and

colour variance scores, in addition to dominant colours and the percentage values. In

the case of the SCD, descriptors were compared in the histogram domain with 256 co-

efficients and zero bit-planes discarded. The CSD was computed with 256 coefficients

while the CLD was computed with 15 coefficients for illumination (Y ) and 6 coefficients

for each chrominance component (Cb and Cr).

For texture descriptors, the HTD was computed including both base and enhance-

ment layers, resulting in a 62-element feature vector. Experiments carried out using

different numbers of coefficients proved that a feature vector comprising base and en-

hancement layers always produces more accurate results. However, different behavior

was observed in the EHD, which proved to be more accurate when computed with lo-

cal edge distributions only. Results showed that combining local edge distributions with

global distributions does not improve the body-patch matching performance. Therefore,

EHD was computed using only local edge distributions, resulting in a feature vector of

80 coefficients. In the gray correlogram method, the gray channel was quantised using a

value of 8, with d (see Equation 6.3.1.3) set to 4, thereby resulting in a 128-element feature

vector.

6.5.1 Establishing Groundtruth/Test-Data for Body-Patch Matching

In order to identify the most suitable colour and texture descriptors for body-patch match-

ing, a test data set of body-patch images comprising 70 subjects (i.e. 70 queries) with

varying numbers of result images (groundtruth) for each query was established both

manually and automatically. There are 12 data sets in total of which the first 11 sets cor-
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Automatic Face Detection
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Figure 6.11: Extracting body-patch regions relative to automatic face detection.

Table 6.1: Statistics on query (q1-q70) and result images used in the experiments (70 query
subjects and 219 result images.
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1

1

1

2

2

2

2

3

1

1

respond to body-patches extracted at varying d values relative to the location, size and

in-plane rotation of the automatically detected faces2, i.e. d - 0.25W,0.3W, 0.35W, 0.4W,

0.45W, 0.5W, 0.55W, 0.6W, 0.65W, 0.7W and 0.75W (see Figure 6.11). The 12th set corre-

sponds to manually established3 query and result images through human inspection. Ta-

ble 6.1 shows the corresponding number of result images available for each query q1-q70.

These data sets were established in such a way that they imposed real-life challenges on

the descriptors studied in this research. Figure 6.12 shows a few example query images

along with their result images, illustrating some real-life challenges in terms of variations

such as spatial size, colour, shape and inclusion of background regions.

6.5.2 Comparing the performance of Colour and Texture Descriptors

In this section, a performance comparison between different colour and texture descrip-

tors is presented using the ANMRR evaluation criterion. A descriptor having a smaller

value of ANMRR is said to be better performing than another having a larger value of
2It should be noted that the face detection algorithm described in Section 5.2.2 of Chapter 5 was used to

detect faces for this task.
3The Adobe Photoshop image editing tool was used to crop out the manually selected body-patch seg-

ments from the original image.
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4 example
query images

Result images for each query

Figure 6.12: Example test data illustrating some discrepancies between the query and its
result images.

ANMRR.

6.5.2.1 Colour Descriptors

Of the 8 different descriptors studied in this experiment, Table 6.2 presents the perfor-

mance figures (ANMRR) of the 4 best performing colour descriptors evaluated at 11 dif-

ferent values of d, i.e. d varying from 0.25W to 0.75W for the 70 subjects described in Ta-

ble 6.14. The last column in Table 6.2 corresponds to the body-patch data set established

through human inspection, allowing inclusion/exclusion of background/foreground re-

gions to a minimal. As expected, the manually established data set proved to be more

accurate than most of automatically established data sets (see Table C.1 in Appendix C).

Considering the performance figures reported in the table, it can be seen that the SCD

resulted in the smallest value of ANMRR both in the automatic (ANMRR=0.2270) and

manual (ANMRR=0.2251) data selection process. For any given d, performance of the

4Performance evaluation results of the full set of descriptors can be found in Table C.1 in Appendix C.
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SCD is shown to be superior to any other descriptor in the table. Figure 6.13 shows some

comparative performance results of the 8 descriptors studied in body-patch matching for

d=0.45W. In this comparison, a descriptor studied using different colour spaces is selected

based on the best performance figure reported by any of the colour spaces.

In selecting the optimum value of d for the SCD, it shows that the value of 0.45W

has led to the smallest ANMRR figure (0.2270) compared with all other 10 candidates,

while its performance is only 0.0019 lower than that of the manually established data set

(0.2251).

Table 6.2: ANMRR performance figures of different colour descriptors on body-patch

matching.

ANMRRColour 
Descriptor d=0.25W d=0.3W d=0.55Wd=0.5Wd=0.45Wd=0.4W d=0.6W d=0.7Wd=0.35W d=0.65W d=0.75W manual

0.2580 0.2638 0.24450.24060.24200.2555 0.2576 0.25670.2625 0.2567 0.2635 0.2522Colour Structure

0.2283 0.2281 0.23590.23120.22700.2350 0.2405 0.25130.2428 0.2357 0.2631 0.2251Scalable Colour

0.2580 0.2603 0.27010.26690.26950.2679 0.2681 0.27020.2642 0.2688 0.2697 0.2534
Histograms  

(HSV)

0.2436 0.2456 0.26020.25860.25540.2551 0.2640 0.26630.2441 0.2646 0.2708 0.2587
Spatiograms 

(HSV)
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Figure 6.13: Performance of different colour descriptors on body-patch matching for

d=0.45W.

6.5.2.2 Texture Descriptors

Table 6.3 presents the performance figures (ANMRR) of 3 different texture descriptors

evaluated at the 11 different values of d.

Similar to the description given in Section 6.5.2.1 about the performance of colour de-
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Table 6.3: ANMRR performance figures of different texture descriptors on body-patch
matching.

Texture Descriptor

Homogeneous Texture

Edge Histogram

Co-occurrence Matrix

ANMRR

d=0.25W d=0.3W d=0.55Wd=0.5Wd=0.45Wd=0.4W d=0.6W d=0.7Wd=0.35W d=0.65W d=0.75W manual

0.4227 0.4191 0.41680.42110.41860.4424 0.4247 0.42740.4349 0.4143 0.4248 0.3390

0.4958 0.4794 0.51330.51980.52430.5157 0.5214 0.54640.5079 0.5290 0.5577 0.4735

0.6253 0.5652 0.60510.60130.61960.6312 0.6262 0.64130.6185 0.6328 0.6491 0.6190
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Figure 6.14: Performance of different texture descriptors on body-patch matching for
d=0.45W.

scriptors, the last column in Table 6.3 corresponds to the body-patch data set established

through human inspection. The three texture descriptors show that manually established

data set tends to result in better performance than most of automatically established data

sets. Of the three descriptors, it can be seen that the HTD performs best with ANMRR

values of 0.3390 and 0.4143 in the manual and automatic cases respectively. Also, for any

given d, the performance of the HTD is superior to the other two descriptors investigated

in this study. Considering the optimum value of d for the HTD, it shows that the value

of 0.65W led to the smallest ANMRR figure of 0.4143 as shown in Table 6.3. However,

in conjunction with the performance comparison of colour descriptors given in Section

6.5.2.1 with d=0.45W as the best case scenario, Figure 6.14 shows the body-patch match-

ing results of the 3 texture descriptors corresponding to d=0.45W. The MPEG-7 HTD with

an ANMRR of 0.4186 leads as the best performing descriptor over the other two descrip-

tors, which record ANMRR figures of 0.5243 and 0.6196.
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6.6 Identifying Face Descriptors

In order to identify a suitable face descriptor for person matching, two different types of

descriptors are studied, namely the conventional texture descriptors and face recognition

descriptors. The MPEG-7 EHD and HTD descriptors are considered as two candidate

texture descriptors whilst the MPEG-7 face recognition descriptor and the LBP descriptor

are considered as two candidate face recognition descriptors in this study.

According to the normative description of the MPEG-7 FRD, face normalisation is

an a priori requirement that needs to be carried out by locating the centres of the two

eyes in the image. Similarly, the task of face normalisation becomes a mandatory require-

ment in LBP descriptors, in order that histograms of local face regions can be accurately

computed and spatially concatenated to form the descriptor. In this context, two dif-

ferent data sets comprising manually established eye-centre locations and automatically

detected eye-centre locations are used to study the effect of eye localisation on the face

recognition descriptors. The first set is created using a manual process through human

inspection whereas the second set is obtained by applying the automatic eye localisa-

tion technique presented in [41]. Hence, the performances of the MPEG-7 FRD and LBP

descriptors are studied in the following two scenarios:

• using the manually established eye centres for creating both query and result de-

scription;

• using the automatically detected eye centres for creating both query and result de-

scription.

Optimising the performance of the LBP descriptor involves choosing some parame-

ters, such as the LBP operator, number of image blocks, and similarity measure. Based

upon the previous configurations other authors employed and also taking into account

the type of test data available in these experiments, a combination of LBP4,1 and LBP u2

8,1

operators is used to create a rich LBP feature vector from 32 × 32 sized normalised face

images. It is carried out in such a way that 9 local histograms each of which have 16 bins

(LBP codes) are created by applying the LBP4,1 operator to 9 overlapping rectangular

regions and one holistic histogram sized 59 bins is created by applying the LBP u2

8,1 oper-

ator to the entire face image. The 10 resulting histograms are then concatenated so that

a feature vector of size 203-coefficients is obtained. The Chi-square distance (see Equa-

tion 6.19) is used to compute the similarity between LBP descriptors without assigning a

weighting scheme for different blocks in the facial image.
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Figure 6.15: Example face test data illustrating some discrepancies between the query
and its result images.

4 example
query images

Result images for each query

6.6.1 Establishing Groundtruth/Test-Data for Face Matching

Similar to the description given on body-patch images in Section 6.5.1, the performance

of face/texture descriptors is measured using a test data set comprising 70 subjects (i.e.

70 queries) with varying numbers of result images for each query. This study uses 2 data

sets in total of which the first set corresponds to using automatically localised eye centres

and the second set corresponds to using manually established eye centres. Similarly,

Table 6.1 shows the corresponding number of result images available for each query, i.e.

q1-q70. Figure 6.15 shows a few examples of query and results images, illustrating some

real-life challenges in terms of variations in spatial size, colour, texture and inclusion of

background regions.
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6.6.2 Comparing the Performance of Different Face Descriptors

Similar to the experiments carried out in Section 6.5.2, a performance comparison be-

tween different face descriptors is presented in this section using the ANMRR evaluation

criterion described in Section 6.4.1.

The performance figures of the MPEG-7 EHD, MPEG-7 HTD, MPEG-7 FRD and LBP

descriptors are given in Table 6.4 for the two eye localisation scenarios used in this study.

In order to identify a suitable LBP operator for face matching in low resolution images,

i.e. 32× 32 face images, three types of LBP operators were studied in this research. In the

first case, only the LBP4,1 operator was applied to 9 overlapping sub-images, leading to

the creation of a feature vector of size 144 elements. In the second case, a holistic feature

description was computed by applying the LBP u2
8,1 operator to the entire image, which

was then combined with the 9 local histograms obtained from applying the LBP4,1 opera-

tor, resulting in a 203-elements feature vector. In the third case, a holistic histogram-based

description was created by applying the LBP u2
8,2 operator, which was then combined with

the 9 local histograms obtained from applying the LBP4,1 operator, resulting in a feature

vector of size 203 elements.

As expected, the ANMRR figures given in Table 6.4 shows that face-matching per-

formance using the manually labeled eye centres always prove to be better than that ob-

tained from automatic eye localisation in all the 6 descriptors studied in this experiment.

Results also show that the LBP descriptor performs better than all the other descriptors,

including the MPEG-7 FRD in both scenarios. Of the three LBP operators studied, the

combined LBP u2
8,1/LBP4,1 operators produced the best performance with an ANMRR of

0.3639 in the manual eye localisation scenario and 0.470 in the automatic eye localisation

scenario. Figure 6.16 shows a graph of ANMRR performance figures of the 4 different

descriptors studied in this research using automatic eye localisation.

6.7 Discussion

One of the objectives of this research is to identify a suitable colour and a texture de-

scriptor for body-patch matching using existing descriptors in the literature. To this end,

a performance evaluation of numerous colour and texture descriptors was carried out

using a carefully chosen test data set comprising 70 query subjects that appeared in real

personal photo archives. With respect to these two categories of body-patch descriptors,

the performance figures presented in Section 6.5.2 reveal that colour descriptors gener-

ally perform better than texture descriptors. One possible reason for this outcome could

be due to lack of texture that can be observed in peoples’ clothing. Additionally, inconsis-
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Table 6.4: ANMRR performance figures of different texture and face recognition descrip-
tors on face matching.

LBP4,1 on 9 overlapping subimages  0.4741 0.3670 

Homogeneous Texture 0.608 0.5250 

Edge Histogram 
0.718 0.6350 

LBP4,1 on 9 overlapping subimages + 

LBPu28,2 holistic 
0.4717 0.3660 

LBP4,1 on 9 overlapping subimages + 

LBPu28,1 holistic 
0.470 0.3639 

MPEG-7 Face Recognition Descriptor  0.4777 0.3976 

Texture/ Face Recognition Descriptor

ANMRR

face normalised using automatic 
eye localization
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Figure 6.16: Performance of different face/texture descriptors on face matching using
automatic eye localisation.

tent performances in texture matching can result in when using texture features that are

derived from low resolution body-patch images. Such small-sized body-patch segments

are a common occurrence in personal-photo capture scenarios partly due to the fact that

users are usually free to take photos at medium-long subject distances. Of the 8 differ-

ent colour descriptors studied, the experiments proved that the MPEG-7 scalable colour

descriptor performs best compared to all other colour descriptors. The MPEG-7 homo-

geneous texture descriptor was identified as the best texture descriptor for body-patch

matching.

Another important objective of the research carried out in this part of the thesis is to

identify a suitable face descriptor for person matching. This task involved evaluating

the performance of 4 different face descriptors, including two well-known face recogni-
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tion descriptors and two MPEG-7 texture descriptors. The results showed that the LBP

descriptor performs better than the other 3 descriptors studied in this system. The perfor-

mances of the two texture descriptors, MPEG-7 HTD and EHD, were observed to be rel-

atively poor in face matching compared with that of the two face recognition descriptors,

i.e. LBP and MPEG-7 FRD. Thus, the results indicate that the superior performance fig-

ures obtained from LBP make it the favourable face descriptor for person matching in this

application scenario. Furthermore, the LBP descriptor can be considered as a more suit-

able candidate for person matching in personal photo management applications given

the fact that meeting the requirement of the minimum face resolution, i.e. 46× 56, for the

MPEG-7 FRD cannot be always guaranteed in real-world scenarios.

Although this research proved that the combination of LBP u2
8,1/LBP4,1 operators pro-

duced the best results given the test data/groundtruth described in Section 6.6.1, these

performances are still not as good as what has been previously published by other re-

searchers. There are possible reasons for slightly degraded performance of the LBP de-

scriptors used in this study. The experiments reported in this thesis were carried out by

directly employing some model parameters and configurations, such as the LBP operator,

number of image blocks and similarity measure, based on the findings of other authors

in the literature. Such an approach may not have worked well for this type of test data,

which comprise many low resolution images compared to what other researchers used

in evaluating the performance of LBP descriptors in their research problems. For exam-

ple, Hadid et al. discussed a requirement of using overlapping partitioned blocks prior to

computing the LBP description when dealing with low resolution images in face detec-

tion [203]. They also proposed using smaller-sized neighborhoods, e.g. LBP4,1, to avoid

statistical unreliability due to long histograms computed over small regions. The much

higher accuracy obtained from the same vision algorithms reported in [184], [3], [210]

can be most likely due to the high resolution test images taken from the NIST FERET

(126× 147), XM2VTS (68× 84), BANCA (68× 84) and ORL (92× 112) test corpuses.

6.8 Fusing Descriptors for Person Identification

Data fusion is considered to be an important task for addressing the limitations in perfor-

mance of individual sources in multiple evidence systems, hence improving the overall

classification performance of the system [211]. A significant number of fusion approaches

have been proposed in application areas such as biometrics [209,212,213], image annota-

tion and retrieval [198, 214], home photo management [20] and object tracking [215].

In general, fusion of feature patterns derived from different sources is a challenging
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task [212]. It can be performed at four different levels, namely sensor, feature, similarity

score, and decision levels, out of which the similarity score fusion scheme offers the best

trade-off in terms of the information content and the ease of fusion, making it the prefer-

able choice in most fusion approaches [209, 212, 216]. A variety of fusion schemes have

been proposed in the literature, including the weighted average [209], product rules [217],

majority voting [218], k-NN classifiers [219], SVMs [220], Bayesian methods [220], Fishers

linear discriminant [220], decision trees [220], multilayer perceptron [220] and likelihood

ratio-based [212]. Despite being simple to compute, some authors including Ross and

Jain [209], Snelick et al. [221], Kittler et al. [217] and Czyz et al. [222] demonstrated that

a simple fusion method like the weighted average scheme (the sum rule5) outperforms

the other candidate techniques. For example, Ross and Jain favourably compared the

performance of the sum rule with that of the decision tree and linear discriminant classifiers;

Snelick et al. showed a superior performance over the max rule and min rule methods in

biometric verification systems by combining information (face, fingerprint and hand ge-

ometry) at the matching score level; Czyz et al. presented favourable performance results

against the Fisher discriminant by combining the results of face verification algorithms;

and Kittler et al. gave a plausible justification for its superior performance over max rule,

min rule, median rule, product rule, and majority voting using a sensitivity analysis of the

fusion schemes on combining information for identity recognition (face and voice) and

handwritten digit recognition.

Considering the type of descriptors studied for person matching in this research, the

most related existing approaches can be considered to be the frameworks of Maenpaa

and Pietikainen [216], and Hahnel et al. [196] who discussed the effect of fusion on colour

and texture descriptors in two different application areas, namely image retrieval and

visual surveillance.

Maenpaa and Pietikainen discussed the effect on image-classification performance

when combined colour and texture features are used in an image retrieval application

[216]. Four fusion methods were used in their evaluation, namely Minimum, Maximum,

Sum and the Borda count method out of which the first three methods relate to fusion

at the similarity-score level while the fourth method relates to fusion at decision level.

Colour histograms and colour ratio histograms are used for representing colour while

Gabor wavelets and LBP features are used for both gray-scale texture and colour tex-

ture representation. However, they claimed that the combined colour and texture did

not lead to significant performance improvement while either of the combined features

5It should be noted that the sum rule, which has been used by numerous authors [209, 223] in fusion
frameworks, is a special case scenario of the weighted average method assuming equal weights.
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was appealing to be performing better in most cases [216]. Furthermore, different fusion

methods seemed to have produced variable performances for different data sets.

Hahnel et al. combined colour and texture in a person recognition system for vi-

sual surveillance applications [196]. Colour histograms and the MPEG-7 colour structure

descriptor have been studied for representing colour characteristics while oriented Gau-

sian derivatives, quadrature mirror filters, MPEG-7 homogeneous texture descriptor and

the MPEG-7 edge histogram descriptor have been used for representing texture charac-

teristics of the image. They used a simple averaging method to combine the similarity

scores of colour and texture classifiers with equal weights assigned to each description.

Their experiments showed that only a slight improvement can be obtained by combining

colour and texture features in a visual-surveillance based application.

The experiments performed in this research address the problem of combining mul-

tiple perceptual features of people to investigate if enhanced person-matching perfor-

mance can be achieved using the two modalities: face and body. The distinct features

extracted from these two modalities are termed experts in this system. There are three ex-

perts that are used for fusion in this research, namely colour, texture and face-recognition

descriptors. Figure 6.17 shows the flow diagram of the fusion approach adopted in this

system involving the three experts. It corresponds to a cascade approach which, in the

case of tri-expert fusion, allows combining body experts in the first stage, i.e. colour

and texture, followed by face expert in the second stage, i.e. face recognition. As these

features are extracted from different areas (face and body), or of different types (colour

and texture), they can be safely considered as statistically independent features in a fu-

sion framework. The experiments described in the following sections are performed to

identify the best fusion scheme and the weighting factors for each of the experts studied.

6.8.1 Fusion Methods Studied

Fusion of colour, texture and face recognition experts at similarity-score level is studied

using three relatively simple fusion methods, namely the weighted average, similarity score

product and max score. In order to study the behavior of these three fusion schemes as

well as to identify the best combinations of the different experts studied in this research,

experiments are performed using different combinations of the experts as illustrated in

Figure 6.17, i.e. colour, texture and face recognition descriptors, that were identified as

the best individual experts for person matching in Sections 6.5.2 and 6.6.2. Additionally,

the results from other possible combinations of the experts are given in Appendix C.

Ensuring that the comparability requirement of different similarity scores (distance

values) is maintained, a simple Min-Max normalisation technique [223], expressed by
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Figure 6.17: Flow diagram for the fusion of three experts at similarity score level: SF (i, j)
is the face similarity score between person i and j, SCOL(i, j),STEX(i, j) are the colour,
texture similarity scores between the two body-patches belonging to person i and j,
SB(i, j) is the body-patch similarity score between person i and j, and SC(i, j) is the
the combined face and body-patch similarity scores between person i and j.

(6.21), is used to normalise all distances falling between the range of [0,1], allowing them

to be treated as probabilities or fuzzy decisions in the fusion process.

d′i = (di − dmin)/(dmax − dmin) (6.21)

where di and d′i are the original and normalised distances for the ith pair of distance

values, dmin and dmax are the minimum and maximum values of the distances computed

from a subset of the evaluation data set.

Despite its simplicity, the Min-Max technique has been proven to produce compara-

ble performance to more advanced feature normalisation methods, such as the Z-norm,

decimal-scaling, Median-MAD and tanh transformation [223]. Moreover, Snelick et al.

showed that the Min-Max normalisation combined with the weighted average fusion

scheme performed better than the other normalisation techniques [221].

The three fusion schemes studied, i.e. weighted average, similarity score product and

max score, when formulated as a means to combining two descriptors having distance

values d1 and d2, are:

Savg = α(1− d1) + (1− α)(1− d2) (6.22)

Sproduct = (1− d1)α.(1− d2)1/α (6.23)

Smax = max[α(1− d1), (1− α)(1− d2)] (6.24)
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where S represents the final similarity score, d1 and d2 are the normalised distance values

corresponding to two feature descriptions, and α is the weighting factor.

6.8.2 Performance Analysis of Combined Colour, Texture and Face Recogni-

tion Descriptors

In this section, the experiments carried out to determine the optimal weighting factors

for different experts as well as to investigate if fusing multiple experts improves the over-

all person-matching performance are described. The chosen parameters and the fusion

scheme are then tested independently in Chapter 7.

In finding the optimal values of the weighting factor α for all three fusion schemes,

matching scores are computed by slowly varying the value of α and determining the

value corresponding to the global minimum of ANMRR. Due to the type of cascade

structure used in this system, only two experts are combined at a time, resulting in a

need for changing only one parameter, i.e. α, at a time. This process can be described in

the following 3 steps:

• Assuming the weighting factors allocated for the two experts are W1 and W2 (in

this particular experimental paradigm, weights are allocated in such a way that

for given W1=α, W2 becomes (1-α) by default, ensuring that W1+W2=1), they are

varied over the range [0,1] in steps of 0.05 for the weighted average and max score

methods, and over the range [0,20] in steps of 0.05 for the similarity score product

method;

• Matching scores corresponding to each fusion scheme are computed using Equa-

tions 6.22, 6.23 and 6.24 for the weighted average, similarity score product and max

score methods respectively;

• The set of weights that corresponds to the global minimum of ANMRR is identified

as the optimal combination weights for the experts studied.

The results of combined body-patch experts obtained from the three fusion schemes

are shown in Figure 6.18. Observing the behavior of combined colour and texture ex-

perts in terms of variation in ANMRR against α, it is clear that the fusion of colour and

texture experts leads to significant body-patch matching improvement compared to that

of the best individual expert in all three fusion schemes. It should be noted that the

best performance figures obtained from the SCD and HTD were an ANMRR of 0.2270

and 0.4186 respectively for body-patches extracted at d=0.45W (see Table 6.2 and 6.3 for
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Figure 6.18: Performance of combined body-patch descriptors using different fusion
schemes.

quantitative results of body-patch matching using colour and texture descriptors). Com-

paring ANMRR figures of the three fusion schemes, the weighted average and similarity

score product methods illustrate similar performances, showing their superiority to that

of the max score method. Clearly, the weighted average method provides the best perfor-

mance figure of 0.1797, which is a relatively high performance improvement compared

to an ANMRR of 0.2270 obtained from the best individual expert, i.e. the SCD alone. Re-

sults show that the best body-patch matching performance could be achieved by using

a weighting factor of α=0.55, indicating the fact that allocating 0.55 for the SCD and 0.45

for the HTD results in the best combination for body-patch matching.

In order to give a comparative performance analysis of the three fusion schemes based

on the use of three experts, Figure 6.19 shows the ANMRR performance variation of

the different fusion schemes against weighting factor α. Again, a similar performance

variation can be observed in the two fusion schemes: weighted average and similarity

score product. However, by looking at the global minima from the three fusion meth-

ods, weighted average scheme provides the best performance with an ANMRR of 0.1186

at α=0.7, followed by the other two schemes depicting the best ANMRR performance

figures of 0.126 and 0.225. The ANMRR figures given in the table 6.5 quantitatively val-

idates this argument. This is also in agreement with the findings of other authors, such

as [209] [217] [223] [222], who reported superior performance of the weighted average

fusion scheme. From another visual perspective point of view, Figure 6.20 shows the

ANMRR performance figures of each of the best individual and combined experts stud-

ied in this research.
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Figure 6.19: Performance of the three fusion schemes using colour, texture and face recog-

nition descriptors.

Table 6.5: ANMRR performance figures corresponding to individual experts and com-

bined experts using different fusion schemes based on body-patch and face descriptors.

 

Body-Patch Colour and Texture 
- 0.1797 0.2195 0.1854 

Face 0.470 - - - 

Body-Patch Texture  

Body-Patch Colour 

 Descriptor(s) Used

ANMRR

0.4186 - 

- 

Weighted Average

- 

- 

Max Score

- 

- 

Similarity Score Product

0.2270 

Individual

Body-Patch Colour and Texture 

and Face 
- 0.1186 0.2253 0.1263 

Body-Patch Colour and  Face - 0.1494 0.2228 0.1536 

Body-Patch Texture and  Face - 0.2455 0.3816 0.2512 
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Figure 6.20: Performance comparison of the best individual and combined descriptors

through fusion.

Having identified the weighted average method as the best fusion scheme, the corre-

sponding weights for the three experts can be theoretically determined by extending the

bi-expert weighted average fusion method expressed by (6.22) to an tri-expert formula-

tion. Thus, the new Savg can be defined by

Savg = β(α(1− d1) + (1− α)(1− d2)) + (1− β)(1− d3) (6.25)

where all three weighting factors, i.e. αβ, β(1−α), and (1−β), are subject to the constraint

that their aggregate is 1. Based on the optimum weighting factors found from the pre-

viously carried out bi-expert and tri-expert fusions using the weighted average scheme,

i.e. α=0.55 (see Figure 6.18) and β=0.70 (see Figure 6.19), the optimal weighting factors

identified for the SCD, HTD and LBP are 0.385, 0.315 and 0.3 respectively.

6.8.3 Discussion

The experiments carried out using relatively simple fusion methods show that combining

colour and texture experts at similarity score level can improve the body-patch matching

performance. The best performance was achieved when the SCD and HTD descriptors

were fused with weighs 0.55 and 0.45 respectively. The experiments also showed that

fusion of body-patch and face modalities further improved the performance of person

matching. Furthermore, performance of the tri-expert fusion using colour, texture and

face recognition was better than that of any of the bi-expert fusions (see Table 6.5). The

simple weighted average method was identified as the most effective fusion scheme over

similarity score product and max score methods. The best person matching performance
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was achieved when the combined body-patch experts and the face expert were fused

using weighting factors of 0.70 and 0.30 respectively. By doing so resulted in improve-

ment in ANMRR by 0.0473 (0.2270-0.1797) in the case of fusion of body-patch experts and

0.1084 (0.2270-0.1186) in the case of fusion of body and face modalities. The experiments

also showed that using weighting factors of 0.385, 0.315 and 0.3 for the SCD, HTD and

LBP can result in best performance for person matching.

6.9 Summary

The research carried out in this chapter addressed the problem of person identification

through face and body-patch matching, targeting effective person annotation in personal

photo management applications. Having studied the state-of-the-art techniques empha-

sising the potential use of multiple modalities to this problem, i.e. face and body-patch,

this research focused on identifying the best face and body-patch descriptors and their

combinations through empirical experimentations using a test data set comprising 70

query subjects with varying numbers of result images.

Taking into account the potential use of some of the commonly used and emerging

colour, texture and face recognition descriptors, the performance of 8 different colour

descriptors, 3 different texture descriptors and 2 different face recognition descriptors

was evaluated to identify their usability to this problem. The performance evaluation of

these descriptors showed that the MPEG-7 SCD and HTD are the best performing colour

and texture descriptors for body-patch matching whereas the LBP descriptor was proven

to be the most effective descriptor for face matching.

It should be noted that the performance evaluation of these descriptors was carried

out solely based upon their accuracy, with no consideration given to their computational

complexities. It was observed in this research that the task of person matching using

combined features, i.e. content and visual-context, could be performed much more ef-

ficiently compared to face detection. However, efficiency might be of concern to some

applications where the requirements for real-time extraction and matching of descrip-

tors need to be satisfied. In this context, one can argue on selecting different descriptors

for body-patch and face matching or more compact versions of the scalable colour and

homogeneous texture descriptors as proposed by Dorairaj and Namuduri [198].

The experiments carried out on data fusion in this research proved that combining

body-patch and face modalities can improve the overall person-matching performance,

thereby compensating for the limitations in performance of individual descriptors. Three

fusion schemes were studied in this experiment using Min-Max as the feature normalisa-
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tion technique to satisfy the comparability requirement of combining different similarity

scores. From these experiments, the best combination of the colour, texture and face

recognition experts was found with weighting factors of 0.385, 0.315 and 0.3 for the SCD,

HTD and LBP respectively. However, it would be interesting to see if other advanced

fusion methods can be more effectively used for this challenging problem. For example,

likelihood ratio-based fusion [212] could be investigated as a general approach to fusion

without the need for parameter tuning by the system designer. Furthermore, investigat-

ing different combinations of other normalisation techniques (z-score, tanh, Median-MAD,

Sigmoid) and different fusion schemes would be another interesting research direction.

The work carried out in this research, however, assumed that the presence of both

body-patch and face modalities is guaranteed, in order to ensure that an optimal com-

bination could be obtained based on the performance level of each individual modality.

However, this assumption may not hold in real life person annotation scenarios due to

the nature of photos that needs to be dealt with in personal photo management applica-

tions. In cases of missing any of the two information sources, the task of person matching

needs to be performed on evidence of a single input data source. The problem on how

to handle missing features is addressed in the next chapter where an analytical frame-

work for person annotation using real-life personal photo collections is presented. The

best performing colour, texture, and face recognition descriptors identified in this chapter

will also be used for evaluating the performance of real-life person annotation scenarios

in the following chapter.
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Chapter 7
Using Content and Context

Information to Facilitate Effective

Person Annotation

In this chapter a comprehensive performance analysis of the person identification tech-

niques for person annotation in personal photo archives using content and context in-

formation is presented. It begins with an overview of the proposed research in Section

7.1. Section 7.1.1 emphasises the importance of event-constrained photo analysis for per-

son annotation. The content and visual-context features employed for person identifi-

cation are briefly described in Section 7.1.2 while the person context estimators lever-

aged are described in Section 7.1.3. Section 7.1.4 then presents the similarity-matching

criteria adapted for person matching using individual and different combinations of ev-

idence while Section 7.1.5 outlines the experimental tasks devised in addressing the re-

search problem hereof. Two annotation models studied in this thesis involving different

levels of user intervention are described in Section 7.2. A description of the test data

and ground-truth used for evaluating the performance of the proposed models is then

given in Section 7.3. Section 7.4 describes the measures used for person classification

and annotation-performance evaluation. The experiments carried out and the resulting

outcomes from the two models, i.e. model-A and model-B, are described in Section 7.5,

followed by a summary in Section 7.7.

7.1 System Overview: Combining Content and Context

In this thesis, different person identification methods are developed using content and

context information of digitally captured photographs for person annotation in large per-

sonal photo collections. This framework is adapted following the suggestions made by
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different other authors, including [21,29,35,39,224], that combining contextual data with

image data can lead to effective person annotation in personal photo management appli-

cations. The person context estimators employed in the proposed approach are borrowed

from the context-technology originally presented by Naaman et al. [21] that illustrated

their effectiveness in retrieval and organisation of personal photos.

The person identification techniques employed in this framework strongly rely on

the concept of event-constrained photo analysis, which allows the use of content, visual

context, and person context features in an effective manner.

7.1.1 Event-Constrained Photo Analysis

The importance of event-constrained photo analysis in personal photo management has

been studied by many authors, showing its value in organising and browsing large photo

collections. One notable feature in event-constrained photo analysis to person annotation

is that it provides a framework for carrying out person identification using additional

features, namely visual context and person context features. In personal photo scenarios,

it is very common that an individual appears in multiple photographs belonging to the

same event often wearing the same clothes, denoting the concept of temporal re-occurrence.

Similarly, some individuals are likely to show strong association with certain people and

appear together in photos more frequently than the others, denoting the concept of co-

occurrence in home photo stories.

In general, an event is said to happen if a sequence of photos was taken within a par-

ticular period of time, not leaving significant gaps between any two photos. In personal

photo album scenarios, photos can be grouped into semantically meaningful events using

camera-derived context information. MediAssist [225] accomplishes this task by follow-

ing a similar approach to that proposed in [226] based on the principle of time burstiness

to group semantically similar photos in the collection. Additionally, MediAssist repre-

sents such detected events by a label associating the location and date/time contextual

metadata.

An example of a semi-automatic person annotation scenario using an event-constrained

annotation methodology is depicted in Figure 7.1. It shows how the task of person an-

notation can be carried out given m number of pre-classified events in a semi-automatic

annotation environment. This example shows an intermediate stage of the person anno-

tation process where some number of events, i.e. E1 to E4, have been fully annotated

while the rest of the events have been only partially annotated. The user is currently

annotating the persons in event E5, which is one of the partially annotated events in the

collection. In event E5, he/she has already annotated the first k persons following which
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Figure 7.1: Semi-automatic person annotation using event-based analysis.

their face and body-patch features have been stored in a database. Thus, when the user

is to annotate the rest of the persons in E5, i.e. Pk+1 to Pn, both previously annotated face

and body-patch features are available for similarity matching of persons in that event.

7.1.2 Content and Visual Context Analysis

Identification of the best descriptors for similarity matching based on content and visual

context analysis was carried out in Section 6.6 and 6.5 of Chapter 6. From that study,

the LBP face recognition technique was identified as the best performing face recognition

descriptor for content-based person matching. However, using face recognition alone for

similarity matching across different persons in a collection will limit person annotation to

frontally-aligned face images only, leaving a significant portion of photos in the collection

un-annotated. To this end, combining content with visual context, i.e face with body-

patch, is expected to improve the performance as was shown in Chapter 6, albeit with

limited application to photos within events (see Section 7.1.1 for a description of event-

constrained photo analysis). For visual context analysis, the MPEG-7 SCD and MPEG-

7 HTD were identified as the best performing colour and texture descriptors through

extensive evaluation.

The data fusion experiments carried out in Chapter 6 also illustrated that combin-

ing all three experts from content and visual context analysis result in the best person-

matching performance. Assuming all three experts are available for similarity matching,
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an optimal weighting factor was identified for each expert, allowing them to be combined

in the following manner.

Savg = 0.385(1− dcolour) + 0.315(1− dtexture) + 0.3(1− dface) (7.1)

where Savg is the final similarity score, and dcolour, dtexture and dface are the distances

computed using colour, texture and face recognition descriptors respectively.

7.1.3 Context Analysis: Person Context Estimators

In order to make use of person context information together with content and visual con-

text information, the context-based estimators originally proposed by Naaman et al. [227]

are adopted in this research. It is hoped that using such information will help resolve

ambiguity due to poor visual features, i.e. face and/or body-patch, that are generally

present in personal photo archives.

The underlying principle behind the use of context-based estimators is that people do

not usually appear with uniform frequency in a given photo collection [21]. Person con-

text information based on knowledge about peoples’ re-occurrence and co-occurrence

forms the basis for describing their patterns of appearance in a given photo collection.

Capturing such patterns using a subset of the photos in the collection in terms of a prob-

abilistic measure helps in computing a name-prediction for annotating the rest of the

photos in the collection [21, 35, 38, 39].

According to [21], the intuitive guidelines used to capture the emerging patterns of

peoples’ appearance in photos include:

• Popularity: The concept of popularity captures the principle that some people ap-

pear more often than others in a given photo collection. This is the most basic

context-based estimator that could be used to predict a name suggestion by simply

counting the number of each individual’s previous appearances and interpreting

that as a prior probability for that individual;

• Temporal re-occurrence: The concept of temporal re-occurrence states that, within

a known timeframe, a person is likely to appear multiple times in a collection;

• Spatial re-occurrence: The concept of spatial re-occurrence states that people that

appear in photos taken in a particular location are likely to appear in the photos

taken in that location again even with different people and during different events;

• Co-occurrence: This concept states that people that appear together in a photo-

graph have a higher likelihood of appearing together in other photographs. A
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further extension to this principle can be given by relating their association to an

event-constrained framework, meaning that people that appeared in a particular

event previously, but not necessarily together, are likely to appear together in other

events.

Naaman et al. [21] proposed five context-based estimators based on the principle of re-

occurrence, namely event, location, location-neighboring, time-neighboring and global

count. As a general mathematical representation for such estimators, the probability of

person i re-appearing in photo s related to a context defined by a set of photos Q(s) can

be defined by:

P (i, s) =

∑
q∈Q(s) Kq(i)

|Q(s)| (7.2)

where Kq(i) is a binary decision with 1(0) indicating that the person i is(is not) in the

list of already annotated identities, Q(s)=E(s) corresponds to an event count estima-

tor, Q(s)=L(s) corresponds to a location count estimator, Q(s)=Nloc(s) corresponds to a

location-neighboring count estimator, Q(s)=Ntime(s) corresponds to a time-neighboring

count estimator and Q(s)=S corresponds to a global count estimator [21].

This thesis explores the usability of only 3 person context estimators for person anno-

tation, namely global count, event count and location-neighboring count. The behavior

of individual estimators and their combinations using a weighted average scheme (see

Equation 7.3) is studied, in order to identify the best individual or combined estimators

to person matching.

PGELn(i, s) = k1PG + k2PE + k3PNloc
(7.3)

where PGELn(i, s) of person i belonging to photo s is the weighted average score of global

(PG) count, event count (PE) and location-neighboring count (PNloc
) probabilistic scores.

The optimum weighting factors, i.e. k1, k2 and k3, for the three estimators are empirically

found in Section 7.5.4 using the photo collections described in Section 7.3.

7.1.4 Similarity Matching between Persons using Different Combinations of

Evidence

For similarity matching between persons, the proposed system employs three different

types of features, namely content, visual context and person context. The use of person

context information is particularly beneficial in cases where some of the visual features

are not available, i.e. missing features, or the features extracted are poor, i.e. unreli-

able features. The cause for missing/unreliable content or visual context features in a

person annotation scenario can occur due to several reasons. For example, no content
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feature can be extracted from profile faces in a person annotation scenario as the face

recognition technology can only be applied to frontally aligned faces, whereas partially

occluded faces may lead to erroneous feature extraction as the same object can appear

with different colour and texture properties in such instances. Similarly, occurrence of

missing visual-context features can be due to the unavailability of body-patch data in the

image, while partially occluded or differently posed body-patch segments may result in

unreliable visual-context features in the process.

In order to analyse the effect of using individual and combined sources of evidence

for person matching whilst relying on the principle that people can be ranked based on

the similarity scores of the available features, the following criteria are employed for

person matching using content only, visual-context only, content&visual-context, and

content&visual-context&person-context information1.

Sperson =





(1− dface)

0.55(1− dcolour) + 0.45(1− dtexture)

0.385(1− dcolour) + 0.315(1− dtexture) + 0.3(1− dface)

α(0.385(1− dcolour) + 0.315(1− dtexture) + 0.3(1− dface)) + (1− α)PGELn

(7.4)

where Sperson is the similarity score of the person being matched with, and α is the opti-

mum weighting factor (see Section 7.5.5) for combining weighted person context estima-

tors with weighted content and visual-context estimators.

7.1.5 Experimental Tasks

The experimental tasks to be carried out in this chapter are as follows:

• Performance analysis of progressive and non-progressive annotation models: In

order to identify a suitable model for person annotation in large personal photo

archives, a performance analysis of the two annotation models presented in Section

7.2, i.e. model-A and model-B, is carried out. Results and discussions correspond-

ing to the two models are given in Section 7.5.

• Performance analysis of event-based and person-based initial annotation: In a semi-

automatic person annotation framework, the user is typically expected to enrol cer-

tain numbers of persons so that they can be used as training data in the person

matching process. This experiment is devised, in order to identify the best case sce-

1Note that the notation “&” implies that data fusion is applied to the similarity scores of respective fea-
tures.
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nario of event-based and person-based initial annotation methods studied in this

thesis (see Figure 7.2). To this end, person enrolment is performed by selecting

varying percentage amounts (g%) of (a) each person in the collection, and (b) each

event in the collection.

• Performance analysis of individual and combined person-matching features: Ex-

periments are conducted to analyse the performance of person annotation using

individual and different combinations of descriptive features, i.e. content, visual

context and person context, studied in this thesis. Thus, for each annotation model

and type of initial annotation, the effectiveness of content, visual-context, person-

context, content&visual-context, and content&visual-context&person-context is anal-

ysed to determine which descriptive features are the most suitable for person an-

notation.

7.2 Annotation Models Studied

Two annotation models, one relying on a progressive annotation methodology while the

other relying on a non-progressive annotation methodology, are studied in this thesis to

illustrate the effectiveness of semi-automatic person annotation involving different levels

of user intervention. The performance of person annotation is measured using both in-

dividual and combined evidence sources according to the feature combination method-

ology expressed in Equation 7.4, in order to identify the best performing individual or

combined features in person annotation. Firstly, some general notations used to denote

the basic elements associated with person annotation are described below.

Given a personal photo collection, S, the full set of person identities available in the

collection is represented by set I , with the assumption that an individual or a certain

set of people will appear in each photo s ∈ S. This set of identities, represented by

Is ⊆ I , is the ground-truth list of identities corresponding to the photo s. In evaluating

the performance of semi-automatic person annotation systems, an important parameter

to vary is |I|, which is the number of different people that need to be annotated in the

collection. The photo collections described in Section 7.3 belonging to 9 users facilitates

addressing this issue as each user naturally provides varying numbers of identities in

his/her collection.

Each evaluation run is based on the use of content analysis or visual-context analysis

or content&visual-context analysis or content&visual-context&person-context analysis,

in order to study the effect of using a combination of content and context information

181



CHAPTER 7. USING CONTENT AND CONTEXT INFORMATION TO FACILITATE
EFFECTIVE PERSON ANNOTATION

Person 1

Person 2

Person 3

Person M

Photo Collection

g%

g%

g%

g%

(a) A photo collection comprising M persons (Person1-PersonM ) in which
g% of each person has been manually labeled by the user as initial annota-
tion: person-based initial annotation.

Event 1

Event 2

Event N

Photo Collection

g%

g%

g%

(b) A photo collection comprising N events (Event1-EventN ) in which g%
of each event has been manually labeled by the user as initial annotation:
event-based initial annotation.

Figure 7.2: Two scenarios of initial annotation studied for person annotation in personal
photo archives.

for person annotation. In each evaluation step, at time t, having Ks number of identities

annotated in the current photo s, a name list suggestion Hs(t) is generated, which needs

to be evaluated as a hit or miss by comparing with the ground-truth annotation of person

i ∈ (Is −Ks).

The two annotation models studied in this system involving different levels of user

intervention are chosen to reflect the compromise that needs to be made in terms of ac-

curacy against user-intervention in real-world photo management applications. The de-

scription thus far given in this chapter emphasises the potential need for research contri-

butions towards automating or effectively semi-automating the person annotation task

using a combination of contextual analysis with signal-based person recognition. In this
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research paradigm, a likelihood-score based person classification scheme is chosen to

predict a name for each person in the collection as a semi-automatic approach to per-

son annotation. In particular, integrating a likelihood-score scheme with kNN (k-Nearest

Neighbor) based classification (see Section 7.4.1) enables predicting a suggestion for the

person to be annotated. A semi-automatic person annotation mechanism is then formu-

lated by generating a list of name suggestions for each person that is to be annotated in

the system, and requesting the user to verify/correct each suggestion generated by the

system. A pictorial view of this semi-automatic person annotation system is shown in

Figure 2.8 of Chapter 2, depicting how the user can interact with the system to tag photos

with person identities. The user can select a name from the list of 5 name suggestions,

having the option to scroll down the list by clicking on the “more” option when required.

The objectives of the proposed research are to, upon selecting fair and unbiased test

data sets with proper ground-truth, evaluate the performances of the two models de-

scribed above for different types of initial annotation and various combinations of evi-

dence present in the similarity matching process. Additionally, the effect of g, i.e. the

initial annotation percentage, is studied by measuring the name-prediction performance

for different values of H in the Hit-rate measure described in Section 7.4.2. Moreover,

an attempt is made to investigate what characteristically different people should be con-

sidered when selecting the best subset of annotations for g and how they influence the

overall performance. For example, it makes sense to include people in g that appear ei-

ther in frontal or near-frontal pose rather than in half frontal pose, keeping in mind the

limitations in current signal-based person recognition technologies.

7.2.1 Non-progressive Annotation: Model-A

The process of semi-automatic person annotation can be seen as entering the ground-

truth knowledge about the identities of each photo into the system. Formally, the set of

people in photo s that are known to the system is represented by Ks ⊆ Is. An annotation

step is said to occur when the user enters knowledge about the identity of person i in

s, thereby adding i ∈ I to Ks. In non-progressive annotation, the system prompts a

name suggestion solely based upon the knowledge of initially annotated sets of people,

meaning that any subsequent annotations carried out by the user by interacting with the

system are not taken into account when computing a match for the query person.

In this annotation model, it is therefore assumed that a sufficiently large subset of

persons that appear in the collection has been annotated and presented to the system as

ground-truth. The task is then to automatically suggest a name for each query person

using knowledge of the given set of initial annotations. Assuming that g% of the total
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persons (I) in the collection has been annotated, the total number of annotated persons

available in the ground-truth for name prediction can be expressed by
∑

s∈S |Ks|=g ×
∑

s∈S |Is|, which remains fixed in the model-A approach as the annotation process pro-

gresses. While non-progressive annotation avoids the requirement of the feedback step as

a confirmation for each suggested name in the process, it remains interesting to see how

effective such an approach would be for person annotation in large photo collections.

7.2.2 Progressive Annotation: Model-B

Progressive annotation is defined as a process in which the knowledge of previous anno-

tations is accumulated as the user continues to annotate photos, in addition to the knowl-

edge gathered from initial annotation. In this model, it however becomes a mandatory

requirement that the user manually verifies/corrects the name suggestions generated by

the system either by accepting or amending them for each annotation. Consequently, the

total number of annotated persons available in the ground truth for name prediction does

not remain fixed as the annotation process progresses. Although common sense suggests

that such an annotation method corresponds to a labourious process that involves a user

feedback operation for each annotation, the objective of this analysis is to compare its

performance against a less labourious annotation method, such as model-A.

7.3 Test Data and Ground-truth Preparation

In order to evaluate the performance of the person-annotation models described in Sec-

tion 7.2, personal photo archives belonging to 9 different users of the MediAssist system

are used as the test data and ground-truth in this thesis. These photo collections comprise

different types of events, such as birthday parties, meetings, family gatherings, gradua-

tion ceremonies and weddings. The identities of people, type of face, coordinates of facial

feature points (eye and mouth) for frontal faces, and bounding boxes for profile faces are

manually established to provide the ground-truth for evaluation, ensuring that all the

faces available in the photos larger than a certain minimum-size were included in the

ground-truth2. A description of the face ground-truth used is given in Table 7.1.

A statistical description of the photo collections used in this evaluation is given in Ta-

ble 7.2 for the 9 users (user 1 to user 9) in descending order of the total number of photos

(person photos+non-person photos) each user has in his/her collection. Table 7.2 also

describes the characteristics of the photo collection that each user has donated in terms
2It should be noted that all the ground-truth points on both frontal and profile faces were marked with

respect to the mid-size images of dimension 720 × 520 that MediAssist followed. However, such points
are mapped to the original image when extracting face and body-patch features as they could lead to more
accurate feature extraction.
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Table 7.1: Type of face ground-truth established for extracting the visual features for
person annotation.

centre positions of left eye, right eye, and mouth

centre positions of left eye, right eye, and mouth

bounding-box (top left co-ordinates, width, height), 
left/right view, rotation

bounding-box (top left co-ordinates, width, height), 
left/right view, rotation

Frontal centre positions of left eye, right eye, and mouth

Near Frontal

Half Frontal

Half Profile

Profile

Face Type Ground-truth

of the number of photos that contain people (Person Photos) and that do not contain peo-

ple (Non-person Photos), the number of known and unknown People (Known Persons,

Unknown Persons) in each collection, the number of distinct persons (Distinct Persons),

and the number of person events (Person Events). The number of distinct persons in

a collection corresponds to the number of known people that possess unique identities

whereas the number of person events corresponds to the number of events formed us-

ing the photos that contain people in them. As can be noted in Table 7.2, user 1 has the

highest number of photos, i.e. 5,231, with 50 distinct people in his collection, followed

by user 2 having 3,435 photos with 71 distinct people. However, in terms of the number

of person events that have taken place in these collections, user 6 having only 879 face

photos in his collection spans across the highest number of events, i.e. 156, that is then

followed by user 4 and 2 as the second and third highest. More importantly, it can be

also observed that user 4 has the highest number of distinct people, i.e. 147, in his col-

lection despite being placed fourth with respect to the size of collection. Overall, these

users show a significant deviation with respect to all statistics. On average, a user has

55 distinct people in his/her collection. It is, therefore, believed that this data set reflects

real photo collections.

In order to study the range of viewpoint variations of faces that can be safely dealt

with in the person annotation process, priority was given to establish accurate ground-

truth of all the possible faces available in the 9 users’ collections. To this end, five different

face orientations were considered, namely frontal, near-frontal, half-frontal, half-profile

and profile (see Figure 7.3 for a visual representation of the five categories). All the frontal

faces were marked using three prominent facial feature points, namely left-eye, right-eye

and mouth3, whereas all the profile faces were marked using coordinates of a bounding

3Computation of the angle of in-plane rotation of frontal faces becomes a trivial task having known the
coordinates of both left and right eyes.
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Table 7.2: A statistical description of the test data used for evaluating the performance of
person annotation.

User

# Photos in Collection # Persons in Collection

Person Photos 
Non-Person 

Photos 
Known Persons

Unknown 
Persons

# Distinct 
Persons

2282 1736 741 71

4824 498 191 50

618 699 249 40

329 1529 149 45

1018 2038 404 147

1666 385 328 23

2445 272 145 15

225 512 239 45

274 961 238 62

122

45

33

156

136

31

43

30

28

# Person 
Events

2

1

7

6

4

5

3

9

8

1153

407

426

879

1110

308

227

288

479

(a) Frontal (b) Near-Frontal (c) Half-Frontal (d) Half-Profile (e) Profile

Figure 7.3: Different face categories considered in the evaluation data sets.

box (x,y coordinates of the top-left corner and width/height dimensions) along with the

details such as left/right view and the angle of in-plane rotation4 (see Table 7.1).

Table 7.3 gives a statistical description of face orientations for known and unknown

people in the 9 users’ collections. It can be seen that despite the presence of a large

proportion of faces belonging to the categories of frontal and near-frontal in all the col-

lections, there is also a significant proportion of half-frontal, half-profile and profile faces

in each collection, making face-matching a challenging task in this experiment. Figure

7.4 shows the distribution of known frontal faces in terms of fully-frontal, near-frontal

and half-frontal categories in the 9 collections. As can be noted, no significant differ-

ence can be observed in the distribution of the three categories except in the collection of

user 6, which shows a rather uneven distribution with half-frontal faces being the least

representative of the three categories.

A statistical description of the frontal face category, which includes full-frontal, near-

frontal and half-frontal in the 9 photo collections, in terms of in-plane rotation is given in

Table 7.4. It shows that the majority of faces are oriented in the range of ±(0− 30)◦ for

both known and unknown people in the collections. It also illustrates the fact that a no-

4It should be noted that the angle of in-plane rotation of profile faces is computed with respect to the the
vertical axis by assuming that both face and body rotate together.
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(a) user 1 (b) user 2 (c) user 3

(d) user 4 (e) user 5 (f) user 6

(g) user 7 (h) user 8 (i) user 9

Figure 7.4: Distribution of the three categories of frontal faces in each user’s collection.

table number of faces that are oriented in the range±(30− 90)◦ are present in some users’

collections, signalling a requirement for face detection in a wide range of in-plane rota-

tions. Table 7.5 shows a similar description on the profile face category, which included

both half-profile and full-profile, for known and unknown people in the collections. Sim-

ilarly to the case of frontal faces, a large proportion of profile faces are oriented in the

range of ±(0− 30)◦ while the number of profile faces present in other orientations falls

off gradually in all 9 photo collections.

Finally, a statistical description of the missing face and body-patch features is given

in Table 7.6. Face features are considered to be missing when the captured photos contain

only a part of the face or profile view faces. Body-patch features, on the other hand, are

considered to be missing if the captured photo contains only a part of the body-patch,

failing to meet the requirement of body-patch size being double the size of face. The

figures given in Table 7.6 show that there is a significant proportion of missing face and
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Table 7.3: A statistical description of face orientations in the 9 users’ collections.

User

Known Persons Unknown Persons

Frontal
Near 

Frontal
Half 

Profile
Half 

Frontal
Profile Frontal

Near 
Frontal

Half 
Profile

Half 
Frontal

Profile

1 100 181 153 17 47 21 34 67 17 52

2 496 519 416 89 216 122 240 175 39 165

3 87 76 64 14 31 15 25 51 18 36

4 371 668 561 133 305 45 74 100 28 157

5 121 101 93 28 42 20 33 97 48 130

6 634 567 147 61 120 25 52 19 10 43

7 177 184 164 43 131 15 20 41 46 127

8 274 316 228 43 100 46 67 44 21 60

9 121 192 125 27 47 33 57 65 31 53

Table 7.4: A statistical description of the frontal faces in the evaluation data sets.

User

# Differently Inclined Known Frontal Faces # Differently Inclined Unknown Frontal Faces

 60-90 T 30-60 T  90-180 T  90-180 T 30-60 T  60-90 T0-30 T 0-30 T

2 5635 2 0  2 0 1338 535

1 516 0 0 3 0413 119

7 0 7 0 0  1 1518 74

6 13 77 0 0  2 0 1258 94

4 734 2 0 5 11557 213

5 1  6 0 0  3 0 308 143

3  0 8 0 0 0 0219 91

9  318 0 0  0 1417 154

8 3  25 0 0  2 0790 155

body-patch features in all 9 collections, signalling the fact that such missing features can

adversely affect the performance of person annotation if only signal-based person match-

ing technologies are used.

Although body-patch features are considered to be complementary to face features

and remain useful when face variations in pose, lighting and expression occur, the task

of body-patch segmentation can be erroneous in certain cases. Apart from the difficulties

described in Section 6.1.1 of Chapter 6 and the fact that clothing can generally exhibit

varying perceptual qualities due to folds and wrinkles, errors are also like to occur in

body-patch feature extraction when dealing with photos comprising differently oriented

faces, e.g. frontal, left profile, right profile, etc.

Despite some recent attempts that have been made by researchers such as [175] to

deal with inaccurate body-patch feature extraction by incorporating more computation-

ally expensive processing such as mean-shift analysis, carrying out such extended works

is outside the scope of this thesis. This research relies on the principle that capturing

the torso regions relative to face detection favourably acts as a complementary feature

in person re-occurrence identification in personal photo archives. Thus, body-patch de-

tection and segmentation simply uses the position and relative scale of each detected
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Table 7.5: A statistical description of the profile faces in the evaluation data sets.

User

# Differently Inclined Known Profile Faces # Differently Inclined Unknown Profile Faces

 60-90 T 30-60 T  90-180 T  90-180 T 30-60 T  60-90 T0-30 T 0-30 T

2 10 61 6 0 17 0 228 187

1 1 7 0 02 056 67

7 0 23 0 0 5 0 151 168

6 10 27 5 0 4 0 139 49

4 7 52 5 09 1 374 175

5 1  7 1 0 12 0 61 166

3 3 6 0 01 1 36 52

9 111 0 0 10 0 62 74

8 3 19 0 0  1 1 121 79

Table 7.6: A statistical description of the missing face and body-patch features in the
semi-automatically labeled ground-truth.

User

1

2

3

4

5

6

7

8

9

# missing faces

134

511

99

629

251

244

349

227

162

# missing body-patches

61

361

54

263

107

352

188

113

119

# semi-automatically 
labeled people

689

2477

417

2442

713

1678

948

1199

751

face, in order to predict a bounding-box containing the person’s torso as described in

Section 6.5.1 of Chapter 6. A special case scenario in violating this assumption, how-

ever, exists when computing the similarity between body-patches extracted relative to

two differently posed faces of the same person, leading to ambiguous matching results

as the perceptual appearance can drastically change in such cases.

7.4 Performance Evaluation of Person Annotation

7.4.1 Classification Method: kNN Algorithm

In the proposed research framework, the person classification task is performed using

the kNN classifier, which is one of the simplest of the machine learning algorithms while

being a very intuitive method of having the ability to classify unlabeled samples by com-

paring their similarity to labeled samples. Simplicity is assured in that it requires no

explicit training step as the neighbors are taken from a set of objects that are most similar

to the object under study. For a given unlabeled sample, it finds the k-closest samples

in the labeled data set and assigns the class label ci that appears most frequently within

the k subset by following a majority voting scheme. If multiple classes with the same
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frequency are found, the label of the class with the smallest distance, d, is assigned.

In general, the value of k, which is typically small, affects the classification perfor-

mance. Setting k=1 corresponds to nearest neighbor classification where the object of

study is simply be assigned to the class of its nearest neighbor. In semi-automatic person

annotation approaches built upon a name-list suggestion methodology, candidate names

can be inferred from previously annotated person identities based upon their similarity

to the current person being annotated by selecting a suitable value for k. In this research

framework, a kNN-based classification algorithm is preferred over other advanced algo-

rithms, such as the SVM and artificial neural networks, which involve time-consuming

optimisation and computation of pair-wise distances.

7.4.2 Performance Evaluation Criteria: H-Hit Rate

The performance evaluation of person annotation is carried out using the H-Hit rate eval-

uation method, which was originally proposed by Chen et al. [29]. A Hit is said to happen

if the true name of the person is included in the suggested list of names. Assuming that

the entire collection is divided into two sub-collections: training (C1) and test (C2) with

N1 and N2 persons in them, H-Hit defines the prediction accuracy given different per-

centages of annotated persons as:

H −Hit =
1

N2

∑

f∈C2

hitH,C1(f) (7.5)

where hitH,C1(f) is 1 if f is included in the suggested list of H names taken from C1, and

0 otherwise.

In general, the performance of Hit-rate can vary according to the classification method

used. For example, if the nearest neighbor classifier is used, the name suggestion will

simply corresponds to the best match of the retrieved results without giving any consid-

eration to the rest of the candidates. Using the kNN classifier, on the other hand, may

result in a more accurate name-list suggestion since the candidate names are selected

from a pool of matching results as opposed to just the nearest neighbor.

It should be, however, noted that using the model-A approach described in Section

7.2.1 can simulate the system performance as an automatic annotation approach by set-

ting H=1 in the evaluation measure. Note that, in this thesis, an automatic annotation is

said to happen if the user is provided with only one name suggestion not requiring any

confirmation in return for a given set of previously annotated identities. However, if the

user is provided with a list of name suggestions and requested to confirm for each person

during the annotation process as done in the model-B approach (see Section 7.2.2), it is
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said to be semi-automatic person annotation.

In the following experiments, person annotation performance is first computed sepa-

rately for each user in terms of H-Hit rate and then presented as an average value of the 9

H-Hit rate values corresponding to the 9 photo collections. It is believed that using such

an average measure helps neutralise the errors that could occur due to noisy data present

in some photo collections.

7.5 Experiments and Results: Model-A and Model-B

Person annotation experiments relating to non-progressive (model-A) and progressive

(model-B) annotation are carried out, and the results corresponding to model-B are pre-

sented following that of model-A for each experiment in this section. It should be noted

that all the experiments reported in this section have been carried out for 5 different val-

ues of H in the Hit-rate measure, i.e. 1-Hit, 2-Hit, 3-Hit, 4-Hit and 5-Hit, and 3 different

levels of initial annotation (g), i.e. 30%, 50%, and 70%.

It should also be noted that, unless mentioned otherwise, the hit-rate figures reported

in the following results correspond to the average of hit-rates computed from all photo

collections belonging to the 9 users described in Section 7.3.

7.5.1 Person Annotation using Content Features

Person annotation using content features, extracted through face recognition (LBP fea-

tures), is performed in this section based on global face matching and event-constrained

face matching with a view to ascertain which approach is more effective to person anno-

tation. It should be, however, noted that all the person identities corresponding to profile

view faces need to be excluded from the data set in this study as the face recognition

features can only be extracted from frontal faces. Additionally, this experiment aims at

studying the effectiveness of face matching using frontal faces in two scenarios: based on

the use of (full-frontal and near-frontal) and (full-frontal, near-frontal and half-frontal)

faces. The objective of analysing the effect of different frontal face categories is to investi-

gate if person matching using slightly non-frontal faces causes any adverse effect on the

overall performance of person annotation.

7.5.1.1 Global Face Matching

Person annotation based on global face matching refers to the process by which a simi-

larity score of the query person is computed against all other faces in the collection from
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which face recognition descriptions, i.e. LBP features, have been extracted following face

detection.

Table 7.7 shows the H-Hit rate figures related to the model-A approach, i.e. non-

progressive person annotation, using global face matching for event-based and person-

based initial annotation, and different combinations of frontal face categories at 30%, 50%

and 70% initial annotation. In order to make the comparison easier, Figure 7.5 shows the

Hit-rate figures of model-A against the value of H at g=30% for different initial annotation

methods and different categories of frontal faces. The results show that the performance

of person annotation from person-based initial annotation is better than that from event-

based initial annotation for all values of H. A possible reason for poor performance from

global face matching with event-based initial annotation can be due to the fact that this

type of initial annotation may lead to some identities in the collection being completely

un-annotated or only inadequately annotated so that they cannot be correctly matched

later in the process. Therefore, it can be considered from this experiment that person-

based initial annotation suits better in a situation where the task of person annotation

solely relies on global face matching.

Considering the effect of different frontal face categories on global person matching,

Figure 7.5 shows that there is no clear advantage in using only two or three categories of

frontal faces with event-based initial annotation. However, in the case of person-based

initial annotation, there is a significant improvement in person annotation when person

matching is carried out using only full-frontal and near-frontal faces only. This result

illustrates that adding half-frontal faces is likely to degrade the performance of person

annotation as they tend to behave more like outliers in the face recognition stage. Al-

though there is a noticeable difference in the hit-rate figures obtained from the two meth-

ods using different frontal face categories (refer to the last two rows in Table 7.7), the total

number of persons that can be annotated using each method should also be taken into

account when assessing the effectiveness of a person annotation approach. For example,

person annotation using global face matching based on the use of full-frontal and near-

frontal faces leads to 3,464 persons un-annotated out of the 8,630 total number of persons

in the entire collection. Incorporating half-frontal faces into the person matching process

results in only 1,520 persons un-annotated in the collection, albeit at the cost of reduced

person matching accuracy.
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Table 7.7: Non-progressive person annotation performance for different values of initial

annotation using content features: global face matching.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%) : model-A using Global Face 
 Matching

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.30 
0.33 
0.36

0.51 
0.53 
0.59

0.57 
0.59 
0.64

0.61 
0.64 
0.68

0.43 
0.46 
0.50

event-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.30 
0.31 
0.31

0.50 
0.54 
0.54

0.55 
0.59 
0.68

0.60 
0.63 
0.63

0.42 
0.45 
0.45

person-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.30 
0.34 
0.40

0.53 
0.57 
0.62

0.59 
0.63 
0.68

0.64 
0.67 
0.74

0.44 
0.49 
0.55

person-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.33 
0.38 
0.43

0.57 
0.62 
0.71

0.63 
0.68 
0.76

0.68 
0.73 
0.80

0.48 
0.54 
0.61
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Figure 7.5: H-Hit rate for non-progressive person annotation using content features:

global face matching.

The results shown in Table 7.8 and Figure 7.6 correspond to the experiments carried

out using the model-B approach, i.e. progressive annotation. While the graphs show

that the pattern of H-Hit rate variation of model-B resembles that of model-A, the perfor-

mance figures obtained from model-B are significantly higher than that from model-A.

Similar to the results for model-A, these results also show that the person-based initial

annotation is more effective than event-based initial annotation when person annotation
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is carried out using global face matching.

Table 7.8: Progressive person annotation performance for different values of initial anno-

tation using content features: global face matching.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%) : model-B using Global Face 
 Matching

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.35 
0.37 
0.38

0.58 
0.60 
0.62

0.64 
0.65 
0.67

0.68 
0.70 
0.71

0.49 
0.51 
0.53

event-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.37 
0.36 
0.35

0.60 
0.61 
0.61

0.65 
0.66 
0.66

0.69 
0.70 
0.70

0.51 
0.51 
0.50

person-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.37 
0.39 
0.42

0.60 
0.62 
0.66

0.67 
0.68 
0.71

0.71 
0.72 
0.76

0.52 
0.53 
0.57

person-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.41 
0.43 
0.47

0.65 
0.67 
0.72

0.72 
0.73 
0.78

0.75 
0.77 
0.82

0.56 
0.58 
0.63
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Figure 7.6: H-Hit rate for progressive person annotation using content features: global

face matching.

Analysing the performances of both model-A and model-B approaches, it can, there-

fore, be argued that inclusion of all three frontal face categories, i.e. full-frontal, near-

frontal and half-frontal faces, may be preferable to person annotation over full-frontal

and near-frontal faces when person annotation is carried out using global face match-
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ing. Furthermore, a person-based initial annotation method is more effective than event-

based initial annotation to person annotation when devised using global face matching.

7.5.1.2 Event-Constrained Face Matching

Person annotation based on event-constrained face matching refers to the process by

which a similarity score of the query person is computed against all the pre-annotated

faces in the same event.

Table 7.9 shows the H-Hit rate figures related to the model-A approach using event-

constrained face matching for event-based and person-based initial annotation, and dif-

ferent combinations of frontal face categories at 30%, 50% and 70% initial annotation.

Figure 7.7 shows the variation of Hit-rate figures of model-A against H at g=30% for

different initial annotation methods and different categories of frontal faces. It can be

noted that this experiment shows an opposite result to that reported in Section 7.5.1.1.

The performance of person annotation using an event-constrained person matching with

event-based initial annotation is shown to be superior to that from person-based initial

annotation for all values of H. As Figure 7.7 depicts, there is a significant difference in

the performance level of person-based and event-based initial annotation. This outcome

is, however, not surprising as there may be situations where person-based initial annota-

tion can lead to generation of an imbalanced number of annotated persons with varying

degrees of person similarities in some events. Consequently, person matching carried

out within such events will adversely affect the overall performance of person annota-

tion. Comparing the performance figures of person annotation using different categories

of frontal faces, there is only an insignificant level of performance improvement from

using only the full-frontal and near-frontal faces as opposed to its counterpart. This im-

provement, also being very small, can be ignored considering the fact that using all three

frontal face categories facilitate annotating a larger number of persons in the collection.
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Table 7.9: Non-progressive person annotation performance for different values of initial

annotation using content features: event-constrained face matching.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%): model-A using Event-Constrained 
Face Matching

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.29 
0.31 
0.31

0.55 
0.59 
0.64

0.61 
0.64 
0.71

0.65 
0.69 
0.76

0.45 
0.48 
0.51

event-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.31 
0.34 
0.32

0.54 
0.60 
0.66

0.59 
0.66 
0.72

0.61 
0.69 
0.77

0.47 
0.51 
0.55

person-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.19 
0.23 
0.26

0.34 
0.41 
0.49

0.38 
0.46 
0.53

0.40 
0.50 
0.57

0.28 
0.34 
0.41

person-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.20 
0.24 
0.27

0.34 
0.41 
0.49

0.37 
0.44 
0.51

0.39 
0.47 
0.53

0.30 
0.36 
0.41
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Figure 7.7: H-Hit rate for non-progressive person annotation using content features:

event-constrained face matching.

The results shown in Table 7.10 and Figure 7.8 correspond to the person annotation

experiments carried out using the model-B approach in an event-constrained manner.

Similar to the results illustrated by model-A, person annotation using the model-B ap-

proach proves to benefit more from event-based initial annotation. It can also be observed

that the performance figures obtained from model-B are higher than that from model-A

for all values of H and g.
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Table 7.10: Progressive person annotation performance for different values of initial an-

notation using content features: event-constrained face matching.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%) : model-B using Event-Constrained 
Face Matching

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.32 
0.34 
0.33

0.56 
0.65 
0.67

0.70 
0.71 
0.73

0.74 
0.76 
0.78

0.52 
0.53 
0.55

event-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.34 
0.35 
0.33

0.64 
0.67 
0.69

0.70 
0.73 
0.76

0.73 
0.77 
0.80

0.54 
0.56 
0.57

person-based initial 
annotation: using 

fully-frontal, near-frontal 
and half-frontal faces

0.31 
0.31 
0.33

0.59 
0.61 
0.64

0.66 
0.67 
0.69

0.70 
0.72 
0.74

0.49 
0.50 
0.53

person-based initial 
annotation: using 
fully-frontal and 

near-frontal 

0.33 
0.33 
0.34

0.61 
0.62 
0.65

0.66 
0.68 
0.69

0.70 
0.71 
0.72

0.52 
0.53 
0.55
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Figure 7.8: H-Hit rate for progressive person annotation using content features: event-

constrained face matching.

Comparing the results obtained from model-A and model-B approaches, therefore,

indicates that event-based initial annotation is preferable over a person-based initial an-

notation method to person annotation when using event-constrained face matching. Sim-

ilarly, event-constrained face matching using all three frontal face categories, i.e. full-

frontal, near-frontal and half-frontal faces, seems to offer more advantage to person an-

notation over full-frontal and near-frontal faces, considering both the accuracy and scale
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of annotation.

7.5.2 Person Annotation using Visual Context Features

In this experiment, person annotation is carried out using visual context features, which

uses combined colour and texture descriptions of body-patches with the fusion scheme

defined in Equation 7.4. In essence, person matching is performed in an event-constrained

manner as it is the basis for using visual context features in this research. This experi-

ment also aims at investigating the effect of using body-patches extracted relative to both

frontal and profile face detection with a view to ascertaining the benefit of employing

profile face detection in person annotation.

Table 7.11 shows the annotation results of the model-A approach in terms of H-Hit

rate using visual context features extracted relative to frontal face detection only, and

both frontal and profile face detection based on event-based and person-based initial an-

notation methods at 30%, 50% and 70% initial annotation. Figure 7.9 shows the Hit-rate

figures at g=30% for the two initial annotation methods, and frontal and profile face cat-

egories. As can be seen, the performance of person annotation using event-based initial

annotation is much better than that obtained from person-based initial annotation. This

outcome is again not surprising due to the fact that using visual context features, i.e.

an event-constrained person matching, is likely to benefit more from event-based initial

annotation while person-based initial annotation may result in “null” ground-truth or

insufficient ground-truth in some events, leading to poor annotation performance.

Comparing the performances of the visual-context features extracted relative to two

face categories, i.e. frontal and profile, the model-A approach shows only a minor im-

provement when body-patch features extracted relative to only frontal face detection are

used at g=30% (see Figure 7.9). When g increases, inclusion of profile face detection tends

to improve the annotation performance slightly. However, this outcome seems to have

resulted due to the use of event-constrained matching, with most events containing only

a small number of distinct persons in these photo collections.
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Table 7.11: Non-progressive person annotation performance for different values of initial

annotation using visual context features.

 H-Hit Rate for Initial Annotation (g) at 30/50/70 (%): model-A using Visual Context 
Features 

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: using frontal 

and profile faces

0.32 
0.33 
0.32

0.56 
0.60 
0.62

0.61 
0.66 
0.70

0.64 
0.70 
0.75

0.46 
0.50 
0.52

event-based initial 
annotation: using frontal 

faces only 

0.31 
0.32 
0.33

0.57 
0.59 
0.62

0.62 
0.66 
0.69

0.65 
0.69 
0.75

0.46 
0.49 
0.52

person-based initial 
annotation: using frontal 

and profile faces

0.20 
0.24 
0.28

0.35 
0.43 
0.50

0.39 
0.47 
0.55

0.44 
0.50 
0.58

0.29 
0.35 
0.44

person-based initial 
annotation: using frontal 

faces only 

0.20 
0.24 
0.27

0.35 
0.43 
0.49

0.38 
0.47 
0.53

0.41 
0.50 
0.55

0.29 
0.34 
0.42
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Figure 7.9: H-Hit rate for non-progressive person annotation using visual context fea-

tures.

Table 7.12 and Figure 7.10 show the person annotation results of the model-B ap-

proach using visual context features for person matching. While the results of model-B

show a similar behavior to the model-A approach, also by exhibiting a better performance

from event-based initial annotation over that of from person-based initial annotation, the

difference in performance from the two initial annotation methods is not significant. Sim-

ilarly, only a small performance improvement can be observed from using body-patches
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extracted relative to frontal and profile face detection, particularly at higher values of H.

Table 7.12: Progressive person annotation performance for different values of initial an-

notation using visual context features.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%): model-B using Visual Context 
Features

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: using frontal 

and profile faces

0.34 
0.35 
0.34

0.63 
0.65 
0.66

0.70 
0.72 
0.72

0.75 
0.77 
0.78

0.53 
0.55 
0.56

event-based initial 
annotation: using frontal 

faces only 

0.34 
0.35 
0.34

0.63 
0.65 
0.67

0.69 
0.71 
0.73

0.74 
0.76 
0.78

0.53 
0.54 
0.56

person-based initial 
annotation: using frontal 

and profile faces

0.34 
0.34 
0.35

0.61 
0.62 
0.65

0.67 
0.68 
0.71

0.72 
0.72 
0.75

0.51 
0.52 
0.55

person-based initial 
annotation: using frontal 

faces only 

0.33 
0.33 
0.33

0.60 
0.62 
0.65

0.66 
0.67 
0.70

0.70 
0.71 
0.73

0.51 
0.51 
0.54
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Figure 7.10: H-Hit rate for progressive person annotation using visual context features.

Summarising the results obtained from model-A and model-B approaches, it can be,

therefore, noted that using visual context features extracted relative to both frontal and

profile faces are a better choice for person annotation when carried out in an event-

constraint manner. Furthermore, the results justify that event-based initial annotation

results in better annotation performance than person-based initial annotation in both
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models.

7.5.3 Person Annotation using Content and Visual Context Features

Following the fusion scheme given in Equation 7.4 for combining content and visual

context features, experiments are performed to measure the performance of person an-

notation using combined content and visual context features with different initial anno-

tation methods for frontal face categories. Person matching is carried out in an event-

constrained manner due to the use of visual context features in this combined scheme.

Also, the visual context features employed in this experiment are extracted relative to

both frontal and profile face detection, following its previous success reported in Section

7.5.2.

Table 7.13 shows the performance figures of model-A in terms of H-Hit rate using the

combined content and visual context features based on the use of different frontal face

categories in face recognition, and event-based and person-based initial annotation meth-

ods at 30%, 50% and 70% initial annotation. Figure 7.11 shows the variation of Hit-rate

figures of model-A against H at g=30% for the two initial annotation methods and differ-

ent frontal face categories used in face recognition. Once again, the results illustrate that

the performance of event-based initial annotation is better than that of the person-based

initial annotation approach, due to the same reason that event-constrained person match-

ing clearly benefits from event-based initial annotation. However, considering the use of

different frontal face categories for face recognition, there is no noticeable performance

improvement in using only full-frontal and near-frontal over full-frontal, near-frontal and

half-frontal face categories to face recognition, similar to what was observed in the pre-

vious event-constrained face matching experiment in Section 7.5.1.2
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Table 7.13: Non-progressive person annotation performance for different values of initial

annotation using content and visual context features.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%) : model-A using Content and Visual 
Context Features

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: face 

recognition performed 
on frontal and near-frontal 

faces

0.31 
0.33 
0.33

0.56 
0.60 
0.64

0.61 
0.66 
0.71

0.65 
0.70 
0.74

0.47 
0.50 
0.52

event-based initial 
annotation: face 

recognition performed 
on frontal, near-frontal 
and half-frontal faces

0.31 
0.33 
0.33

0.56 
0.60 
0.64

0.61 
0.66 
0.71

0.64 
0.69 
0.75

0.46 
0.50 
0.52

person-based initial 
annotation: face 

recognition 
performed on frontal and 

near-frontal faces.

0.20 
0.24 
0.28

0.35 
0.41 
0.50

0.39 
0.46 
0.54

0.42 
0.49 
0.57

0.29 
0.35 
0.42

person-based initial 
annotation: face 

recognition performed 
on frontal, near-frontal 
and half-frontal faces.

0.21 
0.26 
0.27

0.36 
0.43 
0.51

0.40 
0.48 
0.56

0.42 
0.51 
0.58

0.29 
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0.43
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Figure 7.11: H-Hit rate for non-progressive person annotation using content and visual

context features.

The results shown in Table 7.14 and Figure 7.12 correspond to the person annota-

tion performance figures obtained from the model-B approach, depicting a similar fact

that using event-based initial annotation leads to more effective person annotation as op-

posed to the person-based initial annotation method. However, the difference in perfor-

mance figures related to the two initial annotation methods are not as significant as in the
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case of model-A approach. Concerning the use of different frontal face categories to face

recognition, the model-B approach also shows no noticeable performance improvement

in using only full-frontal and near-frontal over full-frontal, near-frontal and half-frontal

face categories in the face recognition stage.

Table 7.14: Progressive person annotation performance for different values of initial an-

notation using content and visual context features.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%) : model-B using Content and Visual 
Context Features

Type of annotation and 
face categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: face 

recognition performed 
on frontal and near-frontal 

faces

0.35 
0.36 
0.36

0.64 
0.65 
0.67

0.70 
0.71 
0.73

0.74 
0.75 
0.77

0.53 
0.55 
0.55

event-based initial 
annotation: face 

recognition performed 
on frontal, near-frontal 
and half-frontal faces

0.35 
0.36 
0.36

0.63 
0.65 
0.67

0.70 
0.71 
0.73

0.74 
0.75 
0.77

0.52 
0.54 
0.56

person-based initial 
annotation: face 

recognition 
performed on frontal and 

near-frontal faces.

0.34 
0.34 
0.36

0.61 
0.62 
0.65

0.67 
0.68 
0.70

0.71 
0.71 
0.74

0.51 
0.51 
0.54

person-based initial 
annotation: face 

recognition performed 
on frontal, near-frontal 
and half-frontal faces.

0.34 
0.34 
0.36

0.61 
0.62 
0.66

0.67 
0.68 
0.70

0.71 
0.72 
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0.51 
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Figure 7.12: H-Hit rate for progressive person annotation using content and visual con-

text features.

Summarising all the experimental results reported above, it can be concluded that
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using combined content and visual-context features proves to be the best approach to

person annotation out of all possibilities discussed thus far in this chapter. Comparing

the best performances of the model-A approach in Table 7.7 (see 5th row corresponding

to person-based initial annotation using full-frontal, near-frontal and half-frontal faces)

and Table 7.13 (see 4th row corresponding to event-based initial annotation using full-

frontal, near-frontal and half-frontal faces) for person annotation using global face match-

ing and event-constrained face&body-patch matching, the latter approach proves to be

more effective in person annotation. The model-B approach in Table 7.8 (see 5th row cor-

responding to person-based initial annotation using full-frontal, near-frontal and half-

frontal faces) and Table 7.14 (see 4th row corresponding to event-based initial annotation

using full-frontal, near-frontal and half-frontal faces), proves to have produced larger H-

Hit figures whilst agreeing with the outcome of model-A, indicating that the performance

of event-constrained face and body-patch matching is superior to all other approaches.

Furthermore, in terms of the number persons that can be annotated using each approach,

the combined content and visual context approach is the best approach as it allows a

larger number of persons to be annotated than by global face matching. For example,

global face matching using frontal, near-frontal and half-frontal faces leaves 1,520 per-

sons un-annotated out of the 8,630 total number of persons available in the collection.

In contrast, event-constrained face&body-patch matching leaves only 190 persons un-

annotated in the collection.

Therefore, it can be concluded that using combined content and visual context fea-

tures with an event-based initial annotation is the best approach for person annotation

out of all the approaches thus far investigated in this thesis.

7.5.4 Person Annotation using Person Context Features

In this section, experiments are carried out to investigate the effectiveness of three person

context estimators, namely global count, event count and location-neighboring count (see

Section 7.1.3 for a description of person context estimators), for person annotation. First,

the performance of each estimator is analysed using the two initial annotation methods,

in order that the best initial annotation method can be identified. Second, dividing the

full photo collection into two sets, i.e. training and test, an optimal weighting factor

for each estimator is identified, following which a comparative performance analysis of

individual and combined estimators is performed. It should, however, be noted that

identification of optimum weighting factors for person context estimators is carried out

using only the model-A approach.

Table 7.15 shows the results of the model-A approach for each person-context estima-
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tor in terms of H-Hit rate for 3 different values of event-based and person-based initial

annotation, i.e. 30%, 50% and 70%. Figure 7.13 shows the variation of H-Hit rate figures

against the value of H for each estimator at 30% event-based and person-based initial an-

notation. Concerning the performances of the two initial annotation methods, Figure 7.13

shows that the majority of estimators perform better with event-based initial annotation,

where the best performance is reported by the event count estimator. The global count

estimator with person-based initial annotation results in marginally better performance

than with event-based initial annotation. The behavior of all three estimators remains,

however, consistent across all levels of initial annotation and different values of H in

H-Hit rate.

Table 7.15: Non-progressive person annotation performance for different values of initial

annotation using person-context features.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%) : model-A using Person Context 
Features

Type of annotation and 
context categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: person 

context based on global 
count

0.17 
0.17 
0.16

0.36 
0.37 
0.37

0.44 
0.44 
0.45

0.50 
0.50 
0.49

0.29 
0.29 
0.29

event-based initial 
annotation: person 

context based on event 
count

0.25 
0.26 
0.26

0.50 
0.53 
0.55

0.56 
0.61 
0.62

0.61 
0.65 
0.67

0.40 
0.42 
0.43

person-based initial 
annotation: person 

context based on global 
count

0.18 
0.18 
0.19

0.40 
0.40 
0.42

0.48 
0.48 
0.50

0.53 
0.53 
0.56

0.31 
0.31 
0.33

person-based initial 
annotation: person 

context based on event 
count

0.16 
0.18 
0.21

0.30 
0.37 
0.44

0.34 
0.42 
0.48

0.38 
0.45 
0.53

0.24 
0.29 
0.35

event-based initial 
annotation: person 
context based on 

location-neighboring 
count

 
0.21 
0.22 
0.22 

0.48 
0.50 
0.50

0.56 
0.59 
0.58

0.61 
0.63 
0.63

0.36 
0.37 
0.38

person-based initial 
annotation: person 
context based on 

location-neighboring 
count

 
0.20 
0.19 
0.21 

0.43 
0.46 
0.49

0.50 
0.55 
0.56

0.57 
0.59 
0.63

0.32 
0.35 
0.38
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Figure 7.13: H-Hit rate for non-progressive person annotation using person-context fea-

tures.

Table 7.16 and Figure 7.14 show each person-context estimator’s performance in the

model-B approach. Observing the variation of H-Hit figures in Figure 7.14, it can be noted

that the event count estimator performs best irrespective of the type of initial annotation

method used. It is followed by location-neighboring and global count estimators, consis-

tently across all values of H and g. Thus, the results clearly illustrate that global count

is the least effective estimator while event count remains as the most effective person-

context estimator to person annotation. Concerning the type of initial annotation, the

performance of event and location-neighboring count estimators is slightly higher with

person-based initial annotation than with event-based initial annotation. However, con-

sidering the fact that event count estimator with event-based initial annotation is found

to be the best performing estimator among all candidates in the model-A approach to-

gether with the reported performance of the event-count estimator with event-based ini-

tial annotation in the model-B approach, event-based initial annotation can, arguably, be

considered as the most suitable initial annotation method in this research. This is also in

agreement with the results obtained from the combined content and visual context fea-

tures described in Section 7.5.3, depicting higher performance from event-based initial

annotation than that from person-based initial annotation. Thus, the rest of the experi-

ments carried out in the thesis are consequently based on event-based initial annotation

as it can be considered as the best initial annotation method for person annotation.
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Table 7.16: Progressive person annotation performance for different values of initial an-

notation using person-context features.

 H-Hit Rate for Initial Annotation at 30/50/70 (%) : model-B using Person Context 
Features

Type of annotation and 
context categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: person 

context based on global 
count

0.17 
0.17 
0.16

0.37 
0.37 
0.37

0.44 
0.45 
0.45

0.50 
0.50 
0.49

0.29 
0.29 
0.28

event-based initial 
annotation: person 

context based on event 
count

0.27 
0.26 
0.27

0.54 
0.56 
0.56

0.62 
0.63 
0.63

0.66 
0.67 
0.68

0.43 
0.44 
0.43

person-based initial 
annotation: person 

context based on global 
count

0.18 
0.18 
0.19

0.39 
0.39 
0.41

0.47 
0.47 
0.49

0.53 
0.53 
0.55

0.31 
0.31 
0.32

person-based initial 
annotation: person 

context based on event 
count

0.25 
0.24 
0.26

0.52 
0.52 
0.55

0.59 
0.59 
0.61

0.63 
0.64 
0.66

0.41 
0.41 
0.43

event-based initial 
annotation: person 
context based on 

location-neighboring 
count

0.22 
0.22 
0.22 

0.49 
0.50 
0.50

0.58 
0.59 
0.58

0.62 
0.63 
0.63

0.37 
0.38 
0.38

person-based initial 
annotation: person 
context based on 

location-neighboring 
count

 
0.22 
0.22 
0.23 

0.50 
0.51 
0.53

0.59 
0.60 
0.61

0.64 
0.64 
0.67

0.39 
0.39 
0.41
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Figure 7.14: H-Hit rate for progressive person annotation using person-context features.

In order to identify the best combination of the three person-context estimators, ex-
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periments are performed to compute the optimum weighting factors using a weighted

average fusion scheme. The first 4 users’ collections are used as the training data with

event-based initial annotation. Fusion is carried out using a two-stage cascade approach

where the weighting factors for any two estimators are first identified, following which

the weighting factors for the combined estimators and the third estimator are identified

in the second stage. The mathematical representations of the fusion scheme employed

for global count and event count estimators in the first stage, and all three person con-

text estimators in the second stage, i.e. global, event and location-neighboring count, are

given in Equation 7.6 and 7.7 respectively.

PGE = αPG + (1− α)PE (7.6)

where PGE is the probabilistic score of combined global and event count estimators, PG

is the probabilistic score of the global count estimator, and PE is the probabilistic score of

the event count estimator.

PGELn = βPGE + (1− β)PLn (7.7)

where PGELn is the probabilistic score of combined global, event and location-neighboring

count estimators, PGE is the probabilistic score of combined global and event count esti-

mators, and PLn is the probabilistic score of the location-neighboring count estimator.

Figure 7.15 shows the graphs of hit-rate against α for different values of H for com-

bined global and event count estimators using the first 4 photo collections. As can be

observed in all the five cases of H, an α= 0.20 can be considered as an optimum weight-

ing factor for combining the two estimators.
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Figure 7.15: H-Hit rate for non-progressive person annotation using combined global and

event count estimators.

Figure 7.16 shows the graphs of hit-rate against α for different values of H for com-

bined global, event and location-neighboring count estimators using the first 4 photo

collections. As can be observed in all five cases of hit rates, a weighting factor β equal to

0.65 can be considered as the optimum weighting factor for fusing combined global and

event with location-neighboring count person-context estimators.
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Figure 7.16: H-Hit rate for non-progressive person annotation using combined global,

event and location-neighboring count estimators.

Summarising the above results, the optimal weighting factors for the three person-
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context estimators can be trivially computed from βα, β(1 − α) and (1 − β) for global,

event and location-neighboring count estimators respectively. In order to present a per-

formance comparative study of the 3 person-context estimators and their combinations,

the following experiment is performed using the last 5 photo collections as the test data

set. Substituting the optimum weighting factors identified for α and β, PGE and PGELn

can now be expressed as follows.

PGE = 0.2PG + 0.8PE (7.8)

PGELn = 0.13PGE + 0.52PE + 0.35PLn (7.9)

Table 7.17 shows the person annotation results of the model-A approach in terms of

H-Hit rate for individual and combined person-context estimators with event-based ini-

tial annotation at 30%, 50% and 70%. Figure 7.17 shows the variation of Hit-rate figures

of model-A against H at g=30% for the person context estimators and their combinations.

From Figure 7.17, it is clear that the performance of combined global, event and location-

neighboring count estimators is superior to any individual or combined global and event

count estimators. While the results show a significant gain in combined approaches com-

pared to the performance figures of all individual estimators, the performance difference

between the two combined approaches is surprisingly very small. However, the graph

indicates that the improvement achieved by combining all 3 estimators becomes more

prominent at higher values of H. The same goes for all other levels of initial annotation

as can be seen from the hit-rate figures given in Table 7.17.
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Table 7.17: Non-progressive person annotation performance for last 5 users’ collections

using individual and combined person-context estimators.

 H-Hit Rate for Initial Annotation  (g) at 30/50/70 (%) : model-A using Person Context 
Features

Type of annotation and 
context categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: person 

context based on global 
count

0.16 
0.16 
0.16

0.34 
0.34 
0.35

0.40 
0.41 
0.41

0.46 
0.47 
0.46

0.27 
0.28 
0.28

event-based initial 
annotation: person 

context based on event 
count

0.22 
0.24 
0.24

0.45 
0.50 
0.51

0.53 
0.58 
0.58

0.57 
0.63 
0.63

0.37 
0.40 
0.41

event-based initial 
annotation: person 
context based on 

combined  global and 
event count

0.22 
0.25 
0.24

0.49 
0.51 
0.52

0.57 
0.60 
0.59

0.63 
0.66 
0.63

0.39 
0.41 
0.42

event-based initial 
annotation: person 
context based on 

combined  global, event 
and location-neighboring 

count

 
0.23 
0.25 
0.24 

 

 
0.50 
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annotation: person 
context based on 

location-neighboring 
count

 
0.19 
0.20 
0.19 
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Figure 7.17: H-Hit rate for non-progressive person annotation of the last 5 users’ collec-

tions using individual and combined person context estimators.

Table 7.18 and Figure 7.18 show the corresponding person annotation results of the

model-B approach. While the behavior of each individual and combined estimators in

this model is shown to be similar to that obtained from the model-A approach, the per-

211



CHAPTER 7. USING CONTENT AND CONTEXT INFORMATION TO FACILITATE
EFFECTIVE PERSON ANNOTATION

formance figures of model-B prove to be larger across all values of H and g. It also shows

a similar performance to that reported in model-A in such a way that the performance

of combined approaches are significantly better than any individual estimator while the

performance difference between the two combined approaches is relatively small.

Table 7.18: Progressive person annotation performance for last 5 users’ collections using

individual and combined person-context estimators.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%) - model-B using Person Context 
Features

Type of annotation and 
context categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: person 

context based on global 
count

0.16 
0.16 
0.16

0.34 
0.34 
0.35

0.40 
0.41 
0.41

0.46 
0.47 
0.46

0.28 
0.28 
0.28

event-based initial 
annotation: person 

context based on event 
count

0.23 
0.24 
0.24

0.51 
0.53 
0.53

0.58 
0.60 
0.60

0.63 
0.64 
0.65

0.40 
0.42 
0.41

event-based initial 
annotation: person 
context based on 

combined  global and 
event count

0.23 
0.24 
0.23

0.52 
0.53 
0.53

0.61 
0.62 
0.60

0.67 
0.68 
0.66

0.42 
0.43 
0.42

event-based initial 
annotation: person 
context based on 

combined  global, event 
and location-neighboring 

count

 
0.23 
0.24 
0.24 

 

 
0.53 
0.53 
0.52 

 

 
0.61 
0.63 
0.62 

 

 
0.67 
0.68 
0.67 

 

 
0.41 
0.42 
0.41 

 

event-based initial 
annotation: person 
context based on 

location-neighboring 
count

 
0.19 
0.20 
0.20 

0.46 
0.47 
0.46

0.54 
0.56 
0.53

0.58 
0.60 
0.59

0.34 
0.35 
0.34
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Figure 7.18: H-Hit rate for progressive person annotation of the last 5 users’ collections

using individual and combined person context estimators.

7.5.5 Person Annotation using Content, Visual Context, and Person Context

Features

Having identified the best possible combinations of person context features, and con-

tent and visual context features, the following experiments aim at examining the effect of

combined content, visual context and person context features. To this end, experiments

are carried out to investigate if combining all three information sources is a useful step

in improving the performance of person annotation. First, the optimal weighting factors

are found for fusing combined content and visual context features (see Equation 7.1) with

combined person context features (see Equation 7.9) by dividing the full photo collection

into two sets. Second, a comparative performance analysis is performed with the results

obtained from combined content and visual context, combined person context, and com-

bined content, visual context and person context features using a test data set comprising

the last 5 photo collections.

In order to identify the best combination of content and visual context features, and

different person-context features, experiments are performed to compute the optimum

weighting factors using the first 4 photo collections as the training data with event-based

initial annotation. The mathematical representation of the fusion scheme employed for

this experiment is shown in Equation 7.10. Figure 7.19 shows the graphs of hit-rate

against α for different values of H. Studying the pattern of hit-rate variations for all cases

of H, a weighting factor, α= 0.20, can be identified as the optimum weighting factor for

fusing such combined features.
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Pperson = αPGELn + (1− α)PFB (7.10)

where PGELn is the probabilistic score of combined global, event and location-neighboring

person context estimators, and PFB is the probabilistic score of combined face (content)

and body-patch (visual context) descriptors.
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Figure 7.19: H-Hit rate for non-progressive person annotation using combined content,

visual context and person context features.

Table 7.19 shows the person annotation results of model-A in terms of H-Hit rate for

combined content and visual context features, combined person-context features, and

combined content, visual context and person context features, with event-based initial

annotation at 30%, 50% and 70%. Figure 7.20 shows the variation of Hit-rate figures

of model-A against H at g=30%, depicting that combining all three information sources

leads to the best annotation performance in this paradigm. Inclusion of person context es-

timators proves to be useful in further improving the performance of person annotation,

particularly at higher values of H. The superior performance exhibited by the combined

approach comprising content, visual context and person context features indicates that

such an approach is the best of all possible methods studied in this thesis for person

annotation.
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Table 7.19: Non-progressive person annotation performance for different values of initial

annotation using content, visual context and person context features.

 H-Hit Rate for Initial Annotation (g)  at 30/50/70 (%): model-A using Content, Visual 
Context and Person Context Features

Type of annotation and 
context categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: combined 

content and visual-context

0.38 
0.42 
0.46

0.59 
0.64 
0.70

0.64 
0.69 
0.76

0.67 
0.72 
0.80

0.52 
0.56 
0.62

event-based initial 
annotation: combined 

person context 

0.21 
0.20 
0.19

0.44 
0.46 
0.46

0.52 
0.55 
0.54

0.56 
0.58 
0.58

0.35 
0.35 
0.34

event-based initial 
annotation: combined 
content, visual-context 

and person-context
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Figure 7.20: H-Hit rate for non-progressive person annotation using content, visual con-

text and person context features.

Table 7.20 and Figure 7.21 show the corresponding person annotation results of the

model-B approach. While the performance figures reported by this model are larger than

that from non-progressive annotation, the results similarly show that the best person an-

notation performance can be achieved by combining all three information sources, i.e.

content, visual context and person context features. Comparing the two graphs shown in

Figure 7.20 and 7.21, it can be observed that the 5-Hit rate figures obtained from model-A

and model-B at 30% initial annotation are 0.73 and 0.82 respectively, illustrating a signif-
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icant performance difference between the two models in terms of H-Hit rate evaluation

figures. A similar performance boost from model-B can be observed at other values of H

in Hit-rate where the most strict case of Hit-rate with H=1 depicts performance figures of

0.39 and 0.47 from model-A and model-B respectively at g=30%.

Table 7.20: Progressive person annotation performance for different values of initial an-

notation using content, visual context and person context features.

 H-Hit Rate for Initial Annotation  (g) at 30/50/70 (%): model-B using Content, Visual 
Context and Person Context Features

Type of annotation and 
context categories used

1-Hit 2-Hit 3-Hit 4-Hit 5-Hit

event-based initial 
annotation: combined 

content and visual-context

0.47 
0.48 
0.50

0.70 
0.70 
0.73

0.74 
0.75 
0.78

0.78 
0.79 
0.82

0.62 
0.62 
0.66

event-based initial 
annotation: combined 

person context

0.19 
0.20 
0.20

0.46 
0.47 
0.45

0.54 
0.55 
0.54

0.58 
0.60 
0.59

0.35 
0.36 
0.34

event-based initial 
annotation: combined 
content, visual-context 

and person-context

 
0.47 
0.48 
0.50 

0.71 
0.72 
0.74

0.77 
0.78 
0.80

0.82 
0.82 
0.84

0.62 
0.63 
0.66
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Figure 7.21: H-Hit rate for progressive person annotation using content, visual context

and person context features.

Figure 7.22 shows how the hit-rate performance figures of model-A and model-B ap-

proaches vary for different values of g. A significant Hit-rate difference between the two

models can be observed in this graph, with model-A approach exhibiting a consistently
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improving behavior in contrast to the model-B approach which exhibits a rather flat hit-

rate distribution against g. Therefore, it can be concluded that provision of a large set of

initial annotation is not a mandatory requirement in progressive annotation approaches.

The performance of a non-progressive annotation framework, on the other hand, will

strongly depend on the amount of initial annotation provided by the user, meaning that

the more the number of manual annotations the user provides, the better the accuracy of

system’s name-list suggestion will be.
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Figure 7.22: H-Hit rate variation against the level of initial annotation (g%) of model-A

and model-B approaches.

In order to compare the performances of the two models given a set of ground-truth,

Figure 7.23 shows the Hit-rate performance figures of model-A and model-B approaches

for different values of H. The results show that the Hit-rate figures of model-B are higher

than that of model-A for all values of H. However, in a real-world photo management ap-

plication, the feature of model-B approach being able to produce more accurate name-list

suggestions may be penalised by the requirement of a labour-intensive feedback opera-

tion at each annotation step.
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Figure 7.23: Comparison of hit-rate performance of model-A and model-B approaches at

30% initial annotation.

7.5.6 Discussion

The performance comparison of person annotation using global and event-constrained

face matching proves that global face matching is more effective for person annotation

compared to event-constrained face matching. While global face matching benefits largely

from person-based initial annotation, event-based initial annotation is found to be more

useful for event-constrained face matching. Combining event-constrained face match-

ing with visual context features is found to be more effective for person annotation over

global face matching, not only in terms of H-Hit rate evaluation figures but also in terms

of the number of persons that can be annotated using the combined approach. Person an-

notation using the combined content and visual context features also proves to be more

effective with event-based initial annotation.

A comparative performance analysis involving event-based and person-based initial

annotation methods shows that event-based initial annotation is more useful for person

annotation when carried out using person context estimators. The event count estimator

is identified as the most effective person context estimator in this research, which is then

followed by location-neighboring and global count estimator respectively. Moreover, the

combined person context estimators are found to be more effective than any individual

estimator.

Combining all three information sources, i.e. content, visual context and person con-

text features, is found to be the best performing approach to person annotation in this

thesis. The use of person context features in combination with content and visual con-

218



CHAPTER 7. USING CONTENT AND CONTEXT INFORMATION TO FACILITATE
EFFECTIVE PERSON ANNOTATION

text features, is shown to be particularly effective at higher values of H in both model-A

and model-B approaches. The best 5-Hit rate obtained from model-A using 30% initial

annotation is reported to be 0.73 whereas that from model-B is reported to be 0.82. These

results show that the two models studied using combined content and context features,

one being more accurate than the other at the cost of a higher level of user intervention,

are effective means to semi-automatic person annotation. For instance, a performance

figure of 0.82 from model-B denotes that using a progressive annotation approach with

5-identity name-list suggestion allows the user to perform annotation over 80% of the

time without having to look over the rest of the identities enroled in the system. The

downside of model-B is that its superior name-prediction accuracy may be penalised by

the requirement of a labour-intensive feedback operation at each annotation step.

The favourable performance figures illustrated by the non-progressive annotation

model, despite being less accurate than progressive annotation, on the other hand, show

the potential of the technologies developed in this research, opening further inroads into

more efficient annotation paradigms. For instance, these technologies can be integrated

into a batch annotation framework in combination with other user-interface functionali-

ties, whereby the user can annotate a multiple number of people at a time resulting in a

substantial improvement in the efficiency of person annotation.

7.6 Verification of Hypotheses

7.6.1 Hypothesis-I: Using event-constrained person matching leads to more

effective person annotation due to the fact that it allows the use of visual

context and event-count person context estimators.

On evaluating the performance of person annotation using numerous individual infor-

mation sources and their combinations, it was illustrated in Section 7.5.3 that using com-

bined content and visual context features, implicitly relying on event-constrained analy-

sis, leads to a superior performance over any other individual approaches. In particular,

the performance of combined content and visual context features was found to be bet-

ter than that of global face matching, not only in terms of H-Hit rate evaluation figures

but also in terms of the scale of annotation, leaving a minimal number of persons un-

annotated in the collection. Furthermore, of the two types of initial annotation methods

studied in this thesis, event-based initial annotation was proven to be better than person-

based annotation (see Section 7.5.4). These observations prove that hypothesis-I is true

in this thesis.
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7.6.2 Hypothesis-II: Using combined content, visual context and person con-

text features leads to improved person annotation performance com-

pared to any other combination of the three features.

Based on the results and discussions given in Section 7.5.5, it is considered that hypothesis-

II is satisfactorily proven in this thesis.

7.6.3 Hypothesis-III: Progressive annotation models, which require user in-

tervention to confirm a name identify for each annotation, result in more

accurate name suggestions than non-progressive annotation models.

A series of person annotation experiments involved the testing of H-Hit rate evaluation

figures of model-A and model-B approaches in the analysis of experimental results car-

ried out in Section 7.5. A consistent outcome from this series of experiments is that the

H-Hit rate evaluation figures of progressive annotation (model-B) are always higher than

that of the non-progressive annotation (model-A) approach. Taking into account the fact

that, the model-B approach obviously involves a user interaction step to verify an auto-

matically suggested name by the system for each annotation, as well as the consistently

higher performance figures reported from the model-B approach, hypothesis-III can be

considered to be proven true in this thesis.

7.7 Summary

The research carried out in this chapter addresses the problem of person annotation for

personal photo management using individual and combined content, visual context and

person context features related to digitally captured photographs. The effectiveness of

person annotation is measured using different initial annotation methods, annotation

models, person matching based on individual and combined features, and person match-

ing based on the features extracted relative to different face orientations. These experi-

ments are conducted in accordance with the principle that typical home-users take photos

under non-ideal, or non-studio controlled conditions in most photo capture scenarios,

and hence other varieties of information, complementing image-based person recogni-

tion, need to be explored. To measure the effectiveness of the examined person annota-

tion approaches in an unbiased manner, 9 different personal photo collections are used,

which include photos of birthday parties, trips, wedding ceremonies, family gatherings

and graduation ceremonies.

There are important research outcomes that have arisen out of the work carried out

in this chapter. Firstly, identification of the effectiveness of event-constrained photo anal-
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ysis to person annotation has been clearly shown to be a valuable contribution in this

research. It illustrates that using event-constrained initial annotation and person match-

ing with combined content, visual context and person context features facilitate the task

of person annotation be performed in the most effective manner in this thesis. Secondly,

the results show that the potential of context-aided person recognition is promising with

significant improvement in annotation performance when compared with content-alone

approaches. Finally, comparing the performance of two annotation models, involving

non-progressive (model-A) and progressive (model-B) annotation, proves that progres-

sive annotation leads to more accurate name prediction whilst being less reliant on the

level of initial annotation provided by the user. However, the disadvantage of that type

of annotation is that it requires a more labourious user-assisted feedback step, in order

that the system can accumulate knowledge dynamically from all the previous annota-

tions performed in the process.

This thesis uses the H-Hit rate performance measure criterion to compare the perfor-

mance of different semi-automatic annotation approaches for various values of H, rang-

ing from 1 to 5. While the most strict case of semi-automatic annotation refers to a process

whereby the user is provided with only 1 name suggestion by the system, the maximum

length of the suggested name list is limited to 5 is based on the assumption that it would

be a reasonable compromise for the user, taking into account the volume and speed of

annotation in practical applications. The results given in Table 7.19 and 7.20 show that

the best 1-Hit evaluation figures obtained from the two annotation models are 0.39 and

0.47 at 30% initial annotation. In the least strict case of person annotation, i.e. H=5, evalu-

ation figures of the two models correspond to 0.73 and 0.82. Describing the effectiveness

of the model-B approach in objective terms, a H-Hit rate figure of 0.82 depicts that the

user will be able to carry on the annotation task over 80% of the time without having to

look over the rest of person identities. This is quite a favourable performance on person

annotation, considering the types of challenges associated with the test data used for this

evaluation. However, model-B also corresponds to the most labour-intensive annotation

approach in this research. Therefore, it can be argued that due consideration must be

given to a more efficient person annotation approach whereby the user will be able to

carry out the task of person annotation without having to look into each identity in every

photo. In this context, the model-A approach, yet exhibiting a favourable performance

figure of 0.73, can be proposed to be a viable solution to be used in combination with

some batch-annotation functionality. Furthermore, if the efficiency of the annotation task

needs to be further improved, it can be suggested that the novel feature matching tech-

nologies developed in this thesis can be integrated into an automatic person clustering

221



CHAPTER 7. USING CONTENT AND CONTEXT INFORMATION TO FACILITATE
EFFECTIVE PERSON ANNOTATION

framework. For instance, the 1-Hit rate performance figure of 0.39 from model-A is a

clear indication of the possibility in extending the technologies developed in this thesis

to a clustering-based person annotation system.
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Chapter 8
Conclusions and Future Work

This chapter presents some conclusions and future work related to the research carried

out in this thesis. First, a review of the thesis is given in Section 8.1. Research contribu-

tions are then presented in Section 8.2. Section 8.3 describes some challenges associated

with person annotation and possible directions for future research. The chapter then ends

with some concluding remarks in Section 8.4.

8.1 Thesis Review

In this thesis, the use of combined content and context information of personal photos

is examined in connection with the problem of personal digital photo management. The

primary focus of the research is to investigate to what extent computer vision technolo-

gies, such as face and body-patch matching, could contribute to the task of person anno-

tation in personal photo archives. Moreover, the research investigates leveraging some

person-context estimators and examining their effect on the overall performance of per-

son annotation.

Chapter 1 presents an introduction to the thesis, including a description of the moti-

vation of the research, an example application scenario, and a summary of research chal-

lenges and market demand associated with personal photo management. It also presents

the objectives and hypotheses of the research, and a brief description of the key contribu-

tions from the research.

In Chapter 2, a review of personal photo management systems is presented. The re-

search and commercial photo management systems described in the chapter reveal the

fundamental difference between the two kinds of systems, showing how research pro-

totypes set out novel and intuitive technologies, particularly with regards to the use of

machine vision technologies for person annotation. User studies carried out as part of

some research prototype systems also produce valuable clues about the use of multiple
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features to the problem of person annotation. It also gives a description of the features

and how the person annotation task is performed in the MediAssist photo management

prototype system using content and context analysis of the photos.

In Chapter 3, a taxonomy of face detection algorithms is given, summarising the sheer

mass of literature on face detection. Whilst different categories of approaches tend to per-

form with varying degrees of accuracy and complexity, appearance-based approaches are

found to be the best performing techniques in both frontal and profile face detection. It

also shows a fact that most face detection algorithms have been devised on gray-scale

images in the literature. Furthermore, of a number of benchmark test data sets avail-

able to the research community on performance evaluation of face detection algorithms,

most comprise only gray-scale images, and hence leads to a partial evaluation of the al-

gorithms. Another important aspect observed in this literature review is that the lack of

research reported in exploiting the colour information for face detection leads to only a

partial justification of the evaluation results.

In Chapter 4, numerous skin modeling and detection methods are studied and ex-

perimented using diverse test data sets. Different approaches studied in five categories,

namely fixed-boundary thresholding, parametric statistical models, non-parametric sta-

tistical models, lighting compensated methods and adaptive modeling methods, show

that selecting a particular algorithm is typically a trade-off between the computational

complexity and accuracy. It also illustrates the fact that skin segmentation is a difficult

pre-processing operation to be applied to face detection in practice. For instance, adap-

tive skin modeling and detection methods cannot be reliably employed for face detection

in still images as they provide very little information about how the patterns of skin/non-

skin colour vary across still images. Using the experiments carried out in this chapter, a

histogram-based non-parametric statistical model is identified as the most suitable skin

segmentation approach for face detection applications. Its performance over other skin

segmentation methods is shown to be superior when properly modeled/evaluated using

large sets of skin and non-skin training/test data.

A description of the experiments carried out in identifying a suitable face detection

algorithm for detecting faces in personal photo collections is presented in Chapter 5. In

order to evaluate the performance of face detection on widely different data sets, 4 dif-

ferent test data sets ranging from relatively simple head-and-shoulder type to personal

photo archives are chosen. Taking into account the relative advantage of the BDF face de-

tection technique [111] over some of the other state-of-the-art face detection techniques,

an extensive performance analysis of the BDF algorithm is performed, leading to identi-

fication of new performance enhancing features. The new features proposed for the BDF
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method prove to be very useful when detecting faces in highly challenging image sets,

such as personal photo archives. The improved performance achieved from the modified

BDF technique, therefore, makes it a potential approach for detecting faces in personal

photo archives.

Chapter 6 describes the research performed on identifying face and body-patch de-

scriptors and their combinations for person recognition through extensive performance

evaluation experiments. Following the literature survey carried out on related technolo-

gies, three different types of descriptors, i.e. colour, texture and face recognition, are

studied in detail, and the best performing descriptors are identified from a pool of po-

tentially powerful descriptors. The performance of person recognition using combined

descriptors shows to be superior to any of the individual descriptors in this research.

The best performing techniques for colour, texture and face recognition are identified

as the MPEG-7 scalable colour, MPEG-7 homogeneous texture and local binary patterns

descriptors respectively.

In Chapter 7, the person annotation experiments are carried out to independently test

the technologies developed and identified elsewhere in the thesis. These experiments

also serve as a basis to verify the hypotheses set aside in the thesis. Overall, the experi-

ments are performed to examine the performances of event-constrained person matching

against global person matching, different annotation models, i.e. progressive and non-

progressive, and different initial annotation methods. In addition to face (content) and

body-patch (visual context) descriptors, the use of person context estimators is examined

with a view to identifying their effectiveness in person annotation. The performance of

each model is measured using the best performing content, visual context, person con-

text features and their combinations. The results illustrate that using event-constrained

person matching leads to more effective person annotation in real-world scenarios. Ad-

ditionally, the event-based initial annotation method is proven to be more effective than

the person-based initial annotation method. In relation to the use of different types of

content and context features for person annotation, combining all three experts, i.e. con-

tent, visual-context and person-context, is shown to be superior to any other individual

or combinations of them. Concerning the performance comparison of the two models,

the H-Hit rate figures of progressive annotation are shown to be always higher than that

of non-progressive annotation. Moreover, the results illustrate that using higher pro-

portions of initial annotation leads to better H-Hit rate figures for the non-progressive

annotation model, but that it is not so critical for the progressive annotation model.
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8.2 Research Contributions

This thesis makes a number of research contributions related to person annotation in

personal photo management applications. Some of the main contributions are as follows.

In the first part of this thesis, the importance of content-based technologies to per-

son annotation, such as face detection, face recognition and body-patch matching, are

identified through an extensive review of existing personal photo management systems.

Of a large number of face detection algorithms available in the literature, the BDF face

detection method is identified as a potential face detection approach to personal photo

management in this thesis. However, due to its drawback of inefficiency, a number novel

features are proposed to improve the computational efficiency of the algorithm, with the

most significant feature being a histogram-based skin modeling technique. The superior

performance of the histogram-based skin modeling technique over other state-of-the-art

skin detection methods results in a substantial performance improvement of face detec-

tion in this research paradigm.

In the second part of this thesis, a number of experiments are performed to identify

the best performing body-patch and face descriptors and their combinations for person

recognition in personal photo archives. A performance analysis of a significant number

of colour, texture and face recognition descriptors is carried out, followed by a number

of experiments on data fusion to identify a fusion scheme and weighting parameters for

each descriptor. From this experimental study, the MPEG-7 SCD and HTD are identi-

fied as the best performing colour and texture descriptors, whereas the LBP technique is

identified as the best face descriptor. On data fusion, the weighted average fusion scheme

demonstrates the best overall performance among the three different schemes studied in

this thesis.

In the last part of this thesis, a series of person annotation experiments are performed

to demonstrate the effectiveness of event-constrained person matching, by testing inde-

pendently the technologies developed and identified elsewhere in the thesis. Analysing

the performance of individual and combined content, visual-context and person-context

features to person annotation using real-world photo collections, it is shown that combin-

ing all three features with a carefully chosen weighting parameters and a fusion scheme

leads to an effective person annotation system. Comparing the performances of per-

son annotation using event-constrained person matching over global person matching,

it is also proven that event-constrained person matching leads to more effective per-

son annotation in real-world scenarios. Furthermore, a performance comparison of the

two annotation models studied, i.e. progressive and non-progressive, demonstrates that

226



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

progressive-models result in more accurate person recognition results, albeit requiring a

user feedback step for each annotation.

8.3 Challenges and Future Work

Considering the success that has been achieved in both research and commercial domains

of personal photo management, it can be seen that the world of digital photo manage-

ment has come a long way, satisfying the basic needs of many personal photo users.

However, one of the most crucial remaining issues includes recording richer annotations

that can potentially help describe the content of personal photos in a broader context.

While it is difficult to foresee how the photo management problem will scale up in the

future, one can argue that this will continue at a rapid pace due to ever-shrinking storage

cost and the ubiquitous nature of photo capture devices.

With unorganised photos, the task of finding a photo of interest becomes more diffi-

cult as the size of collections gets larger and the photos become older. In essence, if the

photos are organised in such a way that they can be effectively searched and retrieved,

home users are likely to spend more time with their collections. However, some obstacles

that lie ahead in the development of commercially viable photo management systems

include the complexity of specifying what the users actually need and the difficulty of

annotating the content efficiently.

In the review of personal photo management systems presented in Chapter 2, it can

be clearly noticed that there exists a significant gap between the technologies adapted by

commercial product developers and researchers in terms of their functionalities. Lack of

support for annotation functionalities in commercial products can be viewed as an issue

that causes either too high a demand for a product developer or a misjudgement asso-

ciated in the understanding of users’ needs in general. They were probably of the mind

that home users are not prepared to do much annotation for managing their photo col-

lections. However, the increasing interest in annotation of photos through various web-

based photo sharing approaches, such as Flickr and Labelme, and also the user studies

carried out in some of the research prototype systems (see Section 2.2.1 of Chapter 2)

indicate that users are not generally hesitant in putting effort into annotation. As the

currently available tools for managing personal photo archives has reached a level where

only basic needs of home users are satisfied, the emergence of effective and more suc-

cessful systems will largely depend on the manner in which designers and developers

respond to this challenge by introducing products that more people find useful and sat-

isfying.
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In this context, the following can be considered as some challenges and possible di-

rections for future work towards more effective person annotation in real-life personal

photo archives.

8.3.1 Face Detection and Body-Patch Extraction

The technologies developed for detecting faces in this thesis can cope with only in-plane

rotations in frontal and near-frontal views. However, it is evident that the need for de-

tecting other types of faces is an important requirement for person annotation in photo

management applications. The statistics given in Chapter 7 shows a range of facial-view

variations that occur in typical personal photo archives. Thus, application of multi-view

face detection is considered to be an important future work item, allowing the exploita-

tion of visual and person context features for person annotation in a more effective man-

ner. It is fair to say that, while the requirement for satisfying solutions to frontal and near-

frontal face detection has been fulfilled, detecting side-view faces still remains an open

issue with only a few promising approaches available to date [98, 102, 123–126, 128, 228].

Some challenges also exist as to how systematically the body-patch features can be

utilised when extracted relative to different face viewpoints, for example frontal and pro-

file view faces. Also, selecting the best performing face detection method for this appli-

cation can require a significant amount of effort, due mainly to the fact that there exists

some discrepancy in evaluating the performance of different face detection algorithms in

the literature.

For person identification using body-patch features, the MPEG-7 SCD and HTD are

identified as the best performing colour and texture descriptors in this thesis. However,

further experiments on other different descriptors might be useful so that even more

effective descriptors could be identified to this challenging problem. In particular, inves-

tigating other texture descriptors, e.g. SIFT (Scale Invariant Feature Transform)/SURF

(Speeded Up Robust Features) features [229], could be beneficial in improving the over-

all performance of person matching. Similarly, the LBP can be considered as another

potential textural descriptor for body-patch matching given its previous success on face

matching. Moreover, issues related to occlusion and missing body-patch features need

to be addressed adequately, in order to meet the requirements for real-life person anno-

tation.

8.3.2 Face Recognition

Face recognition is one of the most important elements in person annotation. How-

ever, due mainly to the limited success of current face recognition technologies, some
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researchers, either completely or partially, rely on other person matching estimators, such

as visual context and person context estimators. The author’s research, however, proves

that combining face recognition technologies with other complementary estimators leads

to improved person annotation performance. Thus, investigating the suitability of other

face recognition algorithms in the literature is considered to be a research direction for

future work.

One major requirement for the two face recognition algorithms investigated in this

thesis, i.e. the MPEG-7 FRD and LBP descriptors, is precise face alignment, which is typ-

ically carried out based on the normalisation of the distance between the two eyes. Slight

drift in eye locations can result in change in position, its scale and angle in the normalised

face image. Therefore, accurate eye localisation is critically important for effectively ex-

tracting the face recognition descriptors studied in this thesis. In the person annotation

experiments carried out in this thesis, the eye localisation task is carried out using a rudi-

mentary eye detection technique presented in [41]. Thus, employing more robust eye

localisation techniques, for example those proposed by Everingham and Zisserman [230]

and Fasel et al. [231], may help achieve improved face recognition performance in this

application.

8.3.3 Data Fusion

In the fusion framework that involved combing body-patch and face experts, the feature

normalisation methodology employed is based on the Min-Max technique. It was chosen

solely based upon its previous successes reported in various other research frameworks.

Thus, it remains an interesting research topic to be further investigated, in order that a

robust and efficient feature normalisation method could be identified for fusion.

8.3.4 Person Context Estimators

The person annotation experiments carried out in Chapter 7 explore three person context

estimators, namely the global, event and location-neighboring count, which were origi-

nally proposed by Naaman et al. [21]. However, it would be interesting to see if combin-

ing with other person-context estimators, such as the time-neighboring count estimator

and people-rank estimator, is beneficial for person annotation. Furthermore, the use of

other advanced context estimators proposed in [227], such as the recurrence, time of day,

tag-based and email activity estimator, can be investigated in the short term as a means

to further improve the performance of person annotation in personal photo archives.
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8.3.5 Person Clustering

In the research carried out by the author, only the known person identities were consid-

ered for annotation. However, the reality is that there will be many unknown persons

being detected by automatic face detection in personal photo archives. Such unknown

persons must ideally be grouped into different sets from the known persons. Therefore,

employing automatic clustering technologies can be considered as a vital research topic

to help fulfil the requirement of effective person annotation in personal photo archives.

However, current technology for automatic clustering is still some way behind user

expectation. There is no clustering technique that is universally capable of uncovering

the variety of structures present in multidimensional data structures [223]. Nevertheless,

the current research paradigms on personal photo management increasingly adhere to

the principle that employing automatic clustering technologies is a potential research

direction for effective photo management. Novel research prototype systems, such as

those presented by Kang et al. [232], Anguelov et al. [39], Le et al. [233] and Gu et al. [234],

are promising, particularly when combined with elegant user-interface technologies.

8.4 Concluding Remarks

The current technology in photography is such that people are not anymore hesitant

about taking large numbers of photos with digital cameras. Consequently, the size of

digital photo collections increases exponentially, raising alarms for a requirement of au-

tomatic photo management tools. Addressing the concerns of effectively managing large

photo collections requires careful attention from the designers and developers in the ar-

eas of annotation technologies, user-interface strategies for enhanced visual presentation,

query systems, and metadata storage mechanisms.

This thesis follows a direction that investigates the technologies for effective person

annotation; a task which is vastly beneficial but incredibly painful to execute within the

context of personal digital photo management. Lack of technology in the current market

to fulfill this demand from the user’s perspective threatens to diminish their experiences

with digital photographs. Researchers typically address this problems by two means;

first by designing interfaces that make annotation and organising of the photos easier;

second by using automatic annotation tools to remove the burden of manual annotation

using machine vision techniques and other possible complementary metadata associated

with the photos. The contributions resulting from the research in this thesis prove to

be useful in advocating the use of both content-based and context-based technologies for

person annotation. It also demonstrates the true nature of the problem and to what extent
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the current technologies can be made to work.

Finally, it is envisaged that improved machine vision technologies supporting rich

metadata will continue to emerge while annotation-rich photo capture technologies will

continue to grow in the years ahead, thereby allowing the system developers to cope with

the challenges inherent in this research problem more satisfactorily.
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Appendix A
Definitions of Key Phrases

Automatic Person Annotation: The process of tagging people in photos with the person’s

identity without involving any user interaction is defined as “automatic person annota-

tion”. This is also known as “unsupervised person annotation”.

Non-progressive Annotation: Given an initial set of annotations created by the user, non-

progressive annotation models are defined in such a way that knowledge from only the

initial annotation set is taken into account for recognizing people in subsequent annota-

tions. This also implies that non-progressive annotation is a non-incremental annotation

process.

Person Context Information: The context information associated with personal digital pho-

tos related to persons’ re-occurrence and co-occurrence is defined as “person context in-

formation”.

Progressive Annotation: Progressive annotation models are defined in such a way that the

coverage of person annotation is improved incrementally as the annotation process con-

tinues, due to inclusion of all the previous annotations as ground-truth images for recog-

nising people in subsequent annotations. One mandatory requirement in progressive

annotation models is that each annotation has to be verified by the user by interacting

with the system, thereby leading to a semi-automatic annotation process.

Semi-automatic Person Annotation: The process of tagging people in photos with the per-

son’s identity involving user interaction is defined as a “semi-automatic person annota-

tion” process. This is also known as “supervised person annotation”.
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Visual Context Information: The visual information related to the clothing of people re-

appearing in semantic events of personal digital photo archives is defined as “visual con-

text information”. This information is extracted through body-patch segmentation based

on the assumption that a person re-appearing in an event would be wearing the same

clothing as in previous photos.
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Appendix B
Benchmark Data Sets Available for

Evaluating the Performance of Face

Detection Algorithms related to

Chapter 3

The current benchmark face data sets can be broadly divided into two groups, namely

gray-scale based and colour based (see Table B.1). Of all the available data sets, most

have been originally developed for face recognition experiments, e.g. FERET, HHI, Yale,

M2VTS, BANCA and UMIST, which have also been used for the purpose of training and

testing of face detection algorithms. Databases such as the CMU and the BioID have been

specifically developed for testing face detection algorithms. A brief description of each

data set is given below.

The MIT database was developed by Sung and Poggio [95], which contains two sets,

namely set A and set B, with multiple faces in complex background. Set A contains

301 mugshot face patterns of 71 different people in the form of high quality digitised

images with significant lighting variations. Set B contains 23 images with a total of 149

face patterns, including a wide range of image quality (from high-quality CCD camera

pictures to low-quality newspaper scans) in complex backgrounds. These images are

available in different resolutions. A subset of the MIT set, excluding 3 images of hand-

drawn and cartoon faces, is referred to as MIT -20.

The CMU test set, also known as MIT -CMU [86], which is thus far the most widely

used data set in the literature, consists of 130 images with a total number of 507 frontal

gray-scale faces. These images have been collected from the web, scanned photographs

and digitised broadcast data. This data set also includes 23 images from the second data
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set (set B) used by Sung and Poggio [95], referred to as MIT or MIT-23. Hence, the MIT-

CMU database provides a significantly large sized test data set with a wide range of

image variation. This set is also subdivided into three groups, namely set A (42 images

with 169 frontal views), set B (23 images with 155 faces) and set C (65 images with

183 faces) [105]. Of 507 faces, there are 26 line-drawn faces that are in fact non-human

faces. A subset of the MIT-CMU test set, referred to as CMU-125, contains 483 faces after

excluding hand-drawn and cartoon faces. Most of the images in these data sets have

complex backgrounds with faces occupying only a small but a variable amount of space

compared to the total image area. Faces in these data sets present large variability in size,

illumination, facial expression and pose. This database comprises images in different

resolutions.

The CMU profile face database [102] contains a total number of 208 images with 441

faces of which 347 are in profile view. They have been collected from various sources on

the web. The images are in different resolutions.

The CMU-PIE database [80] contains over 40,000 colour face images of 68 people.

Each person’s photo has been taken across 13 different poses from frontal to full-profile

under 43 different lighting conditions with 4 different expressions. The images are of size

640 × 486 pixels. This database has been originally designed for testing of face recogni-

tion algorithms, however a number of face detection performance evaluations have been

reported based on this database, including [79] and [131].

The BioID face database contains 1,521 gray-scale images of 23 number of subjects [76,

78]. This database has been specifically designed for testing of face detection algorithms,

with all the images stored in PGM format of size 384× 286 pixels. This test set features a

large variety in illumination, background and face size, addressing real-life challenging

issues in face detection.

The FERET database [235] has been the most notable database in face detection and

recognition experimental systems, which has been specifically designed for face recog-

nition by the US army research laboratory in collaboration with George Mason univer-

sity. The database contains 14,126 images of 1,199 individuals, with views ranging from

frontal to left and right profiles. A new colour database was developed and released

by NIST in 2003, which superseded the earlier gray-scale versions. The colour FERET

database, which is called the FERET-colour in this thesis, contains a total number of

11,338 face images from 994 subjects in different resolutions, such as 512× 768, 256× 384

and 128× 192. The database, however, provides only head and shoulder type of images

with a view to facilitate further technological developments on face recognition type of

applications.
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The HHI face database is mainly targeted for face recognition, containing 206 single-

face images of 13 subjects with a wide range of lighting variations. This has been devel-

oped by Heinrich-Hertz Institute and distributed as part of a content repository during

the MPEG-7 standardisation process. The images are in JPEG format of size 640 × 480

pixels. This database provides multi-view faces from frontal to full-profile.

The Yale database contains 11 gray-scale frontal images per person, each taken with

different facial expression, with and without glasses, and under different lighting con-

ditions. Images are stored in GIF format corresponding to 15 individuals, with a total

number of 165 faces in the database. This database has been designed mainly for face

recognition type of experiments.

The M2VTS is a multi-model colour face database from an European ACTS project

developed for access control experiments. It contains sequences of face images of 37

subjects, ranging from right profile to left profile. The XM2VTSDB [236] is an extended

version of the M2VTS database, containing 1,180 colour images of 295 subjects. The main

difference between the two databases is the size and the number of recordings taken for

each subject during each session.

The BANCA colour database [237] is a multi-model database (face and voice) from

another European project, consisting of 208 subjects (half men and half women), captured

over a period of 3 months. The subjects have been imaged using two different cameras,

a cheap analog web cam and a high quality digital camera. They have been recorded

in three different scenarios: controlled, degraded and adverse over 12 different sessions

spanning over 3 months. This database is intended for training and testing of multi-

model verification systems. All images are of size 720 × 576 pixels and stored in PNG

format.

The UMIST database consists of 564 gray-scale images of 20 subjects with varying

poses from right profile to frontal. The images are stored in PGM format with an average

size of 220× 220 pixels. This database has been originally developed for face recognition

experiments.

The Purdue AR database (created by Aleix Martinez and Robert Benavente ) contains

over 4,000 frontal view colour face images of 126 people (70 men and 56 women) of size

768× 576 pixels [238]. The pictures have been taken under strictly controlled conditions,

however with no restrictions on wear (clothes, glasses, etc), makeup, hairstyle and so

on. They have also been taken in two sessions separated by a two-week time gap. The

images feature frontal view faces with different facial expressions, varying lighting condi-

tions and partial occlusions. This database has been mainly designed for face recognition

experiments.
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Description

130 images containing a total number of 507 frontal faces. Designed for face detection. 

208 images contaninig 347 profile faces. Designed  for face detection.

Two sets (set A and B) of high and low resolution images with multiple faces in complex 

background containing 450 faces. Designed for face detection. 

1,521 single-face images of 23 subjects. Designed  for face detection.

14,126 images of 1199 subjects. Designed for face recognition.

165 images of 15 subjects. Designed  for face recognition.

564 images of 20 subjects. Designed for face recognition.

The colour FERET database contains11,254 mugshot images superceding earlier 
releases of grey-scale image databases. Desinged for face recogniton.

There are 206 images of 13 different subjects in multiple views taken under varying 
lighting conditions.  Designed for face recognition

This database contains over 40,000 face images of 68 different subjects taken across 
13 different poses in 4 different facial expressions. Designed for face recognition.

XM2VTS is the extended database of M2VTS.

Over 4000 face images of 126 subjects. Designed for face recognition.

1,251 single-face images.  Suitable for face recogntion.

Name of data set

CMU 
(MIT-CMU)

CMU Profile

MIT 

BioID

FERET

Yale Database

The UMITS 
Database

FERET-colour

HHI

CMU-PIE

XM2VTS 
Database

The Perdu AR 
Database

The Champion 
Database

Gray-scale/Colour

Gray-scale

Gray-scale

Gray-scale

Gray-scale

Gray-scale

Gray-scale

Gray-scale

Colour

Colour

Colour

Colour

Colour

Colour

Table B.1: Face databases: This list not meant to be exhaustive but merely corresponds to
a collection of some of the commonly used face databases for evaluating the performance
of face detection algorithms.

The Champion database contains 1,251 single-face compressed colour images with

1,251 faces. Most of the images are available in size 150 × 200 pixels in frontal and near-

frontal views. The images are available for download at 1.

1http://www.libfind.unl.edu/alumni/events/breakfastforchampions.htm
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Additional Experiments and Results

on Body-Patch Descriptors and Fusion

Methods Related to Chapter 6

Additional (detailed) experiments and results on the identification of best performing

body-patch descriptors, and a fusion scheme carried out related to the work presented in

Chapter 6 are given here.

Table C.1 presents the performance figures (ANMRR) of the colour descriptors eval-

uated at 11 different values of d, i.e. d varying from 0.25W to 0.75W for the 70 subjects

described in Table 6.1. Due to the consideration given in analysing the performance of 4

descriptors in 4 different colour spaces, the number of candidate descriptors studied in

this research accounted for 20 in total.

Considering the effect of the chosen colour space on the four descriptors, the results

show that the descriptors which function in the HSV colour space perform better than

the descriptors which function in the other three colour spaces. This is true for all the

four descriptors studied, i.e. histograms, spatiograms, CCV and correlograms, for any

value of d, as well as in the manual case scenario.

The results depicted in Figure C.1, C.2 and C.3 show the variation of ANMRR perfor-

mance figures of combined body-patch and face modalities for the three fusion schemes

studied in this system. All the three possible combinations of colour, texture and face

recognition experts, i.e. SCD+LBP , HTD+LBP , and SCD+HTD+LBP , are analysed

to determine which combination performs best for person matching. The blue plot in Fig-

ure C.1 shows that combining all three experts using the weighted-average fusion scheme

results in better performance than that of any of the other two combinations shown in

green and red. The same is true for the similarity-score-product fusion scheme in Figure

238



APPENDIX C. ADDITIONAL EXPERIMENTS AND RESULTS ON BODY-PATCH
DESCRIPTORS AND FUSION METHODS RELATED TO CHAPTER 6

C.2, illustrating the best performance from SCD+HTD+LBP followed by SCD+LBP

and HTD+LBP in that order. However, considering the plot of ANMRR for the max-

score fusion scheme shown in Figure C.3, equally good performance figures are obtained

from both SCD+HTD+LBP and SCD+LBP while the performance of combined HTD

and LBP is shown to be the least accurate. Overall, it can be argued that, irrespective

of the fusion scheme used, tri-expert fusion is preferable over any single or bi-expert

combination for person identification in personal photo archives.
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Figure C.1: Performance of combined body-patch and face descriptors using the

Weighted Average method.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8  8.5  9  9.5  10

A
N

M
R

R

Weighting Factor (α)

Body and Face using Similarity Product of LBP and SCD
Body and Face using Similarity Product of LBP and HTD

Body and Face using Similarity Product of LBP and (SCD,HTD)

Figure C.2: Performance of combined body-patch and face descriptors using the Similar-

ity Score Product method.

239



APPENDIX C. ADDITIONAL EXPERIMENTS AND RESULTS ON BODY-PATCH
DESCRIPTORS AND FUSION METHODS RELATED TO CHAPTER 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
N

M
R

R

Weighting Factor (α)

Body and Face Descriptors using Max Score of LBP and SCD
Body and Face Descriptors using Max Score of LBP and HTD

Body and Face Descriptors using Max Score of LBP and (SCD,HTD)

Figure C.3: Performance of combined body-patch and face descriptor using the Max

Score method.

240



APPENDIX C. ADDITIONAL EXPERIMENTS AND RESULTS ON BODY-PATCH
DESCRIPTORS AND FUSION METHODS RELATED TO CHAPTER 6

Table C.1: ANMRR performance figures of different colour descriptors on body-patch
matching.

ANMRRColour 
Descriptor d=0.25W d=0.3W d=0.55Wd=0.5Wd=0.45Wd=0.4W d=0.6W d=0.7Wd=0.35W d=0.65W d=0.75W manual

0.3517 0.3473 0.35810.34990.34060.3536 0.3670 0.37170.3398 0.3698 0.3738 0.3526Dominant Colour

0.3218 0.3120 0.33100.32890.31900.3197 0.3552 0.36400.3208 0.3543 0.3670 0.3201Colour Layout

0.2580 0.2638 0.24450.24060.24200.2555 0.2576 0.25670.2625 0.2567 0.2635 0.2522Colour Structure

0.2283 0.2281 0.23590.23120.22700.2350 0.2405 0.25130.2428 0.2357 0.2631 0.2251Scalable Colour

0.3353 0.3341 0.34290.34230.33880.3397 0.3436 0.35330.3359 0.3474 0.3561 0.3483
Histograms 

 
(RGB)

0.2580 0.2603 0.27010.26690.26950.2679 0.2681 0.27020.2642 0.2688 0.2697 0.2534
Histograms  

 
(HSV)

0.3746 0.3684 0.37940.37690.37430.3740 0.3764 0.38110.3704 0.3769 0.3856 0.3826
Histograms 

 
(LUV)

0.3208 0.3197 0.33210.32890.32690.3304 0.3502 0.37000.3245 0.3644 0.3716 0.3133
Histograms  

 
(LAB)

0.3209 0.3197 0.31700.31210.31930.3164 0.3260 0.33640.3168 0.3283 0.3395 0.3003
Spatiograms 

 
(RGB)

0.2436 0.2456 0.26020.25860.25540.2551 0.2640 0.26630.2441 0.2646 0.2708 0.2587
Spatiograms 

 
(HSV)

0.3305 0.3257 0.34280.33780.33910.3361 0.3532 0.35610.3232 0.3551 0.3631 0.2844
Spatiograms 

 
(LUV)

0.2608 0.2524 0.26290.25950.26460.2605 0.2787 0.28810.2589 0.2837 0.2912 0.2310
Spatiograms 

 
(LAB)

0.3587 0.3630 0.37400.37040.36880.3656 0.3736 0.38110.3631 0.3843 0.3777 0.3492
CCV 

 
(RGB)

0.2768 0.2829 0.28060.29090.28990.2842 0.2967 0.30070.2835 0.2952 0.3038 0.2830
CCV 

 
(HSV)

0.3913 0.3818 0.38940.38380.38710.3835 0.3898 0.38940.3808 0.3842 0.3872 0.3866
CCV 

 
(LUV)

0.3315 0.3233 0.33700.33490.33520.3258 0.3558 0.36980.3208 0.3576 0.3776 0.3211
CCV 

 
(LAB)

0.4447 0.4312 0.41480.42120.43110.4312 0.4226 0.41860.4149 0.4139 0.4280 0.3768
Correlograms 

 
(RGB)

0.3504 0.3236 0.35580.33630.33450.3202 0.3698 0.36960.3385 0.3631 0.3752 0.2768
Correlograms 

 
(HSV)

0.3359 0.3238 0.34110.33250.32110.3237 0.3309 0.32930.3328 0.3244 0.3273 0.3038
Correlograms 

 
(LUV)

0.2909 0.2933 0.25060.24760.25710.2730 0.2563 0.27330.2794 0.2659 0.2706 0.2312
Correlograms 

 
(LAB)
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