43,268 research outputs found

    Autonomic log/restore for advanced optimistic simulation systems

    Get PDF
    In this paper we address state recoverability in optimistic simulation systems by presenting an autonomic log/restore architecture. Our proposal is unique in that it jointly provides the following features: (i) log/restore operations are carried out in a completely transparent manner to the application programmer, (ii) the simulation-object state can be scattered across dynamically allocated non-contiguous memory chunks, (iii) two differentiated operating modes, incremental vs non-incremental, coexist via transparent, optimized run-time management of dual versions of the same application layer, with dynamic selection of the best suited operating mode in different phases of the optimistic simulation run, and (iv) determinationof the best suited mode for any time frame is carried out on the basis of an innovative modeling/optimization approach that takes into account stability of each operating mode vs variations of the model execution parameters. © 2010 IEEE

    Benchmarking Memory Management Capabilities within ROOT-Sim

    Get PDF
    In parallel discrete event simulation techniques, the simulation model is partitioned into objects, concurrently executing events on different CPUs and/or multiple CPUCores. In such a context, run-time supports for logical time synchronization across the different simulation objects play a central role in determining the effectiveness of the specific parallel simulation environment. In this paper we present an experimental evaluation of the memory management capabilities offered by the ROme OpTimistic Simulator (ROOT-Sim). This is an open source parallel simulation environment transparently supporting optimistic synchronization via recoverability (based on incremental log/restore techniques) of any type of memory operation affecting the state of simulation objects, i.e., memory allocation, deallocation and update operations. The experimental study is based on a synthetic benchmark which mimics different read/write patterns inside the dynamic memory map associated with the state of simulation objects. This allows sensibility analysis of time and space effects due to the memory management subsystem while varying the type and the locality of the accesses associated with event processin

    Optimizing memory management for optimistic simulation with reinforcement learning

    Get PDF
    Simulation is a powerful technique to explore complex scenarios and analyze systems related to a wide range of disciplines. To allow for an efficient exploitation of the available computing power, speculative Time Warp-based Parallel Discrete Event Simulation is universally recognized as a viable solution. In this context, the rollback operation is a fundamental building block to support a correct execution even when causality inconsistencies are a posteriori materialized. If this operation is supported via checkpoint/restore strategies, memory management plays a fundamental role to ensure high performance of the simulation run. With few exceptions, adaptive protocols targeting memory management for Time Warp-based simulations have been mostly based on a pre-defined analytic models of the system, expressed as a closed-form functions that map system's state to control parameters. The underlying assumption is that the model itself is optimal. In this paper, we present an approach that exploits reinforcement learning techniques. Rather than assuming an optimal control strategy, we seek to find the optimal strategy through parameter exploration. A value function that captures the history of system feedback is used, and no a-priori knowledge of the system is required. An experimental assessment of the viability of our proposal is also provided for a mobile cellular system simulation

    An Evolutionary Algorithm to Optimize Log/Restore Operations within Optimistic Simulation Platforms

    Get PDF
    In this work we address state recoverability in advanced optimistic simulation systems by proposing an evolutionary algorithm to optimize at run-time the parameters associated with state log/restore activities. Optimization takes place by adaptively selecting for each simulation object both (i) the best suited log mode (incremental vs non-incremental) and (ii) the corresponding optimal value of the log interval. Our performance optimization approach allows to indirectly cope with hidden effects (e.g., locality) as well as cross-object effects due to the variation of log/restore parameters for different simulation objects (e.g., rollback thrashing). Both of them are not captured by literature solutions based on analytical models of the overhead associated with log/restore tasks. More in detail, our evolutionary algorithm dynamically adjusts the log/restore parameters of distinct simulation objects as a whole, towards a well suited configuration. In such a way, we prevent negative effects on performance due to the biasing of the optimization towards individual simulation objects, which may cause reduced gains (or even decrease) in performance just due to the aforementioned hidden and/or cross-object phenomena. We also present an application-transparent implementation of the evolutionary algorithm within the ROme OpTimistic Simulator (ROOT-Sim), namely an open source, general purpose simulation environment designed according to the optimistic synchronization paradigm

    Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

    Get PDF
    The rollback operation is a fundamental building block to support the correct execution of a speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, several solutions to reduce the execution cost of this operation have been proposed, either based on the creation of a checkpoint of previous simulation state images, or on the execution of negative copies of simulation events which are able to undo the updates on the state. In this paper, we explore the practical design and implementation of a state recoverability technique which allows to restore a previous simulation state either relying on checkpointing or on the reverse execution of the state updates occurred while processing events in forward mode. Differently from other proposals, we address the issue of executing backward updates in a fully-transparent and event granularity-independent way, by relying on static software instrumentation (targeting the x86 architecture and Linux systems) to generate at runtime reverse update code blocks (not to be confused with reverse events, proper of the reverse computing approach). These are able to undo the effects of a forward execution while minimizing the cost of the undo operation. We also present experimental results related to our implementation, which is released as free software and fully integrated into the open source ROOT-Sim (ROme OpTimistic Simulator) package. The experimental data support the viability and effectiveness of our proposal

    StreamLearner: Distributed Incremental Machine Learning on Event Streams: Grand Challenge

    Full text link
    Today, massive amounts of streaming data from smart devices need to be analyzed automatically to realize the Internet of Things. The Complex Event Processing (CEP) paradigm promises low-latency pattern detection on event streams. However, CEP systems need to be extended with Machine Learning (ML) capabilities such as online training and inference in order to be able to detect fuzzy patterns (e.g., outliers) and to improve pattern recognition accuracy during runtime using incremental model training. In this paper, we propose a distributed CEP system denoted as StreamLearner for ML-enabled complex event detection. The proposed programming model and data-parallel system architecture enable a wide range of real-world applications and allow for dynamically scaling up and out system resources for low-latency, high-throughput event processing. We show that the DEBS Grand Challenge 2017 case study (i.e., anomaly detection in smart factories) integrates seamlessly into the StreamLearner API. Our experiments verify scalability and high event throughput of StreamLearner.Comment: Christian Mayer, Ruben Mayer, and Majd Abdo. 2017. StreamLearner: Distributed Incremental Machine Learning on Event Streams: Grand Challenge. In Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems (DEBS '17), 298-30

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    Declarative Ajax Web Applications through SQL++ on a Unified Application State

    Full text link
    Implementing even a conceptually simple web application requires an inordinate amount of time. FORWARD addresses three problems that reduce developer productivity: (a) Impedance mismatch across the multiple languages used at different tiers of the application architecture. (b) Distributed data access across the multiple data sources of the application (SQL database, user input of the browser page, session data in the application server, etc). (c) Asynchronous, incremental modification of the pages, as performed by Ajax actions. FORWARD belongs to a novel family of web application frameworks that attack impedance mismatch by offering a single unifying language. FORWARD's language is SQL++, a minimally extended SQL. FORWARD's architecture is based on two novel cornerstones: (a) A Unified Application State (UAS), which is a virtual database over the multiple data sources. The UAS is accessed via distributed SQL++ queries, therefore resolving the distributed data access problem. (b) Declarative page specifications, which treat the data displayed by pages as rendered SQL++ page queries. The resulting pages are automatically incrementally modified by FORWARD. User input on the page becomes part of the UAS. We show that SQL++ captures the semi-structured nature of web pages and subsumes the data models of two important data sources of the UAS: SQL databases and JavaScript components. We show that simple markup is sufficient for creating Ajax displays and for modeling user input on the page as UAS data sources. Finally, we discuss the page specification syntax and semantics that are needed in order to avoid race conditions and conflicts between the user input and the automated Ajax page modifications. FORWARD has been used in the development of eight commercial and academic applications. An alpha-release web-based IDE (itself built in FORWARD) enables development in the cloud.Comment: Proceedings of the 14th International Symposium on Database Programming Languages (DBPL 2013), August 30, 2013, Riva del Garda, Trento, Ital

    An automatic system for determining solar absorptance and thermal emittance of surfaces from spectral normal reflectance measurements

    Get PDF
    Spectrophotometers, digitizer, and computer system to determine solar absorptance and thermal emittance of surfaces from spectral reflectance measurement
    corecore