
Autonomic Log/Restore for Advanced Optimistic Simulation Systems

Roberto Vitali, Alessandro Pellegrini, Francesco Quaglia
DIS, Sapienza Università di Roma

Abstract—In this paper we address state recoverability in
optimistic simulation systems by presenting an autonomic
log/restore architecture. Our proposal is unique in that it
jointly provides the following features: (i) log/restore operations
are carried out in a completely transparent manner to the
application programmer, (ii) the simulation-object state can be
scattered across dynamically allocated non-contiguous memory
chunks, (iii) two differentiated operating modes, incremental
vs non-incremental, coexist via transparent, optimized run-time
management of dual versions of the same application layer, with
dynamic selection of the best suited operating mode in different
phases of the optimistic simulation run, and (iv) determination
of the best suited mode for any time frame is carried out
on the basis of an innovative modeling/optimization approach
that takes into account stability of each operating mode vs
variations of the model execution parameters.

I. INTRODUCTION

A traditional way to achieve high performance simulations
is the employment of parallelization techniques [9]. They
are based on the partitioning of the simulation model into
Logical Processes (LPs) that can execute events in parallel
on different CPUs and/or different CPU-Cores, and rely on
synchronization mechanisms to achieve causally consistent
execution of simulation events at every LP.

As it is well recognized, the optimistic synchroniza-
tion approach (based on rollback for recovering possible
timestamp order violations due to the absence of block until
safe policies for event processing) is likely to favor speedup
in general application/architectural contexts. On the other
hand, the design/development process of optimized supports
for state recoverability is a major obstacle for the construc-
tion of efficient optimistic simulation systems. This process
is additionally hardened when complete transparency, vs the
application layer, is pursued.

In this paper we present a log/restore architecture designed
according to the autonomic-computing paradigm, which
jointly addresses transparency and performance issues by:

• Allowing the programmer to use standard constructs for
dynamic memory allocation/deallocation operations,
thus allowing the state of a simulation object to be
scattered across non-contiguous memory chunks.

• Transparently enabling phase-interleaved adoption of
incremental and non-incremental log/restore modes.

• Running each log/restore mode in a highly optimized
fashion, via the adoption of classical schemes for
the optimization of typical parameters determining the
actual overhead for each mode.

• Dynamically (and transparently) switching to the best
suited operating mode (incremental vs non-incremental)

depending on proper execution dynamics of the opti-
mistic run.

Our autonomic log/restore architecture has been devel-
oped using C technology, and has been tailored to Linux
systems, the ELF standard and to IA-32/x86-64 compliant
processors. It builds on our results in [11], [21], provid-
ing respectively, a solution for transparent non-incremental
log/restore of simulation object states scattered across non-
contiguous, dynamically allocated memory chunks, and a
complementary extension based on transparent, light in-
strumentation techniques, allowing the tracking of memory
updates occurring within the dynamic memory map, so to
enable log/restore incrementality. However, the present work
significantly extends these results by providing an optimized
integration/coexistence of the two log modes (incremental vs
non-incremental) according to the autonomic paradigm.

The autonomic layer has been integrated within the ROme
OpTimistic Simulator (ROOT-Sim), an open source, general
purpose simulation platform based on the optimistic syn-
chronization approach, thus making it available within an
operating environment. Also, we report experimental results
assessing the viability and efficiency of our proposal for a
case study related to GSM coverage along the ring high-way
running around the city of Rome.

The remainder of this paper is structured as follows.
In Section II related work is discussed. The autonomic
architecture is presented in Section III. Experimental data
are reported in Section IV.

II. RELATED WORK

Recoverability issues in optimistic simulation systems
have been addressed by providing architectures capable of
supporting log/restore tasks and/or defining performance
models aimed at optimizing the overhead vs specific param-
eters characterizing the employed log/restore scheme. The
proposals in [7], [12], [14], [15] address the case of non-
incremental logging, while incremental schemes have been
provided in [16], [20], [23]. Solutions based on a mixture
of the two approaches (incremental vs non-incremental) can
be found in [8], [19]. With the above solutions there is the
need (i) to supply the necessary code to collect snapshots
of the objects’ state inside the application level software, or
(ii) to employ calls to functions within the API of proper
checkpointing libraries, or (iii) to statically identify (e.g. at
compile-time) the portions of the address space that need
to be considered part of the state. Consequently, perfect
transparency is not supported since the programmer must
necessarily be faced with issues related to state snapshots.

Also, static identification of the memory locations to be in-
cluded within the snapshot is non-compatible with desirable
programming approaches entailing dynamic memory alloca-
tion/deallocation at the simulation object level. Compared
to all the above proposals, the autonomic architecture we
present in this paper does not require log/restore modules
to be embedded within the application code, or explicit
interfacing with log/restore libraries. Also, it supports both
incremental and non-incremental log/restore modes in an
optimized combined manner, while allowing the simulation
object state to be scattered on dynamically allocated non-
contiguous memory chunks.

Log/restore transparency for general memory layouts has
been tackled for optimistic synchronization in the context of
HLA-based federated simulations [17], [18]. These solutions
rely on kernel level memory protection mechanisms offered
by the Operating System to detect memory accesses and
to trigger incremental copies of the accessed pages. Our
autonomic architecture supports incremental log/restore via a
lightly instrumented version of the application modules, and
allows tracking memory updates with arbitrary granularity.
As a consequence, the overhead for tracking updates and
incremental log operations in the above scheme is likely
higher (e.g. since it exhibits page size granularity) and
affordable only when comparable with the cost of interop-
erability services supported by HLA middleware. On the
other hand, our work targets more traditional optimistic
simulation engines, typically relying on a restricted set of
services, where the relative cost of log/restore operations
can represent a dominating performance factor.

The issue of dynamic memory based states for optimistic
simulation objects has also been addressed by the optimistic
simulation frameworks in [3], [6]. However, ad-hoc APIs are
used to explicitly notify to the simulation kernel that specific
allocation/deallocation operations, and, more in general,
operations on data structures based on dynamic memory (e.g.
lists), need to be rollbackable. Hence, differently from what
happens with our autonomic architecture, dynamic memory
based layouts via ANSI-C memory allocation/deallocation
services are not supported.

Finally, some recent advances (see, e.g., [4]) have shown
the viability of recoverability via reverse computation. How-
ever, in general simulation contexts (e.g., possibly exhibiting
non-reversible execution paths), this approach still needs to
be complemented via optimized log/restore techniques, like
the one we provide in this work.

III. THE AUTONOMIC LOG/RESTORE ARCHITECTURE

A. Coexistence of Different Log/Restore Modes

As hinted, the autonomic architecture we present in this
paper builds on our results in [11], [21], where an advanced
log/restore subsystem has been incrementally developed.
The building block component is a so called memory-
map manager, acting as a wrapper of ANSI-C memory
allocation/deallocation services, transparently interposed in
between the application software and the malloc library

via proper linking directives. The memory-map manager in-
tercepts allocation/deallocation requests from the overlying
application, and serves them via pre-allocation of contiguous
blocks of chunks, each hosting chunks of different power-
of-two sizes. A meta-data table, named malloc_area, is
kept for each simulation object, which is used for identifying
virtual addresses of the memory blocks that have been pre-
allocated for serving allocation requests from that object,
and for maintaining, via a concise bit-map representation,
the state (busy or free) of each chunk within a block.
Mechanisms for dynamic expansion of both the meta-data
table and the amount/size of pre-allocated blocks are in-
cluded. The memory-map manager supports log operations
of the memory scattered state of the simulation object by
packing all the allocated chunks within a contiguous log-
buffer, together with minimal meta-data that are required to
put the logged chunks back in place in case of restore of
the objects state to a logged image. This originally occurred
according to a non-incremental mode.

To enable incremental logging, the memory-map manager
has been successively integrated with a compile/linking
time instrumentation tool (which has been tailored for IA-
32/x86-64 architectures and the ELF) allowing transparent
integration of a lightweight tracking mechanism of update
operations occurring within the scattered memory-map asso-
ciated with the object state. Every application level module
is instrumented via the insertion of a call to an assembly
monitor right before each memory-write instruction. The
monitor retrieves the exact address of the memory-write
instruction via the Program-Counter return value registered
within the monitor stack-frame, and uses it to access a
hash table acting as a cache of disassembling records,
which tells the monitor how to reconstruct (on the basis of
the current value of CPU registers) the exact address/size
of the memory area to be dirtied by the memory-write
instruction (1). Once done this, the corresponding chunk
is identified, and is flagged as dirty within an additional
bitmap. Upon incremental log operations (which, similarly
to full - non-incremental -logs, can occur according to a
periodic approach), the memory-map manager packs within
the log-buffer only the currently in-use chunks that are also
registered as dirty, again together with the required meta-
data to be used upon state restore of the logged state image.
Incremental logs can be interleaved with full logs so to
enable fossil collection upon GVT operations, since they
bound the amount of backward traversing steps along the
log chain in order to retrieve the chunks that have been
dirtied up to the restore point, which need to be put back in
place.

We have expanded the above design in order to provide
an optimized coexistence of the two different log modes.
One way to possibly achieve such a coexistence would have
been to simply add a (per simulation object) flag indicating

1Third party libraries are not instrumented, and the memory locations
updated by the execution of modules within third party libraries are
determined by wrapping the library call and exploiting the corresponding
actual parameters.

to the memory-update tracking monitor whether the logging
layer is currently executing in incremental mode or not. In
the latter case, the monitor does not actually need to perform
identification of the memory chunk to be dirtied, and to flag
the corresponding dirty-bit. It could simply return right after
checking the flag value. However, this solution would actuate
the non-incremental logging mode by running application
level modules that actually experience part of the overhead
associated with the memory-update tracking monitoring
mechanism (caused by a set of machine instructions, which
include an explicit call for flow control variation and the
associated stack-frame setup). This would mean running a
non-optimized application layer configuration vs the current
operating mode of the underlying log layer.

We have instead adopted a different approach where
automatic ELF rewriting schemes have been used in or-
der to create, starting from the same set of application
level modules, two different text sections within the ELF,
one containing a non-instrumented version of the compiled
modules, and the other one containing the instrumented
counterpart. These two sections are then transparently placed
within different virtual memory sections thanks to standard
ld facilities. However, the corresponding symbol tables are
modified by our preprocessing/instrumenting tool in order to
expose the application interface requested by the underlying
simulation kernel, namely the event handler callback, via
differentiated symbols. The rodata sections corresponding
to the two different text sections are modified in order to
provide correct adjustment of the displacement information
associated with the position of code and data within the
virtual memory addressing. Also, the replicated data/BSS
sections associated with the two versions of the applica-
tion object code have been collapsed on the same virtual
addressing range in order to provide a single actual copy
of initialized and non-initialized data, accessible by both
the generated code versions. A schematization of the whole
process supporting such a dual-version code generation is
provided in Figure 1, where we explicitly indicate the steps
carried out by our ad-hoc automatic compile/linking time
instrumentation tool. Once the executable is finally built
and run, a kernel level switch between the two different
log modes simply involves reassigning the event-handler
callback pointer to the entry point symbol associated with
the corresponding version of the duplicated application ex-
ecutable modules. Adopting this solution, each log mode is
supported according to an optimized run-time scheme where
any overheads are at all avoided while processing simulation
events in case no tracking of memory update operations is
requested by the currently active log mode.

The above scheme would only entail additional virtual
addresses consumption due to the presence of two versions
of the executable modules associated with the application
layer. However, this should not represent a real problem
when considering the tendency of vendors towards 64-bit
processors, enabling extremely wide span of virtual memory
addressing, and the fact that text sections usually fill a
reduced percentage of the available virtual addresses.

.TEXT_I

.DATA_I

.BSS_I

.RODATA_I

.DATA_F

.BSS_F

.TEXT_F

.RODATA_F

.DATA

.BSS

.TEXT

.RODATA

.TEXT_I

.RODATA_I

.DATA_F

.BSS_F

.TEXT_F

.RODATA_F

.DATA_I

.BSS_I

instrumented version
(for incremental logging)

non-instrumented version
(for non-incremental – full – logging)

application
binary

final binary

Figure 1. Dual-Version Code Generation via Compile/Linking Time ELF
Rewriting.

B. Log/Restore Overhead Modeling

After having enabled the optimized coexistence of incre-
mental and non-incremental log/restore modes, as explained
in the previous section, we provide the models assessing
the corresponding overhead per event (due to both log and
restore operations). These models borrow from the one
presented in [15] for periodic non-incremental logging, for
which we provide both (i) a specialization to capture internal
mechanisms proper of our advanced memory-map manager
(i.e. the cost of managing meta-data identifying scattered
memory layouts), and (ii) an extension to accommodate the
case of incremental logging as supported by our architec-
ture. Note that the model in [15] describes the log/restore
overhead with per-simulation-object granularity. We inherit
this feature in our modeling approach, thus providing an
autonomic scheme allowing dynamic optimization of the
log/restore mode on a per-simulation-object basis. Conse-
quently, from now on, overhead modeling and autonomic
optimization are implicitly referred to what experienced for
each single simulation object.

For the non-incremental case, borrowing from [15] and
recalling the aforementioned specialization, the log/restore
overhead per event can be expressed as

OHF =
SF
χF

δLB + Pr(SF δRB +
χF − 1

2
δe) (1)

where
δe is the average event execution cost.
SF is the average size of a full (non-incremental) log.
δLB is the average cost for logging a single byte belong-

ing to the state image, which we consider to also
include the per-byte cost for logging the meta-data
maintained by the memory-map manager.

δRB is the average cost for restoring a single byte from
the log, which we again assume to include the per-
byte cost associated with the restore of the state
layout meta-data.

Pr is the rollback probability (frequency of rollback
occurrences over event executions).

χF is the selected log interval when operating accord-
ing to the non-incremental mode, which determines

the expected length of the coasting forward phase,
occurring after the latest log preceding the causal-
ity violation is reloaded.

By the result in [15], the above overhead gets minimized
for χF =

⌈√
2Pr

δLBSF

δe

⌉
, and we denote as χoptF the opti-

mal non-incremental log-interval according to this equation.
For the incremental mode, as supported by our archi-

tecture, log operations in no way require to be forced
at each simulation event, but can be taken periodically.
In fact they are based on recognizing memory portions
that have been dirtied since the last log, independently
of the amount of events actually performing the dirtying
operations. Accordingly, state reconstruction at whichever
simulation time can be supported via a mix of state restore
from the log, and classical coasting forward. Also, full
logs can be (infrequently) interleaved with incremental logs
to enable fossil collection of incremental log records with
timestamp less than the timestamp of the latest committed
full log. These full logs are anyway exploitable during
recovery procedures since, while backward traversing the
log chain, the restore operation of a complete state image
gets finalized by extracting from the log all the in-use chunks
that have not yet been restored via the scan of incremental
logs, and putting them back in place within the state layout.
To account for such optimized internal mechanisms offered
by the memory-map manager, the above equation can be
adapted as shown below to model the log/restore overhead
for the incremental mode

OHI =
SP
χI
δLB +

(SF − SP)

χIχI,F
δLB + (2)

Pr

[
SF δRB +

χI − 1

2
(δe + δm)

]
+ δm

where the additional/different terms in the equation have the
following meaning
SP is the average size of a partial (incremental) log.
XI is the selected log-interval when operating accord-

ing to the incremental mode, which again deter-
mines the expected length of the coasting forward
phase after the reload of the latest valid state image
from the log.

XI,F is the interleave step between full and incremental
logs (number of incremental log operations after
which a full-log is taken).

δm is the cost for running the memory-update tracking
module.

In equation (2), the term SF δRB accounting for the
cost of state reload from the log is identical to the one
in equation (1), due to the aforementioned mechanism,
according to which all the in-use chunks belonging to the
state image are restored (by retrieving them either from the
incremental logs along the log chain, or the first full log
found during the log chain backward traversing procedure).
Further, each event is charged with the memory-update
monitoring overhead δm, which also appears during costing
forward. By exploiting the same arguments used in [15]

for the minimization of the overhead vs the log interval
in the context of non-incremental logging, we get that the
optimum value for the interval of incremental logs can be
computed as χI =

⌈√
2Pr

δLBSP

δe+δm

⌉
, and we denote as χoptI

the optimal interval according to this equation. Also, by
the benchmarking results in [22], a well suited value for
χI,F , providing no significant additional overhead due to
full logs, while ensuring efficient memory recovery during
fossil collection, is on the order of 10. We have used such a
value as a configuration setting for the autonomic log/restore
layer.

C. Autonomic Optimization
By the analysis in the previous section we have, for each

of the two coexisting log modes, the description of their
overhead, together with the indication of the optimum value
of the corresponding independent parameters, namely the
log-intervals. In our autonomic log/restore architecture, these
models are not used to simply select as the best operating
log mode the one for which the corresponding expected
overhead is minimal (once identified the best log-interval
value). Instead, the best suited mode is identified as the one
providing the best performance despite plausible fluctuations
that can affect the parameters appearing within the overhead
models (e.g. the expected event execution cost δe), which
cannot be directly controlled since they depend on proper
run-time dynamics related to the simulation model execution
within the optimistic run. This set involves all the parameters
appearing within the performance models, except the log-
intervals χF and χI (or χI,F), that can be controlled at
run-time by the autonomic log/restore architecture.

Such an approach, actually aimed at pro-actively pro-
viding stability of the optimal performance, exactly
matches characterizing aspects of the innovative autonomic-
computing paradigm. Also, it well fits performance op-
timization when the set of possible operating modes is
differentiated, each of them providing different overhead
sensibility vs parameter fluctuations and/or variations. Liter-
ature approaches for log/restore optimization do not cope
with such a multiple operating-mode scenario, which is
the reason why sensibility of the a-priori uniquely selected
operating mode vs parameter variations did not require to be
addressed. Overall, our autonomic scheme for the selection
of the best suited operating mode is based on a cost function
CF (χoptF , χoptI) defined as

CF (χoptF , χoptI) = OHF (χoptF)−OH(χoptI) (3)

and on the result of the integration of this cost function
over a multi-dimensional domain defined by the values of
the parameters (δe, δm, δLB , δRB , Pr, SF , SP). The integral
function allows us to take into account the possible fluctu-
ations of the parameters the cost function is evaluated on.

For each parameter x defining a dimension of the integra-
tion domain, we integrate the cost function over the interval
x̄ ± αx̄, where we suggest α = 0.1 to capture statistically
relevant fluctuations of the parameters that can be envisaged
at the time the dynamic selection is carried out. If the

integration result is negative, then the selected operating
mode is non-incremental (with the log-interval set to χoptF),
otherwise the incremental mode is selected (with log-interval
set to χoptI). Assuming the independence of the parameters
defining the integration domain (which is reasonable in our
approach since the mean values are operatively determined
by direct sampling of the corresponding stochastic processes
- see Section III-D), the integral function for CF (χoptF , χoptI)
is a polynomial, having the following simple form, which
allows non-costly evaluation

(
2αS2

F

χoptF

− 2αS2
P

χoptI

− 2αS2
F − 2αS2

P

χoptI χI,F
)2αδ2LB +

2αPr2(
χoptF − χ

opt
I

2
2αδ2e −

χoptI − 1

2
2αδ2m)− 2αδ2m (4)

Given that we only need to determine the sign of the above
expressed value, we have finally divided it by 2α, in order
to get rid of some machine instructions for multiplications.

The above optimization procedure requires defining a
trigger for the evaluation of the integral function in order
to dynamically actuate the selection of the best suited
log-mode. In our autonomic system, we assume that the
simulation run is partitioned into a startup phase and a
normal phase. For the startup phase one of the two possible
log modes is selected by default, and is kept until the end
of that phase. Then, before starting the normal phase, the
integral function is evaluated by using the mean x̄ and
the corresponding relevant statistical fluctuation αx̄ for the
above parameters defining the integration domain, on the
basis of samples observed during the startup phase. Actually,
the mean can be computed in a very fast incremental manner
not requiring the store of individual samples, thus not even
impacting memory consumption.

Once the best suited log mode is selected at the end
of the startup phase, subsequent re-selections can occur
during the normal phase. The re-selection trigger is based
on the current value of the mean x̄ of any of the parameters
defining the integration domain, and a predicate involving
the values x̄∗ and αx̄∗ that were used upon the last log
mode autonomic selection. If for whichever parameter x
the expression |x̄− x̄∗| > αx̄∗ becomes verified during the
run, then the integral function is recalculated on the basis
of current mean values. The reason for such a trigger is that
the last dynamic selection of the best suited log mode has
been actuated on the basis of statistical parameter values
x̄∗ and αx̄∗ that can be considered no more representative
of actual run-time dynamics and related fluctuations. In
case the current mean goes outside the integration interval
for the corresponding parameter, it is likely that some
relevant variation has actually occurred within the run time
dynamics, which requires re-evaluating the decision about
the best suited log/restore mode. In other words, fluctuations
(around expected parameter values) accounted for in last
log-mode selection step are no more representative of the
current system behavior. As a last observation, instead of
using the arithmetic mean, we relied on the exponential
mean, with weighting parameter set to 0.1, which allows

better reactiveness of the mean value vs variations of the
corresponding stochastic process.

D. Run-time Parameter Sampling
As hinted, our approach relies on the mean value of the

parameters appearing in the performance models in (1)-(2),
which are used to define the integration boundaries within
the corresponding multi-dimensional integration domain. We
rely on a run-time sampling process for computing the mean
of each parameter. One relevant difficulty is related to the
fact that the mean value of every parameter x appearing
in the performance models actually requires to be tracked
by the sampling process over time, independently of the
current operating mode of the log layer (incremental vs non-
incremental). This is because the mean is used both to trigger
the re-selection process of the best suited log mode, and to
determine the actual outcome of the selection. Accordingly,
the parameters δm and SP , specifically used to capture run-
time costs proper of the incremental log mode, require to be
sampled even when the non-incremental mode is currently
operating. Ad-hoc schemes to address this issue will be
provided and discussed in this section. We do not explicitly
address the issue of sampling the value of Pr since we rely
on typical approaches (such as [15]) based on counting the
number of rollbacks over a given interval of executed events.

1) Event and Memory-Update Tracking Costs: To de-
termine event and memory-update tracking costs, our au-
tonomic layer implements a sampling mechanism based
on the gettimeofday() service, offering microsecond
granularity. The intrusiveness of this approach is negligible
given an overhead of less than 1 microsecond on current
conventional machines for the couple of calls required to
take start and end time of the interval defining the latency
sample to be evaluated.

The used approach is based on a-priori knowledge of
the cost δtracking for the execution of an instance of the
memory-write tracking routine, which depends on the num-
ber of machine instructions required to monitor a memory-
write access, and on the processor speed (2). Also, we
have embedded in our architecture an ad-hoc benchmarking
module that determines, in a transparent way to the users,
the latency of the memory-write tracking routine upon in-
stallation of the software on the specific hardware platform.

A per-simulation-object counter Count internal to the
autonomic layer is kept, which is used to determine the
number of invocations of the memory-write tracking routine
occurring during the processing of each event. In case the
current log mode is incremental, the application level mod-
ules whose execution is currently triggered with invocation
of the proper callback entry point (according to the dual-
version-code scheme presented in Section III-A) embed the
memory-update tracking routine, which increments Count

2Non-determinism in the amount of instructions to be executed by the
tracking modules, possibly arising due to iterative search operations within
the meta-data table, is made statistically not relevant thanks to a software
caching mechanism that, given the address touched by the memory-write,
allows direct mapping to the entry of the meta-data table related to the
touched chunk [11].

upon its execution. Denoting with ∆i
e the wall-clock-time

in between the start and the end of the execution of
the i-th event by the simulation object, evaluated via the
gettimeofday() service, we have

δie = ∆i
e − δim (5)

with δie denoting the i-th sample for the event cost, and δim
the i-th sample for the memory-update tracking cost, which
can be computed as Counti × δtracker.

The above equation boils down to δie = ∆i
e in case the log

layer is currently adopting the non-incremental mode, since
the corresponding application code version does not entail
memory-update tracking modules. However, as pointed out
above, we need the sample δim also in case the current
log mode is non-incremental. To provide the value of δim
in such a situation, we have slightly modified the differ-
entiated dual-version code generation procedure in such a
way that the code version running when non-incremental
log/restore is active embeds a very light instrumentation
scheme where each memory-write instruction is preceded by
a single ADD-r/m32,imm8 assembly instruction allowing
the update of Count. In this way, we can infer the value
of δim by simply multiplying the i-th sample of the counter
value by the known in advance cost δtracking , exactly as
if the incremental mode were active. We note that this
approach requires instrumenting memory-writes via a negli-
gible overhead (just thanks to the single machine-instruction
instrumentation approach), hence not altering the validity of
the overhead model in expression (1), describing the case
of non-incremental logging, which excludes costs associated
with instrumenting instructions within the application code.

We note that the above mechanisms based on real-time
clocks accessed by the gettimeofday() service directly
fits cases where the computing platform is dedicated to the
parallel simulation run, as typical of scenarios where perfor-
mance is a critical factor. In case of time-sharing with other
applications, such an approach needs to be complemented
with solutions based on code pre-analysis and lightweight
run-time profiling such as the one discussed in [13].

2) Size of Full and Partial Logs: Samples SiF of the size
of full (non-incremental) logs can immediately be taken by
the autonomic layer independently of the currently active
log mode since the memory-map manager maintains meta-
data (i.e. an accumulator) recording at any time the real
memory occupancy of the object state image (in terms of the
amount of bytes associated with currently allocated chunks).
Hence, SiF samples can be taken by simple querying the
memory-map manager for the value of the accumulator.
In our implementation, the autonomic layer queries the
memory-map manager each time a log (incremental or non-
incremental) is taken.

A different approach is instead required for taking SiP
samples of partial (incremental) logs. Specifically, when the
currently active log mode is incremental, the memory-map
manager updates a second accumulator accounting for the
amount of bytes associated with chunks that have been
dirtied since the last log. The accumulator is updated on

the basis of actual memory-write operations that are tracked
at run-time. This accumulator was already included within
the design of the incremental log supports presented in [11]
since it was used to determine the size of the buffer destined
to keep the incrementally dirtied chunks. The value of this
accumulator is therefore directly used as a valid SiP sample
when the incremental log mode is active.

In case the current log mode within the autonomic scheme
is non-incremental, the above accumulator does not get
updated. Hence, we have decided to infer the value of SiP
according to the following different approach. Each K×χoptF
non-incremental log operations, we flag the corresponding
simulation object so that, after the subsequent event is
executed by the object, we compare chunk by chunk the
current memory image content after the event with the last
one packed within the log buffer. The comparison is carried
out only over chunks that belong both to the memory image
packed within the log buffer, and to the current memory
image, hence taking into account the portion of the state
layout that is stable across the two subsequent snapshots.

Obviously, the cost of this operation depends on the value
of K and on specific optimizations for the comparison
of each couple of chunks. As for the second aspect, we
have not employed the traditional memcmp() service since,
depending on the implementation, it might not provide early
stop upon detection of the first different byte between the
two memory chunks. We have therefore developed efficient,
ad-hoc assembly modules that iteratively compare memory
areas by fully exploiting the size of CPU registers at each
compare-step, and that exactly implement the early stop
procedure upon the detection of the first different byte
between the two chunks. This matches the chunk-based
granularity offered by the log/restore approach within the
autonomic layer. Also, these modules are optimized in order
to maximize the likelihood of actual early stop in case of
different chunks between the two snapshots according to
the following scheme. Small size chunks are checked within
the comparison process by starting from the top byte, and
then going towards the bottom. Instead, for large chunks,
we have implemented a procedure that checks the bytes in
an interleaved mode starting from the top and from 3/4 of
the chunk size. The above approach well fits typical pro-
gramming practices, which tend to structure records in such
a way that the most frequently touched data are at the top of
the record and/or at the bottom (see, e.g., pointers for linking
between memory scattered dynamically allocated records).
Hence, for large chunks, it is better to check top/bottom
portions with higher priority. Also, starting from 3/4 of the
chunk size accounts for internal chunk fragmentation, due
to the typical un-correlation between the size of the record
to be placed by the application software within the allocated
chunk, and the actual size of the chunk that best fists the
allocation request, among those managed by the memory
management subsystem (defined according to power-of-two
values). Once identified the dirty chunks according to the
above scheme, on the basis of the aforementioned stable
portion of the snapshot, the corresponding percentage p of

dirty bytes is applied to the total current state size SiF to
generate the j-th SP sample as SjP = p× SiF .

Concerning the value of K, namely the second factor
determining the actual overhead due to the estimation of SP
samples when the non-incremental log mode is active, we
have used a static approach where K is set to the value 20.
Given that the cost associated with the estimation procedure
for a single sample is, at worst, comparable with the one
for a full-log operation (3), this would simply increase the
real overhead experienced when the non-incremental mode
is active by, at worst, 5% of the corresponding logging
overhead.

By the above optimizations, the overhead for determining
SP samples when the non-incremental mode is operative is
expected to be negligible, thus again not altering the validity
of the non-incremental overhead model in equation (1).

3) Per-Byte Log/Restore Costs: The last parameters in-
volved in the sampling process are the per-byte log/restore
costs, namely δLB and δRB . However, δRB does not appear
in the final formula and we concentrate on δLB . To sam-
ple δLB , we have again exploited the gettimeofday()
service, in combination with the sampling process of SF
and SP depicted in the previous section. In particular,
the i-th log operation latency, say ∆i

log , is sampled via
gettimeofday() and is normalized to either the corre-
sponding SF sample, or the corresponding SP sample, just
depending on the currently active log mode. Given that ∆i

log
also accounts for the cost of manipulating and logging meta-
data associated with the logged chunks, the normalization
allows taking samples for δLB actually expressing how the
meta-data management cost is charged to the log operation
of each single byte.

IV. EXPERIMENTAL RESULTS

In this section we report experimental results for an eval-
uation of the presented autonomic log/restore architecture.
The test-bed simulation model refers to GSM coverage
along the ring high-way running around the city of Rome
(named GRA - Grande Raccordo Anulare). The length
of GRA is 68 Km and GSM connectivity is guaranteed
via 8 GSM cells, each offering up to 9 Km of coverage
along the highway. As in the actual system organization
supported by the in charge Telecommunication Company,
each cell hosts 1000 radio channels [2]. In our simulations,
communication channels are modeled in a high fidelity
fashion via explicit simulation of power regulation/usage and
interference/fading phenomena on the basis of the current
state of the corresponding cell (also expressed as a function
of current meteorological conditions). GSM cells along the
ring high-way primarily serve communication requests for
mobiles on board of vehicles running on the high-way. The
interest in simulating this type of system is related to the
need for assessing whether current dimensioning is adequate

3Memory compare operations are in fact similar in cost to memory
copies, since they both involve similar memory/register data moves. Also,
the early stop for chunk compare operations should additionally favor the
latency of comparing the chunks across the stable portion of the snapshot.

for supporting both normal workload conditions, as well as
peak workload conditions related to traffic rushes, possibly
leading to traffic congestions. At the same time, assessing
the availability of radio channels, and determining the power
consumption for serving sub-urban areas close to the ring
highway even on case of workload peaks associated with
traffic rushes, is another aspect of interest.

The power regulation model has been implemented ac-
cording to the results in [10]. Specifically, each modeled
GSM cell tracks via dynamically allocated data structures,
channel allocation and power management information for
ongoing calls. Upon the start of a call destined to a mobile
device currently hosted by a given GSM cell, a call-setup
record is instantiated via dynamically allocated data struc-
tures, which gets linked to a list of already active records.
Each record gets released when the corresponding call ends
or is handed-off towards a different cell along the ring
highway. In the latter case, a similar call-setup procedure
is executed at the destination GSM cell. Upon call-setup,
power regulation is performed, which involves scanning the
aforementioned list of records for computing the minimum
transmission power allowing the current call-setup to achieve
the threshold-level SIR value, according to GSM technology.
Data structures keeping track of fading coefficients are also
updated while scanning the list, according to a meteorolog-
ical model defining current climatic conditions (and related
variations) around the city of Rome. The climatic model
accounts for variations of the climatic conditions (e.g. the
current wind speed) with a minimum time granularity of 10
seconds.

We have simulated a whole week of operativity of the
GSM coverage system along the highway, by explicitly
accounting for dynamic day-time traffic variations. Statistics
about the vehicle-traffic variations have been derived from
[1]. Simulated night-time periods are characterized by near-
zero utilization factors (correspondingly, by the data from
[1], less than 800 vehicles run along the high-way in night
periods), while rush hours may lead to definitely higher
channel utilization factors. For non-weekend days, we have
a whole day split into a night-time period, with minimal
channel utilization factor, and the remaining part of the
day into alternate rush and normal traffic hours. Day-time
normal/rush periods lead in our simulations to an increase in
the call arrival frequency per cell, and hence to an increase in
the channel utilization factor, which depends on the relative
density of vehicles along the ring high-way on the basis of
the statistics in [1], and on how the mean of an exponential
distribution for the call inter-arrival time varies according
to that density. Specifically, the average channel utilization
factor gets up to 30% in rush periods considering an average
call duration of 60 seconds, with oscillations that can lead to
even higher peaks. According to [1], weekend days have a
different workload, which exhibits a behavior in between
normal and night ones. Exact traces for calls involving
mobiles along the high-way could not be directly used due
to privacy issues.

As pointed out, our autonomic layer has been integrated

within the optimistic ROOT-Sim platform, which ultimately
relies on MPI for data exchange across different instances
of the simulation kernel layer. Beyond the already de-
picted log/restore facilities, ROOT-Sim also offers com-
pletely transparent mapping of LPs onto the concurrent
kernel instances, as well as CPU scheduling and event
queues management. ROOT-Sim supports a very simple
programming model based on a callback event handler, a
service allowing injection of events for whichever LP, and
an additional callback passing to the application layer a
committed object state image, which can be used to imple-
ment, e.g., termination detection based on stable predicates
[5]. The above simulation model has been developed for
integration with the ROOT-Sim environment in a way that
each LP instance models a single GSM cell. Callbacks
involve therefore the update of the state of individual cells,
and cross-LP events are essentially related to hand-offs
between different cells.

The hardware platform used in this experimental study is
a QuadCore machine, equipped with an Intel Core 2 Quad
Q6600 (64bit execution support, 2.4GHz, 4MB L2 Cache per
couple of cores, 32KB L1 Cache per core, 1GHz Front Side
Bus speed) and 4GB of RAM memory. As for the software
environment, the running Operating System is GNU/Linux
(kernel 2.6.22-31 64bit, distribution OpenSUSE 9.2), the
used gcc version is 4.2.1, the used binutils version (ld
and gas) is 2.17.50 and the used MPI version is OpenMPI
1.2.4. Four instances of the ROOT-Sim kernel have been
run on this platform (one per CPU-core), each hosting two
adjacent GSM cells along the ring high-way.

We report in Figure 2 (left) the variation of the amount
of committed events per wall-clock-time second (event rate)
achieved while simulating specific virtual time periods, rep-
resented by the variation of the GVT on the x-axis. Actually,
this parameter indicates the speed according to which a given
virtual time period is simulated. The higher the event rate,
the faster the execution while simulating a given virtual
time period. We report three plots referring to (i) the case
in which the autonomic layer is active (ii) the case in
which the autonomic layer is active, but we always force
the incremental log/restore mode, with the corresponding
optimized value for χI and (iii) the case in which the layer
is active but the non-incremental (full) log/restore mode
is forced, with the corresponding optimized value for χF .
The plots for cases (ii) and (iii) express performance levels
that could be achieved via an optimized log/resotre mode
(adaptive in the selection of the log interval) based on either
the incremental or the non-incremental log mode, but not
allowing autonomic switch between the two modes on the
basis of run-time dynamics.

By the results, we see that, depending on the simulated
period (night-time vs day-time), forced-incremental and
forced-full modes alternately exhibit better execution speed.
In particular, the forced-full mode is faster while simulating
night-time periods, while the forced-incremental mode is
faster while simulating day-time periods. This is a reflection
of the fact that, during night-times and in the weekend, each

GSM cell, and hence each LP, exhibits a reduced state size
due to the minimal number of records allocated for ongoing
calls. This is not the case for day-time periods, where the
state size of the LPs can grow significantly (especially for
rush hours), up to the limit of slightly less than 70 KB, and
the update pattern of the state upon the occurrence of the
events allows the incremental-log mode to outperform the
full one, once the correspnding log period get optimized.
Anyway, the most important outcome by the event rate plots
is that the autonomic configuration always switches to the
best performing mode (incremental vs non-incremental)
depending on the currently simulated period (e.g. night vs
day), and hence depending of the actual dynamics (e.g. in
terms of state size, event granularity, memory update pattern
and so on).

The final effect on performance by the above optimized
behavior is expressed by the plots in Figure 2 (right), where
we draw the cumulated amount of committed events vs the
wall-clock-time for the simulation run. These curves express
the ability of each log/restore configuration to commit events
(and hence to carry out useful simulation work) while wall-
clock-time goes ahead, hence we have a representation
of how fast the simulation model is executed vs wall-
clock-time. By the results, the ability of the autonomic
configuration to always switch to the best suited mode is
reflected in the fact that its cumulated event rate curve
always exhibits the best pendency vs wall-clock-time. In
other words, it allows the model execution to be carried out
in a significantly faster manner, compared to what done by
the other two schemes. In particular, the wall-clock-time by
the autonomic scheme for reaching the required amount of
events to be committed for the whole simulation is reduced
of about 13% compared to the forced-full mode, and of about
9% compared to the forced-incremental mode. Given that
these modes run according to an optimized configuration,
thanks to dynamic (re-)selection of well suited log intervals,
this is a significant result.

V. ASSESSMENTS AND CONCLUSION

In this paper we have presented the design and implemen-
tation of an autonomic log/restore layer for optimistic simu-
lation systems. It is a fully featured state management sub-
system transparently allowing the use of standard dynamic
memory services at the application programming level,
and transparently supporting both incremental and non-
incremental log/restore modes (in time interleaved fashion)
depending on current execution dynamics. The autonomic
layer relies on an instrumentation tool allowing dual-version
code generation, which ultimately provides an executable
image entailing two versions of the application modules,
embedding or not memory-write tracing facilities. Each log
mode is therefore supported via the run-time exploitation of
the best suited code version for that mode.

The autonomic selection of the best suited log mode
is based on an innovative modeling/optimization approach
relying on the ability to capture fluctuations in the run-
time dynamics. The effectiveness of the approach has also

 0

 50000

 10000

 150000

 200000

 250000

 300000

 0 200000 400000 600000

E
v
e
n
t
R

a
te

GVT (simulated sec)

Execution Speed vs GVT Advancement

Autonomic
Forced-incremental

Forced-full

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 20 40 60 80 100

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (sec)

Overall Execution Speed

Autonomic
Forced-incremental

Forced-full

Figure 2. Experimental Results.

been tested with a real-work case study related to wireless
connectivity along a ring high-way.

REFERENCES

[1] http://traffico.octotelematics.it/.
[2] Private communication.
[3] SPEEDES. http://www.speedes.com, 2005.
[4] C. D. Carothers, K. S. Perumalla, and R. Fujimoto. Efficient

optimistic parallel simulations using reverse computation.
ACM Transactions on Modeling and Computer Simulation,
9(3):224–253, 1999.

[5] D. Cucuzzo, S. D’Alessio, F. Quaglia, and P. Romano. A
lightweight heuristic-based mechanism for collecting com-
mitted consistent global states in optimistic simulation. In
Proceedings of the 11th IEEE International Symposium on
Distributed Simulation and Real-Time Applications, pages
227–234, 2007.

[6] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hy-
binette. GTW: a Time Warp system for shared memory
multiprocessors. In WSC ’94: Proceedings of the 26th confer-
ence on Winter simulation, pages 1332–1339, San Diego, CA,
USA, 1994. Society for Computer Simulation International.

[7] J. Fleischmann and P. Wilsey. Comparative analysis of
periodic state saving techniques in Time Warp simulators. In
Proceedings of the 9th Workshop on Parallel and Distributed
Simulation, pages 50–58. IEEE Computer Society, June 1995.

[8] S. Franks, F. Gomes, B. Unger, and J. Cleary;. State saving
for interactive optimistic simulation. In Proceedings of the
11th Workshop on Parallel and Distributed Simulation, pages
72–79. IEEE Computer Society, June 1997.

[9] R. M. Fujimoto. Parallel discrete event simulation. Commu-
nications of the ACM, 33(10):30–53, Oct. 1990.

[10] S. Kandukuri and S. Boyd. Optimal power control in
interference-limited fading wireless channels with outage-
probability specifications. IEEE Transactions on Wireless
Communications, 1(1):46–55, 2002.

[11] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR: Log-
ging only dirty chunks for efficient management of dynamic
memory based optimistic simulation objects. In Proceedings
of the 23nd Workshop on Principles of Advanced and Dis-
tributed Simulation, pages 45–53. IEEE Computer Society,
2009.

[12] B. R. Preiss, W. M. Loucks, and D. MacIntyre. Effects of
the checkpoint interval on time and space in Time Warp.
ACM Transactions on Modeling and Computer Simulation,
4(3):223–253, July 1994.

[13] F. Quaglia. A cost model for selecting checkpoint positions in
Time Warp parallel simulation. IEEE Transactions on Parallel
and Distributed Systems, 12(4):346–362, Feb. 2001.

[14] F. Quaglia and A. Santoro. Non-blocking checkpointing
for optimistic parallel simulation: Description and an imple-
mentation. IEEE Transactions on Parallel and Distributed
Systems, 14(6):593–610, 2003.

[15] R. Ronngren and R. Ayani. Adaptive checkpointing in
Time Warp. In Proc. of the 8th Workshop on Parallel and
Distributed Simulation, pages 110–117. Society for Computer
Simulation, July 1994.

[16] R. Ronngren, M. Liljenstam, R. Ayani, and J. Montagnat.
Transparent incremental state saving in Time Warp parallel
discrete event simulation. In Proceedings of the 10th Work-
shop on Parallel and Distributed Simulation, pages 70–77.
IEEE Computer Society, May 1996.

[17] A. Santoro and F. Quaglia. Transparent state management for
optimistic synchronization in the High Level Architecture. In
Proceedings of the 19th Workshop on Principles of Advanced
and Distributed Simulation, pages 171–180. IEEE Computer
Society, 2005.

[18] A. Santoro and F. Quaglia. A version of MASM portable
across different UNIX systems and different hardware archi-
tectures. In Proceedings of the 9th International Symposium
on Distributed Simulation and Real Time Applications. IEEE
Computer Society, 2005.

[19] H. Soliman and A. Elmaghraby. An analytical model for hy-
brid checkpointing in Time Warp distributed simulation. IEEE
Transactions on Parallel and Distributed Systems, 9(10):947–
951, 1998.

[20] J. Steinman. Incremental state saving in SPEEDES using
C++. In Proceedings of the Winter Simulation Conference,
pages 687–696. Society for Computer Simulation, 1993.

[21] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic memory
logger and restorer library for optimistic simulation objects
with generic memory layout. In Proceedings of the 22nd
Workshop on Principles of Advanced and Distributed Simu-
lation, pages 163–172. IEEE Computer Society, 2008.

[22] R. Vitali, A. Pellegrini, and F. Quaglia. Benchmarking
memory management capabilities within ROOT-Sim. In 13th
IEEE/ACM International Symposium on Distributed Simula-
tion and Real Time Applications. IEEE Computer Society.

[23] D. West and K. Panesar. Automatic incremental state saving.
In Proceedings of the 10th Workshop on Parallel and Dis-
tributed Simulation, pages 78–85. IEEE Computer Society,
May 1996.

