84 research outputs found

    Joint source-channel multistream coding and optical network adapter design for video over IP

    Full text link

    The case for a Hardware Filesystem

    Get PDF
    As secondary storage devices get faster with flash based solid state drives (SSDs) and emerging technologies like phase change memories (PCM), overheads in system software like operating system (OS) and filesystem become prominent and may limit the potential performance improvements. Moreover, with rapidly increasing on-chip core count, monolithic operating systems will face scalability issues on these many-core chips. Future operating systems are likely to have a distributed nature, with a separation of operating system services amongst cores. Also, general purpose processors are known to be both performance and power inefficient while executing operating system code. In the domain of High Performance Computing with FPGAs too, relying on the OS for file I/O transactions using slow embedded processors, hinders performance. Migrating the filesystem into a dedicated hardware core, has the potential of improving the performance of data-intensive applications by bypassing the OS stack to provide higher bandwdith and reduced latency while accessing disks. To test the feasibility of this idea, an FPGA-based Hardware Filesystem (HWFS) was designed with five basic operations (open, read, write, delete and seek). Furthermore, multi-disk and RAID-0 (striping) support has been implemented as an option in the filesystem. In order to reduce design complexity and facilitate easier testing of the HWFS, a RAM disk was used initially. The filesystem core has been integrated and tested with a hardware application core (BLAST) as well as a multi-node FPGA network to provide remote-disk access. Finally, a SATA IP core was developed and directly integrated with HWFS to test with SSDs. For evaluation, HWFS's performance was compared to an Ext2 filesystem, both on an FPGA-based soft processor as well as a modern AMD Opteron Linux server with sequential and random workloads. Results prove that the Hardware Filesystem and supporting infrastructure provide substantial performance improvement over software only systems. The system is also resource efficient consuming less than 3% of logic and 5% of the Block RAMs of a Xilinx Virtex-6 chip

    Characterizing Single Event Upsets within the lpGBT-based End-of-Substructure Card

    Get PDF
    The CERN ATLAS particle physics experiment is currently undergoing a significant system upgrade (ATLAS Phase II upgrade). As a result of the upgrade the experiment's Inner Tracker (ITk) and the front-end electronics of the ITk are being redesigned to handle increased data rates and a higher radiation environment. Within the ITk, the End Of Substructure (EoS) card is a new custom designed digital board that will provide the data, command, and power interface between on and off-detector electronics. Each EoS card makes use of one or two custom CERN designed low power Gigabit Transceivers (lpGBTs) ASICS that have been created for the purposes of supporting high bandwidth optical links in high radiation environments throughout CERN experiments. An estimated 1552 EoS cards will be installed in the ITk, each representing a potential point of failure. Given the complexity and quantity of new hardware designs involved, and that the EoS cards will be not be accessible or serviceable after the upgrade has been completed, there is a need for rigorous quality assurance (QA) and quality control (QC) testing. This thesis therefore describes an independent test setup commissioned, by the author, at the University of Cape Town (UCT) Physics Department for characterising aspects of EoS card's operation under representative radiation conditions. Specifically, the radiation environment of the ITk poses a challenge to electronics as energetic particles can deposit their energy within the circuit material resulting in an erroneous change in logic known as a Single Event Upset (SEU). The lpGBT is a radiation tolerant ASIC and employs digital signal processing (DSP) and triple modular redundancy (TMR) techniques to mitigate against the effects of SEUs on transmitted data. This thesis presents an experiment setup which tests this hypothesis that the DSP stages are susceptible to data corruption caused by SEUs. In addition the setup also attempts to characterize the susceptibility of the scrambler, encoder, and interleaver stages within the lpGBT to SEUs. This experiment is carried out by actively irradiating an EoS card with a neutron source (energy spectrum of up to 11 MeV), while emulating each stage on a non-irradiated off-board FPGA. Additionally and in support of this experiment, the existing firmware and LabView automation software developed at DESY are extended. Results from this thesis indicate that the DSP stages within the lpGBT are susceptible to data corruption caused by SEUs. It was also shown that the susceptibility of the experiment itself did not effect the measured SEU rates. Finally, preliminary results suggest that susceptibility of the DSP stages within the lpGBT can be characterized as the Bit Error Rate (BER) increases depending on the number of active stages

    Master of Science

    Get PDF
    thesisEmergency "911" service is a critical function provided in the Public Switched Telephone Network (PSTN), cellular and Voice over Internet Protocol (VoIP) networks. Wi-Fi, despite its growing importance, has no such service. In this thesis, we develop a 911-like service for Wi-Fi-capable devices, enabling them to send emergency messages through any available hotspot or access point. Our service makes use of existing 802.11 management frames and does not require the client device to associate or authenticate with the access point; this makes it available even on protected networks to which the client would not normally have access, even encrypted ones. This design ensures maximum potential reach and usability, and helps to increase public safety

    Highly-configurable FPGA-based platform for wireless network research

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-164).Over the past few years, researchers have developed many cross-layer wireless protocols to improve the performance of wireless networks. Experimental evaluations of these protocols require both high-speed simulations and real-time on-air experimentations. Unfortunately, radios implemented in pure software are usually inadequate for either because they are typically two to three orders of magnitude slower than commodity hardware. FPGA-based platforms provide much better speeds but are quite difficult to modify because of the way high-speed designs are typically implemented by trading modularity for performance. Experimenting with cross-layer protocols requires a flexible way to convey information beyond the data itself from lower to higher layers, and a way for higher layers to configure lower layers dynamically and within some latency bounds. One also needs to be able to modify a layer's processing pipeline without triggering a cascade of changes. In this thesis, we discuss an alternative approach to implement a high-performance yet configurable radio design on an FPGA platform that satisfies these requirements. We propose that all modules in the design must possess two important design properties, namely latency-insensitivity and datadriven control, which facilitate modular refinements. We have developed Airblue, an FPGA-based radio, that has all these properties and runs at speeds comparable to commodity hardware. Our baseline design is 802.11g compliant and is able to achieve reliable communication for bit rates up to 24 Mbps. We show in the thesis that we can implement SoftRate, a cross-layer rate adaptation protocol, by modifying only 5.6% of the source code (967 lines). We also show that our modular design approach allows us to abstract the details of the FPGA platform from the main design, thus making the design portable across multiple FPGA platforms. By taking advantage of this virtualization capability, we were able to turn Airblue into a high-speed hardware software co-simulator with simulation speed beyond 20 Mbps.by Man Cheuk Ng.Ph.D

    Non-Orthogonal Signal and System Design for Wireless Communications

    Get PDF
    The thesis presents research in non-orthogonal multi-carrier signals, in which: (i) a new signal format termed truncated orthogonal frequency division multiplexing (TOFDM) is proposed to improve data rates in wireless communication systems, such as those used in mobile/cellular systems and wireless local area networks (LANs), and (ii) a new design and experimental implementation of a real-time spectrally efficient frequency division multiplexing (SEFDM) system are reported. This research proposes a modified version of the orthogonal frequency division multiplexing (OFDM) format, obtained by truncating OFDM symbols in the time-domain. In TOFDM, subcarriers are no longer orthogonally packed in the frequency-domain as time samples are only partially transmitted, leading to improved spectral efficiency. In this work, (i) analytical expressions are derived for the newly proposed TOFDM signal, followed by (ii) interference analysis, (iii) systems design for uncoded and coded schemes, (iv) experimental implementation and (v) performance evaluation of the new proposed signal and system, with comparisons to conventional OFDM systems. Results indicate that signals can be recovered with truncated symbol transmission. Based on the TOFDM principle, a new receiving technique, termed partial symbol recovery (PSR), is designed and implemented in software de ned radio (SDR), that allows efficient operation of two users for overlapping data, in wireless communication systems operating with collisions. The PSR technique is based on recovery of collision-free partial OFDM symbols, followed by the reconstruction of complete symbols to recover progressively the frames of two users suffering collisions. The system is evaluated in a testbed of 12-nodes using SDR platforms. The thesis also proposes channel estimation and equalization technique for non-orthogonal signals in 5G scenarios, using an orthogonal demodulator and zero padding. Finally, the implementation of complete SEFDM systems in real-time is investigated and described in detail
    • 

    corecore