
THE CASE FOR A HARDWARE FILESYSTEM

by

Ashwin Mendon

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2012

Approved by:

Dr. Ron Sass

Dr. James M. Conrad

Dr. Bharat Joshi

Dr. Zongwu Cai

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345080257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c© 2012

Ashwin Mendon

ALL RIGHTS RESERVED

iii

ABSTRACT

ASHWIN MENDON. The case for a hardware filesystem.
(Under the direction of DR. RON SASS)

As secondary storage devices get faster with flash based solid state drives (SSDs)

and emerging technologies like phase change memories (PCM), overheads in system

software like operating system (OS) and filesystem become prominent and may limit

the potential performance improvements. Moreover, with rapidly increasing on-chip

core count, monolithic operating systems will face scalability issues on these many-

core chips. Future operating systems are likely to have a distributed nature, with a

separation of operating system services amongst cores. Also, general purpose proces-

sors are known to be both performance and power inefficient while executing operating

system code. In the domain of High Performance Computing with FPGAs too, re-

lying on the OS for file I/O transactions using slow embedded processors, hinders

performance. Migrating the filesystem into a dedicated hardware core, has the po-

tential of improving the performance of data-intensive applications by bypassing the

OS stack to provide higher bandwidth and reduced latency while accessing disks.

To test the feasibility of this idea, an FPGA-based Hardware Filesystem (HWFS)

was designed with five basic operations (open, read, write, delete and seek). Further-

more, multi-disk and RAID-0 (striping) support has been implemented as an option

in the filesystem. In order to reduce design complexity and facilitate easier testing of

the HWFS, a RAM disk was used initially. The filesystem core has been integrated

and tested with a hardware application core (BLAST) as well as a multi-node FPGA

network to provide remote-disk access. Finally, a Serial ATA IP core was developed

and directly integrated with HWFS to test with SSDs. For evaluation, HWFS’s per-

formance was compared to an Ext2 filesystem, both on an FPGA-based soft processor

as well as a modern AMD Opteron Linux server with sequential and random work-

loads. Results prove that the Hardware Filesystem and supporting infrastructure

iv

provide substantial performance improvement over software only systems. The sys-

tem is also resource efficient consuming less than 3% of logic and 5% of the Block

RAMs of a Xilinx Virtex-6 chip.

v

ACKNOWLEDGMENTS

Several individuals have played an important part in the successful completion of this

dissertation.

First and foremost, I would extend my gratitude to my adviser Dr. Ron Sass

for his guidance, encouragement and help throughout the course of my PhD at UNC

Charlotte.

My peers at the Reconfigurable Computing Systems Lab for supporting me. A

special thanks to Andy, Sid and Bin with whom I have had the good fortune to work

on several projects.

I have been blessed to have wonderful parents who have always stood by me and

I hope that I have made them proud !

Shweta for her devotion, love and patience to whom I dedicate this work.

vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND 8

2.1 Disk Subsystem 8

2.2 Related Work 12

CHAPTER 3: DESIGN 14

3.1 Hardware Filesystem Core 14

3.2 Multi-Disk and RAM Disk Support 17

3.2.1 Purpose of the RAM Disk 18

3.2.2 Modular Interface to Disk 20

3.2.3 Adding Multiple Disk Support 20

3.3 Integration with BLAST and AIREN 23

3.3.1 HWFS-BLAST Interface 24

3.3.2 HWFS-RAID-AIREN interface 25

3.4 SATA Core 25

3.4.1 Design Goals 26

3.4.2 SATA Core Interface and Modules 26

3.4.3 Native Command Queueing 32

3.4.4 Linux Block Device Driver 34

3.5 System Integration 34

CHAPTER 4: Evaluation 36

4.1 Experimental Setup 36

4.1.1 Setup 1 : HWFS - RAM Disk on ML-410 36

vii

4.1.2 Setups 2 and 3 : SATA Core and HWFS-SATA on ML605 36

4.1.3 Setup 4 : CPU - SATA on Linux Server 38

4.2 Results 39

4.2.1 Performance 39

4.2.2 Scalability with Multiple Disks using RAID 55

4.2.3 Size 55

CHAPTER 5: CONCLUSION 59

REFERENCES 61

viii

LIST OF TABLES

TABLE 3.1: Register H-D FIS for Read DMA Ext 28

TABLE 3.2: FIS types and characteristics 29

TABLE 4.1: HWFS Read/Write Execution Time with single RAM Disk 41

TABLE 4.2: HWFS Execution time for a 1 KB file, 64B block size 41

TABLE 4.3: HWFS Read/Write Execution Time with two RAM Disks 42

TABLE 4.4: HWFS-SATA vs Ext2 on CPU : Speedup 54

TABLE 4.5: HWFS resource utilization, synthesized for XC6VLX240T 57

TABLE 4.6: HWFS-SATA resource utilization, synthesized for XC6VLX240T 58

ix

LIST OF FIGURES

FIGURE 1.1: (a) traditional filesystem (b) filesystem migrated into hardware 5

FIGURE 2.1: Filesystem layout 8

FIGURE 2.2: UNIX Inode structure 9

FIGURE 2.3: SATA protocol layers 11

FIGURE 3.1: HWFS Inode Structure 15

FIGURE 3.2: Hardware Filesystem Core: Block Diagram 17

FIGURE 3.3: System level interface between HWFS and RAM Disk 18

FIGURE 3.4: (a) Interface with RAM Disk (b) Modular Interface with SATA 20

FIGURE 3.5: HWFS connected to the RAID 0 Controller for striping 22

FIGURE 3.6: (a) Head Node with HWFS, BLAST and AIREN (b) Disk Node 24

FIGURE 3.7: Serial ATA Host Bus Adapter Core 27

FIGURE 3.8: Write DMA Ext command sequence 28

FIGURE 3.9: SATA Link Layer Module 30

FIGURE 3.10: SATA Frame structure 31

FIGURE 3.11: Frame Transmission Sequence 32

FIGURE 3.12: Read FPDMA command sequence 33

FIGURE 3.13: HWFS-SATA system 34

FIGURE 3.14: HWFS-RAID-SATA system 35

FIGURE 4.1: SATA Core Test Setup 37

FIGURE 4.2: HWFS-SATA Test Setup 38

FIGURE 4.3: HWFS Sequential Read/Write Efficiency in simulation 40

FIGURE 4.4: HWFS Sequential Read/Write Efficiency with single RAM Disk 42

FIGURE 4.5: HWFS Sequential Read/Write Efficiency with two RAM Disks 43

FIGURE 4.6: SATA Sequential Read/Write Bandwidth with Hard Disk 44

FIGURE 4.7: SATA Sequential Read/Write Bandwidth with SSD 46

x

FIGURE 4.8: SATA 4K Random Read/Write IOPS 47

FIGURE 4.9: HWFS-SATA Sequential Read/Write Bandwidth, 4 KB Blocks 49

FIGURE 4.10: HWFS-SATA Sequential Read/Write Bandwidth, 8 KB Blocks 50

FIGURE 4.11: HWFS-SATA Sequential Read/Write Bandwidth, 16 KB Blocks 51

FIGURE 4.12: HWFS-SATA Random Read/Write Bandwidth 52

FIGURE 4.13: HWFS-SATA vs CPU: Bandwidth 54

FIGURE 4.14: HWFS-SATA Bandwidth with two SSDs 56

xi

LIST OF ABBREVIATIONS

AIREN Architecture Independent Reconfigurable Network

ALL AIREN Data Link Layer

ATA Advanced Technology Attachment

BLAST Basic Local Alignment Search Tool

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DDR Double Data Rate

DIMM Dual in-line Memory Module

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

EOF End of Frame

EMI Electromagnetic Interference

FIS Frame Information Structure

FPGA Field Programmable Gate Array

FSM Finite State Machine

FTL Flash Translation Layer

HPC High Performance Computing

HWFS Hardware Filesystem

IP Intellectual Propoerty

LBA Logical Block Address

LFSR Linear Feedback Shift Register

MGT Multi Gigabit Transceiver

MPI Message Passing Interface

NPI Native Port Interface

OOB Out of Band Signalling Controller

xii

OS Operating System

PCIE Peripheral Component Interconnect Express

PCM Phase Change Memory

PLL Phase Locked Loop

RAID Redundant Array of Independent Disks

SATA Serial Advanced Technology Attachment

SOF Start of Frame

SRAM Static Random Access Memory

SSD Solid State Drive

STTM Spin Transfer Torque Memory

UFS Unix Filesystem

CHAPTER 1: INTRODUCTION

Non-volatile Winchester style storage devices have been painfully slow in providing

adequate I/O performance for High Performance Computing applications. As a result

system designers have gone to great lengths to try to mitigate this poor performance.

Processors are built with large caches to hold frequently used data. To preserve large

working sets in fast main memory, most supercomputers today are built with huge

amount of DRAM. This is both expensive and energy consuming. Operating systems

have complex schedulers and I/O intensive applications perform sophisticated buffer

management and optimizations to minimize I/O or overlap it with computation.

Flash-based non-volatile solid state disks (SSDs) have shown great promise in

reducing the gap in computation and I/O performance [1, 2, 3]. These flash devices

having access times in microseconds, offer reduced latency and increased bandwidth.

Other emerging technologies such as Phase Change Memory (PCM) [4] and Spin-

transfer torque memory (STTM) [5], broadly classified as storage class memory [6, 7],

are even faster with speeds close to that of main memory technologies (nanoseconds).

To leverage the full potential of these technologies, would require overcoming the

legacy of disk based systems which have been designed assuming storage is slow.

Research conducted at the Non-Volatile Systems Lab in University of California

San Diego [8], indicates that for solid state devices, overheads in the operating system

stack exceed the hardware access time (It takes 20000 instructions to issue and

complete a 4 KB IO request under Linux). Many of the software optimizations which

are beneficial for mechanical disks are unprofitable for SSDs. The operating system’s

I/O request schedulers which aim to reduce the impact of rotational and seek delays

for hard drives, only add software overhead for SSDs which have no moving parts. In

2

addition, the system call/return interface and data copies to/from user space to kernel

space add substantial overhead. The filesystem also adds about 4 to 5 µs of latency

to each I/O request [8]. Many filesystems employ prefetching to hide the long latency

of I/O operations on disks. On SSDs, there is much less latency to hide. Hence,

many workloads that may have benefitted from prefetching on disks, would not see

similar gains on SSDs. Thus, with faster secondary storage devices, bottlenecks arise

in the system software during I/O transactions. To derive optimum performance out

of these non-volatile memory technologies will require significant changes to operating

systems and system architecture.

In an era of abundant transistors and the end of frequency scaling, computer hard-

ware is changing rapidly with increasing number of cores per chip [9, 10]. Operating

systems have however remained monolithic, with a centralized kernel, posing question

marks over their scalability across 100’s and 1000’s of cores. They have mainly relied

on efficient cache coherence for communication of data structures and locks. However,

the increasing core count and the complexity of interconnecting them has indicated

that hardware cache coherency protocols would be expensive to scale and future many

core chips are unlikely to have hardware support for cache coherence. Instead, they

may have message passing buffers in hardware[10, 11]. This has spawned a resurgence

in distributed operating systems research [12, 13, 14] with micro kernels communi-

cating explicitly through messages. They make a case for restructuring the operating

system such that some of its services can be run on dedicated cores. This would

avoid contention for resources such as such as caches and TLBs between the working

sets of the OS and application, leading to better utilization [15]. Moreover, several

aggressive microarchitectural features of modern processors such as deep pipelines

and speculation meant for improving application performance have not shown similar

benefits for operating system execution [16]. OS codes have frequent branches which

affects branch prediction logic performance and causes pipeline flushing. (Nellans et

3

al. have conducted an experiment by running an OS on a 3 GHz Pentium 4 with 31

stage pipeline and a 33 MHz 486 processor with a 5 stage pipeline and found that

that they are close in performance for OS code !) Moreover, these complex processing

cores prove to be energy inefficient while running operating system code [17]. Thus,

there is a strong case for exploring the idea of having a specialized, dedicated core for

certain operating system functions which have a significant contribution to the total

execution time.

In the domain of High Performance computing with accelerators too, relying on

the operating system for I/O transactions hinders performance. Modern High Per-

formance Computing Systems frequently use Field Programmable Gate Arrrays (FP-

GAs) as compute accelerators. As Integrated Circuit technology advances, the pro-

grammable logic resources on FPGA devices continue to grow as well. Many of these

devices, in addition to programmble logic resources and flip-flops, are also rich in spe-

cial purpose blocks such as processors, Block RAMs, DSP cores and high speed-serial

transceivers. This allows for greater integration of computing systems with Systems-

on-Chip designs running a mainline Linux kernel. In fact several high-performance

computing researchers are currently investigating the feasibility of using Platform

FPGAs as the basic compute node in parallel computing machines [18, 19, 20]. If

successful, there is an enormous potential for reducing the size, weight, and cost while

increasing the scalability of parallel machines. The Multi-Gigabit Transceiver (MGT)

cores on these devices are especially interesting because they allow for a wider range

of high-speed serial peripherals, such as disk drives, to be directly connected to the

devices. This has the potential to speed up data-intensive applications. However, the

embedded processor cores on these FPGAs are clocked at relatively slow frequencies

(100 MHz) as compared to modern high end processors (3 GHz). Data intensive

application accelerator cores running on programmable logic resources of the FPGA

have to go through the traditional layers of an operating system (system call, file sys-

4

tem, device driver and interrupt handling layer) for accessing storage devices using

these slow sequential processors. This would result in substantial software overhead

for file I/O transactions particularly for faster solid state storage devices. Results

with running filesystem benchmarks such as Bonnie++ on faster Intel Pentium 4

processor also show that for I/O intensive applications, the Operating System over-

head overshadows its userspace components (contributes about 86% of instructions

for file I/O) [16].

Thus, with fast disks, cheap transistors, abundant cores, operating system over-

head for filesystem operations and its inefficient use of a general purpose processor’s

complex architecture, there is a strong case for migrating filesystem operations to

a dedicated hardware core. The central question that we propose to answer in this

thesis is: As secondary storage devices get faster and the number of on chip cores

increase rapidly, will migrating the filesystem service from the operating system into

a dedicated hardware core, responsible for managing all accesses to disks, provide I/O

performance improvement for HPC applications ?

The main purpose of a computing system is to create, manipulate, store, and

retrieve data. As such, filesystems have been central to most modern computing

systems. Filesystems are typically implemented in software as part of the operat-

ing system. To eliminate the overhead of traversing the operating system stack for

file I/O operations, we have built infrastucture in the form of a hardware filesystem

(HWFS) interfaced with an on-chip Serial ATA host controller core (also developed as

part of this project). The simplest filesystems organize the sequential fixed-size disk

sectors into a collection of variable-sized files. Of course, most modern filesystems are

much more complex and also include a large amount of meta-information and further

organize files into a hierarchy of directories. The design presented here, however, is

narrowly defined to support high-performance computing. This is not a particularly

serious weakness since SRAM-based FPGA devices can be reprogrammed to incor-

5

Application

SOFTWARE

HARDWARE

Filesystem

Operating System

App Device Driver

 Disk Drive Ctlr
App HW Core

Hard Disk

SOFTWARE

HARDWARE

Filesystem

Operating System

App Device Driver

 Disk Drive CtlrApp HW Core

Hard Disk

Traditional Organization Filesystem-in-Hardware

Disk Device Driver

Application

Figure 1.1: (a) traditional filesystem (b) filesystem migrated into hardware

porate new features in hardware. Figure 1.1 illustrates the concept of a hardware

filesystem. On the left is the traditional organization with the filesystem and device

driver implemented in software. Here the operating system plays the central role in

coordinating an application’s and hardware core’s disk access. On the right is the

filesystem migrated into hardware which enables more direct access between hardware

cores and secondary storage.

Such an architecture is important to high-performance computing applications

for a number of reasons. It allows FPGA computational cores to consume data

directly from disk without interrupting the processor (or traversing the operating

system’s internal interfaces). This frees the processor from handling I/O requests and

avoids the use of off-chip memory bandwidth to buffer disk data. This is particularly

useful for streaming applications [21, 22] which have little temporal locality. It also

reduces the number of interrupts which has been shown to negatively impact very

large parallel systems [23, 24]. It allows the introduction of simple striped on-chip

multi-disk controllers (without the cost or size of peripheral chipsets). Finally, it is

possible to coordinate disks attached to multiple discrete FPGA devices — again,

6

without depending on the processor. (Again lowering the number of interrupts the

processor sees and avoids wasting memory bandwidth to buffer data between disk

and network subsystems.)

In short, this approach has the potential of increasing the bandwidth from disk to

core, lowering the latency, and reducing the computational load on the processor for

a large number of FPGA devices configured for high-performance computing. In the

case of multi-core chips too, a dedicated filesystem core (managing its own filesystem

metadata buffers) could communicate with applications cores using a low latency

on-chip network and hardware message passing buffers.

Based on this approach, the metrics that we need to investigate in this thesis are

as follows:

• Bandwidth If the filesystem component is migrated into hardware, will this give per-

formance improvements over a software fileystem for solid state drives?

• Resource Utilization Can the improvements in performance justify the cost of extra

on-chip resources dedicated to the Hardware Filesystem and SATA disk controller

cores?

• Design Scalability Can the filesystem core support multiple disks? Will the perfor-

mance of the core scale with multiple disks?

An ancillary benefit of this work is its potential use in checkpointing the system

state for HPC applications. In traditional checkpointing, either the application or in

some cases a library periodically stops the program and writes the application’s crit-

ical data structures to non-volatile storage. The CPU which is running the program

has to spend time in the checkpointing process using a traditional software filesys-

tem. This process could be offloaded to special FPGA-based hardware cores using

the hardware filesystem in the background without needing to stop the application

7

CPU. In case of a CPU crash, the FPGA based filesystem could still recover the data

from the disk.

The rest of this dissertation is organized as follows: Chapter 2 provides background

material to familiarize the reader with the proposed work. A section of related work

in academia and industry is included here. The design goals and implementation of

the Hardware Filesystem and the SATA Host controller core are presented in Chap-

ter 3. The results and the evaluation of the thesis metrics are covered in Chapter 4.

Chapter 5 concludes, summarizing the research.

CHAPTER 2: BACKGROUND

This chapter briefly covers the structure of the Unix Filesystem, the Serial ATA

disk controller protocol and Solid State Drives. We also include a section on related

work.

2.1 Disk Subsystem

Filesystems Filesystems are responsible for managing and organizing files on a

nonvolatile storage medium. Files are composed of bytes and the filesystem is re-

sponsible for implementing byte-addressable files on block-addressable physical me-

dia, such as disk drives. Key functions of a filesystem are: (1) efficiently use the

space available on the disk, (2) efficient run-time performance, and (3) perform ba-

sic file operations like create file, read, write and delete. Of course most filesystems

also provide many more advanced features such as file editing, renaming, user access

permission, and encryption to name a few.

The hardware filesystem implemented is loosely modeled after the well-known

UNIX filesystem (UFS) [25]. The disk layout of the filesystem is shown in Figure 2.1

super block: describes state of the filesystem such as blocksize, filesystem size, num-

ber of files stored and free space information

inode list: list of pointers to data blocks

data blocks: contain actual file data

Super Block Inode List Data Blocks

Figure 2.1: Filesystem layout

9

Data Blocks
 Root

Inode Block

Inode Blocks

direct 0

direct 1

direct 2

direct 3

direct 4

 single

indirect

 double

indirect

Inode Blocks

Figure 2.2: UNIX Inode structure

UFS uses logical blocks of 512 bytes (or larger multiples of 512). Each logical block

may consist of multiple disk sectors. Logical blocks are organized into a filesystem

using an Inode structure that includes file information (such as file length), a small set

of direct pointers to data blocks, and a set of indirect pointers. The indirect pointers

point to logical blocks that consist entirely of pointers. UFS uses a muti-level indexed

block allocation scheme which includes a collection of direct, single indirect, double

indirect, and triple indirect pointers in the Inode. The filesystem layout is as shown

in the Figure 2.2.

10

Serial ATA Normally, the filesystem is designed to be independent of the disk

controller. From the operating system’s perspective, the disk controller is typically

a device driver that is responsible for communicating with the physical media and

responds to block transfer commands from the filesystem. On most systems the

host side disk controller is an ASIC connected to the I/O bus of a processor. It

communicates with the disk side controller using an ATA protocol. For expediency,

the work here focuses on the most common, commodity drives available today: Serial

ATA (SATA). SATA Gen 1 has a transmission speed of 150 MB/s, which was increased

to 300 MB/s in SATA Gen 2. (The SATA Gen 3 specification is available and supports

speeds upto 600 MB/s. However, we do not have access to FPGA devices compatible

with SATA Gen 3 yet.) Serial ATA was designed to overcome a number of limitations

of parallel ATA. The improvements include a four-wire point-to-point high-speed

serial interface that supports one device per controller connection. Each device gets

a dedicated bandwidth and there is no master/slave configuration jumper issues as

with parallel ATA drives. The pincount is reduced from 80 pins to seven pins. Three

ground lines are interspersed between four data lines to prevent crosstalk. Also,

smaller cables result in less clutter, better routing, and improved airflow.

The SATA protocol stack is divided into five layers as shown in Figure 2.3. The

application layer consists of the programming interface to the SATA HBA. Tradition-

ally, a driver in the host processor builds the SATA specific data structures in main

memory. The command layer defines the sequence of Frame Information Structures

(FISs) exchanged between the host and device while executing an ATA command.

The transport layer formats and decomposes FISs, manages flow control and retrans-

mits buffered FISs in case of error. The link layer is responsible for sending and

receiving frames, decoding primitives, handling transmission errors etc.

Several FPGA devices include high-speed serial transceivers. For example, the

Xilinx Virtex-4, Virtex-5 and Virtex-6 device families have members that include

11

Application Layer

Command Layer

Transport Layer

Link Layer

Physical Layer

Figure 2.3: SATA protocol layers

multi-gigabit transceiver cores. These cores can be configured to communicate via

the SATA protocol at the physical layer. There are commercial IP cores available

to do this. However, we have implemented our own SATA Host Bus Adapter which

includes command layer, transport and link layers in the FPGA fabric. The physical

layer provides a high-speed electrical interface between host and device as well as the

logic to encode/decode, serialize/deserialize the data. This capability is provided by

the FPGA transceivers. The link initialization sequence for this layer is implemented

in FPGA logic. Details of this design and can be found in Chapter 3

Solid State Drives Flash-based solid state drives have risen to prominence over

the past few years as high performance data storage devices. The key components

in an SSD are the memory to store data and the controller to manage it. The

controller is typically an embedded processor which provides a bridge to the host

computer and performs functions such as wear leveling and garbage collection. For

this purpose it uses Flash Translation Layer (FTL) algorithms to deal with flash

memory’s idiosyncrasies.

The basic unit of read/write operations in a solid state drive is a 4KB page.

12

However, unlike traditional hard drives, the data on SSD needs to be erased in units of

128KB to 512KB (depending on manufacturer) before they can be rewritten to. This

adds a penalty to the write operation in SSDs. There is also a limit on the number of

write/erase cycles during the lifetime of a flash device. To mitigate these impediments

to the performance and reliability of SSDs, the SSD controller use a Flash Translation

Layer which provides indirection between the logical block addresses from the host

controller and physical location of data on the flash device. This process spreads out

the writes on the device providing wear leveling to increase the life time of the device.

Also, before a block can be erased, the valid data must be relocated by a process

called garbage collection. Modern SSD contollers uses efficient mechanisms for this

process by employing background garbage by using idle time or in parallel with the

host writes.

2.2 Related Work

The implications of fast, cheap non-volatile memories on the structure of operating

systems has been examined in [26, 27]. This supports our argument that faster storage

devices will necessitate re-examining the way storage is accessed by I/O systems and

improvements in I/O subsystem architecture.

The hardware filesystem architecture described in this paper is, to the authors’

knowledge, novel and unique. However, there are several research efforts pursuing

related goals. These efforts are described below.

Work at the University of California, Berkeley describes BORPH’s kernel filesys-

tem layer [28] which enables hardware cores to access disk files by plugging into

the software interface of the operating system via a hardware system call interface.

However, the cores still have to traverse the software stack of the OS. The approach

proposed in our work allows the hardware cores direct access to disk by implementing

the filesystem directly in hardware.

The Reconfigurable parallel disk system implemented in the RDisk project [29]

13

provides data filtering near disks for bioinformatics databases by using a Xilinx Spar-

tan 2 FPGA board. While this is relevant for scan algorithms which read in large

datasets, it does not provide the capabilities of a filesystem such as writing and delet-

ing files. A few other research groups too are using FPGAs with storage devices for

investigating active disks approaches [30, 31].

Using FPGAs to mitigate the I/O bandwidth bottleneck has been of interest

commercially among server vendors such as Netezza (now IBM) [32] and Bluearc (now

Hitachi Data Systems) [33]. Netezza database storage servers have a tight integration

of storage and processing for SQL-type applications by having FPGAs chips in parallel

Snippet Processing Units (SPUs). These provide initial query filtering to reduce the

I/O and network traffic in the system. Bluearc’s Titan 3000 network storage server

uses a hardware accelerated filesystem to speed up the I/O interface.

Well known RAID storage solutions have either hardware or software controller

managing data across multiple disks. However, these solutions operate on a single

I/O channel or bus [34] and still traverse the operating system’s software stack. While

this can be used to improve disk performance, it does not necessarily improve disk

to compute accelerator performance. Moreover, the approach proposed here has the

ability to be directly integrated into the network subsystem of a parallel machine —

allowing multiple I/O channels in a parallel filesystem implementation.

CHAPTER 3: DESIGN

To mitigate risk, the design and implementation of the Hardware Filesystem

(HWFS) was staged. The first stage focused on a software reference design and

RTL simulations to judge the feasibility. This was reported in [35, 36]. The work

here describes a design that synthesizes and runs on an FPGA. It was interfaced

and tested first with a RAM Disk emulation system. Support for multiple disks in

a RAID0 configuration has been provided. The HWFS has also been tested with a

hardware application core across a multi-node FPGA cluster to provide remote disk

access. Finally, a Serial ATA Host Bus Adapter core has been developed and directly

interfaced with HWFS to measure performance with Solid State Drives.

3.1 Hardware Filesystem Core

As mentioned in the previous section, the layout of the UNIX filesystem was the

initial starting point for the HWFS described here. However, UFS was designed to

be general-purpose whereas the aim of this work is more narrowly focused on feeding

streams of data to compute accelerators. This has led to a number of differences.

First, the Hardware Filesystem uses only direct and single indirect pointers in its

inodes Essentially, after the initial pointers in the inode are exhausted, the system

reverts to a linked-list structure for very large files. This layout is shown in Figure 3.1.

A second difference in the Hardware Filesystem is that the file names are merged

into the Super Block along with filesystem metadata such as freelist head and freelist

index. The UFS supports a hierarchy of directories and sub-directories but the HWFS

described here is flat.

A high-level block diagram of the HWFS is shown in Figure 3.2. It consists of

a single large state machine as the control unit and a datapath of metadata buffers.

15

Data Blocks
 Root

Inode Block

Inode Block

direct 0

direct 1

direct 2

direct 3

direct 4

 single

indirect

direct 0

direct 1

 single

indirect

Inode Block

Figure 3.1: HWFS Inode Structure

16

Specifically, a buffer for the Super Block, a buffer for the currently open Inode, and

a Freelist buffer. The HWFS performs basic file operations like open, close, read,

write and delete. Details can be found in [35]. A simple interface consisting of

command, status and data signals has been developed to allow compute accelerators

to directly interface to HWFS. This minimizes complexity typically associated with

I/O connectivity. A filename, operation type file length and command start are the

signals needed from application core for file I/O transactions. HWFS is responsible

for making disk controller block requests for the necessary file operation and delivering

that data to the compute accelerator.

The HWFS core has additional functional improvements over what was reported in

[35]. First is support for the seek operation. HWFS takes in a byte offset in addition

to a Read operation command. Since, the filesystem only does block transactions with

disk, the byte offset is first converted to a block request. The filesystem then uses the

BLOCK SIZE generic to seek to the relevant start byte within the first block fetched.

The file length parameter is used to calculate the number of blocks to fetch after the

start byte from disk. Since HWFS was conceived for large sequential file transfers,

the initial design only used direct and single indirect pointers in its inode blocks. For

seeking to offsets at large distances from the start of the file, this structure involves a

penalty of reading and traversing the inode block linked list to reach the inode block

of interest. To reduce this overhead, we add an additional data structure: a double

indirect inode block which holds a list of single indirect pointers of a file. The double

indirect inode blocks are in turn connected by a linked list and the pointer to the

root double indirect inode is added to the superblock mapping it to the filename. To

support this, an additional buffer was added to HWFS’s datapath which holds the

double indirect inode blocks. During a write file operation, the FSM stores the single

indirect inodes of a file (the pointers that link the original inode block linked list) in

the buffer and writes it out to the disk when full. During a seek operation, this data

17

APPLICATION CORE

INTERFACE

STORAGE

INTERFACE

FILE COMMAND

REQUEST STATUS

BLOCK COMMAND

BLOCK STATUS

DATA OUT WE

DATA IN WE

DATA IN

HARDWARE FILESYSTEM

FINITE STATE MACHINE
WRITE DATA

WRITE DATA WE

SUPER

BLOCK

BUFFER

INODE

BLOCK

BUFFER

FREE

BLOCK

BUFFER

DATA

BLOCK

BUFFER

DATA OUT

DATA OUT

Figure 3.2: Hardware Filesystem Core: Block Diagram

structure is fetched from disk to get the pointer to the inode block of interest and

avoiding the penalty of a sequential traversal of the original inode list. Thus, this

design modification helped to avoid changing HWFS’s original inode data structure

with the only additional FPGA resource overhead for the extra on-chip buffer.

Support for multiple disks has been provided through the use of split transactions

on disk controller. This allows multiple block requests to be issued to the memory

subsystem. An internal counter in the FSM keeps track of outstanding block transac-

tions. Section ?? discusses the multi-disk controller and integration with the HWFS

in more detail.

3.2 Multi-Disk and RAM Disk Support

To further explore the feasibility and functionality of the HWFS core, a synthe-

sized and operational design was required. However, commercial SATA disk controller

cores are expensive and difficult to justify for a feasibility study. To make experiments

— especially experiments with multiple disks — more feasible, a RAM Disk core was

developed.

Figure 3.3 illustrates a high level block diagram of the system using the hardware

18

Hardware

Filesystem

Core

RAID 0

Controller

Core

RAM

Disk

IF

RAM

DISK

RAM

DISK

RAM

Disk

IF

FPGA

Compute

Core

Figure 3.3: System level interface between HWFS and RAM Disk

filesystem and RAM Disk. The processor and computation core are both capable of

interfacing with the hardware filesystem across the system bus. While the HWFS

is targeted for a SATA hard disk, the HWFS core itself is designed with a generic

interface to increase the number of devices that can be potentially interfaced with,

beyond a hard disk. The Xilinx ML-410 FPGA board [37] provides interfaces for

both ATA and SATA disks; however, to focus on the HWFS development the more

complex ATA and SATA interfaces have been replaced with a RAM Disk.

3.2.1 Purpose of the RAM Disk

When presenting a hardware filesystem, it would be assumed the data would be

stored on a hard disk. In the initial tests we have opted to use a specially designed

RAM Disk in place of the SATA hard disk. There are several reasons why this

approach was chosen. First and foremost is the cost of the SATA IP core. While

SATA IP cores are currently for sale [38, 39], it is prohibitively expensive to purchase

outright without any indication that the money would be well spent. Second is the

design complexity of having to both create a hardware filesystem and integrate it

with the SATA core in order to test even the simplest of file operations. Finally,

while SATA may currently be the forerunner in the market, trends may soon shift to

19

alternative disks and interfaces which could cause another re-design of the system.

We have attempted to minimize initial cost and risk by focusing first on the

design of the hardware filesystem. In simulation creating a simple SATA stub, which

mimics some of the simple functionality of the SATA interface, enables a more rapid

development of the hardware filesystem. In hardware there is no SATA stub, instead

a fake disk must be created. External SDRAM presented itself as the ideal candidate

with its easy and well documented interface. This RAM Disk is not targeted to be

competitive with an actual hard disk, nor is it the long term goal of the Hardware

Filesystem to include the RAM Disk. It simply provides an interface to large, off-chip

storage that would allow for better testing of the Hardware Filesystem running on

an actual FPGA. The data stored within the RAM Disk — super, inode, data and

free blocks — are the same as the data that would be stored on that of a SATA disk.

The key differences being the on-chip controller’s interface and the data being stored

in DDR2 instead of a physical disk.

As a result of the RAM Disk interface, we are now able to support any storage

device by bridging the Hardware Filesystem’s interface with the storage device’s in-

terface. This can be seen in Figure 3.4. While the complexity of the interfaces might

be difficult to design, it should not be impossible, merely time consuming. The ad-

vantage of such an approach is with a working hardware filesystem the disk interface

would take focus, reducing the number of unknowns in the design.

Finally, the RAM Disk based system is not aimed for performance. It should

be obvious that the time to access a hard disk (rotational delay + seek time) will

be constant between both a typical operating system’s filesystem and the hardware

filesystem. The RAM Disk system enabled us to measure the efficiency of the hard-

ware filesystem.

20

Addr
S

D

R

A

M

Hardware

File

System

File Name

Command

Data

Status

M

E

M

I

F

Req

Len

Data

Status

Memory

Ctlr

Addr

 Req

 Size

Data

Ack

Valid

Busy

D

I

S

K

S

A

T

A

I

F

Addr

Req

Len

Data

Status

SATA

Ctlr
Data

 Ctrl

Status

System Interface with RAM Disk

Modular Interface with SATA

Figure 3.4: (a) Interface with RAM Disk (b) Modular Interface with SATA

3.2.2 Modular Interface to Disk

Figure 3.4(a) depicts the high level interface between the HWFS and the RAM

Disk. Between the HWFS and the RAM Disk lies the Native Port Interface (NPI) to

provide a custom, direct interface to the memory controller. The memory controller is

a conventional soft IP core which communicates with the external memory. Requests

from the HWFS are in the form of block transfers and it is the NPI which converts

those block transfers into physical memory transfers.

Figure 3.4(b) highlights the flexibility of the HWFS core’s design. Creating a sim-

ple interface between the HWFS and the SATA controller core is all that is necessary

to port the RAM Disk implementation to a SATA implementation. Likewise, for any

additional secondary storage the same process would apply.

3.2.3 Adding Multiple Disk Support

To support multiple disks a Redundant Array of Independent Disks (RAID)[40]

Level 0 controller has been designed and synthesized for the FPGA. RAID 0 stripes

21

data across n number of disks, but does not offer fault-tolerance or parity. RAID 0 was

chosen for this design as a first order proof of concept to investigate the question, how

hard is it to add multiple disk support to the current Hardware Filesystem design?

The initial design of the Hardware Filesystem core only supported access to a single

disk, not a limitation, but instead a design choice to focus on the HWFS’s internal

functionality.

To provide support to multiple disks a handshaking protocol was established be-

tween the HWFS and the RAID 0 controller. Since the number of disks in the RAID

system is unknown to the HWFS, requests should be issued as generically as possible.

The handshaking protocol requires the HWFS to wait for a request acknowledge from

the RAID controller before issuing subsequent requests. Initial designs with a single

disk did not require this handshaking since only one request was in process at any

given moment.

To illustrate the RAID 0, Figure 3.5 shows the Hardware Filesystem connected

to the RAID 0 controller which is connected to two disks — (support for N disks is

provided in the design). The stripe size in this design is one full block, but subblocks

could be just as easily used. The RAID controller has been designed with a generic

interface to allow easy support of any number of disks, limitations on the Xilinx ML-

410 forced physical tests on the FPGA to two disks. More extensive tests of systems

with greater than two disks have been performed and verified in simulation.

For a RAID controller with multiple disks, each read or write transaction could be

to the same disk or to a different disk. For requests to the same disk the transactions

are serialized, requiring the first transaction to complete before the second transaction

can commence. For two requests to two separate disks, both requests can be issued

in parallel. On a read request the RAID controller must also make sure the blocks

are returned in the correct order since it is possible for two concurrent requests to be

returned out of order.

22

Block 0

Disk 0

...

Block 2

Block N

Block 1

Disk 1

...

Block 3

Block N-1

RAID 0 Controller

Hardware File System

Figure 3.5: HWFS connected to the RAID 0 Controller for striping

23

With the successful integration of the RAID 0 controller, it is feasible to integrate

more sophisticated controllers which offer parity, fault-tolerance, and mirroring of

data in future designs. These higher RAID levels would still likely use the same

interface to the HWFS core as the RAID 0, the difference would be the functionality

within the RAID controller core itself.

3.3 Integration with BLAST and AIREN

The Reconfigurable Computing Cluster (RCC) project at UNC Charlotte [18]

is exploring novel parallel computing architectures in High Performance Computing

using FPGAs. While this cluster currently is comprised of 64-nodes (Xilinx ML410

Virtex4), it provides a valuable test bench for investigating the feasibility of using FP-

GAs exclusively as the computing platform to accelerate HPC applications. As part

of this research, an investigation on accelerating and scaling I/O bound streaming

applications was carried out. In particular, an FPGA implementation of the NCBI

BLASTn (Basic Local Alignment Search Tool) algorithm was used. For communi-

cating between FPGA nodes, the RCC cluster uses AIREN (Architecture Indepen-

dent Reconfigurable Network), a custom integrated on-chip and off-chip network [41].

This provides low latency, high bandwidth connectivity of application cores without

involving processors for network transactions. However, for accessing disk drives, ap-

plication hardware cores would have to use a Linux software filesystem running on

a slow embedded PowerPC processor operating at 300 MHz. This puts a limitation

on the performance and scalability of applications implemented on FPGAs. To over-

come this and enable direct access to secondary storage, HWFS was incorporated in

a tightly integrated system with BLAST and AIREN.

To evaluate the scalability of this system, three types of nodes were constructed:

head node, disk node and BLAST nodes. These were configured and tested with

first a tree topology (reported in [42]) and a 4-ary 3-cube torus topology. The head

node, shown in Figure 3.6 (a), consists of the BLAST accelerator cores, the Hardware

24

DDR2

Memory

Ctlr

ALL

Core

0

RAM Disk Interface

Native

Port

IF

Local Link

RX IF

RX

FSM

Local Link

RX IF

TX

FSM

BUS

UART PPC

405

Compact

Flash

Ctlr

TEMAC
(ethernet)

Head

Node

D

i

s

k

N

o

d

e

s

BUS

UART PPC

405

TEMAC
(ethernet)

DDR2

Memory

Ctlr

Compute
Core(s)

HEAD NODE DISK NODE

ALL

Core

Disk 0

ALL

Core

Disk 1

ALL

Core

Disk 2

ALL

Core

Disk 3

R

A

I

D

C

T

L

R

Hardware

Filesystem

Figure 3.6: (a) Head Node with HWFS, BLAST and AIREN (b) Disk Node

Filesystem core, the RAID controller core and the Airen Local Link (ALL) interface.

In addition, it also includes common System-on-Chip (SoC) components (processor,

memory controller, system bus, etc) for a fully running Linux 2.6 kernel on the 300

MHz PowerPC 405 processor. Linux is primarily used to provide MPI support.

3.3.1 HWFS-BLAST Interface

The head node is responsible for initiating the retrieval of the databases from

the HWFS on request by BLAST cores. The NCBI bioinformatics databases are

formatted by HWFS and stored as files on the disk node. A simple direct interface

is used to connect BLAST with HWFS. The HWFS core waits for a start command

from the BLAST core in the idle state of its finite state machine. The BLAST core

initially issues the open operation along with the new command signal to trigger

the HWFS. Once, the database file is opened, HWFS reverts to the idle state. The

BLAST core then issues the read operation, sends a desired database length (in bytes)

and asserts the new command signal. Since the filesystem makes block transactions

to the disk, the length information is first converted into the number of blocks to

fetch for each sequence. The database is streamed in to the on-chip data FIFO and

forwarded to BLAST. After the requested database is fetched, the HWFS issues a

25

done signal to the BLAST core and waits for the next request. On completion of all

read transactions for every sequence of the database, the BLAST core issues a close

command to the HWFS which transitions it to the idle state.

3.3.2 HWFS-RAID-AIREN interface

On the storage interface side, the HWFS-RAID interface described previously re-

mains unchanged. The RAID-RAM Disk interface was split to relocate the RAM

Disk logic to the disk node. A RAID-AIREN interface was created to enable the

HWFS to access disks on remote FPGA nodes. This provides a point-to-point access

to each disk node with 3.2 Gbps bidirectional bandwidth. Figure 3.6 (b) illustrates

the disk node which contains a single bidirectional AIREN Local Link (ALL) net-

work interface to the head node’s RAID controller, and an interface to a RAM Disk

(512 MB per RAM Disk). The filesystem is loaded on each node’s RAM Disk from

CompactFlash when the disk node is powered on and resides there until the system is

shutdown. The initial design was implemented on a single node with two RAM Disks

on local DDR and DDR2 memories. The HWFS-RAID-AIREN integration allowed

testing with 4 and 8 disks. For this work again, RAM Disk was used as a storage

medium in place of conventional disks due to unimplemented SATA disk controllers

at that time. Further details of this work are reported in [43]

3.4 SATA Core

Although the functionality of the hardware filesystem was proven with a RAM

Disk, it was still untested with real disk drives. For accessing non-volatile secondary

storage, a Serial ATA Host Bus Adapter IP core was developed. The core is now open

source and can be found at https://opencores.org/project,sata_controller_

core.

This section highlights our design goals, gives an overview of the SATA core’s

user interface, and then provides the internal details of the design. (By “user” we are

referring to the person designing an FPGA-based application that would like to use

https://opencores.org/project,sata_controller_core
https://opencores.org/project,sata_controller_core

26

the core.)

3.4.1 Design Goals

The SATA core has been designed primarily with the intention of providing users

with an easy-to-use interface and the ability to interface directly to a high-bandwidth,

non-volatile storage system. Commercial SATA IP cores in general keep the command

layer and part of the transport layer (that deals with encoding a command into

a Frame Information Structure) in software [38, 39]. A host processor generally

builds the command FIS in system memory and transfers it to the SATA core via

DMA and FIFOs. This enables flexibility in terms of supporting the full range of

SATA commands. However, to allow FPGA cores to access disks directly, we have

implemented the command layer in hardware and support the minimum subset of

the ATA commands necessary for enabling features, status, reading, and writing

sectors. Last, to support soft processors and operating systems, a bus interface to

the command layer was needed. A block device kernel driver makes the mass storage

available as conventional secondary storage sub-system.

3.4.2 SATA Core Interface and Modules

We have implemented the link, transport and command layers of the Serial ATA

communication protocol in our design. Modern FPGAs have Multi-Gigabit Transceivers

(MGTs) which support a variety of high-speed serial protocols. The Physical Layer

of the SATA protocol is implemented using a wrapper around the Xilinx RocketIO

GTP transceivers [44] in Virtex 5 and GTX transceivers [45] in Virtex 6.

The SATA core, shown in Figure 3.7, provides a simple user interface for reading

and writing to storage devices. A user core sets the start sector address, number of

sectors, and type of request (a read or write). It checks the ready for cmd signal

and triggers the new cmd. Data can be sent/received through a 32-bit interface

with supporting FIFO like handshaking signals (full, empty, write en, read en). The

command done and command failed signals indicate the completion status.

27

COMMAND

 LAYER

 TRANSPORT / LINK LAYER

CRC

CRC

SCRAMBLER
FIS

IF

DESCRAMBLER

OOB

CTRL

SPEED

 NEG

 PHY

 LAYER

NEW CMD

REQ_TYPE

ADDRESS

N_SECTORS

DATA

STATUS

Figure 3.7: Serial ATA Host Bus Adapter Core

The modules in the design are described next, starting from the outermost layers

(application side).

3.4.2.1 Command Layer Module

A subset of the ATA command set (Read DMA Ext, Write DMA Ext, FPDMA

Read, FPDMA Write, Set Features and Identify Device) has been implemented using

an FSM at this layer. The command layer module decodes read/write commands

from the top level entity to issue the appropriate read/write Sector commands to the

transport layer. Each command execution is a sequence of special data structures

called Frame Information Structures (FIS) exchanged between the SATA host and

drive. An example command sequence for Write DMA Ext command is shown in

Figure 3.8

3.4.2.2 Transport Layer Module

The transport layer constructs and decomposes the FISs requested by the com-

mand layer. These deliver command, data, status and control information. An ex-

ample of the Register Host to Device FIS for the Read DMA Ext command is shown

in Table 3.1. The user parameters such as command type, sector address and number

of sectors are encapsulated according to the ATA format. FIS type is indicated by

the Frame Information type field located in byte 0 of first Dword (32 bits) of pay-

28

:Host :Device:Host :Device

H2D Register FIS (0x35)

D2H DMA Activate FIS

H2D Data FIS

D2H Register FIS

Figure 3.8: Write DMA Ext command sequence

Table 3.1: Register H-D FIS for Read DMA Ext
DWORD Byte3 Byte2 Byte1 Byte0

0 Features Command (25h) Interrupt FIS Type (27h)
1 Device LBA High LBA Mid LBA Low
2 Features (exp) LBA High (exp) LBA Mid (exp) LBA Low (exp)
3 Control Reserved Sector Count (exp) Sector Count
4 Reserved Reserved Reserved Reserved

load. The FISs used in our implementation and their characteristics are listed in

(Table 3.2). These act as payloads of a Frame which is transmitted by the link layer.

FIS transmission successes and errors are reported by the device through a Register

Device to Host FIS. The transport layer FSM decodes the FIS and checks for errors

in the ATA status and error fields of the FIS (same as command and feature field in

Table 3.1). The FIS transmit buffer retains a copy of each command FIS (Register

Host to Device) and retransmits it in case of an error. Data FISs which are bigger

in size (maximum of 8196 bytes) are not retained due to cost considerations of the

transmit buffers.

3.4.2.3 Link Layer Module

The link layer is essentially concerned with the framing and delivery of each FIS

(created by the transport layer) by following a frame transmission protocol. For this

purpose, it uses special control words called primitives which are unique patterns

29

Table 3.2: FIS types and characteristics

FIS type ID Size Direction
Register FIS 27H 5 DWs Host to Device
Register FIS 34H 5 DWs Device to Host

DMA Activate 39H 1 DW Device to Host
FPDMA Setup 41H 7 DWs Device to Host
Set Device Bits A1H 2 DWs Device to Host

Data 46H 2049 DWs Bidirectional

defined in the protocol. These are used for managing the flow of a frame as well

as for frame construction. Figure 3.9 depicts the control units and data paths of

the transport and link layer modules which work together to create and control the

delivery of each FIS. The transport layer FSM creates a command FIS (Register

Host to Device) and stores it in the FIS transmit buffer. It then issues a request

to the link layer FSM to process it. The link layer RX and TX FSMs deal with

frame construction and de-construction process. The TX FSM reads the FIS buffer,

calculates a 32-bit CRC (Cyclic Redundancy Check) and appends it at the end of

the frame payload. The next step is to add SOF (Start of Frame) and EOF (End

of Frame) primitives to mark the frame boundaries as shown in Figure 3.10). This

helps the receiver in identifying each FIS from the stream of information on the SATA

link. In order to prevent Electromagnetic Interference (EMI), the frame needs to be

sent through a scrambler circuit. Scrambling is performed by XORing the data to be

transmitted with the output of a linear feedback shift register (LFSR). This process

spreads out the noise over a broader frequency spectrum. However, the primitives are

not subject to scrambling since the data patterns that define each primitive must be

detected by the receiver’s physical layer. Hence, to simplify the implementation, we

first pass the FIS with the appended CRC through the scrambler and then add SOF

and EOF primitives at the output of the transmit FIFO i.e. a mux is used to switch

between the primitive generator and scrambled FIS as shown in Figure 3.9

30

Transport Layer

 Master FSM

Link Layer

 Rx FSM

Rx FIFO

Tx FIFOScrambler

FIS RX

Buffer

FIS TX

Buffer

CRC

start_rx

rx_done

start_tx

tx_done

CRC

De-Scrambler

sata_phy_clklogic_clk

logic_clk sata_phy_clk

Link Layer

 Tx FSM

Primitive

Generator

P

H

Y

S

I

C

A

L

L

A

Y

E

R

Link LayerTransport Layer

C

O

M

M

A

N

D

L

A

Y

E

R

Figure 3.9: SATA Link Layer Module

31

SOF EOFHOLD HOLD CRCFIS FIS

Figure 3.10: SATA Frame structure

Figure 3.11 depicts the frame transmission protocol between the host and de-

vice. Initially, when the SATA link is idle, a stream of SYNC primitives are con-

tinuously transmitted by the host and device. When the host is ready to transmit

a frame, it sends X RDY primitives (transmitter ready). The device responds with

R RDY(receiver ready). Next, the host begins frame transmission by sending the

SOF and FIS to the device. Once the device recognizes a valid frame, it sends R IP

(reception in progress) primitives to the host (Note that the SATA protocol is half

duplex). The host terminates the frame by sending the CRC and an EOF primitive

and waits for a frame verification response from the device by sending WTRM (wait

for frame termination). The device sends an R OK or R ERR to signal successful or

failed frame transfer. The link is returned to the idle state by sending SYNC prim-

itives. On the receive side, the frame from the physical layer is de-constructed and

passed through the de-scrambler. The link layer RX FSM then calculates the CRC

and checks it against the appended CRC. In case of a CRC error during reception or

a transmission error detected by R ERR, the link layer notifies the transport layer

which retransmits the FIS as explained in Subsection 3.4.2.2 Additionally, the link

layer also performs flow control to prevent buffer underflow and overflow conditions

on the transmit and receive interfaces using HOLD and HOLDA primitives.

3.4.2.4 Physical Layer Module

The Hard IP transceivers are responsible for serializing/de-serializing the data as

well as 8bit to 10bit encoding/decoding. However, before a data communication link

can be established the SATA protocol requires that a reset, synchronization and link

initialization process take place through the use of Out-of-Band (OOB) signals. This

is handled by an FSM in FPGA logic. While developing the SATA core, we have used

32

Host Device

Host Device

SYNC SYNC SYNC SYNC SYNC

SYNC SYNC SYNC SYNC SYNC

SYNC SYNC

SYNCSYNC

X_RDY

R_RDY

WTRM

R_IP R_OK

SOF EOFFIS

a. Link Idle

b. Frame Transfer

Figure 3.11: Frame Transmission Sequence

the SATA core link initialization reference design provided by the Xilinx Application

note [46] as a starting point. However, this reference design is compatible with the

GTP transceivers (16 bit data) of the Virtex 5 FPGA. In order to support Virtex 6, we

first generated a GTX wrapper using Xilinx Coregen and configured the transceiver’s

OOB parameters for SATA2. The GTP and GTX transceivers differ in the data path

width (16-bit for GTP and 32-bit for GTX) as well as the ports used for OOB signals

(although the sequence of OOB signals remains the same). Hence, we had to rewrite

the OOB signalling controller state machine and the clocking modules and interface

it to the GTX wrapper.

3.4.3 Native Command Queueing

Native Command queueing (NCQ) is a mechanism for optimizing read and write

operations by queueing up several requests on the drive. This was initially conceived

for hard disks which could internally optimize the order of commands to minimize

drive head movement (seek time). Solid State Drives having multiple flash chips also

stand to benefit from NCQ by using it for concurrently accessing these flash chips.

33

:Host :Device:Host :Device

H2D Register FIS (0x60)

D2H Register FIS

D2H FPDMA Setup FIS

D2H Data FIS

D2H Set Device Bits FIS

Figure 3.12: Read FPDMA command sequence

SATA NCQ supports a maximum queue depth of 32 outstanding commands.

The SATA protocol provides special commands: FPDMA Read and FPDMA

Write for NCQ. A 5-bit tag is added to the command frame (H2D Reg FIS) and sent

along with each queued command. The drive acknowledges that the command has

been enqueued by sending a Device-to-Host Register FIS. At this point, the host is

free to issue more commands to the device. When the device is ready to send or

receive data, it sends a DMA Setup FIS with a tag corresponding to the command

being completed. In case of an FPDMA Read (Figure 3.12), the drive sends the Data

FIS followed by a Set Device Bits FIS to indicate command completion. (This FIS

basically contains a 32-bit bitmap to correspond to each of the 32 NCQ commands).

Multiple sequences of DMA Setup FIS - Data FIS - Set Device Bits FIS are sent by

the device to complete all the enqueued commands. For an FPDMA Write, the drive

sends a DMA Activate FIS after the DMA Setup FIS to notify the host that it is

ready to receive data. The host delivers a Data FIS and the device sends back a Set

Device Bits FIS after completing the write. Again, the above sequence repeats until

all the queued commands are completed.

34

HWFS

S

A

T

A

I

F

 CMD

LAYER

LINK LAYER

 PHY

LAYER

SATA CORE
New Cmd

Req

Length

Data

Status

New Cmd

Cmd Type

Sector Addr

Num Sectors

Data

Status

BlockNum

FIS

 IF

CRC
Scrambler

DeScramblerCRC

File Name

Operation

New Cmd

Status

GTX
Offset

Num Bytes

Figure 3.13: HWFS-SATA system

3.4.4 Linux Block Device Driver

Nowadays, it is common for one or even more microprocessors to be embedded

in an FPGA as either hard cores or soft cores. Among many operating systems ca-

pable of running on an FPGA platform, Linux is arguably the most popular one.

Therefore, besides the ability to directly interface with FPGA-based cores, we also

provide an optimized Linux block device driver that makes our SATA core available

to the operating system. Detailed Linux I/O stack has been covered in [47]. However,

a traditional hard-disk-centric design in Linux I/O stack can not fully leverage the

capability of a SSD mainly due to two reasons [27]. First, some layers of abstraction

are unnecessary such as SCSI emulation for ATA drives. Second, queue schedulers,

which are useful for hard disks, will add CPU load and delays to a SSD-based system.

More aggressive tuning of block device driver to minimize software overheads was re-

ported in [8]. Our device driver uses the existing kernel function called make request

to avoid invoking the queue scheduler. Nor does this block device driver implement

SCSI/ATA emulation. Instead, the driver directly interacts with the command layer

implemented in the SATA core.

3.5 System Integration

The final step was to integrate the Hardware Filesystem and SATA Cores to create

an end-to-end system for evaluating performance with real disks. For this purpose,

an interfacing layer (SATA IF) was created as shown in Figure 3.14. This converts

35

Hardware

Filesystem

Core

RAID 0

Core

SATA

IF

SATA

Core

SATA

Core
SATA

IF

FPGA

Compute

Core

Figure 3.14: HWFS-RAID-SATA system

the file block requests from the HWFS core into sector requests by issuing sector

address, number of sectors and the appropriate read/write command and manages

the flow of data between the cores. (This essentially does the job of a software device

driver layer which translates block commands from a regular software filesystem to

ATA commands.) The HWFS had been already augmented with the ability for split

transactions described in Subsection 3.2.3. With the SATA Core’s support for Native

Command Queueing, the interfacing logic enqueues the commands from HWFS and

sends acknowledgements to HWFS for the respective commands. When the SATA

core is ready to process a new request, it sends out the commands from the queue. It

also makes sure that HWFS receives the requested blocks in the correct order from

the SATA Core. This system minimizes the command processing overhead and helps

in utilizing the available bandwidth from a single SATA channel efficiently.

With the single disk system in place, to test HWFS’s performance scalablity with

multiple SATA disks, the system shown in Figure ?? was built. The RAID controller

described previously was ported and integrated with the SATA IF.

CHAPTER 4: EVALUATION

To establish whether implementing a filesystem directly in hardware provides per-

formance improvements over a software filesystem while utilizing reasonable on-chip

resources, we synthesized the HWFS-SATA core subsystem and conducted experi-

ments first with a RAM Disk on a Xilinx ML410 and then with Solid State Drives

on a Xilinx ML605. Details of the previous simulation experiments are available in

[35, 36]. The experimental setups of the synthesized design, results obtained, analysis

and evaluation of the thesis metrics follows.

4.1 Experimental Setup

Since the design and implementation of HWFS and the supporting infrastructure

was staged, we describe four different experimental setups for measuring efficiency,

bandwidth and comparison with a software filesytem.

4.1.1 Setup 1 : HWFS - RAM Disk on ML-410

The first setup for the system running on the ML-410 builds upon the description

given in Chapter3. A hardware base system was created using Xilinx EDK, consisting

of a processor (PowerPC), system bus, on-chip memory, external memory, and the

HWFS core (100 MHz) with RAM Disk interface. The test begins with the Embedded

CPU initializing the Disk with the empty root filesystem. Once the Disk has been

initialized, the test application exercises HWFS by issuing multiple open, read, write

and delete commands. After the test finishes, the PowerPC reads the RAM Disk to

verify the successful completion of the test.

4.1.2 Setups 2 and 3 : SATA Core and HWFS-SATA on ML605

The transceivers on the ML410-boards are incompatible with the physical layer of

the SATA protocol. Hence, in order to test the functionality and performance of the

37

FPGA

DRAM

MGT : Multi Gigabit Transceiver

MPMC : Multi-port Memory Controller

NPI : Native Port Interface

MBLAZE : Microblaze Embedded CPU

SSD : Solid State Drive

SSD

MBLAZE UART

P

L

B

N

P

I

SATA

CORE
 NPI

DMA Core

M

G

T

M

P

M

C

Figure 4.1: SATA Core Test Setup

SATA core independently as well as the integrated HWFS-SATA system, two different

base systems were created for the ML605 board shown in Figures 4.1 and 4.2 Both

systems include FPGA SOC components like CPU (MicroBlaze), system bus (PLB),

memory, DMA interface and UART. Since the ML605 board itself does not include

SATA connectors, an FPGA Mezzanine Card (FMC XM104 [48]) was attached.

In Setup 2, a test application on the Microblaze issues sector requests to the SATA

core. While the SATA core’s FIFOs could be read and written through the PLB’s

slave register interface, this would not be optimum in terms of performance. Another

option, was to use the Xilinx Central DMA Controller IP which saves processor time,

but still uses the system bus for copying data between system memory and the SATA

core. To test the peak performance of the SATA core, it was necessary to supply

and consume data at a higher rate. Hence, we developed a custom DMA core with

direct access to DDR via high bandwidth Native Port Interface (NPI) to the memory

controller. This enables the use of NPI channel for supplying test data form DDR

while relying on the slower MicroBlaze-PLB interface for command and status. A

38

FPGA

DRAM

MGT : Multi Gigabit Transceiver

MPMC : Multi-port Memory Controller

NPI : Native Port Interface

MBLAZE : Microblaze Embedded CPU

SSD : Solid State Drive

SSD

MBLAZE UART

P

L

B

N

P

I

SATA

CORE

 NPI

DMA

CORE

M

G

T

M

P

M

C HWFS
TEST

CORE

Figure 4.2: HWFS-SATA Test Setup

linux block driver was also added to allow the SATA core to appear as a block device

to the Operating System.

In the third Setup, a workload generating test core was developed to emulate

file I/O requests from FPGA-based applications. This core directly interfaces to

HWFS’s generic application-side interface with FIFOs for data transfer. Filesystem

calls are made by issuing multiple open, read, write and delete commands to HWFS

with sequential and random access patterns. A C test application on the Microblaze

controls the workload generating test core, gathers performance numbers and checks

the completion status. Here again, the DMA channel is used to transfer data from

system memory to the test core.

4.1.3 Setup 4 : CPU - SATA on Linux Server

In order to compare the performance of HWFS with a software filesystem, the

same OCZ SSD was attached to a modern Linux Server. The machine used is a

2.1GHz Quad core AMD Opteron CPU with 16 GB of system memory and an Nvidia

SATA2 Host Bus Adapter chipset.

39

4.2 Results

The HWFS RAM Disk system is first used for measuring efficiency of HWFS and

comparing with ideal disk efficiency achieved in previous simulation experiments.

Next, bandwith numbers of the SATA core and the HWFS-SATA subsystem for se-

quential and random workoads and benefits of Native Command Queueing with sup-

porting analysis are provided. Then, in order to evaluate the thesis metric of Band-

width, we provide a performance comparison of HWFS-SATA with EXT2 filesystem

on a modern Linux Server. The scalability of HWFS with multiple disks using the

RAID controller is also shown. Lastly, sizes of the cores in terms of FPGA resource

count are measured and reported to evaluate the metric of size.

4.2.1 Performance

4.2.1.1 HWFS Efficiency

To evaluate the amount of overhead induced by the filesystem itself for metadata

operations, the execution times of sequential read and write operations were measured

with single and two RAM Disks. For comparison with an ideal disk (zero delay), the

simulation efficiency plot is shown (4.3). The filesystem’s efficiency was computed as

the ratio of the time taken to transfer raw data blocks of a file between the HWFS

and disk to the total transfer time with the filesystem’s processing overhead.

eff =
raw block transfer time

filesystem block transfer time

raw block transfer time =
file size x clock cycle time

bytes per clock cycle

The overhead includes the time taken to read the Super Block, find a file name

match, get its root inode block (open file operation), read the inode blocks of the file

(read file operation) and read/write free blocks and inode blocks (write file operation).

Figure 4.3 shows a plot of the sequential read and write efficiencies for 64 B, 512 B

40

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100

E
ff
ic

ie
n
c
y

File Size (KB)

READ/WRITE Efficiency in Simulation

Ideal
Read Efficiency (BlockSize 64B)

Read Efficiency (BlockSize 256B)
Read Efficiency (BlockSize 512B)

Write Efficiency (BlockSize 64B)
Write Efficiency (BlockSize 256B)
Write Efficiency (BlockSize 512B)

Figure 4.3: HWFS Sequential Read/Write Efficiency in simulation

and 1024 B sized blocks plotted against different file sizes. It is observed that for

small files (1 KB to 10 KB) the efficiency is below 80% . It increases to 95% for 100

KB files and saturates for very large files (shown by a flattening of the plot for file

sizes beyond 100 KB). This is due to the overhead having little effect on the execution

times for large files thereby achieving efficient run-time performance. (To emphasize

the transition in efficiency, the x-axis is restricted to 250 KB in the Figure).

Single RAM Disk Results Table 4.1 gives the execution measurements for

read/write operations with a single RAM Disk synthesized and run in hardware.

Unlike the simulation tests, the RAM Disk is not an ideal disk and the execution

times increase accordingly. For a real SATA disk these numbers would again increase;

however, the importance of this test is to show that running in actual hardware

produces similar trends to simulation when taking into account the storage media’s

41

Table 4.1: HWFS Read/Write Execution Time with single RAM Disk
Read Write

File Size (Bytes) 64 B 512 B 1024 B 64 B 512 B 1024 B
1 KB 9.28 µs 12.54 µs 19.62 µs 9.4 µs 28.3 µs 51.77 µs
10 KB 73.59 µs 45.8 µs 51.28 µs 52.3 µs 59.55 µs 83.02 µs
100 KB 709.84 µs 380.97 µs 366.32 µs 483 µs 391.56 µs 396.65 µs
1 MB 7.18 ms 3.76 ms 3.55 ms 4.9 ms 3.57 ms 3.54 ms
10 MB 71.8 ms 37.44 ms 35.35 ms 48.97 ms 35.48 ms 34.82 ms
100 MB 717.93 ms 374.33 ms 353.32 ms 489.65 ms 354.53 ms 347.69 ms

Table 4.2: HWFS Execution time for a 1 KB file, 64B block size
Operation Total HWFS RAMs

Write 9.29 µs 5.54 µs 3.75 µs
Read 9.16 µs 4.32 µs 4.84 µs
Delete 5.27 µs 2.66 µs 2.61 µs

access times.

Table 4.2 is presented to highlight the time taken by the filesystem to process data

in comparison with the RAM Disk memory transaction time. For a write operation

the execution time of the Hardware Filesystem is 5.54 µs compared to the simulation

time of 5.47 µs (refer [35, 36]). This shows that the Hardware Filesystem is able to

maintain the same performance with a RAM Disk as with the simulation’s ideal disk.

The same holds true for the read operation.

The efficiency of the Hardware Filesystem with a single RAM Disk is shown in

Figure 4.4. The HWFS stalls until both the block requests to and from memory are

satisfied. Due to this added memory transaction latency, the efficieny graph shows a

dip in performance as compared to the simulation efficiency in Figure 4.3.

Multiple RAM Disks Results The split transactions implemented for multi-

disk support provides an improvement over the single disk efficiency. Test results

and the efficiency graph for read/write operations over two RAM Disks are shown in

Table 4.3 and Figure 4.5.

For 64 byte blocks, the memory channel bandwidth is underutilized. Ideal trans-

actions would be bursts of 128 bytes or larger. It is observed from Figure ??, that

42

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100

E
ff
ic

ie
n
c
y

File Size (KB)

Ideal
Read Efficiency (BlockSize 64B)

Read Efficiency (BlockSize 512B)
Read Efficiency (BlockSize 1024B)

Write Efficiency (BlockSize 64B)
Write Efficiency (BlockSize 512B)

Write Efficiency (BlockSize 1024B)

Figure 4.4: HWFS Sequential Read/Write Efficiency with single RAM Disk

Table 4.3: HWFS Read/Write Execution Time with two RAM Disks
Read Write

File Size (Bytes) 64 B 512 B 1024 B 64 B 512 B 1024 B
1 KB 8.4 µs 10.69 µs 17.05 µs 13.08 µs 21.87 µs 36.86 µs
10 KB 66.17 µs 34.47 µs 40.48 µs 78.33 µs 50.85 µs 62.87 µs
100 KB 636.63 µs 274.35 µs 274.45 µs 734.69 µs 344.09 µs 321.7 µs
1 MB 6.4 ms 2.75 ms 2.69 ms 7.4 ms 3.37 ms 3.02 ms
10 MB 64.3 ms 27.47 ms 26.7 ms 74.7 ms 33.54 ms 29.86 ms
100 MB 643.28 ms 274.68 ms 267.84 ms 746.8 ms 335.3 ms 298.38 ms

43

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100

E
ff
ic

ie
n
c
y

File Size (KB)

Ideal
Read Efficiency (BlockSize 64B)

Read Efficiency (BlockSize 512B)
Read Efficiency (BlockSize 1024B)

Write Efficiency (BlockSize 64B)
Write Efficiency (BlockSize 512B)

Write Efficiency (BlockSize 1024B)

Figure 4.5: HWFS Sequential Read/Write Efficiency with two RAM Disks

the efficiency increases with the size of the block for the same file size. This is due to

the improvement in the data transfer bandwidth with the HWFS block size. Using

block sizes larger than 1024 B increases the BRAM usage for the core’s metadata

buffers without providing any substantial improvement in efficiency. Adding multiple

disk support allowed two transactions to be processed in parallel from each memory

channel, increasing overall efficiency. Given these trade-offs, 1024 B blocks prove to

be ideal for the RAM Disk system.

4.2.1.2 SATA Core Bandwidth

In this sub-section, we report raw bandwidth numbers of the SATA host bus

adapter core with both a traditional Winchester style Hard Disk (160GB Western

Digital Caviar Blue) as well as flash-based Solid State Drives (64GB OCZ Agility 2).

This gives us an indication about the overhead induced by the SATA core itself and

44

 0

 50

 100

 150

 200

 250

 300

641048 4096 8192 16384

B
a
n
d
w

id
th

 (
M

B
/s

)

Data Size (KB)

SATA Core Sequential Read/Write Bandwidth with Hard Disks

Ideal Bandwidth
Read Bandwidth
Write Bandwidth

Figure 4.6: SATA Sequential Read/Write Bandwidth with Hard Disk

the peak bandwidth capabilities of the storage devices and the SATA protocol. Setup

2 (4.1.2) was used and counters were introduced in the HDL source code to collect the

performance numbers. The SATA core is running at a 75 MHz clock with a 32-bit

data path which gives a theoretical bandwidth of 300 MB/s (SATA Generation 2

limit).

Figure 4.6 shows the bandwith of the SATA core with traditional hard disks. A

maximum read/write bandwidth of ≈ 107 MB/s (Figure 4.6) is obtained for sequential

data transfer sizes of 32 MB and beyond. In this case, the peak bandwidth capabilities

of the SATA2 protocol (300 MB/s) are underutilized. This is due to the limitation of

mechanical disk drives.

Solid state drives on the other hand have no moving parts and can achieve re-

duced latencies and increased bandwidth. The SATA Gen 2 OCZ SSDs have a rated

peak performance of 285 MB/s for reads and 275 MB/s for writes. Faster SSDs com-

patible with the 6 Gb/s (600 MB/s) SATA Gen 3 protocol are available but current

45

Xilinx devices (up to Virtex 6) only support the SATA2 protocol (300 MB/s) on

the transceivers. Hence the OCZ SSDs are currently sufficient for our tests. Fig-

ure 4.7 shows the bandwidth of the SATA core with SSDs for transfer sizes between

4KB to 8MB (we tested upto 1GB in practice). With the low latency of SSDs, the

core achieves performance close to the rated peak at 1024 KB. The performance for

writes is better than reads for transfer sizes between 4KB-512KB. There are three

reasons for this. Firstly, although flash memory has a limitation of erase-before-write,

SSDs employ a sophisticated flash translation layer (FTL). FTLs uses log structured

approaches where a data is only appended to a clean block for write requests with

garbage collection in the background (akin to automatic defragmentation on idle

disks) [49, 50]. This avoids degrading the write performance on SSDs. Secondly,

most SSDs also employ RAM caches to buffer data which improves the write latency

[51]. Also, the flash controller on the OCZ SSD used in these tests adopts a write com-

pression technique [52], which reduces the amount of data written to the flash. The

performance saturates with a peak of 279 MB/s for reads and 276 MB/s for writes be-

yond 8 MB transfer sizes. This shows that the SATA core by itself induces minimum

overhead and efficiently utlilizes the available disk and SATA channel bandwidth.

Next, we tested the random read/write performance of the core and the benefits

of using NCQ on an SSD. The basic unit of read/write operations on a flash SSD

is a 4KB page (compared to a 512 byte sector on a hard disk). Also, a filesystem’s

standard block size is 4KB. Thus, 4KB random read/write results are an important

metric for getting the worst case performance of an SSD. One must note here that

the SATA protocol which was originally intended for traditional hard disks still uses

sector addresses which refer to a 512 byte region. If the sector requests are not

aligned to the page boundaries of a flash device, the SSD device processor ends up

reading/writing across multiple flash pages which reduces performance. In our tests,

the sector offsets were aligned to the page boundaries. To exploit full potential of

46

 50

 100

 150

 200

 250

 300

4 8 16 32 64 128
256

512
1024

2048

4096

8192

B
a
n
d
w

id
th

 (
M

B
/s

)

Data Size (KB)

SATA Core Sequential Read/Write Bandwidth with SSD

Ideal Bandwidth
Read Bandwidth
Write Bandwidth

Figure 4.7: SATA Sequential Read/Write Bandwidth with SSD

NCQ, we also ensured that the SATA core had enough commands in its queue to

issue to the drive.

We use 4K IOPS as a metric to report random read/write performance of the

SATA core and SSD. This specifies how many 4 KB operations the drive could handle

per second with each block (page) being read or written to a random position.

IOPS =
bytes per second

data size in bytes

Figure 4.8 shows random read and write IOPS vs queue depth. The read IOPS

scales almost linearly with the queue depth. For 4KB random writes tested with the

OCZ SSD, it was observed that the device would send DMA Setup FISs (indicating

that it is ready to receive data from host) after receiving the first three commands

from the host. The SATA core then has to send the data associated with the currently

enqueued commands before sending the 4th command request. Hence the random

47

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 4 8 16 32

IO
P

S

Queue Depth

Read
Write

Figure 4.8: SATA 4K Random Read/Write IOPS

write IOPS saturates beyond a queue depth of four. The OCZ Agility 2 60 GB SSD

has a rated 4KB random write performance of 10,000 IOPS, and the SandForce SF-

1200 processor in these drives has 30,000 IOPS for 4KB reads and writes, but our

SATA core exceeds both these published specs reaching a maximum of 50,337 IOPS

for writes and 44,366 IOPS for reads at a queue depth of 32 .

4.2.1.3 HWFS-SATA Bandwidth

The HWFS-SATA subsystem was tested with filesystem block sizes ranging from

4KB to 16 KB. The SATA Core was configured with support for Native Command

Queueing. Due to the limited performance achieved by the SATA Core itself with

mechanical hard disks (Subsection 4.2.1.2), we have used SSDs to report all measure-

ments in this subsection using Setup 3 (4.1.2).

Sequential Workload For sequential workload evaluation of the HWFS-SATA

system, file sizes of 1GB were used. The execution time for reading and writing files

were measured to calculate Bandwidth. (The time to open and close a file, which

includes operations such as reading and writing the Superblock, has been taken into

48

account in these measurements). With a block size of 4 KB and no queuing support

on SATA core (QD1), peak throughputs of 72 MB/s for Read and 96 MB/s for Writes

are obtained at a file size of 1 MB as shown in Figure 4.9. From previous results shown

in Figure 4.7, it was observed that for a 1 MB data transfer size the raw performance

of the SATA Core is close to the rated peak of the device. With the HWFS-SATA

system, although the file size is 1MB, the HWFS issues request in units of 4KB blocks.

Also, even though the HWFS is capable of issuing multiple requests, the SATA core

services one request at a time. Due to these two factors, the SATA channel bandwidth

is underutilized. Increasing the queue depth, allows the SATA core to process and

service multiple requests from HWFS. These requests are in turn enqueued and issued

by the SATA core to the disk side controller which allows for efficient utlization of

the single SATA channel. With 32 commands enqueued, this system provides a

read bandwidth of 170 MB/s and write bandwdith of 181 MB/s. As described in

Subsection 4.2.1.2), the write performance scales and saturates quicker than the read

performance due to the SSD controller and device characteristics. (Similar trend is

observed with the raw performance of SATA core system).

Figure 4.10 and Figure 4.11 show the performance improvements obtained by

increasing the filesystem block sizes to 8KB and 16 KB along with queueing support

from the SATA core. Bigger block sizes increases the data transfer rate of the system.

For the base case without queueing, the read/write performance saturates at 112

MB/s and 148 MB/s respectively with 8KB blocks. With 16 KB blocks, this increases

to 152 MB/s for reads and 190 MB/s for writes. With a best case configuration of

16 commands enqueued and a block size of 16 KB, the bandwidth of the system

reaches a peak of 241 MB/s for reads and 219 MB/s on writes. This amounts to 85%

of the peak read and 80% of the peak write performance of the SSD. Although the

standard block size for most software filesystems is 4KB most HPC filesystems support

bigger blocks. Hence using 16 KB block sizes is reasonable, given the performance

49

 0

 50

 100

 150

 200

 250

 300

16 100 1024 10240 102400

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (KB)

Ideal Bandwidth

Read QD1

Write QD1

Read QD4

Write QD4

Read QD16

Write QD16

Read QD32

Write QD32

Figure 4.9: HWFS-SATA Sequential Read/Write Bandwidth, 4 KB Blocks

50

 0

 50

 100

 150

 200

 250

 300

16 100 1024 10240 102400

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (KB)

Ideal Bandwidth

Read QD1

Write QD1

Read QD4

Write QD4

Read QD16

Write QD16

Read QD32

Write QD32

Figure 4.10: HWFS-SATA Sequential Read/Write Bandwidth, 8 KB Blocks

improvements obtained. In Subsection 4.2.1.2), the additional FPGA resource cost

associated with supporting bigger block sizes is shown.

Random Workload The workload generator core was then configured for random

read/writes. The random workloads use request sizes ranging from 4KB to 128 KB

in a 1 GB file seeking to random offsets after each request. Figure 4.12 depicts

the random read and random write bandwidth with varying request sizes for 4KB

filesystem blocks.

Unlike hard disks, SSDs do not suffer from expensive disk head seeks and have

almost uniform random access latencies. To take full advantage of flash memory’s fast

random access performance it was improtant to minimize filesystem’s seek overhead.

The design enhancement to HWFS for the Seek operation described in Section 3.1

clearly benefits the system. For a 4KB block size, the HWFS Inode block holds 255

51

 0

 50

 100

 150

 200

 250

 300

16 100 1024 10240 102400

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (KB)

Ideal Bandwidth

Read QD1

Write QD1

Read QD4

Write QD4

Read QD16

Write QD16

Read QD32

Write QD32

Figure 4.11: HWFS-SATA Sequential Read/Write Bandwidth, 16 KB Blocks

52

 0

 50

 100

 150

 200

 250

 300

16 32 64 128

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (KB)

HWFS-SATA Core Bandwidth with single SSD: 4KB BlockSize

Ideal Bandwidth

Random Read

Random Write

Figure 4.12: HWFS-SATA Random Read/Write Bandwidth

direct data block pointers (and a single indirect pointer), allowing it a seek space

of 4 MB per Inode block. With an additional fetch of a file’s double indirect Inode

block (which holds a list of all single indirect pointers of a file) from disk, HWFS

can seek anywhere within a 1GB file space with a single level of indirection. The

random read/write performance of the system comes close to the sequential workload

performance for small files with the only additional overhead of calculating block

offsets from byte offsets.

4.2.1.4 Comparison with a Software Filesystem

In order to compare the Hardware Filesystem’s performance to a Software Filesys-

tem running on a CPU, Setup 4 (4.1.3) was used. We first used the Linux utility dd

on the raw block device (no filesystem) with a request size of 1024KB over a 1 GB

transfer and obtained a peak write performance of 174 MB/s and a peak read perfor-

mance of 197 MB/s. For the same request size, the SATA core achieves performance

close to the SSD’s rated peak (4.2.1.2). This suggests that the Operating System

53

introduces overhead even during raw block access. Next, the SSD block device was

formatted with the Linux Ext2 filesystem. A benchmarking tool, fio [53] was run on

this system for performance measurements with Ext2. This has the ability to use the

Linux asynchronous I/O engine libaio, spawn multiple processes for I/O transfers

and generate sequential and random workloads. We used fio’s direct flag to bypass

the operating system’s buffer cache and noop scheduler on the block device.

Table 4.4 provides a bandwidth comparison of the Ext2-CPU-SSD system to our

HWFS-SATA-SSD solution. For sequential workloads, both systems performed 1

GB file reads and writes. HWFS was configured with a 16 KB block size with a

maximum queue depth of 32 on the SATA core. HWFS performs better than the

CPU on both sequential reads and writes despite running at a much slower clock

frequency. The performance advantage is significant for writes (more than 2x). For

random workloads, a 64 KB request size was used on both systems seeking over a 1

GB file. Again, HWFS outperforms the CPU on random reads and writes. The SATA

protocol provides support for Native Command Queueing which has the potential of

benefitting SSDs through concurrent accesses to flash chips. HWFS with a tightly

coupled SATA core makes optimum use of this concurrency, whereas the latency of

the Operating System’s software stack prevents exploiting the full potential of SSDs.

We also used Setup 2 to measure the SATA Core’s performance with an Ext2

filesystem running on Microblaze. A sequential read and write bandwidth of 22.15

MB/s and 13.41 MB/s was obtained. Such a significant underutilization compared to

the HWFS-SATA system can be attributed to the low frequency of MicroBlaze (100

MHz) as well as the overhead of the Linux software stack.

The positive results obtained from the experiments conducted successfully answers

the following thesis question: If the filesystem component is migrated into hardware, will

this give performance improvements over a software fileystem for solid state drives?

54

Workload Microblaze-Ext2 Opteron-Ext2 HWFS HWFS Speedup vs
100 MHz 2.1 GHz 75 MHz Microblaze Opteron

Seq Read 22.15 187.62 241.20 10.89× 1.29×
(MB/s)
Seq Write 13.41 102.16 219.85 16.39× 2.15×
(MB/s)
Rnd Read 11.37 88.19 129.60 11.40× 1.47×
(MB/s)
Rnd Write 8.56 64.62 136.18 15.90× 2.10×
(MB/s)

Table 4.4: HWFS-SATA vs Ext2 on CPU : Speedup

 0

 50

 100

 150

 200

 250

 300

SeqRead SeqWrite RndRead RndWrite

B
a
n

d
w

id
th

 M
B

/s

Workload

HWFS vs CPU performance comparison

HWFS
Opteron

Microblaze

Figure 4.13: HWFS-SATA vs CPU: Bandwidth

55

4.2.2 Scalability with Multiple Disks using RAID

In order to check the performance scalability of HWFS with muliple SSDs, we

measured bandwidth of the HWFS system with a RAID controller and two SATA

cores connected to two SSDs. In this system, both the SATA cores run at 75 MHz,

each with 32-bit data paths. HWFS runs at 150 MHz with a 32-bit data path which

gives the system a theoretical peak of 600 MB/s. The RAID controller core uses

FIFOs for crossing between the two clock domains.

Figure 4.14, shows the performance comparison of the two SSD system with a

single SSD system. HWFS has been configured with 4 KB, 8 KB and 16 KB block

sizes and a maximum queue depth of 32 for these tests. The bandwidth of the system

scales almost linearly with two SSDs reaching a peak of 430.56 MB/s on sequential

reads (1.78x over 1 Disk System) and 383.29 MB/s (1.73x over 1 Disk System) on

sequential writes for 16 KB blocksizes.

Although the ML605 board has 8 transceivers available for SATA on its High

Pin Count (HPC) interface, the FMC connector that we used provides access to

only two. Hence, the tests were limited to two disks. Even if the infrastructure

was available for building a system with four disks, scaling the system performance

beyond the theoretical peak of 600 MB/s would involve clocking HWFS at a higher

frequency (more than 150 MHz). The HWFS-RAID performance with multiple disks

is limited by the clock frequency of HWFS. Hence, this investigation concludes that

the performance of the system scales upto two SSDs.

These results successfully answer the following thesis questions: Can the filesystem

core support multiple disks? Will the performance of the core scale with multiple disks?

4.2.3 Size

The HWFS, SATA and interfacing logic were synthesized using the Xilinx Syn-

thesis Tool (XST) available in the Xilinx ISE design suite, version 12.2, for the tar-

get device XC6VLX240T from the Virtex-6 family. This FPGA has 150,720 LUTs,

56

 0

 100

 200

 300

 400

 500

 600

16 100 1024 10240 102400

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (KB)

Ideal Bandwidth

1 Disk Seq Read: 4KB Blocks

1 Disk Seq Write: 4KB Blocks

1 Disk Seq Read: 8KB Blocks

1 Disk Seq Write: 8KB Blocks

1 Disk Seq Read: 16KB Blocks

1 Disk Seq Write: 16KB Blocks

2 Disk Seq Read: 4KB

2 Disk Seq Write: 4KB

2 Disk Seq Read: 8KB

2 Disk Seq Write: 8KB

2 Disk Seq Read: 16KB

2 Disk Seq Write:16KB

Figure 4.14: HWFS-SATA Bandwidth with two SSDs

57

Table 4.5: HWFS resource utilization, synthesized for XC6VLX240T
Block Size LUTs F/Fs BRAMs

4 KB 2587 636 6
8 KB 2554 619 9
16 KB 2601 623 15

301,440 Flip/Flops, 416 BRAMs and 20 transceivers.

Table 4.5 shows the resource utilization statistics of HWFS for different block

sizes. Since the on-chip metadata buffers for super block, inode block, freelist block

and double indirect inode block are mapped onto BRAMs, the logic utilization (LUT)

is independent of the block size. A slight variation in LUT count is observed due to the

BRAM buffer’s address width variations and the synthesis tool’s speed optimization

efforts.

Using a block size of 16 KB with queueing support gives optimum performance

for sequential workloads in our system. This entails an increase in the BRAM usage

but it is still within 4% of the devices BRAMs. Additionally, we have restricted our

superblock which holds filename-inode mappings to 4 KB making it independent of

the block size. This would support 240 filename-inode pairs, sufficient for a small

number of large files.

Table 4.6 shows the size of HWFS, SATA and interfacing logic for a 16KB Block

Size. The total logic utilization of the system is a modest 2.8%. The SATA core’s

FIS buffers and frame transmit-receive FIFOs are mapped onto the dedicated on-chip

Block RAMs occupying three BRAMs. The SATA interfacing logic uses an additional

two BRAMs for buffering and flow control between HWFS and SATA cores. The total

BRAM usage for the system is still less than 5% of the device. A single transceiver is

used for the physical layer of SATA. To provide a frame of reference for these results,

the microblaze embedded processor running at 100 MHz takes up 4600 LUTs (and

3541 F/Fs) which is more than the LUT count of HWFS, SATA and interfacing logic

combined. A high end processor would consume even more resources.

58

Table 4.6: HWFS-SATA resource utilization, synthesized for XC6VLX240T
Resources HWFS SATA SATA IF HWFS+SATA+SATA IF % Device

LUTs 2601 1,334 290 4225 2.8%
F/Fs 623 894 328 1845 0.6%

BRAMs 15 3 2 20 4.8%
MGT 0 1 0 1 5%

The small size of the HWFS-SATA system validates our thesis metric of resource

efficiency and answers the following thesis question positively: Can the improvements in

performance justify the cost of extra on-chip resources dedicated to the Hardware Filesystem

and SATA disk controller cores?

CHAPTER 5: CONCLUSION

Faster non-volatile memories like Solid State Drives promise I/O performance im-

provements. However, the traditional operating system stack prevents exploiting their

full potential. In order to answer the thesis question ’Will migrating the filesystem

into a dedicated hardware core improve performance over software approaches?’, a

Hardware Filesystem (HWFS) was designed and implemented on an FPGA with sup-

port for the fundamental filesystem operations: open, read, write, delete and seek. To

minimize risk, a RAM Disk was used initially for testing the filesystem and measuring

efficiency. Subsequently, support for split transactions and striping across multiple

disks was added to HWFS. To measure performance with SSDs, a SATA Host Bus

Adapter core was designed with the ability to directly interface with other IP cores.

This has been realeased as an open source project.

The HWFS-SATA system was evaluated with sequential and random workloads

to measure bandwidth. HWFS makes optimum use of the SATA core’s support

for Native Command Queueing achieving 85% of peak read and 80% peak write

performance of the SSD for sequential workloads. Comparison with Linux’s Ext2

filesystem reveals that HWFS provides a performance improvement of 10.89× for

sequential reads, 16.39× for sequential writes, 11.4× for random reads and 15.9×

for random writes over a microblaze processor running at 100 MHz. Compared to

a 2.1 GHz AMD Opteron CPU with Ext2, HWFS achieves a speedup of 1.29× for

sequential reads, 2.15× for sequential writes, 1.47× for random reads and 2.1× for

random writes. The system is also resource efficient consuming less than 3% of logic

and 5% of the Block RAMs of a Xilinx Virtex-6 chip.

In short, the Hardware Filesystem and supporting infrastructure provides low la-

60

tency, high bandwidth access to fast non-volatile storage and performs significantly

better over traditional software filesytems. Moreover, with current non-volatile stor-

age bandwidth trends and the relatively flat gains in processor frequency, it seems the

overhead lost to software will likely increase over time with traditional approaches.

61

REFERENCES

[1] A. M. Caulfield, L. M. Grupp, and S. Swanson, “Gordon: using flash
memory to build fast, power-efficient clusters for data-intensive applications,”
in Proceeding of the 14th international conference on Architectural support
for programming languages and operating systems, ser. ASPLOS ’09.
New York, NY, USA: ACM, 2009, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/1508244.1508270

[2] I. Koltsidas and S. D. Viglas, “Flashing up the storage layer,” Proc.
VLDB Endow., vol. 1, pp. 514–525, August 2008. [Online]. Available:
http://dx.doi.org/10.1145/1453856.1453913

[3] D. Roberts, T. Kgil, and T. Mudge, “Integrating nand flash devices onto
servers,” Commun. ACM, vol. 52, pp. 98–103, April 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498791

[4] G. Burr, M. Breitwisch, M. Franceschini, D. Garetto, K. Kailash Gopalakrishnan,
B. Jackson, B. Kurdi, C. Lam, L. Lastras, A. Padilla, B. Rajendran, S. Raoux,
and R. Shenoy, “Phase change memory technology,” Journal of Vacuum Science
and Technology B, vol. 28, no. 2, pp. 223–262, March 2010.

[5] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Ya-
mada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano, “A novel
nonvolatile memory with spin torque transfer magnetization switching: spin-
ram,” in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE Inter-
national, dec. 2005, pp. 459 –462.

[6] R. F. Freitas and W. W. Wilcke, “Storage-class memory: the next storage
system technology,” IBM J. Res. Dev., vol. 52, pp. 439–447, July 2008. [Online].
Available: http://dx.doi.org/10.1147/rd.524.0439

[7] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-class
memory,” IBM J. Res. Dev., vol. 52, pp. 449–464, July 2008. [Online]. Available:
http://dx.doi.org/10.1147/rd.524.0449

[8] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swanson,
“Moneta: A high-performance storage array architecture for next-generation,
non-volatile memories,” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’43. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 385–395. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2010.33

[9] Tilera, “Tilepro64 processor,” uRL: http://www.tilera.com/products/
processors/TILEPRO64.

http://doi.acm.org/10.1145/1508244.1508270
http://dx.doi.org/10.1145/1453856.1453913
http://doi.acm.org/10.1145/1498765.1498791
http://dx.doi.org/10.1147/rd.524.0439
http://dx.doi.org/10.1147/rd.524.0449
http://dx.doi.org/10.1109/MICRO.2010.33
http://www.tilera.com/products/processors/TILEPRO64
http://www.tilera.com/products/processors/TILEPRO64

62

[10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-
ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada,
S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege,
J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson, “A 48-core ia-32
message-passing processor with dvfs in 45nm cmos,” in Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2010 IEEE International, feb. 2010,
pp. 108 –109.

[11] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-
tina, C.-C. Miao, J. Brown, and A. Agarwal, “On-chip interconnection architec-
ture of the tile processor,” Micro, IEEE, vol. 27, no. 5, pp. 15 –31, sept.-oct.
2007.

[12] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
os architecture for scalable multicore systems,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, ser. SOSP
’09. New York, NY, USA: ACM, 2009, pp. 29–44. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629579

[13] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the
case for a scalable operating system for multicores,” SIGOPS Oper.
Syst. Rev., vol. 43, pp. 76–85, April 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1531793.1531805

[14] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey:
an operating system for many cores,” in Proceedings of the 8th USENIX
conference on Operating systems design and implementation, ser. OSDI’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 43–57. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855745

[15] A. Belay, D. Wentzlaff, and A. Agarwal, “Vote the os off your
core,” Computer Science and Artificial Intelligence Lab (CSAIL), MIT,
Tech. Rep. MIT-CSAIL-TR-2011-035, 2011. [Online]. Available: http:
//dspace.mit.edu/handle/1721.1/64977

[16] D. Nellans, R. Balasubramonian, and E. Brunv, “A case for increased operating
system support in chip multiprocessors,” in Proceedings of the 2nd IBM Watson
Conference on Interaction between Architecture, Circuits and Compilers, 2005.

[17] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar, “Using
asymmetric single-isa cmps to save energy on operating systems,” Micro, IEEE,
vol. 28, no. 3, pp. 26 –41, may-june 2008.

[18] R. Sass, W. V. Kritikos, A. G. Schmidt, S. Beeravolu, P. Beeraka, K. Datta,
D. Andrews, R. Miller, and D. S. Jr., “Reconfigurable computing cluster (rcc)

http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1531793.1531805
http://doi.acm.org/10.1145/1531793.1531805
http://dl.acm.org/citation.cfm?id=1855741.1855745
http://dspace.mit.edu/handle/1721.1/64977
http://dspace.mit.edu/handle/1721.1/64977

63

project: Investigating the feasibility of FPGA-based petascale computing,”
in FCCM ’07: Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’07). Washington, DC,
USA: IEEE Computer Society, 2007, pp. 127–138.

[19] C. Pedraza, E. Castillo, J. Castillo, C. Camarero, J. L. Bosque, J. I. Martinez,
and R. Menendez, “Cluster Architecture Based on Low Cost Reconfigurable
Hardware,” in Proceedings of the 2008 International Symposium on Field Pro-
grammable Logic and Applications, Sep 2008.

[20] M. Saldana, E. Ramalho, and P. Chow, “A Message-Passing Hardware/Software
Co-simulation Environment to Aid in Reconfigurable Computing Design Using
TMD-MPI,” in Proceedings of the 2008 International Conference on Reconfig-
urable Computing and FPGAs, Dec 2008.

[21] S. Datta et al., “RCBLASTn: Implementation and evaluation of the BLASTn
scan function,” in FCCM 2009, 2009.

[22] S. Datta and R. Sass, “Scalability studies of the blastn scan and ungapped
extension functions,” in ReConFig 2009, 2009.

[23] A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and P. Beckman, “The ghost
in the machine: observing the effects of kernel operation on parallel application
performance,” in Proceedings of the 2007 ACM/IEEE Conference on Supercom-
puting, 2007.

[24] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application sensi-
tivity to OS interference using kernel-level noise injection,” in Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, 2008.

[25] M. J. Bach, The Design of the UNIX Operating System. Prentice Hall, Septem-
ber 1991.

[26] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating system
implications of fast, cheap, non-volatile memory,” in Proceedings of the
13th USENIX conference on Hot topics in operating systems, ser. HotOS’13.
Berkeley, CA, USA: USENIX Association, 2011, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1991596.1991599

[27] E. Seppanen, M. T. O’Keefe, and D. J. Lilja, “High Performance Solid State
Storage Under Linux,” in Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), ser. MSST ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1109/MSST.2010.5496976

[28] H. K.-H. So and R. Brodersen, “File System Access from Reconfigurable FPGA
Hardware Processes in BORPH,” in Proceedings of the 2008 International Sym-
posium on Field Programmable Logic and Applications, Sep 2008.

http://dl.acm.org/citation.cfm?id=1991596.1991599
http://dx.doi.org/10.1109/MSST.2010.5496976

64

[29] D. Lavenier, S. Guyetant, S. Derrien, and S. Rubini, “A reconfigurable parallel
disk system for filtering genomic banks,” in Proceedings of 2003 International
Conference on Engineering of Reconfigurable Systems and Algorithms, 2003.

[30] N. Abbani, A. Ali, D. Al Otoom, M. Jomaa, M. Sharafeddine, H. Artail,
H. Akkary, M. Saghir, M. Awad, and H. Hajj, “A Distributed Reconfigurable
Active SSD Platform for Data Intensive Applications,” in High Performance
Computing and Communications (HPCC), 2011 IEEE 13th International Con-
ference on, sept. 2011, pp. 25 –34.

[31] T. Li, M. Huang, T. El-Ghazawi, and H. H. Huang, “Reconfigurable Active Drive:
An FPGA Accelerated Storage Architecture for Data-Intensive Applications,” in
Symposium on Application Accelerators in High Performance Computing, July
2009.

[32] Netezza, “The Netezza Data Appliance Architecture,” www.redbooks.ibm.com/
redpapers/pdfs/redp4725.pdf.

[33] Bluearc, “The bluearc file system technology,” uRL: http://www.hds.com/
bluearc/.

[34] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: High-performance, reliable secondary storage,” ACM Computing Sur-
veys, vol. 26, no. 2, pp. 145–185, 1994.

[35] A. A. Mendon, “Design and Implementation of a Hardware Filesystem,” Master’s
thesis, University of North Carolina at Charlotte, Aug. 2008.

[36] A. A. Mendon and R. Sass, “A hardware filesystem implementation for high-
speed secondary storage,” in 2008 IEEE International Conference on Reconfig-
urable Computing and FPGA’s, 2008.

[37] Xilinx, Inc., “ML410 embedded development platform user guide,” September
2008.

[38] DGWAY, “Serial ata ip core,” uRL: http://www.dgway.com/products/IP/
SATA-IP/index2-E.html.

[39] Intelliprop, “RTL Storage Interface Cores,” http://www.intelliprop.com/
products-storage interface cores.htm.

[40] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of in-
expensive disks (raid),” in Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data. New York, NY, USA: ACM, 1988, pp.
109–116.

[41] A. G. Schmidt, W. V. Kritikos, R. R. Sharma, and R. Sass, “Airen: A novel
integration of on-chip and off-chip fpga networks,” Field-Programmable Custom
Computing Machines, Annual IEEE Symposium on, vol. 0, pp. 271–274, 2009.

www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
http://www.hds.com/bluearc/
http://www.hds.com/bluearc/
http://www.dgway.com/products/IP/SATA-IP/index2-E.html
http://www.dgway.com/products/IP/SATA-IP/index2-E.html
http://www.intelliprop.com/products-storage_interface_cores.htm
http://www.intelliprop.com/products-storage_interface_cores.htm

65

[42] A. G. Schmidt, S. Datta, A. A. Mendon, and R. Sass, “Productively Scaling I/O
Bound Streaming Applications with a Cluster of FPGAs,” July 2010.

[43] ——, “Investigation into scaling I/O bound streaming applications productively
with an all-FPGA cluster,” International Journal on Parallel Computing, Dec
2011.

[44] Xilinx, “Virtex-5 fpga rocketio gtp transceiver user guide,” uRL: www.xilinx.
com/support/documentation/user guides/ug196.pdf.

[45] ——, “Virtex-6 fpga rocketio gtx transceiver user guide,” uRL: www.xilinx.com/
support/documentation/user guides/ug366.pdf.

[46] Matt DiPaolo and Simon Tam, “Serial ata physical link initialization with the
gtp transceiver of virtex-5 lxt fpgas,” uRL: http://www.xilinx.com/support/
documentation/anstorage.htm.

[47] D. P. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly Media,
2005.

[48] Xilinx, “FMC XM104 Connectivity Card,” http://www.xilinx.com/products/
boards-and-kits/HW-FMC-XM104-G.htm.

[49] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for ssd performance,” in USENIX 2008
Annual Technical Conference on Annual Technical Conference, ser. ATC’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 57–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1404014.1404019

[50] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation layer
employing demand-based selective caching of page-level address mappings,”
in Proceedings of the 14th international conference on Architectural support
for programming languages and operating systems, ser. ASPLOS ’09.
New York, NY, USA: ACM, 2009, pp. 229–240. [Online]. Available:
http://doi.acm.org/10.1145/1508244.1508271

[51] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic characteristics
and system implications of flash memory based solid state drives,” in Proceedings
of the eleventh international joint conference on Measurement and modeling of
computer systems, ser. SIGMETRICS ’09. New York, NY, USA: ACM, 2009,
pp. 181–192. [Online]. Available: http://doi.acm.org/10.1145/1555349.1555371

[52] Jeffrey B. Layton, “On-the-fly Data Compression for SSDs,” http://www.
linux-mag.com/id/7869/.

[53] Jan Axboe, “Fio-flexible IO tester,” http://freecode.com/projects/fio.

www.xilinx.com/support/documentation/user_guides/ug196.pdf
www.xilinx.com/support/documentation/user_guides/ug196.pdf
www.xilinx.com/support/documentation/user_guides/ug366.pdf
www.xilinx.com/support/documentation/user_guides/ug366.pdf
http://www.xilinx.com/support/documentation/anstorage.htm
http://www.xilinx.com/support/documentation/anstorage.htm
http://www.xilinx.com/products/boards-and-kits/HW-FMC-XM104-G.htm
http://www.xilinx.com/products/boards-and-kits/HW-FMC-XM104-G.htm
http://dl.acm.org/citation.cfm?id=1404014.1404019
http://doi.acm.org/10.1145/1508244.1508271
http://doi.acm.org/10.1145/1555349.1555371
http://www.linux-mag.com/id/7869/
http://www.linux-mag.com/id/7869/
http://freecode.com/projects/fio

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BACKGROUND
	2.1 Disk Subsystem
	2.2 Related Work

	CHAPTER 3: DESIGN
	3.1 Hardware Filesystem Core
	3.2 Multi-Disk and RAM Disk Support
	3.2.1 Purpose of the RAM Disk
	3.2.2 Modular Interface to Disk
	3.2.3 Adding Multiple Disk Support

	3.3 Integration with BLAST and AIREN
	3.3.1 HWFS-BLAST Interface
	3.3.2 HWFS-RAID-AIREN interface

	3.4 SATA Core
	3.4.1 Design Goals
	3.4.2 SATA Core Interface and Modules
	3.4.3 Native Command Queueing
	3.4.4 Linux Block Device Driver

	3.5 System Integration

	CHAPTER 4: Evaluation
	4.1 Experimental Setup
	4.1.1 Setup 1 : HWFS - RAM Disk on ML-410
	4.1.2 Setups 2 and 3 : SATA Core and HWFS-SATA on ML605
	4.1.3 Setup 4 : CPU - SATA on Linux Server

	4.2 Results
	4.2.1 Performance
	4.2.2 Scalability with Multiple Disks using RAID
	4.2.3 Size

	CHAPTER 5: CONCLUSION
	REFERENCES

