6,635 research outputs found

    Automatic generation of initial weights and target outputs of multilayer neural networks and its application to pattern classification

    Get PDF
    金沢大学理工研究域 電子情報学

    PROPOSED METHODOLOGY FOR OPTIMIZING THE TRAINING PARAMETERS OF A MULTILAYER FEED-FORWARD ARTIFICIAL NEURAL NETWORKS USING A GENETIC ALGORITHM

    Get PDF
    An artificial neural network (ANN), or shortly "neural network" (NN), is a powerful mathematical or computational model that is inspired by the structure and/or functional characteristics of biological neural networks. Despite the fact that ANN has been developing rapidly for many years, there are still some challenges concerning the development of an ANN model that performs effectively for the problem at hand. ANN can be categorized into three main types: single layer, recurrent network and multilayer feed-forward network. In multilayer feed-forward ANN, the actual performance is highly dependent on the selection of architecture and training parameters. However, a systematic method for optimizing these parameters is still an active research area. This work focuses on multilayer feed-forward ANNs due to their generalization capability, simplicity from the viewpoint of structure, and ease of mathematical analysis. Even though, several rules for the optimization of multilayer feed-forward ANN parameters are available in the literature, most networks are still calibrated via a trial-and-error procedure, which depends mainly on the type of problem, and past experience and intuition of the expert. To overcome these limitations, there have been attempts to use genetic algorithm (GA) to optimize some of these parameters. However most, if not all, of the existing approaches are focused partially on the part of architecture and training parameters. On the contrary, the GAANN approach presented here has covered most aspects of multilayer feed-forward ANN in a more comprehensive way. This research focuses on the use of binaryencoded genetic algorithm (GA) to implement efficient search strategies for the optimal architecture and training parameters of a multilayer feed-forward ANN. Particularly, GA is utilized to determine the optimal number of hidden layers, number of neurons in each hidden layer, type of training algorithm, type of activation function of hidden and output neurons, initial weight, learning rate, momentum term, and epoch size of a multilayer feed-forward ANN. In this thesis, the approach has been analyzed and algorithms that simulate the new approach have been mapped out

    Strategies for neural networks in ballistocardiography with a view towards hardware implementation

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy at the University of LutonThe work described in this thesis is based on the results of a clinical trial conducted by the research team at the Medical Informatics Unit of the University of Cambridge, which show that the Ballistocardiogram (BCG) has prognostic value in detecting impaired left ventricular function before it becomes clinically overt as myocardial infarction leading to sudden death. The objective of this study is to develop and demonstrate a framework for realising an on-line BCG signal classification model in a portable device that would have the potential to find pathological signs as early as possible for home health care. Two new on-line automatic BeG classification models for time domain BeG classification are proposed. Both systems are based on a two stage process: input feature extraction followed by a neural classifier. One system uses a principal component analysis neural network, and the other a discrete wavelet transform, to reduce the input dimensionality. Results of the classification, dimensionality reduction, and comparison are presented. It is indicated that the combined wavelet transform and MLP system has a more reliable performance than the combined neural networks system, in situations where the data available to determine the network parameters is limited. Moreover, the wavelet transfonn requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced. Overall, a methodology for realising an automatic BeG classification system for a portable instrument is presented. A fully paralJel neural network design for a low cost platform using field programmable gate arrays (Xilinx's XC4000 series) is explored. This addresses the potential speed requirements in the biomedical signal processing field. It also demonstrates a flexible hardware design approach so that an instrument's parameters can be updated as data expands with time. To reduce the hardware design complexity and to increase the system performance, a hybrid learning algorithm using random optimisation and the backpropagation rule is developed to achieve an efficient weight update mechanism in low weight precision learning. The simulation results show that the hybrid learning algorithm is effective in solving the network paralysis problem and the convergence is much faster than by the standard backpropagation rule. The hidden and output layer nodes have been mapped on Xilinx FPGAs with automatic placement and routing tools. The static time analysis results suggests that the proposed network implementation could generate 2.7 billion connections per second performance

    Query-Based Learning for Aerospace Applications

    Get PDF
    Models of real-world applications often include a large number of parameters with a wide dynamic range, which contributes to the difficulties of neural network training. Creating the training data set for such applications becomes costly, if not impossible. In order to overcome the challenge, one can employ an active learning technique known as query-based learning (QBL) to add performance-critical data to the training set during the learning phase, thereby efficiently improving the overall learning/generalization. The performance-critical data can be obtained using an inverse mapping called network inversion (discrete network inversion and continuous network inversion) followed by oracle query. This paper investigates the use of both inversion techniques for QBL learning, and introduces an original heuristic to select the inversion target values for continuous network inversion method. Efficiency and generalization was further enhanced by employing node decoupled extended Kalman filter (NDEKF) training and a causality index (CI) as a means to reduce the input search dimensionality. The benefits of the overall QBL approach are experimentally demonstrated in two aerospace applications: a classification problem with large input space and a control distribution problem

    A CASE STUDY ON SUPPORT VECTOR MACHINES VERSUS ARTIFICIAL NEURAL NETWORKS

    Get PDF
    The capability of artificial neural networks for pattern recognition of real world problems is well known. In recent years, the support vector machine has been advocated for its structure risk minimization leading to tolerance margins of decision boundaries. Structures and performances of these pattern classifiers depend on the feature dimension and training data size. The objective of this research is to compare these pattern recognition systems based on a case study. The particular case considered is on classification of hypertensive and normotensive right ventricle (RV) shapes obtained from Magnetic Resonance Image (MRI) sequences. In this case, the feature dimension is reasonable, but the available training data set is small, however, the decision surface is highly nonlinear.For diagnosis of congenital heart defects, especially those associated with pressure and volume overload problems, a reliable pattern classifier for determining right ventricle function is needed. RV¡¦s global and regional surface to volume ratios are assessed from an individual¡¦s MRI heart images. These are used as features for pattern classifiers. We considered first two linear classification methods: the Fisher linear discriminant and the linear classifier trained by the Ho-Kayshap algorithm. When the data are not linearly separable, artificial neural networks with back-propagation training and radial basis function networks were then considered, providing nonlinear decision surfaces. Thirdly, a support vector machine was trained which gives tolerance margins on both sides of the decision surface. We have found in this case study that the back-propagation training of an artificial neural network depends heavily on the selection of initial weights, even though randomized. The support vector machine where radial basis function kernels are used is easily trained and provides decision tolerance margins, in spite of only small margins

    Framework of hierarchy for neural theory

    Get PDF

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    Improving malware detection with neuroevolution : a study with the semantic learning machine

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceMachine learning has become more attractive over the years due to its remarkable adaptation and problem-solving abilities. Algorithms compete amongst each other to claim the best possible results for every problem, being one of the most valued characteristics their generalization ability. A recently proposed methodology of Genetic Programming (GP), called Geometric Semantic Genetic Programming (GSGP), has seen its popularity rise over the last few years, achieving great results compared to other state-of-the-art algorithms, due to its remarkable feature of inducing a fitness landscape with no local optima solutions. To any supervised learning problem, where a metric is used as an error function, GSGP’s landscape will be unimodal, therefore allowing for genetic algorithms to behave much more efficiently and effectively. Inspired by GSGP’s features, Gonçalves developed a new mutation operator to be applied to the Neural Networks (NN) domain, creating the Semantic Learning Machine (SLM). Despite GSGP’s good results already proven, there are still research opportunities for improvement, that need to be performed to empirically prove GSGP as a state-of-the-art framework. In this case, the study focused on applying SLM to NNs with multiple hidden layers and compare its outputs to a very popular algorithm, Multilayer Perceptron (MLP), on a considerably large classification dataset about Android malware. Findings proved that SLM, sharing common parametrization with MLP, in order to have a fair comparison, is able to outperform it, with statistical significance
    corecore