
A Framework of Hierarchy for Neural Theory

Oliver R. Vellacott

Thesis submitted for the degree of

Doctor of Philosophy

University of Edinburgh

October 1991

Declaration

The research presented in this thesis is original and was conducted by the author.

Acknowledgements

This work is an unconventional approach to neural networks and goes against the

mainstream of neural research. Because of this, I am indebted to Prof. Peter

Denyer for his open-minded and totally unprejudiced attitude to the field. This has

been vital. However, the freedom I have been afforded has been tempered with

much needed restraint. In all, he has been a consistent source of stimulus and I

have greatly enjoyed my time in this department.

Dr Alan Murray's wide knowledge of the field has been of great value in relating

this approach to previous work. Dr David Renshaw has been a never-failing source

of encouragement. His enthusiasm for a project perhaps a little out of place in an

engineering environment has been invaluable.

Finally, I am indebted to my fellow students for their constructive criticism of my

work. I would like in particular to thank Mr Ken Sutherland for many fruitful dis-

cussions, and his unerring ability to maintain the morale of our group.

1

Abstract

There is currently no generally-accepted theory explaining how neural systems real-

ise complex function. Indeed, it is believed by some that neural systems are funda-

mentally opaque. A framework of hierarchy is proposed as the basis of neural

theory. By the application of hierarchy to neural systems it is possible to explain

how complex function is computed. At the primitive (hardware) level it is only

possible to understand the computation of primitive functions. To understand the

computation of higher level function it is necessary to abstract primitive function,

via an arbitrary number of intermediate levels of complexity, to the appropriate

level of abstraction. Application of the framework is facilitated by a software tool

which implements a specification as a neural system, to which training can then be

applied. This specification is hierarchical, and is described in a fully distributed,

object-oriented style. Networks constructed by this method are not restricted to

any of the traditional neural models. The class of topologies which may be imple-

mented is unrestricted. The framework is applied to the recognition of number -

plates. This practical demonstration shows that (a) hierarchy enables neural compu-

tation of complex function to be understood; (b) the application of hierarchy allows

the integration of specification and learning as methods of implementation; and (c)

the framework facilitates the scaling-up of neural systems.

11

Table of Contents

Chapter 	1: 	Introduction 	... 1

1.1 The Scarcity of Neural Theory 	... 1

1.2 Artificial Neural Nets 	.. 2

1.3 	Overview 	.. 3

1.3.1 A Summary of the Thesis 3

1.3.2 A Strategy for Substantiation of the Thesis 4

Chapter 2: 	Foundations 	... 5

2.1 	Basic 	Concepts 	.. 5

2. 1.1 	Neurons 	.. 5

2.1.2 	Synapses 	.. 6

2.1.3 Connectivity Patterns 	.. 7

2.1.4 	Hierarchy 	.. 8

2.1.5 	Formation 	... 10

2.1.6 Very Artificial Neural Networks 11

2.2 A Brief History of Neural Nets 	.. 13

2.2.1 	Early Work 	... 13

2.2.2 Single and Multilayer Perceptrons 14

2.2.3 Associative Memories 	... 16

2.2.4 Classification and Clustering Models 16

2.2.5 Recurrent Networks 	... 18

2.2.6 	Hybrid Models 	... 19

2.3 	State of the 	Art 	.. 19

2.3.1 A Multitude of Models 19

2.3.2 The Lack of Theory 	... 20

2.3.3 What a Neural Theory might look like 21

2.3.4 Where this thesis fits in 21

Chapter 3: Deducing Neural Theory from Related Disciplines 23

3.1 	Connectionist Expert Systems 	... 23

3.1.1 Expert System Concepts 24

3.1.2 	Structure 	... 26

3.1.3 	Dynamics 	.. 27

3.1.4 Primitive vs. High Level 29

3.1.5 Specification vs. 	Learning 30

3.2 	Distributed 	Systems 	... 31

3.2.1 The Motivation for Distribution 31

3.2.2 The Neural Metaphor 	... 32

3.2.3 Autonomy and Control 33

3.2.4 	Communication 	.. 34

3.3 	Object-Oriented Systems 	.. 35

3.3.1 	Motivation 	... 35

3.3.2 Object-Oriented Concepts 35

3.3.3 'Pure' Object-Oriented Modelling 36

3.4 Non-Neural Connectionism 	.. 37

3.5 	Summary 	.. 37

Chapter 4: A Framework for Neural Theory 38

4.1 	Introduction 	... 38

4.1.1 The Concept of Levels 	.. 40

4.1.2 Abstraction and Implementation 41

4.1.3 Levels for Neural Representations 42

4.2 The Framework ..43

4.2.1 Functions ...43

4.2.2 Connections ...44

4.2.3 Interfaces 45

4.2.4 	Instances 	... 47

4.2.5 	Summary 	... 48

4.3 A State-Oriented Analysis of the Framework 48

4.3.1 Foster's State-Sequence Characterisation of
Function.. 49

4.3.2 Hierarchical State-Sequences 52

4.3.3 A State-Oriented Description of the Frame-
work.. 52

4.3.4 State-Oriented Abstraction and Implementation
55

4.4 Biological Considerations 	... 57

4.4.1 Genetic Encoding of Hierarchical Specifica-
tions.. 57

4.4.2 Hierarchical Learning 	... 58

4.5 Discussion on Representations 	.. 59

4.5.1 What is a Representation') 59

4.5.2 What representations are natural to neural real-
isation') 	... 61

4.6 	Summary 	.. 62

Chapter 5: ANNECS: A Neural NEtwork Compiler and Simulator
63

5.1 	Introduction 	... 63

5.2 Features of ANNECS 	.. 64

5.2.1 	Visualisation 	... 64

5.2.2 	Libraries 	.. 65

5.2.3 Macro Expansion 	... 66

5.2.4 	Specification 	.. 67

5.3 Compilation: Formation by Specification 70

5.3.1 Compilation Method #1: Flattening 70

5.3.2 Compilation Method #2: Resolution for High
Level 	Simulation 	... 73

5.4 Simulation: Formation by Learning 74

5.5 Example: A Simple Robot Controller 74

5.6 Improvements to ANNECS 	.. 77

Chapter 6: Case Study : Automatic Numberplate Recognition 80

6.1 	Introduction 	... 80

6.2 Basic Image Processing Techniques 81

6.2.1 	Image Capture 	... 81

6.2.2 Edge Detection 	.. 82

6.2.3 	Thresholding 	.. 83

6.2.4 	Segmentation 	... 84

6.2.5 Measurements/Classification 86

6.2.6 Miscellaneous Techniques 86

6.3 Neural Techniques in Image Processing 88

6.3.1 	Neocognitron 	... 88

6.3.2 	Silicon 	Retina 	.. 88

6.3.3 Connectionist Models .. 89

6.3.4 Self- Organisation in Primitive Vision 89

6.3.5 Grossbergian Boundary and Feature Contour
Systems.. 89

6.3.6 Head-Centred Frame of Reference 90

6.3.7 Binocular Disparity 	... 90

6.4 Overview of Numberplate Recognition 90

6.4.1 Requirements for Numberplate Recognition 90

6.4.2 Problems involved in Numberplate Recognition
91

6.4.3 Potential Solutions 	.. 94

6.5 Conventional Numberplate Recognition with near-100%
accuracy.. 95

6.5.1 Introduction and Results 95

0

6.5.2 Thresholding 	 96

6.5.3 Cleaning ..99

6.5.4 Edge Detection ..99

6.5.5 Object Detection ...99

6.5.6 Object Filter ..100

6.5.7 Character Classification101

6.6 Neural Numberplate Recognition102

6.6.1 Introduction ...102

6.6.2 Neural Local Adaptive Histogram-Based
Thresholding..103

6.6.3 Neural Edge Detection ..107

6.6.4 Neural Character Location108

6.6.5 Neural Character Classification109

6.6.6 Summary ...114

Chapter 7: Conclusions ..115

7.1 A Brief Review ...115

7.2 Conclusion: Hierarchy is Foundational to Neural Theory
..117

7.3 Speculation: Hierarchical Learning118

7.4 Directions for Future Research ...119

References...121

Appendices..143

Appendix A : Formal Presentation of
Abstraction/Implementation ...143

Appendix B : Neural Specification of Local Adaptive
Histogram-based Thresholding ...144

Appendix C : Neural Specification of Edge Detection149

Appendix D : Neural Specification of Character Classifica-
tion...150

Appendix E : 'C' Implementation of Histogram-based Local
Adaptive Thresholding ..152

Appendix F: Published Work 	 . 158

Table of Figures

2.1 Biological Neuron ...6

2.2 Artificial Neuron (with sigmoidal activation function)7

2.3 Biological Synapse ...8

2.4 A Hypothetical Artificial Neural Network9

2.5 Use of Specification in Constraining Search Space15

3.1 Structural Similarity between Neuron and Rule26

3.2 Structural Similarity between Neural Modelg and Rule Bases27

3.3 Relationship between Rule-Based Uncertainty Management and

NeuralDynamics ...29

4.1 Relationship between levels, abstraction and implementation42

4.2 Concepts of the Framework: Definition of a Function44

4.3 Definition of 'if.. .then. . .else' function type 45

4.4 Definition of 'image' connection type in terms of quadrants46

4.5 Definition of multiple functions in terms of a common instance47

4.6 Neural implementation of exclusive-or function51

4.7 Using state-sequences to describe hierarchy 53

4.8 Interface of some hypothetical function and state-sequence describing

function...54

4.9 Example implementation of hypothetical function 55

4.10 State-sequence characterisation of functions which form a valid

implementation of the hypothetical function 56

4.11 Illustration of the way in which a specification might be

genetically encoded .. 58

4.12 Illustration of how a network may develop from a genetically-

encoded hierarchical specification ... 59

5.1 Icons of Function and Connection Types ... 65

5.2 Example of Hierarchical Menu Layout: Functions67

5.3 Generation of textual description for function containing nested

if. . . then. . . else 	...68

5.4 Stages in compilation of if.. .then. . .else ...72

5.5 Diagram showing compilation of neural specification by

Netlist-of-Netlist Formation ..73

5.6 High Level Simulation of Image Thresholding Function75

5.7 Specification of Simple Robot Controller in ANNECS76

5.8 Compiled Simple Robot Controller ..77

5.9 Alternative Specification of Simple Robot Controller78

6.1 Histogram and potential thresholds for a block of an image85

6.2 Main stages in conventional numberplate recognition algorithm87

6.3 Illustration of difficulty in locating numberplate93

6.4 Images at main stages in conventional numberplate processing97

6.5 Bar chart showing relative execution times of stages in processing98

6.6 Main stages in potential neural numberplate recognition system104

6.7 Top Level Specification of Neural Numberplate Recognition System

...105

6.8 An image thresholded by a histogram-based neural implemention106

6.9 An edge-detected image produced by a specified neural system108

6.10 Features learnt from unspecified initial conditions111

6.11 Features after learning from specified initial conditions113

Table of Tables

2.1 Correspondence between neural models and classical algorithms17

Chapter One

Introduction

1. The Scarcity of Neural Theory

The biological nervous system is capable of remarkable function, yet how it does this is

an enigma. Every creature, from the cockroach to Man, depends utterly on its brain for its

survival. By means of their nervous systems these creatures hunt, feed, avoid predators,

find a mate and play. These functions rise to astoundingly complex levels (consider a lion

intercepting its prey); yet this subtle and diverse function arises, in some mysterious way,

out of the interaction of vast numbers of relatively simple and homogeneous nervous

components.

The components from which nervous systems are constructed are fairly well understood.

Moreover, the principles by which these primitive nervous elements may be interrelated

are conceptually simple. Not only this, but for some systems, the precise way in which

these components are put together - their wiring diagram - is known. Yet even this

description of what is occuring at the hardware level does not explain how complex

function emerges. No coherent and general explanation of how higher functioning arises

out of primitive neural interactions has yet been described. Neural systems remain, in

reality, black boxes.

Neural Theory is the set of principles by which the realisation of higher function by

neural systems may be understood. These principles would explain, for example, how

recognition of prey, calculation of trajectory and interception of a target may all be

realised by the appropriate interconnection of neurons. By this test, neural theory is

undoubtedly scarce.

1

Chapter One - Introduction

2. Artificial Neural Networks

The development of Artificial Neural Networks is inspired by the capabilities of

biological neural systems. Artificial neural systems employ a medium of computation (or

representation) which approximates that adopted by nature. It is thought that, by so doing,

functions natural to brains will be reproduced artificially. Whether this is possible is not a

concern of this thesis. However, it is argued that lack of neural theory is responsible for

the failure of artificial neural network development to achieve this aim.

Hitherto, the approach has been to assemble a certain configuration of neural components

(e.g. by lining the neurons up in rows and fully interconnecting between adjacent rows),

defining rules by which the system may evolve, presenting training and test data, and

observing what happens. This empirical approach has achieved moderate success in a

relatively small class of applications. This failure to realise the expectations aroused by

biological capabilities is largely due to an irrational emphasis on learning, at the expense

of specification. This imbalance has come about as a result of the historical development

of synthetic mediums of computation. The microprocessor is so much more suited (than a

neural network) to silicon implementation and programming, that the main justification

for the use of neural networks has been that they have learning abilities.

This preponderence of empirical derivation, however, is not found in biological neural

systems. Approximately 70% of the genetic code, according to some estimates, is

devoted to specifying brain composition.'PP 38-44 One theme of this thesis is that it is this

specification which enables learning to take place, in artificial as well as biological

systems. Whether or not this is true, it is clear that the empirically-biased line of research

has attempted to sidestep the issue concerning how higher function emerges within neural

systems.

Indeed, perhaps the most sinking feature of the current state of the art in neural nets is the

lack of any unifying theory. A multitude of models and successful specialised

applications abound, each with its own, piecemeal 'theory' explaining how it works. No

overarching principles exist, however, for bringing together these diverse models and

enabling a common understanding. This lack of theory was pointed out by von Neumann

as far back as 19562 yet his paper seems as relevant today as it was then. More recently,

Chapter One - Introduction 	 3

Patricia Churchiand has described her own search for neural theory, 3 and has concluded

that none is yet available, though one is much needed. Her book, Neurophilosophy, gives

an excellent description of the role and requirements of a theory of neural networks.

This lack of theory is stifling the development of artificial neural nets. The field seems to

have become trapped in a local minima of its own making. The empirical bias has even

led some researchers to believe that there is no theory of neural nets. Perhaps this is

correct! Maybe there is no method for saying what the ith neuron in the jth layer of a

multilayer perceptron actually does. Maybe there is no computational theory underlying

neural cognition which can identify the role of each neuron and each connection.

Perhaps the only 'explanation' of neural processing is some principle such as Neural
Darwinism4 which explains how a system evolves but not how it performs its function at

any non-primitive level. Is it sufficient to continue to treat neural systems as black boxes,

unconcerned that there is no framework for understanding how they realise complex

function? The current attitude seems to be that not only are neural systems not

understood, but that it is not necessary to understand how they work. The poor delivery

of results belies this attitude.

These objections seem unreasonable. Theory exists to explain the operation of many

other areas of the universe. Why should neural computation be different? The field of

neural nets cannot make do, as it may have assumed in the past, without theory. It cannot

develop outside the confines of a framework which explains how higher functions are

realised by neural processes.

3. Overview

A Summary of the Thesis

This thesis describes principles which enable understanding of the way in which neural

systems realise complex function. These principles form a framework within which

complex functioning of neural systems may be comprehended. The key concept

underlying this is hierarchy. Thus, the framework provides a method for

abstracting/realising function at one level of complexity as functioning at another level of

complexity. At the primitive (neural hardware) level it is only possible to understand the

Chapter One - Introduction 	 4

computation of primitive functions. In order to understand the computation of higher

functions it is necessary to abstract primitive functioning to higher levels of abstraction.

This explains the emergence of higher level function within neural systems. Results of

applying this framework should include:

understanding of how neural systems realise complex function;

the integration of specification and learning as methods of construction;

the scaling up of artificial neural nets.

A Strategy for Substantiation of the Thesis

Chapter Two makes a close examination of the field and looks for evidence in past neural

research to support the thesis. Adjacent fields are then searched, in Chapter Three, for

metaphors of neural computation. The purpose in this is to derive understanding of neural

computation from the extant understanding of the metaphors.

Chapter Four then draws on these insights to propose a framework of hierarchy for neural

theory. ANNECS is a software tool which facilitates the application of this framework,

and is described in Chapter Five. This tool 'compiles' a hierarchical, object-oriented-

style, distributed specification to a neural system which realises that specification.

Chapter Six describes the application of the framework, by use of ANNECS, to a real

engineering problem within the field of image processing. Several stages in the

recognition of a numberplate are implemented as a neural system and these experiments

are used to determine the usefulness of the framework. Finally, Chapter Seven discusses

the extent to which the thesis has been substantiated by the work carried out.

Chapter Two

Foundations

This chapter reviews the field of neural nets and, in particular, work relevant to this

research. The basic concepts of neural nets are first described, followed by a brief history

of the development of the field. A resumé of the state of the art in neural nets is then

described, indicating where the research described in this thesis fits in.

1. Basic Concepts

Neurons

The biological neuron consists of a cell body and extensions from that body, along which

it receives and transmits signals. The extensions consist of dendrites, along which input is

received, and an axon, along which output is sent, though not all neurons have both. At

birth, a human has virtually all the neurons it will ever have, approximately loll, give or

take an order of magnitude. 5,6 Between 15-85% of these die in infancy in a method that

appears to be part of development and in some way programmed in. There is no known

reason for this though Neural Darwinism (described later in this chapter) offers one

explanation, as does the neural generative process described in this work. A neuron

operates at about 100 Hz - much slower than typical electronic devices. Thus, for the

brain to recognise a face in, say, 1 'sec there must be no more than 100 synaptic steps

between retinal sensing and perception. This is known as the 100-step rule.3 pi7-412

Artificial neurons are modeled more or less on the biological neuron though, as we shall

see. later, this modelling is extremely crude in most networks. Our interest is not in the

biological implementation of neural function, but in what that function is. Broadly

speaking, a neuron performs summation and averaging of its inputs. In the short term, it

acts as an all-or-none processor, emitting a constant-sized pulse whenever its state of

excitement exceeds a threshold. Thus, in the long term, a neuron may be considered to

Chapter Two - Foundations

atrocyt. pfoc.s,,

Fig 2.1 Biological Neuron (from Poritsky 1969)

have a continuous-valued activity: its rate of firing over some period of time, which

approximates the average of its inputs received during a preceding period.

Synapses

Synapses are points of contact between neurons. A synapse normally forms a link

between an axon and a dendrite but, in some cases, connects an axon to an axon or a

dendrite to a dendrite. 5,6 Basically, there are two types of synapse: electrical and

chemical. 8 Electrical synapses either transmit a pulse unattenuated from a sending axon

to a receiving dendrite or act by inductance between two neighbouring axons. Chemical

synapses perform transfer of a signal reaching the end point of an axon to a receiving

dendrite. This signal is transferred, as the name implies, chemically (by means of a

neurotransmitter) and its amplification/attenuation is dependent on both the type of

neurotransmitter and the amount that is present. This effect is approximated in artificial

neural nets by the multiplication of a synapse weight (which models a combination of

type of neurotransmitter and amount present) by the output from the sending neuron.

Chapter Two - Foundations
	

VA

a,
W i1

a 2 	

12 ajj 	

oUr_/. 	

aj

In

a n 	

0 IN

	- "

Figure 2.2 Artificial Neuron (with sigmoidal activation function)

There are approximately five thousand synapses on a mammalian motor cell and ninety

thousand on a Purkinje cell (a type of neuron) in the human cerebellar cortex. 3 in all,

there are about 1015 synaptic connections in the human central nervous system, give or

take an order of magnitude. The effect of a signal arriving at a synapse will be to either

excite or inhibit the receiving neuron, depending on the type of synapse.

Connectivity Patterns

Neurons and synapses in the flatworm and in Man are essentially the same. What makes

a human immensely superior in intelligence to a flatworm is the manner in which its

neurons are connected. The principles underlying neural networks are blindingly simple -

at least conceptually. Yet from these simple processing elements, connected via

amplifying/attenuating contact points, can be produced remarkable abilities. The power

exists in the patterns of connectivity. As yet, there is no systematic method for deriving a

neural connection pattern to implement a given function. It is this problem that the

research described in the following pages addresses.

Chapter Two - Foundations

4t4 	 .

t

Fig 2.3 Biological Synapse (from Churchiand 1986)

There are about twenty neural 'circuits' that have been intensively studied and are well

understood. For example, the pattern of connectivity which causes lateral inhibition

between sensory neurons - thus giving rise to edge-detection in mammalian retinas - is

well understood. Similarly, the 'circuits' enabling reflex actions in the sea hare,' °

processing of sonar return signals by bats" , 2 and location of prey by OWIS,13,14 are well

documented.

Hierarchy

Biological neural nets are not 'flat'. There is hierarchy present in even the most simple

pp38-44 The human brain is composed of several major components such as the

cerebral cortex, the thalamus, the cerebellum, and so on, which seem to have distinct

roles. Within these main components, clusters of neurons are observable and, within these

clusters, other clusters. Similarly with synapses, there exist groupings - for example, in

Chapter Two - Foundations

- 	excitatory connection

- 	inhibitory connection

Figure 2.4 A Hypothetical Artificial Neural Network

the optic nerve. It seems clear that hierarchy does exist in the brain, a principle whose

application to artificial neural nets is a central thrust of this work. Not only are modules

observable in the brain but distinct functions seem to be associated with these modules.

For example, reasonably precise maps of cerebral cortex function have been made. 15 At

present, however, there is little notion of hierarchy in artificial neural nets. Neural

Darwinism (see section 2.2.6) is one model containing implicit hierarchy, yet then only at

two levels. Current neural analysis seems to be focused almost entirely at the primitive

(i.e. synapse-neuron-synapse) level. This thesis suggests that the theory - and hence

understanding - of neural nets may be advanced by the introduction of hierarchy.

Some work has attempted the creation of modules within nets 4' 	but, in general, this

'modularity' seems restricted to the integration of flat networks of differing models.

Chapter Two - Foundations 	 10

Formation

Biological neural nets are formed by two methods that seem to work closely together:

Genetic Specification: to some (unknown) extent the structure of the brain is derived

from the genetic code. t This explicit method of construction is all but entirely lacking in

artificial neural networks and is the primary novelty of this research. Hitherto, researchers

may have assumed that the amount of information required to specify brain structure to a

significant extent must be enormous and indeed, if the specification is made at the

primitive level then this is true. However, a hierachical specification, as seems a sensible

description from which to form a hierarchical brain, is orders of magnitude more compact

than a primitive specification. Research has shown that connection patterns are, at least

partly, genetically determined. 19

Use of explicit hierarchical specifications from which to generate artificial nets has not

been performed. However, what does constitute a specification in the formation of

artificial neural nets is the network topology. This topology is highly specialised not only

to the neural model but also to the application of the model. For example, the number of

layers and the number of neurons in each layer in a multilayer perceptron (see section

2.2.2) seem to be chosen in an ad hoc manner guided by the constraints of the

application. This is in spite of the fact that it is this initial network structure which

enables the learning process to succeed. Indeed, the choice of a feedforward net itself is a

form of specification. Unfortunately, this choice of topology is not guided by any theory

and thus is often made without any understanding of what will best enable learning. A

theme of this work is that a priori knowledge should be imparted to a model in a more

intelligent and meaningful way.

Empirical Derivation: neural plasticity with training has been shown to occur in the

somatosensory mammalian cortex and in the hypocamp us. 20' 2 ' As it would be a mistake

to claim function is entirely learnt so it is a mistake to claim that function is entirely

specified. Hebbian learning, the increase in size (weighting) of a synapse when both

sending and receiving neurons are active, has been shown to occur in some areas of the

Please note that the use of the word 'genetic' throughout this thesis bears no reference to
genetic algorithms.

Chapter Two - Foundations
	

11

brain.22 In artificial neural nets, empirical data is used to derive desired behavior in one of

three ways:

Supervised Training: an external 'teacher' knows the desired response and

inputs an appropriate error signal into the net.

Unsupervised Training: internal clusters/categories of the input data are formed

which typically compress the amount of input data that must be processed at some

higher level.

Self-Supervised Training: the network monitors its own performance and, on

that basis, feeds an error signal back to itself.

The net effect in each case is to attempt to modify the synaptic weights and, more rarely,

the network topology or neuron thresholds so as to develop the desired behavior. This

ability is probably considered the most important aspect of neural nets and it is here that

most attention seems to have been focused.

Very Artificial Neural Networks

The brain is the inspiration for artificial neural nets and yet the analogy is inevitably

crude and some artificial models cannot be considered worthy of the term neural. Here

follows a list of some of the more obvious limitations of artificial models:

The difference in size is immense. The brain is 109 times larger than typical

artificial neural nets. A 100 MIPS computer would take somewhere between ten

and a hundred years to simulate, even crudely, the processing that takes place in the

brain during one second.

Artificial neurons are gross approximations of biological neurons. There are five

known distinct types of biological neurons: Purkinje, Golgi, Basket, Granule and

Stellate cells. 3 Presumably each of these has a distinct role to play.

At least forty different chemicals are known to be active in the brain. 23 Eleven of

these have been shown to be neurotransmitters; the rest are probably active in

performing some more or less global control. Given that there is normally a good

Chapter Two - Foundations
	 12

reason for the way nature does things, it seems probable that each of these

chemicals acts in its own unique way for a reason. Most artificial neural models

cannot remotely approach the emulation of these effects.

The multiplication of synapse weight by cell output is unlikely to be an entirely

accurate model of the chemical synapse.

There seems to be little modelling of electrical synapses in artificial nets, or indeed

any understanding of what part these might play.

The volume of empirical data presented to a human during development is

unimaginably vast compared to the restricted data set on which artificial neural nets

are trained.

There is currently no meaningful formation of neural nets from genetic

specifications.

Learning processes that have been shown to 'work' are almost certainly not

approximations of biological dynamics?"

Changes in synaptic strength in biological nets seem to be dependent on factors

such as location, chemical environment, cell type, neurotransmitter used, in

addition to activity which is the only one of these factors of which most artificial

- 	learning algorithms are a function.

The brain is, at least to some extent, modular; artificial models have little inherent

concept of hierarchy.

The continuous-valued neuron output used in neural simulations is but an

approximation of the pulse-firing of biological neurons.

The list of gross approximations seems endless! With all these shortcomings in mind, the

'neuralness' of artificial neural nets seems decidedly weak. However, artificial neural nets

do capture the essential features of biological nets and it is perhaps necessary to assume

that these additional factors are but refinements to a basic theory which may be derived

from known neural principles. Recently, serious attempts have been made to overcome

Chapter Two - Foundations 	 13

some of these shortcomings and, in particular, to improve the temporal characteristics in

some models.4"6' 25-27

2. A Brief History of Neural Nets

This section sketches the development of the field of neural nets. It considers models in

the following categories: Early Work, Perceptrons, Associative Memories, Pattern

Classifiers, Recurrent Models and Hybrid Models.

Early Work

The study of the human central nervous system dates back to antiquity 28 but some of the

first work in artificial neural nets was published in 1943 by McCulloch and Pitts. 29 In

this, they proposed their threshold logic units and showed that any effective procedure 30

(that is, any functioning that can be precisely described) could be implemented by a

network of these units. Threshold logic units are somewhat different from today's

artificial neurons and at that time no learning algorithms existed for them. However, as

was noted by von Neumann their result concerning the computational power of neural

networks is significant. 2 It shows that a neural net has at least the computational power of

a von Neumann (or Turing) machine 31 and, since Farley and Clark showed in 1954 that a

von Neumann machine has at least the computational power of a neural net, it must be

deduced that neural nets and von Neumann machines are equivalent in computational

power. The experimental results of this thesis support this conclusion and even suggest

that modern programming representations, traditionally implemented on von Neumann

machines, in fact map more naturally onto neural architectures. Symbolic and neural

architectures are equivalent in computational power, though neural representations are

probably more natural models of the world, as is suggested in section 4.5.

Von Neumann's paper The General and Logical Theory of Automata 2 discusses the

results of McCulloch and Pitts and, in spite of its title, actually laments the lack of any

theory of neural nets. His paper seems as relevant today as it was then. Other work by

von Neumann showed that a threshold logic-type network could be self-reproducing. 32

Shortly after this, threshold logic units became of interest as a potential means of

Chapter Two - Foundations 	 14

constructing computers, even resulting in the implementation of one small machine. 335

Also at this time, Hebb published his landmark book on biological neural learning, now

known as Hebbian learnine which has since been shown to generate models that

perform visual feature detection. 36-39

Single and Multilayer Perceptrons

The single layer perceptron, a more 'biological' neural model than that of McCulloch and

Pitts, was first proposed by Rosenblatt in 1958. 0 It consists of a single layer of

processing units similar to the artificial neuron presented in figure 2.2. In neither the

single layer nor the multilayer perceptron are there any connections between neurons in

the same layer .41 The computational power of the single layer perceptron has been

extensively analysed and shown to be limited to the computation of linear separable

functions.42 This, after overexaggerated claims for the perceptron's power, led to an

unwarranted period of disenchantment with neural nets. This was in spite of the fact that

Minsky and Papert, in demonstrating the single layer perceptron's limitations, themselves

pointed out that a multilayer perceptron with feedback as well as feedforward

connections had the computational power of a von Neumann machine. 42 The initial

popularity of the single layer perceptron was due to the existence of learning algorithms,

the perceptron convergence algorithm 41 ' 43 and the LMS algorithm, 43 which were proved

to converge to a correct linear classifier if such a classifier could exist.

The multilayer perceptron gained in popularity with the rediscovery of
backpropagationA45 first reported in 1974 46 and still probably the most popular

learning algorithm. This is a form of supervised learning and basically computes the

difference between the actual output and the desired output and, working backwards from

the output nodes to the input nodes, modifies synaptic weights and neuron thresholds

appropriately. It has not been possible to prove that a multilayer perceptron converges, to

correct classification using backpropagation. Indeed, the algorithm will often become

trapped in local minima in the classification space. Largely because of this, many

variants on backpropagation have been proposed .47-49 This thesis advocates placing the

initial network in the region of the global minimum by means of specification, and

allowing learning to advance the net to the exact global minima (see figure 2.5).

5)

Chapter Two - Foundations
	

15

area in search space within which
specification places network

Figure 2.5 Use of Specification in Constraining Search Space

Recent work has demonstrated the problems that occur when multilayer perceptrons are

scaled up in size. 50,51 It has been proved that the time taken for a single layer perceptron

to learn an arbitrary, linearly-separable function grows exponentially with the number of

inputs. Similarly, the search space for a multilayer perceptron grows exponentially with

number of inputs, and thus the problem of learning an arbitrary classification is

NP-complete.52 This supports this thesis's argument that a stronger element of

specification is needed in initial network configurations before it will be possible to scale

them up. Steps in this direction have been made by specifying and fixing weights in

initial layers. 18 ' 53 In spite of these limitations, however, backpropagation has proved

useful for many applications. 11.54-56 Several alternative training algorithms have been

proposed for multilayer perceptrons.'8'50'57'58

Chapter Two - Foundations
	 16

Associative Memories

Early work in this area was performed by Kohonen amongst others .59-61 The best-known

neural model was proposed by Hopfield62 and achieves energy minimisation based on the

outer product rule. This model has been exhaustively analysed 63-66 and shown to be of

limited capacity and inefficient in its use of hardware. Other associative memory models

are the Hamming or Unary Net 67,68 and Sparsely-Distributed models .69 Neither of these

models suffer from the efficiency and capacity limitations of the Hopfield net. It could be

argued that the reason for this is that the element of specification is far stronger in these

models than in the Hopfield model, which has an unconstrained topology. More a priori

knowledge concerning associative memory is built into the Hamming and Sparsely-

Distributed models in the form of network structure.

Classification and Clustering Models

Classification is an essential function for real-time response in, for example, vision - the

experimental area for this research. In theory, a three-layer multilayer perceptron will

perform any classification though in practice, as already described, learning algorithms

cannot guarantee to converge to such a classifier. An excellent review of classifiers has

been performed by Lippmann70 and analyses of their relative merits have been made. 11,50

Various taxonomies of neural classifiers have been attempted .71 These typically divide

classifiers into those that take binary and those that take continuous-valued input.

Beneath that, classifiers may be further subdivided into those that are trained under

supervision and those that are unsupervised. In most classifiers connections are

predominantly feedforward; exceptions to this are the ART, Hopfield and Darwin II

models. In most cases, the model implements a classical algorithm (see table 2. l).72 This

provides further evidence that a priori knowledge is available in most situations which

could be incorporated in the model in the form of more explicit specification.

Supervised Classifiers include single and multilayer perceptrons, Hopfield, Hamming,

RCE,73 Feature Map 18 and High-Order networks. 74 Of most interest to this research are

High-Order network models. These contain more complex operations at each node than

the conventional summation and averaging. Since it has been shown that these higher

Chapter Two - Foundations
	

17

Neural Model Classical Algorithm

Hamming Net Optimum Classifier
ART I Leader Clustering Algorithm
Perceptron Gaussian Classifier
Multilayer Perceptron Mixture
RCE k-Nearest Neighbour
Feature Map Classifier k-Nearest Neighbour
Kohonen Self-Organising Feature Maps k-Means Clustering Algorithm

Table 2.1 Correspondence between neural models and classical algorithms

level functions may themselves be implemented as neural nets, 29 a High-Order network

may be considered as a network of clusters of neurons; in other words, a network model

containing hierarchy (though this is not in fact how the model was conceived). It is the

presence of hierarchy in neural models which is a central concern of this thesis.

Unsupervised Classifiers include ART 75,76 (Adaptive Resonance Theorem), Kohonen 61

and Darwin I1416 models. Within the ART and Kohonen models clusters of neurons are

formed during training; this perhaps indicates the emergence of two-level hierarchy in

these models. Darwin II is probably the model most closely allied to the neural

methodology advocated in this thesis. It derives from a theory called Neural Darwinism4

which takes a more biological approach to the generation of network structure. It does

this during 'embryogenesis' by generating many clusters (typically of 100-1000 neurons)

which then constitute a pool of candidate components, or a repertoire, from which the

final network is drawn. A neural version of natural selection then takes effect with the

broad principle that those clusters that are active, survive, and are strongly connected to

other active clusters. Clusters that are very rarely active - and thus, it is deemed, not

serving any useful function - die, as seems to occur in normal child brain development.

This model shows undoubted emergence of hierarchy, though still only at two levels:

clusters are fonned from neurons, not from other clusters of neurons. Natural selection

does seem likely to be a guiding principle in brain development, but still doesn't explain

how complex functioning occurs - how inputs are transformed to outputs, at any non-

primitive level. It may explain how functions develop but doesn't explain how those

functions are neurally implemented or what those functions actually are. The theory is of

especial interest to this work since the initial network and cluster structures are generated

Chapter Two - Foundations 	 18

as if from a genetic code. In fact, however, this 'genetic code' is not a meaningful

specification describing actual structures and, as I understand it, acts so as to generate a

repertoire of randomly-connected structures.

Recurrent Networks

These are models which do not contain predominantly feedforward connections. In

general, they can perform time dependent tasks in addition to having the capabilities of

feedforward nets, though training is more difficult owing to their (normally) less-

constrained architectures. Backpropagation has recently been generalised for recurrent

nets, though it still suffers from the same limitations as with feedforward nets. 47,77

Hopfield and Tank have applied the Hopfield model to global optimisation problems such

as the Travelling Salesman Problem, results showing yet again the problems in scaling

up. 78,79 Here again, specification might have a role to play in imparting knowledge

obvious to a human - such as which cities the salesman should definitely visit in a certain

sequence - and thus initialising and making resistant to change relevant synaptic

weights. 80' 8 '

Boltzmann machines use the technique of simulated annealing in order to avoid being

trapped in local minima in the search space during training. 8284 The model suffers from

training times that are too long for it to be of practical use.

Cellular Automata32 also fall into the class of recurrent nets, as do Winner-Take-All

nets.85 ART, developed by Grossberg and Carpenter, is also highly recurrent. 75 Training

seems to be enabled in ART because its recurrent connections are accurately specified

and thus highly constrained. It seems that many neural models have avoided recurrence

because the added lack of constraint limits the learning procedure. It has not been

possible to generate any realistic general purpose learning algorithm for recurrent nets

owing to the unconstrained topology. This only supports the argument advanced by this

thesis that specification is necessary in order for learning to succeed. This thesis advances

a methodology for incorporating meaningful specification (as opposed to just a particular

type of topology) in recurrent nets. A newcomer to the field of neural nets might be

struck by the artificial constraint of layered feedforward nets, observing that biological

nets do not seem to impose such a constraint. What is lacking is a technique for mapping

Chapter Two - Foundations 	 19

meaningful specification into network structure, thus enabling learning. Layering with

feedforward connections does seem to be an arbitrary and artificial constraint.

Hybrid Models

These are systems that integrate symbolic and 'subsymbolic' (i.e. neural) methods of

computation. Ideally, such systems combine the strengths of each method so as to

compensate for the weaknesses of the other. 86 ' 87 It has been claimed that symbolic and

subsymbolic methods of computation are complementary: tasks not suited to symbolic

models, for example low level perceptual processes, are suited to neural methods; tasks

such as planning, whilst apparently not suited to neural models, are suited to symbolic

modelling. 86 Hybrid systems should, it is claimed, enable a cross-fertilisation between

these two radically different methods of computation.

Problems to which hybrid systems have been applied include classification', 88 speech

recognition,89 noun-phrase understanding, 90 diagnosis of back-pain?' and optimisation of

knowledge-based inference 92,93 Recent work has also performed the translation of

symbolic representations into functionally equivalent subsymbolic representations at a

primitive, one-to-one level; and vice versa? 4 ' 95 This has implications for this thesis in

that it shows that in principle it is possible to construct a neural net from a specification.

3. State of the Art

A Multitude of Models

A striking feature of the current scene is the number of independent and apparently-

unrelated models. About thirty distinct models can be identified, each suited to a small

area of tasks, each with its own ad hoc 'theory'. This 'theory' explains how the model

works in its own relatively small domain: how it learns, its limitations, its computational

power, its efficiency, and so on. The less computationally-powerful models normally

guarantee convergence during training - for example, with the single layer perceptron

and the Hamming net. The more computationally-powerful models have less constrained

architectures and hence the potential to perform more powerful tasks but are limited in

Chapter Two - Foundations 	 20

their convergence during training. The exceptions to this are those recurrent architectures

containing closely-specified connections - for example, Grossberg's ART. It is this

added element of specification which enables successful learning. Arriving at an

appropriate network topology, however, seems at best to be a 'black art'. In practice, the

topology seems to be derived through the designer's intuitive incorporation of a classical

algorithm into the model's architecture. The ART model, for instance, seems to have been

constructed with adaptive filters in mind.

Almost none of these models scale up well. For most, the training problem is NP-

complete. Remarkably, virtually no work has attempted construction of an initial network

architecture from a meaningful specification. Since it is known that about seventy percent

of human DNA is devoted to specifying generation of the central nervous system it seems

absurd that no work has been spent on applying this method to constructing artificial

neural nets. The reason for this must be simply that it is not known how networks could

be specified. The key concept that is missing is hierarchy.

Most results delivered by neural nets are only new in that they are learnt. The vast

majority of neural applications are functionally equivalent to well-understood, classical

algorithms. What is novel, is that these functions have been learnt. It has been argued that

the only reason these models do work, however, is because they were designed, however

intuitive the design process, to implement known classical algorithms. That design

process was effectively the incorporation of specification into the model. This thesis

advocates making that specification explicit and meaningful.

The Lack of Theory

Perhaps the most striking thing about the state of the art is the absence of any unifying

theory. 3 What theory that exists is piecemeal explanation here and there, not overarching

principle that would unify the diversity of models, so enabling a common understanding.

Theory would unify neural applications to classification, clustering, optimisation,

association, competition, control, planning and world representation. Von Neumann's

paper bemoaning lack of neural theory is as relevant today as it was when written.2

Chapter Two - Foundations 	 21

What a Neural Theory might look like

The individual components of the biological nervous system are starting to be

understood. Artificial neurons can approximate biological ones, however crudely. What is

not known is how ensembles of neurons produce remarkable functions. Not only is it not

known how a particular architecture enables, for example, an owl to intercept a

zigzagging mouse, but neither is there any framework for deriving such an architecture.

Current research seems to be unguided by any quest for theory, 96 which tends to make it

necessarily random and directionless. Conversely, theory-testing would guide why an

experiment should be performed 97

What is needed is a framework within which the role of neurons, clusters of neurons,

synapses, groups of synapses, systems and subsystems can be understood: not an

explanation of how the brain works but a framework within which such an explanation

could be formulated. 98 This framework would provide a methodology for deriving a

neural architecture to satisfy an arbitrary specification. Such a framework would

necessarily require a means of meaningfully describing and thus understanding the

architecture. It would explain how neural processes operate to transform inputs to outputs

and how those processes are realised by patterns of connectivity.

The evidence such a theory has to build on may yet be insufficient. What is known is the

basic characteristics of primitive processors and primitive interconnections. It is known

that clusters of neurons and groups of synapses exist in biological nets and that that

clustering presumably serves some purpose. 3 It is known that biological nets are divided

into subsystems and modules. 15 It is known that processes should ideally be modeled so

as to satisfy the 100-step rule so that, for example, visual perception can take place in

about 100 msec using biological-rate neurons. 99"00

Where this thesis fits in

This work proposes a framework for understanding neural nets by the introduction of

hierarchy and modularity. With this framework in place, it is possible to generate initial

network architectures that incorporate specifications described to an arbitrary degree of

precision. It is thought that taking this approach to the construction of neural models will:

Chapter Two - Foundations 	 22

reduce training time by meaningful topology constraint, thus placing the
'I1

network in the neighbourhood of a solution within the seach space (see figure 2.5);

this should also allow the scaling-up of neural systems.

enable understanding at arbitrary levels of representation as to how a neural

net implements a given function.' ° '

Constructing networks from specifications may seem to be going against the spirit of

neural networks, in that their greatest virtue is that they learn. However, throughout this

chapter it has been extensively argued from the literature that not only are biological nets

largely constructed by specification but that existing artificial models incorporate implicit

specification.

Chapter Three

Deducing Neural Theory from Related Disciplines

This chapter reviews work in disciplines related to Neural Nets. The understanding of a

new field such as neural nets seems most unlikely to come about by spontaneous

generation. Theory can emerge from new insights or by the systematic investigation of

specific problems. In the absence of these, however, new theory can be formed as a result

of the cross-fertilisation of related disciplines. Thus, this chapter seeks to deduce a

framework for understanding neural models from theory in the related fields of:

connectionist expert systems, distributed systems, object-oriented modeling and

miscellaneous non-neural connectionist approaches. The purpose is to find metaphors of

neural computation that may enable the proposal of a framework within which neural

processing may be understood. If the metaphor is well-studied, then that should allow the

application of that understanding to neural processing. This could enable answers to be

given to questions such as: What is the role of a neuron within the network? What

function does a cluster of neurons perform? What is the role of a cluster within the

network? How is function distributed? What internal representations are natural models

of the world? And so on. The preceding chapter sought to place this thesis in context

within the field of neural nets. This chapter places the thesis in the context of the wider

field of computation and modeling.

1. Connectionist Expert Systems

In the last two years, a large amount of attention has been focused on the relationship

between neural networks and rule based systems. 102-104 Results of this work have shown

that some neural models approximate rule based systems, not just in what they compute

but also in how they compute it, at each stage in the processing. This 'equivalence' has

given rise to the term connectionist expert system, which is the subject of this section.

23

Chapter Three - Related Disciplines 	 24

Expert System Concepts

An expert system consists essentially of three elements: a rule base, an inference engine

and a user interface. A rule base normally consists of Horn Clause predicates °5"°6 of

the form:

conclusion if condition 0 & condition 1 & ... & condition.

The inference engine, as its name implies, performs logical inferencing from these rules.

The user interface enables the user to query the system. Thus, if the rule base contained

the following rules:

loves(X, Y) if rich(Y) & beautiful(Y) & male(X) & female(Y).

male(Jason).

female(Kylie).

female(Jane).

beautiful(Jane).

nch(Kylie).

nch(Jane).

- and the system is queried with:

loves(Jason, Y)?

The inference engine will try to deduce who Jason loves, on the basis of the knowledge

contained in the rules. The answer obtained is that Jason loves Jane because she is

female, beautiful and rich, but not Kylie because, though female and rich, she is not

beautiful.

In reality, Jason would almost certainly not love someone on the basis of true/false

predicates. Any real world expert system should be able to handle uncertainty.' 0 ' 09

Hence, most contemporary expert system models compute the likelihood of various

competing hypotheses, on the basis of unrliable data. Such systems seem to have been

most successful in their application to medical diagnosis. 110,111 Here, the system is asked

to decide between various hypothetical illnesses, given an array of unproven symptoms.

Chapter Three - Related Disciplines 	 25

There are four areas of uncertainty involved in calculating the likelihood of a

hypothesis: 107 112

(1) Data - How rich is Kylie?

Importance of data to conclusion - Is it more important that she is rich than

beautiful?

Inference - How reliable is this rule?

Conclusion - How likely is the hypothesis?

Strictly speaking, however, since the conclusion from one inference will often form the

input data to another, (i) and (iv) may be considered the same area of uncertainty.

Various theories have been proposed to model one or more of these areas of uncertainty.

Most widely used amongst these is a model which uses Bayesian techniques and is based

on Probability Theory. 108,113-115 In spite of its popularity, 116117 which is probably due to

its solid base of theory, the Probability model has significant shortcomings. 118420

Ignorance is not modeled, and the inference step contains no analogue of neural

inhibition. 121 The model is restricted to binary data only and thus does not model

uncertainty in data ((i) above). 107 Hierarchical models exist, 122,123 but this 'hierarchy'

seems restricted to partitions within 'flat' networks that evaluate simple predicates. The

Dempster-Shafer model, a variant on the Bayesian model, was developed in order to

overcome some of these limitations. 1126 Unfortunately, a side effect of this was to make

the model computationally intractable. 107,127

Possibility theory, also known as fuzzy logic, was developed primarily by Zadeh and is

based on fuzzy set theory. 1 "29 Unlike probability theory, possibility theory does model

uncertainty in data ((1) above) but not uncertainty in importance of data ((ii) above).

Unlike Dempster-Shafer models, it is computationally efficient and has resulted in a

number of applications. 110"30 Various other uncertainty management methods such as

certainty factors have been proposed, which seem to be largely ad hoc techniques not

grounded in theory. 107

Chapter Three - Related Disciplines
	

26

The relevance of these models will become apparent later in the chapter. Suffice it for

now to say that each model is limited in some significant respect. Probability models do

not model uncertainty in data; Dempster-Shafer models seem theoretically sound but are

computationally unrealistic; Possibility models do not model weighting of data; and the

'ad hoc techniques', though empirically derived, can give inconsistent answers.

Structure

The fundamental similarity between neural nets and rule bases is in their structure. A

Horn Clause has the same structure as a neuron in that several (continuous-valued) inputs

combine, in some way, to produce one (continuous-valued) output.

a l

activity

evidence 1

evidence

conclusion 	if 	evidence

evidence
n

Figure 3.1 Structural Similarity between Neuron and Rule

In the same way that neurons are structurally equivalent to rules, some neural models are

structurally equivalent to rule bases.'31"32

Chapter Three - Related Disciplines 	 27

8
In 9-. 	 U In

0

. 0
0

I 	
U, 	 In 	 cc
o
U . —

ba

o 	 .2

0

in-love if beautiful & virtuous & interesting.
beautiful if good-figure & blond & large-eyes.
virtuous if never-late & consistent & does-washing-up.
interesting if not_an_accountant & hunierous & likes-Picasso.

Figure 3.2 Structural Similarity between Neural Models and Rule Bases

Dynamics

By dynamics is meant the processing of information within the model - as opposed to its

static topology. It has been seen that neural and rule based models are structurally

equivalent. The present concern is to determine whether they are dynamically equivalent:

do neural models approximate rule based models in the way they process information? A

neural model has a specific topology, weights and thresholds: are there analogues of these

components within rule based models which enable us to understand their role in neural

models? If so, a metaphor for neural processing may exist which illumines neural theory.

Chapter Three - Related Disciplines 	 28

First Gallant, 131 and then others, 133 have shown empirically the 'equivalence' of some

neural and rule based models. Connectionisr Expert Systems perform evaluations in an

event-driven control strategy, as do neural models. Traditionally, expert systems have

employed a goal-directed order of evaluation as a control strategy. This, however, is

simply a difference in order of evaluation, not in what is computed at each node. Within

the connectionist expert system model, synaptic weights may represent uncertainty in

importance of data ((ii) above), neuron thresholds may represent the validity of a rule

((iii) above: its predisposition to fire) and cell outputs may represent certainty of data and

hypotheses ((i) & (iv) above).

More recently, it has been rigorously proven that a multilayer perceptron approximates a

Bayes optimal discriminant function. 134,135 This shows that some, if not all, neural

models approximate various rule based uncertainty management models. 136 Building on

this work, Lacher et al 137 have applied the neural learning algorithm backpropagation to

connectionist expert systems, which they have dubbed Expert Networks. Other work has

observed various aspects of this 'equivalence' between neural and rule based

learning. 131-140 It is beyond the scope of this thesis to enter into a detailed analysis of this

work. Of interest to us, by way of results, is the role played by each component of a

neural model - topology, weights, thresholds - in the expert system metaphor.

Neurons may be understood as performing primitive inferencing. Their thresholds

contain some concept of the prior probability of a hypothesis being correct: the cell's

predisposition to fire. Synaptic weights perform (as they were perhaps unwittingly

named) weighting of evidence. The network topology interrelates inferences so as to

realise the desired global function.

A feature of expert systems is that they automatically generate explanations of how they

arrived at an answer. This capability has been incorporated in neural modeling software

produced by the Hecht-Neilsen Corporation and in Neuraiworks Professional,t which

give 'explanations' by tracing through heavily-weighted synapses back to inputs. A tool

designed explicitly for the development of connectionist expert systems has' also been

produced. 141

Produced by Neuraiware Inc.

1(h)

if >__~ 1(e)

1(e)

Chapter Three - Related Disciplines

a

neuron

a. i a 3

a n

FTE

1(x): likelihood of 	 l(e)
p(h): prior probability of h
h : hypothesis
i : importance of evidence
e : evidence
t : threshold
a : neuron activity
w : synapse weight

= f(t,w) = g(p(h),fle.iii)

=

Figure 3.3

Relationship between Rule-Based Uncertainty Management and Neural Dynamics

Primitive vs. High Level

Much work relating expert systems to neural nets has compared neural nets and expert

systems containing first order predicate rules only. First order predicates are boolean

functions that take no arguments, as opposed to second order predicates, which do take

Chapter Three - Related Disciplines 	 30

arguments. Comparisons between second order predicate rule bases and neural nets have

been performed 137 but these models assume the existence of processes more complex

than the simple summation- and-thresholding of a neuron at each node. In Gallant's

model, 131 for instance, the neural part of the system implements uncertainty

management; the higher level capabilities of expert systems are not implemented

neurally. Higher level features of expert systems include: variable binding, variable

instantiation, the use of a stack to perform recursive inference, list processing and explicit

control by use of operations such cut. 105 This in no way invalidates this 'metaphor' of

neural computation since first order equivalence alone enables the opening up of the

neural 'black box' to see how, at a primitive (neuron/synapse) level, functions are

computed. However, it is relevant to this thesis to consider how these higher level

functions might be implemented by neural models. As will be seen, a more natural

analogy of these capabilities is the object-oriented model. Thus, the consideration of

higher level functioning will be left to one side for now and it is simply noted that

connectiomst expert systems provide understanding of primitive neural processing.

Specification vs. Learning

Expert systems have traditionally been constructed by specification. It is this element

which gives insight on 'equivalent' neural models. However, much work has been spent

in getting expert systems to learn. 132,142-146 Some of these methods, arrived at in

isolation from neural learning techniques, may lend insight on neural learning. For

example, one skill refinement model is modeled on market forces within an economy.

Each rule is viewed as a buyer and seller within a 'knowledge market'. It buys proof of

its conditions from other rules, and sells its conclusion to other rules on the basis of how

well it can be established. Thus, rules which find it 'cheap' to prove their hypotheses are

used often by other rules since they are inexpensive. When asked to support a hypothesis

a rule will be given a certain amount of credit (based on how vital the proof of the

hypothesis is) with which to buy proof of its own conditions, which are themselves

hypotheses belonging to other rules. The rule with the most credit will be evaluated first.

In this way, the best method of establishing a hypothesis is determined. This seems to be

some parallel of competitive learning. 147 It also suggests an analogue of Hebbian

22 learning.

Chapter Three - Related Disciplines 	 31

Other expert system refinement models appear to be applications of neural learning. 131,137

Backpropagation may be used to determine the optimum conditional (threshold) and prior

probabilities (weights) in a Bayesian-type model. An empirical comparison of

connectiomst and symbolic learning in general' 40 and comparisons of 1D3 (a symbolic

learning algorithm) and backpropagation' 48 have been performed.

In summary, the virtue of the expert system metaphor of neural computation is that it

enables the opening up of the neural 'black box' so that what is occuring inside may be
Understood. 103,104,149 Unfortunately, this understanding is limited to the primitive level of

representation. Thus, we now turn to another related discipline, in which hierarchy is

more explicit: distributed systems.

2. Distributed Systems

The Motivation for Distribution

Undoubtedly the most successful computation-engine ever to have been built is the von

Neumann machine. It is universally powerful, 30"50 flexible, 'easily' programmed and,

above all, well understood. Compare this with neural nets which, though universally

powerful, 29 are certainly not well understood, thus not easily programmed and thus not

flexible. Indeed, so many resources have been invested in the von Neumann machine that

it is hard to imagine an alternative method of computation becoming predominant, at

least in the near future. In spite of this fact, however, the von Neumann machine does

have a major flaw: the von Neumann bottleneck. The von Neumann model of

computation is basically sequential which, though vast efforts have been made to widen

and speedup this bottleneck, does fundamentally restrict the speed of computation. This

has driven huge research into unifying the power of multiple processors and a good

understanding of the problems involved in this has emerged. '51"52

One method of combining processors to solve a particular function is to farm out

subordinate functions - in a hierarchical manner - to slave processors. This model leaves

the master processor with absolute control: lower level functions/processes do not exist

until invoked by a higher level function. This technique is not of interest to us since it

Chapter Three - Related Disciplines 	 32

seems unlikely that functions are farmed out to vacant areas of a neural network.

The Neural Metaphor

What is relevant by way of distributed theory, however, is the method by which a

process/function may be divided into autonomous, cooperating processes which, by

working together, compute the same function. This theory seems of direct relevance to

neural models since it indicates how function may be distributed across neurons and

across clusters of neurons and how communication may be distributed across synapses

and groups of synapses. Thus, by 'distributed system' this thesis means: a model of

computation in which one or more functions are divided, in some manner, so that each

subdivision is performed as an autonomous process executing on its own dedicated

hardware and is interrelated in such a way as to implement those functions.

A significant factor determining the way in which function is distributed is the target

hardware. It is likely that a function will be distributed in a different way if each node is

a von Neumann machine than from if each node is a neuron. The experimental results of

this thesis (chapters Five and Six) show that function can be recursively distributed in

such a way that each bottom level, atomic function is implemented by a neuron. If

function is not distributed to this very primitive level then higher processing powers are

needed at each node. It seems clear, therefore, that nature has chosen to use a completely

distributed model of computation: it is not sensible to subdivide a neuron function.

Intuitively, the reason for the choice of the neuron as primitive processor and of the

synapse as primitive connection must be that these are the commonest 'denominators' of

distributed function. It must be most 'natural' to realise higher level (human) functions in

terms of interconnected neurons. Functions such as perception are presumably more

naturally expressed in terms of interconnected neurons than in terms of interconnected

logic gates, for example. The experimental results of this research indicate that the

converse is also true: functions unnatural to humans, such as long division, are better

represented in terms of logic gates than neurons. Neural nets thus will not take over from

conventional machines in most tasks to which computers are currently put.

A key feature which distributed and neural systems have in common is their redundancy

and fault-tolerance. Of the order of 100 neurons die out in the human brain each day, yet

Chapter Three - Related Disciplines 	 33

it continues to function. Similarly, distributed systems are defined with built-in

redundancy so that if, for example, one node fails, other nodes will detect this and take

over its functions.

This thesis argues that some aspects of neural models can best be understood within the

field of distributed systems. The methodology by which function is distributed implies a

framework within which neural distributed processing may be understood: clusters of

neurons perform describable functions; 29 their computation is distributed across other

appropriately-connected clusters of neurons; ultimately, all processing is distributed to

primitive (neuron) level; and in the same way, high level messages between functions are

distributed as lower level messages and, ultimately, as synaptic connections.

Autonomy and Control

A feature of distributed models is that each component has autonomy. Each component

does not depend for its existence/creation on another component. It may receive requests

to perform tasks but chooses whether or not to perform these at its own discretion. Within

itself it has complete control, but outside itself it is powerless. All it can do if it requires

some resource is to request it.

A distributed function cannot be understood in terms of its isolated components. What

defines that function is the way in which its parts are interrelated by communication. Still

less may a function be understood in terms of the components of its components. This is

precisely the scenario encountered with neural nets. It is not possible to understand the

function of a network by observation of the interconnection of individual neurons. In

conventional distributed systems there exists hierarchy such that the role of each function

can only be understood at a higher level. In the same way, it seems likely that neural

distributed function will only be understood through hierarchy. Thus, the role of each

cluster of neurons - that is, of each function - will only be determined through its

interrelationship with other clusters.

Chapter Three - Related Disciplines 	 34

Communication

Autonomous processes that cooperate to perform some higher level function must, in

order to achieve this, communicate in some way. This is performed in traditional

distributed systems by message passing. 153 Each module/function typically has a well-

defined interface by means of which it can send and receive messages.

In most distributed systems, functions are not completely distributed to their most

primitive, atomic form. Thus, in each function a degree of sequentiality is retained.

Typically, each autonomous process is an imperative program executing on a von

Neumann processor. In this case, it is necessary to have sophisticated message passing

facilities, with queueing of incoming messages and blocking of process execution when

waiting for certain messages. The metaphor that best fits neural models, however, is the

completely distributed system, in which every component of every function (except the

atomic function) is itself distributed. Thus, every function executes in parallel - and

thus, incidentally, such communications complications as queueing do not arise.

The most significant result of the distribution of computation is increase in

communication. Inevitably, the more that computation is distributed, the more

intercommunication is required. Indeed, if it were possible to obtain unlimited, high

speed communication between distributed processes, there would be few problems in

distributing systems. The problem then would be how to distribute function, whereas at

present the problem is how to distribute function whilst minimising and localising

intercommunication. Too much distribution, using conventional hardware, replaces a

processing (von Neumann) bottleneck with a communications bottleneck.

Neural nets are, it seems, completely distributed systems and thus, as discussed in

Chapter Two, have massive intercommunication. It is hard to conceive a manner in which

the amount of connectionism in biological neural nets will ever be replicated artificially

in electronic hardware. This is due to the two-dimensional nature of electronic circuits as

compared with the three dimensions within which the brain works, though electronics

does have a third dimension of time. Optical implementations of artificial nets 154 seem,

apart from chemical implementations - which would effectively replicate biological nets,

to be the only viable method of implementing massive connectiomsm artificially.

Chapter Three - Related Disciplines 	 35

Incidentally, completely distributed functions communicating and processing optically

would seem to be the fastest possible execution of that function that could ever exist. This

is not to say that the function could not be represented in a different way (see section 4.5)

so that it executed faster or slower. However, each particular expression of a function

could not be executed faster than its completely distributed optical implementation.

3. Object-Oriented Modeling

Motivation

The development of programming languages and modeling methods was strongly

influenced by the von Neumann machine. Modeling techniques developed so as to best

utilise the sequential nature of this method of computation. Most high level languages

are thus fundamentally sequential and the incorporation of parallel features within them

seems unnatural. The framework presented in this thesis (see Chapter Four) is a more

natural method of modeling entirely parallel systems and requires a different approach to

'programming' within it. This framework does allow sequential flow of control but is

most suited to completely parallel/distributed representations. The use of sequential

control is as unnatural to it as is the use of distributed control within conventional

languages.

The motivation for object-oriented methods is to create supposedly more natural models

of a world. (For an explanation of how all computing may be regarded as world-

modeling, see Weizenbaum.)' 5° An object-oriented model contains a set of processes,

each of which represents, and behaves in the same way as, an object in the world being

modeled. The behavior of these objects is typically described in a conventional,

sequential language.

Object-Oriented Concepts

The object-oriented methodology has developed its own terminology, much of which is

still in a state of flux and not yet standardised. Here follow some of the basic concepts

involved:

Chapter Three - Related Disciplines
	

36

Object - an autonomous process representing and behaving like some entity in the

world being modeled. For example, a process might represent a Porsche.

Attribute - a characteristic of an object. For example, size, colour, etc.

Class - the definition of a type of object. For example, Car or Porsche.

Instance - an object of a particular class. For example, Toby's Porsche.

Inheritance - the means by which one object can be defined to be a special case of

another, more general, class/type. For example, 'Porsche' would inherit the

attributes of 'Car'.

Subclass - a class that inherits the attributes of another class. 'Porsche' is a

subclass of 'Car'.

Method - an operation that can be performed by an object and which is typically

invoked by the receipt of the appropriate message from another object.

'Pure' Object-Oriented Modeling

The framework for neural theory presented within this thesis is inspired largely by

concepts in the field of object-oriented modeling. This field has moved away from

sequential techniques in the modeling of a world. Attempts are made to create more

natural models of a world by creating within the model a process to represent each object

in that world. The definition of that object's behavior is still, however, described in

conventional - basically sequential - code. The framework presented in this thesis differs

from this in that each object is defined exclusively in terms of other objects, much as

function is subdivided in completely distributed systems (section 3.2). Thus, the model is

completely parallel and constitutes a natural framework within which to describe neural

structures. This is what is meant by pure object-oriented modeling.

The object-oriented paradigm seems a good metaphor for neural computation owing to its

natural representation of a world. It is conceivable that the brain models the world in the

same way. Objects are 'understood' in terms of more primitive objects in the same way

that clusters of neurons are defined in terms of lower level clusters. This argument is

Chapter Three - Related Disciplines 	 37

advanced in the next chapter (section 4.5).

Non-Neural Connectionism

Besides the three major metaphors for neural computation already discussed, there are

various other non-neural network formalisms, each of which may offer its own insights

on neural modeling. The relationship between semantic nets and neural nets has been

explored. 155,156 Fuzzy petri nets are networks similar to expert networks 137 and perform

primitive knowledge-based processing. 157 Configurable hardware is a class of target

architectures for completely distributed implementations. 158 Neural models could perhaps

be included in this class even though these architectures traditionally contain logic gate

functions at primitive nodes.

Summary

In this chapter various disciplines related to neural nets have been discussed. Expert

systems, distributed systems and object-oriented paradigms are all disciplines in their

own right and, to some extent, seem to be variations on a common theme. Each discipline

is, as has been argued, intimately related to neural modeling and each offers unique

insights on neural theory.

From connectionist expert systems we have gained a potential understanding of primitive

neural functioning - a well-understood metaphor for cell function, synapses and network

topology. From distributed systems we have gleaned a framework containing hierarchy

for the distribution of computation to a target architecture containing primitive processors

such as the neuron and primitive connections such as the synapse. From object-oriented

modeling we have deduced a potential framework for neural representations that is,

above all, a natural method of modeling the world. The unification of these three

'theories' forms the foundation for the next chapter, which proposes a framework for

neural theory.

Chapter Four

A Framework for Neural Theory

1. Introduction

The key concept underlying this thesis is hierarchy. 159 This concept is all but entirely

absent from current analysis and construction of neural nets. At present, attention is

focused almost exclusively at the primitive level. When faced with the questions: What

does a network mean? and How does a network compute its function? current 'theory' is

powerless to respond. It simply is not possible to understand a complex network in terms

of individual primitive neurons and synapses. This problem is analagous to trying to

deduce the function of a one million-transistor digital integrated circuit solely from a

netlist of transistors. The physical layout is a clue to its various components (as seems

likely to be the case in biological neural nets) and an experienced chip-designer may be

able to deduce some understanding of its function from this. It may be possible to group

transistors into D-type flip-flops, group these into shift registers, and so on. However, the

very principle underlying this process is hierarchy. Though hierarchy is not readily

apparent in a flat netlist of transistors (or, for that matter, a netlist of neurons) it is present

and actually underpins the correct implementation and testing of such a system. The

problem of reverse-engineering a neural implementation to a hierarchical representation

of its function is yet more complex than for an integrated circuit: neural nets don't

process discrete values; they interconnect massively; they have never been constructed

from hierarchical specifications so it is not known what cues to look for in discerning

which structures implement which functions.

To take another example, one could try reading this thesis by selecting characters at

random from its pages. Hierarchy underpins the framework by means of which we

comprehend text. Characters, which have meaning at a low level, are related to form

words, which have meaning at a higher level. Words are related to form phrases, phrases

to form sentences, sentences to form paragraphs, and so on through subsections and

sections, to chapters and thesis. It is not possible to either write or understand this thesis

38

Chapter Four - The Framework 	 39

without a concept of hierarchy, however subconcious that may be.

Yet another example of how essential hierarchy is to our understanding is in the field of

physics. It is not sensible to try to understand the replication of DNA in terms of

subatomic particles. What is needed is intermediate levels of representation which bridge

this gap. Each of these levels has its own 'theory' describing how it relates to lower

levels (a capability required for the neural framework). Atoms are formed from

subatomic particles, base molecules from atoms, proteins and polymer chains from base

molecules. Levels of representation are essential to our understanding of this.

An example which is closer to the neural problem, in that it too is concerned with

computation, is hierarchy within software systems. A complex program cannot be

understood in terms of its compiled binary machine code. Its function becomes only

vaguely-discernable if the binary is tranformed to mnemonic machine codes. These in

turn need to be abstracted to programming constructs such as if .. then ... else, then to

functions, higher level functions, and so on up to module, subsystem and system levels.

It is helpful to consider these examples of hierarchy in order to enable us to appreciate its

virtues. A final example, especially relevant to this thesis (see Chapter Six), is in image

processing. It is not possible to read a numberplate, or recognise a face, or match two

fingerprints, or any other non-trivial image processing task, simply by consideration of a

two-dimensional array of intensity values. All the necessary information to perform any

of these tasks may be present in this array but it cannot be directly transformed into the

representation we are seeking. Instead, it must pass through a hierarchy of levels of

representation: typically, pixels must be transformed to edges, edges to boundaries,

boundaries to segments, segments to measurements and measurements to classifications.

The theory by which these transformations are made is at the very heart of image

processing, as is the problem of finding the best sequence of representations through

which to pass in arriving at the goal.

Each of these examples illustrates the crucial role of hierarchy in comprehending a

complex system. Each example contains relatively few levels of hierarchy - though

perhaps intermediate levels could be inserted which we have not mentioned. Where these

examples differ from the framework of hierarchy advocated in this thesis is in their lack

Chapter Four - The Framework 	 40

of homogeneity. A different set of rules exists at each level (barring silicon compilation

and software definition) for mapping one level of representation to another. The

framework of hierarchy for neural nets, however, is not restricted to a certain number of

levels and is homogeneous throughout the levels.

The only level that is common to all models constructed under this framework is the

primitive level, that which contains neurons and synapses. Though the framework is

applicable to all neural models, the way in which these models form higher levels of

representation is not constrained by the framework and is instead determined by the

designer or (perhaps) the learning process. The hierarchy presented in this thesis is not

the same as modularity of networks, which has been described in previous work as

hierarchy. The scenario where several subnets or modules produce results which form

input to a 'higher level' module is not taken to be true hierarchy. Representations are only

analysed above the primitive level in a very restricted sense. There is no hierarchy of

data.

It has been argued that a multilevel representation, in addition to a method of interrelating

levels, is essential to the understanding of neural systems. Thus, the next section (4.2)

presents a framework of hierarchy for understanding neural systems at arbitrary levels of

abstraction. The subsequent section (4.3) presents a method for relating levels by means

of state-sequence analysis. 101 Section 4.4 considers whether it is plausible that

specifications made within this framework can be biologically encoded within the genetic

code. In addition, the implications of the presence of hierarchy for learning are explored.

Finally, the importance of adopting a good representation at each level is discussed.

The Concept of Levels

The purpose here is to represent functions and data, and to perform transformations

between these representations. A framework is required which enables the description of

distributed functions and data at arbitrary levels of abstraction and which enables the

interrelation of those levels. 159 As discussed in the previous section, the idea of levels is

crucial to this framework. Perhaps the best-known analysis of levels is that given by

Marr. 16° He identifies three main levels of representation, at which understanding is

essential:

Chapter Four - The Framework
	

41

Computational Theory - what is the goal of the computation, why is it

appropriate, and what is the logic of the strategy by which it can be carried out.

Representation and Algorithm - how can this computational theory be

implemented? In particular, what is the representation for input and output, and

what is the algorithm for the transformation?

Hardware Implementation - How can the representation and algorithm be

realised physically?

Marr cites these as three levels at which any machine carrying out an information

processing task must be understood. He also sketches the main levels of representation

involved in image processing; these levels are representations of data - not function, as

above.

I prefer to think of the levels of representation of function as in Figure 4.1. The pyramid

illustrates not the increased complexity as a function is implemented but the concept that

a function at any particular level of abstraction can be implemented in a usually large,

and sometimes enormous, number of ways. Similarly, there exists a common abstraction

for many different implementations of a function.' ° '

Abstraction and Implementation

Abstraction contains the idea of capturing the essence of something described at a greater

level of detail. It involves saying less about how something is done and more about what

is done. Abstraction contains the concept of summarising (not modifying) some

description from a more to a less concrete form.

Implementation is the inverse operation to abstraction. It involves putting a description of

a function into effect. It involves making a function more concrete, saying the same thing

but in more detail, transforming what a function is into how it should be performed.

There is considerable debate over what is the best view of levels. '0' pp12-64 The concept

of levels now developed is sufficient to describe the framework for neural theory.

Chapter Four - The Framework 	 42

Computational Level

Abstraction

(less concrete)

... 	 4

......................n+I
n

n-i

F
1!

F

Implementation
..................................-.-- 	(more concrete)

2
1 	 Realisation Level

Figure 4.1 Relationship between Levels, Abstraction and Implementation

Levels for Neural Representations

Within the framework the neuron/synapse level will be defined as the

'primitive'/realisation level, the base of the pyramid in Figure 4.1. It is conceivable that

there are yet more primitive implementations of this level but, for the purposes of

understanding neural systems, neurons and synapses will be treated as primitive

representations. The contention of this thesis is that a neural network is a realisation of

functioning that can be meaningfully described and understood at higher levels of

abstraction. As already discussed in the introduction to this chapter, that function cannot

be understood at the primitive/realisation' level alone. The framework must enable the

abstraction and implemention of functioning in a completely distributed manner. This is

Chapter Four - The Framework 	 43

achieved by the use of three basic concepts (see also figure 4.2):

a function - which transforms inputs to outputs in some way.

a connection - which provides a means of integrating functions.

an interface - by means of which a function communicates with other

functions - the 'outside world'.

Figure 4.2 Concepts of the Framework: Definition of a Function

Chapter Four - The Framework
	

44

2. The Framework

Functions

Use of the term function can be misleading since our functions are not restricted to

returning a single, or even composite, value. Instead, they are allowed to take many

inputs and produce many outputs, simultaneously. Our use of the term is more closely

allied to the idea of an object, as used in object-oriented models of computation (see

section 3.3). The difference here is that objects in these models are typically defined in

terms of (sequential) imperative code, and thus cannot naturally respond to simultaneous

inputs with simultaneous outputs. In this sense, our use of the concept function is closer

to the way in which a distributed system is defined. Here, a distributed system (function)

is defined in a completely distributed manner such that the distributed system (function)

consists of the appropriate interconnection of lower level distributed systems (functions).

This analogy is a better parallel of the inherent distribution in neural systems, though the

valuable concepts in object-oriented modelling are not explicit. For a discussion of these

issues see sections 3.2 and 3.3.

Call
1.o\\ 02' 	 then

0
Condition 	 else

Figure 4.3 Definition of if. ..then. . .else function

Broadly speaking, a function at one level of abstraction is implemented at a lower level

(and in a multiplicity of ways) by interrelating lower level functions in such a way that

together they produce the desired behavior. (See figure 4.3 for an example of the way in

Chapter Four - The Framework 	 45

which an if .. then ... else function may be implemented in terms of primitive functions and

connections.) This interrelation is performed by message passing between functions (see

section 3.3). Where messages come from and go to is defined by interconnecting

functions to form the appropriate topology. This style of definition is more declarative

than most classical techniques (e.g. imperative algorithms) for describing functions.

Connections

Just as levels of abstraction exist in representation of function, so connections represent

levels of abstraction in the representation of data. If the synapses transmitting visual

information from the eye to the part of brain that processes visual information were to

take random paths through the rest of the brain it would be very difficult indeed to deduce

what was going on. In practice, however, these nerves are tightly grouped into a 'higher

level' connection, the optic nerve. It makes sense to understand the role these synapses

play by grouping them together: the grouping transmits an 'image' (actually a

combination of intensity values and primitive objects such as edges) to another module

within the brain.

As described in Chapter Six (section 6.6) a connection of type 'image' may be defined in

terms of more primitive types of connection. For example, an image may be defined as a

row of columns; or as a column of rows; or as a row of columns of blocks; and so on. A

row may be defined in terms of pixels, which may themselves be defined in terms of

primitive synapses. (See Figure 4.4.)

This hierarchy in connections is necessary to facilitate high level message passing.

Though at implementation level an image is sent along, say, a million primitive paths, at

the conceptual level an image is sent, period. This abstraction of data must go hand in

hand with the abstraction of function.

Interfaces

Each function, at each level of abstraction, has a typed interface. This consists of one or

more ports, of particular connection-types, at which input is received and from which

output is sent. It is by means of this interface that each function communicates with the

Chapter Four - The Framework 	 46

image

top left 	top right 	bottom left 	bottom right

Figure 4.4 Definition of 'image' connection type in terms of quadrants

outside world. Thus, when a function is defined - by interconnecting lower level

functions - these interconnections are made to/from individual ports on those functions,

not directly to components of those functions. Thus, each function has no control over its

role in defining higher level functions; all it 'knows about' and can do is to perform its

own function, transforming inputs received at its interface to outputs which it transmits

via its interface. In this way, as in distributed and object-oriented models (see sections

3.2 and 3.3), functions are autonomous. This use of typed interfaces allows the definition

of a function to be restricted to one level at a time.

Each non-primitive type of connection is defined in terms of lower level types. Thus,

each port in the interface of function X itself contains ports - of lower level types.

Connections external to X must be of the same type as the port on X to which they

connect. Internal connections, however, may connect to one of the port's lower level

ports which represent the types in terms of which the port is defined. Using this latter

method of connection enables the function to decompose a high level connection into its

constituent types. Thus, for a function to perform edge detection on input received as type

Chapter Four - The Framework 	 47

image it must first decompose this image type to pixel level. Composition of higher level

connection types is achieved in the same manner.

Instances

If it is necessary to define several

Zuirre$deeti

 injerms of one common lower level function,
-P;'4)

an instance of that function is 	 . Fof example, functions to perform object
A

detection and object classification might both be defined in terms of a function which

detects edges at a particular point in an image. Instead of creating two instances of this

edge-detection function it makes sense to use a common instance, in terms of which both

higher level functions are defined. This is analagous to the concepts of class and instance

in object-oriented modelling (see section 3.3).

Level n

Level n1E

Instances

Figure 4.5 Definition of Multiple Functions in terms of Common Instances

This capability permits compact implementation of higher level functions; two functions

are not required to do the same thing. Most neurons, or clusters of neurons, will typically

be components of more than one higher level function. Thus, the implementations of

multiple high level functions - which ultimately consists of primitive interconnections

between primitive processors - will normally be closely intertwined. Several high level

functions will typically be implemented in terms of common neurons, or common

clusters of neurons, each function interconnecting these in different ways. In the same

Chapter Four - The Framework 	 48

way, instances of connections may be created so that disparate functions may

communicate via the same communication path. This, of course, may not make sense

without the use of multiplexing though such connection instances may be a feature of

biological systems.

Summary

A framework of hierarchy has been described within which representations may be

transformed between levels of abstraction. Neural Compilation, the process by which a

hierarchical specification of a neural system is implemented, is facilitated by ANNECS, a

software tool described in Chapter Five. What is significant about this framework is that

it enables the understanding of neural systems at arbitrary levels of abstraction. As has

been discussed, this ability is essential for the understanding of the operation of any non-

trivial system and should aid analysis of neural systems by raising representations above

the primitive level. The next section considers how levels may be formally related to

each other and how transformations may be made between one level of representation

and another.

3. A State-Oriented Analysis of the Framework

A function can be represented in many different ways. It could be described in a high

level language such as Prolog or Pascal; it could be represented in machine code for a

68000 microprocessor; it might be described in terms of logic gates, or a state transition

table; it might be represented as a Turing Machine; it might be realised by a neural

network. How can these representations be compared? When are two implementations of

a function computationally equivalent? When is a function a common abstraction of

other functions?

Recent work' °' has presented a method for characterising functions so that their

relationship to each other can be analysed. This theory is also of use in analysing the

neural framework of hierarchy. Thus, a description of the basic principles of Foster's

approach is made and this approach is then applied to the relationship between levels of

abstraction of neural function.

Chapter Four - The Framework
	

49

Foster's State-Sequence Characterisation of Function

A function (i.e. algorithm, neural network, digital integrated circuit, etc) is characterised

by a set of state-sequences. A state-sequence is, obviously, a sequence of states through

which the function passes. A state consists of all the variables contained in the function -

which may include, for example, instructions or network topology, as well as data. This

is best illustrated by Foster's example of a Pascal-style representation of an exclusive-or

function:

program xor;

var x, y, z: mteger;

begin

readln(x);

readln(y);

if (x=y) then

z :=O;

else

z:= 1;

writeln(z);

end.

This function will start off in the following state:

x: U

Y: U

z: U

next instruction: readln(x);

'x', 'y', 'z' and 'next instruction' are labels (or variable names) to which are attached

states. Initially, x, y and z are all undefined: U. As the function executes, these states will

change in the following sequence:

Chapter Four - The Framework
	

50

x: 0

Y: U

z:U

next instruction: readln(y);

x: 0

Y: 1

z: U

next instruction: x=y?;

x: 0

Y: 1

z: U

next instruction: z=1;

x: 0

Y: 1

z: 1

next instruction: writeln(z);

x: 0

Y: 1

z: 1

next instruction: U

As Foster shows, a neural realisation of the exclusive-or function can be characterised

using the same method. Here, however, variables are continuous-valued, not discrete, and

must be represented to some arbitrary degree of precision. The labels (0, 1, 2, 3, 4)

correspond to the neurons in Figure 4.6:

Chapter Four - The Framework
	

51

+1.0

+1.0

+1.0 	 .ftJ5

ft
t

I 	

t
0

Figure 4.6 Neural Implementation of Exclusive-Or Function

0:U 1:U 2:U

3:U 4:U

0:0 1:U 2:U 3:U 4:U

0:0 1:1 2:U3:U 4:U

0:0 1:1 2:0.983:0.02 4:0.98

These examples convey the method of the approach and illustrate how classical and

connectiomst implementations of a function can be compared. A function is

characterised by a set of state-sequences because it can only be exhaustively described in

Chapter Four - The Framework 	 52

terms of input and output by producing a state-sequence for each input/output

combination. Obviously, this method of characterisation explodes with increase in

complexity of function or data but this is not of concern. What is required is not a

practical but a theoretical means of characterising an algorithm and interrelating it with

its abstraction and implementations.

Hierarchical State-Sequences

Implicit in the previous examples was the concept of detail, which may be viewed as a

form of hierarchy. The Pascal representation would typically be compiled and assembled

to a machine code representation for execution on a von Neumann architecture. That

machine code level of representation will contain several other variables used in

computing intermediate results. Thus, if we were to take our state-sequence analysis to

machine code level, intermediate sequences would typically be required to transform

between each of the major states listed in the example. For the neural implementation,

however, it doesn't make sense to insert intermediate state-sequences because the neural

realisation is 'primitive'. (As previously described, it is possible to subdivide neuron

function but, for the purpose of this analysis, the neuron/synapse level is taken as the

primitive level.)

The process of 'filling in' more detailed state-sequences corresponds to implementation,

whereas , the process Qf removing intermediate state-sequences corresponds to
(.t 4src Ii.)

abstraction. Foi'example, the state-sequence description of the neural exclusive-or could

be abstracted to omit the states of neurons two and three. Effectively, the function would

then be described entirely in terms of its input and output states through time.

A State-Oriented Description of the Framework

A method that interrelates levels within the framework is required. This will determine

how a function is implemented and how it is abstracted. A hierarchy of state-sequences,

in addition to some simple constraints, enables the study of this relationship.

For illustrative purposes, take the hypothetical function - expressed within the

framework - as shown in Figure 4.8. All that is shown is the interface to the function. By

Chapter Four - The Framework 	 53

states

012345.
a

b Top Level Function

Zstmates states

012345. . 	 . 012345...
a a

.! b . b

Abstraction

Implementation

states

012345. . 	 . 012345. •1.
a - - - - - 	 - - a

-
Primitive!

4 b b Realisation
C Level

. 	 .

Figure 4.7 Using state-sequences to describe hierarchy

defining state-sequences for inputs supplied to, and outputs received from, this interface,

the function can be comprehensively characterised. This is an implementation-

independent method of specifying what the function does.

The class of correct implementations of this function is suprisingly large. Informally, any

configuration of lower level functions which obeys certain simple constraints is a valid

implementation. (See Appendix A for a formal treatment of this.) To describe these

Chapter Four - The Framework
	

54

UNMENUMMUME
=MMMMMMMEMME
=MMMMMMMEMME
=MMMMMMMEMME
=MMMMMMMEMME

Figure 4.8 Interface of some hypothetical function
and state-sequence describing function

constraints, it is useful to consider an example of a valid implementation, as shown in

Figure 4.9.

Each lower level function used to implement the hypothetical function has its own state-

sequence. It is not of importance, at this stage, how these functions are themselves

implemented. What is required is that they satisfy constraints imposed on them by the

topology in which they have been interrelated so as to implement the hypothetical

function. The constraint which will ensure that the topology is a correct implementation

Chapter Four - The Framework
	

55

Figure 4.9 Example Implementation of Hypothetical Function

of the function is as follows: where interface ports in two functions/interfaces are

connected, the state on each port must be the same (or undefined) at each point in time.

Thus, for the implementation of the hypothetical function in Figure 4.9, the state-

sequences for the functions in terms of which it is implemented are as shown in Figure

4.10 (a are algebraic variables denoting the state on a port at time t).

State-Oriented Abstraction and Implementation

If all functions within a hierarchical specification of a neural system satisfy these

constraints then, by induction on state-sequences, the neural realisation satisfies the top-

level function specification. The base case here, is the state-sequence of a neuron, which

approximates some mathematical model. Note that, for the purpose of this analysis, the

synaptic multiplication is incorporated in the state-sequence of a neuron. ANNECS is a

software tool which performs this implementation of a high level function as a neural

network (see Chapter Five). When a function is successively implemented in terms of its

Chapter Four - The Framework
	

56

0

•:S 0

o 15

A"

Ii]

10

`-,Time 0 T7T 1 	4 5 7T
0 0.29 030 0.29 030 0.92 0.25 0.50 0.99 0.99

1 0.65 0.10 0.00 0.55 0.29 0.74 0.51 0.02 0.01

2 0.78 0.99 0.95 0.81 0.36 0.86 0.73 0.79 0.28

3 0.49 0.96 0.68 0.72 1 0.43 0.91 1 0.44 0.01 0.52

0 1 2 3 4 5 6 ... fl n+1

0 0.29 0.30 0.29 0.30 0.92 0.25 0.50 ... 0.99 0.99

1 0.65 0.10 0.00 0.55 0.29 0.74 0.51 0.02 0.01

2 aoO a 01 a a
03

a 04 a 11 a a a1

3 a a a
12

a 13 a 14 a 15 a a 1 a 1 , 1

juie 0 1 2 3 4 5 6 ... n n+1

0 a to a 11 a 12 a 13 a 14 a 13 a a a11

1 aoO a 01 a1 a
03

a a 05 a a a1

2 0.78 0.99 0.95 0.81 0.36 0.86 0.73 ... 0.79 0.28

a
20

a a a 23 a a a aa.

a
20

a
21

a a
23

a
24 a a

•..
a

2n
a

+1

2 J L 3 i ... n _

0 0.29 0.30 0.29 0.30 0.92 0.25 0.50 0.99 0.99

1 a a 11 a
12

a 13
1

a 14 a 15 a a1 a1

2 0.49 0.96 1 0.68 1 	0.72 1 0.43 0.91 0.44 0.01 0.52

Figure 4.10 State-sequence characterisation of functions which form
a valid implementation of the hypothetical function

components such that each stage in the implementation satisfies the constraints outlined

above, the resultant realisation must be a valid implementation of the top level

specification.

Chapter Four - The Framework 	 57

The representation of a function in terms of its defining functions' state-sequences instead

of its own state-sequence corresponds to implementation as described by Foster.' °' The

reverse process corresponds to Foster's definition of abstraction. This hierarchical state-

oriented method of analysis offers a means of relating levels in a formal way.

Biological Considerations

This section considers the ease with which this framework may be embodied by

biological processes. This involves exploring how a hierarchical specification may be

represented in a genetic code and how such a representation may be interpreted during

growth. It is also interesting to consider what role hierarchy might play during learning.

It should be emphasised that this section (alone) is purely speculative and not central to

the thesis. it is included for the sake of interest alone.

Genetic Encoding of Hierarchical Specifications

It is beyond the scope of this thesis to consider whether what is known about DNA and

cell replication is sufficient to say whether hierarchical specifications of neural nets may

be encoded and interpreted during development. What we can say is what level of

biological functionality is required in order to achieve these objectives.

A complete specification of a neural system may be viewed as a neffist of nethsts (see

section 5.3). This structure may be genetically encoded and thus guide brain-generation,

given the following capabilities:

It must be possible to point to a certain point in the DNA chain.

It must be possible to move the pointer to another point in the chain, dependent

on what it previously pointed to.

It must be possible to give a neuron a label (in order to specify connections).

A method for genetically encoding a specification is illustrated in Figure 4.11.

Brain development, under this scenario, basically consists of moving pointers along the

chain. When a cell replicates, one cell (a) contains the pointer moved along to the next

Chapter Four - The Framework 	 58

Function in terms ConnectiorInterface
of which top level in terms of which top

of
Top Level Function Definition

No
unction is define level function defined

functions 	ports

interconnections

Two Ports in top level
_ function are same type

netlist

nethst of nethsts
IP

Function 4.11 fllustration of the way in which a specification might be genetically encoded

unit in the chain; the other cell (b) contains the pointer moved to a new cluster definition.

Thus, generation will propagate down through the hierarchy to the primitive level. As cell

(a) moves its pointer through all the clusters/functions which make up a certain level of

definition, it will eventually come to some 'stop' code, whereupon the cell should die out.

What that cell has represented is a particular implementation of a function at a non-

primitive level in the hierarchy. When it has spawned the generation of the functions in

terms of which it is defined, it has no role left and so dies out. This may explain why

many neurons die out during biological development in a way that appears to be

programmed in (see section 2.1). Presumably, neurons could be created to form

connections to neighbouring neurons which have a common label. These labels could be

determined by the position of the pointer within the chain.

Hierarchical Learning

It seems likely that levels of hierarchy in connections exist in biological systems. The

optic nerve is an obvious example. Since these hierarchies are probably represented by

the spatial alignment of connections it seems likely that some biological effects may

cause 'high level learning'. Artificial learning algorithms that 'work' (section 2.2) relate

modification of one synapse to modifications of other synapses by, for example,

backpropagation of errors. This relationship between modifications is necessary in order

to converge on a solution. However, the method of relating synapse modifications is

almost certainly non-biological. Abstracting neural functions to higher levels of

Chapter Four - The Framework 	 59

deIfi
cell - which represents

''ii 	______ 	____ 	 	 one function at Kme

level in The hiezwdiiccl

aop 	 Specification

If
Primitive Network

(all object to expand next pointers am pointing tofloJ

Figure 4.12 Illustration of how a network may develop from a genetically-encoded hierarchical specification

representation may supply an alternative method for relating weight-changes. This would

come about as a result of the hierarchy inherent in connection patterns. There may be

biological evidence that the strengths of a group of synapses between two clusters of

neurons increase and decrease largely in unison (see also section 7.3). Again, it is

stressed that these thoughts are entirely speculatory.

5. Discussion on Representations

What is a Representation?

Marr describes a representation as "a formal system for making explicit certain entities or

types of information, together with a specification of how the system does this." 60 For

example, a model of the solar system is a representation of it. The Arabic, Roman and

binary numeral systems are representations of numeric values. Arabic representations

model a number by a string of symbols drawn from the set {0,1,2,3,4,5,6,7,8,9}. A

representation is formed by decomposing the number into a sum of multiples of powers

of 10 and concatenating these values into a string with higher powers to the left and lower

Chapter Four - The Framework 	 60

powers to the right. For example: 37 = 3x10 1 + 7x100. Binary representations, on the

other hand, decompose the number into a sum of multiples of powers of two. Thus, 37 in

Arabic representation becomes 100101 in binary. Roman representations use rules not

directly based on powers of any number and thus the representation is not suited to

performing arithmetic.

The way in which visual information can be transformed from one representation to

another has already been discussed (section 4.1). Pixel intensity values can be

transformed to edges, edges to boundaries, boundaries to segments, segments to

measurements and measurements to high level representations of objects. There are many

other ways in which representations of visual information can be transformed. For

example, pixel intensity values can be represented as a histogram. A scan line (a

horizontal or vertical line of pixels in the image) can be represented by a graph which

plots intensity against pixel index. An image can be inverted by taking: pixel[iJ[j] = max-

intensity - p&el[i][j]. An image can be transformed into a representation within the

frequency domain by performing a Fourier Transform.

Each of these examples serves to illustrate what is meant by a representation.

Computation itself, in its most basic definition, may be viewed as the transformation of

representations, by means of some method of combination, to other forms of

representation. Thus, the number 37 can be represented as 30+7, or 29+8, or 28+9.. .or
3*(5*(5..3))+7... An image can be represented, at one extreme level, as an array of

intensity values or, at another, as a description of the objects pictured, such as the name of

the person whose face is visible. We are back to levels again.

This discussion is of relevance to us for two reasons. First, it is worth again stating that

the framework for neural theory is not a particular representation. It is a formalism within

which representations are made. Thus, this thesis is not primarily about representations.

It does not attempt to answer what is or is not a 'good' representation. In particular, it

does not concern itself with how the brain represents the world. A suggestion of this is

given later in this section, but a mere suggestion it remains. In fact, there is no such thing

as a fundamentally good representation. The question should rather be: what is a

representation good for? Binary representation of numbers is good for determining

whether a number is a power of two; it is bad for deciding whether it is a power of ten.

Chapter Four - The Framework 	 61

The binary representation of data suited to von Neumann computation is almost certainly

not how numeric values are represented in the brain. The instruction-oriented

representation of functions within von Neumann machines is almost certainly not the way

in which functions are represented in the brain.

Just as there are usually many possible implementations of a function, so there are many

possible ways of representing a function neurally. This thesis does not say which way is

best but it does provide a method for implementing and comparing those representations.

What representations are natural to neural realisation?

In Chapter Three the virtues of a relatively recent methodology for creating natural

models of a world were discussed. Object-oriented modelling seems to be the most

'natural' method of modeling a world that exists. Each entity in the world is realised by

an entity in the model; its interactions with other entities are realised - in a 'natural' way

- by passing messages. What is interesting about this is that these representations are

elegantly implemented within the neural framework. Each object in a definition is

autonomous; each cluster of neurons in a net is autonomous. Each object in a model is

thought of as a continuously executing process; each cluster of neurons that implements

an object is continuously existant and active. Objects communicate by message passing;

clusters of neurons communicate by passing messages along multiple synapses. Objects

are specified in terms of other objects and ultimately in terms of one or more primitive

objects; each cluster of neurons may be perceived as interconnections of other clusters of

neurons and ultimately as interconnections of primitive neurons.

As noted in Chapter Two (section 2.2) a von Neumann machine may be implemented in

terms of neurons. This is a very unnatural use of neural hardware since it uses a parallel

method of computation in a sequential manner, just as we do, slowly, when performing

mental arithmetic. As the adoption of the Arabic representation of numbers was essential

for the development of mathematics so the use of representations which are natural to

neural implementation is essential for the advancement of neural computation. The limit

to which this thesis can go is to say that the framework presented is suited to the

expression of distributed, object-oriented-style implementations, and that neural systems

are supremely distributed and are concerned with forming natural (i.e. perhaps object-

Chapter Four - The Framework
	

62

oriented) models of the world. Thus, it seems likely that representations that are easy to

describe within the framework will make good use of neural hardware.

6. Summary

A framework whose basis is hierarchy has been presented which enables neural systems

to be understood at arbitrary levels of abstraction. The concept of levels is applicable to

both function and data. The formal relationship between levels in this hierarchy has been

analysed and simple constraints for the correct implementation of a function have been

identified. This framework, whilst facilitating the creation of distributed representations,

does not identify what constitutes a 'good' representation.

The next chapter describes an embodiment of the framework in the form of a software

tool. The following chapter then describes an application of the framework to a real-

world problem.

Chapter Five

ANNECS : A Neural NEtwork Compiler and Simulator

1. Introduction

ANNECS is a software tool which embodies the methodology for constructing neural

nets proposed in Chapter Four. 161,162 It enables the formation - compilation - of a neural

network from a hierarchical specification. It then enables learning of that net - simulation

- by applying one of a number of learning algorithms. During compilation the high level

information contained in the hierarchy of the specification is retained such that learning

that occurs can be understood. The software that performs a function closest to

ANNECS' is probably the CONIC toolkit for constructing distributed systems. 163

ANNECS however, whilst sharing some principles of operation with CONIC, is oriented

exclusively towards neural implementations.

Basically, ANNECS enables the user to define functions in terms of appropriately

interconnected lower level functions. The only primitive function is the neuron and the

only primitive connection is the synapse, though the model upon which each of these is

based can be selected by the user. Thus, all functions are defined, ultimately, in terms of

neurons interconnected by synapses. The compilation component of ANNECS performs

this translation between a high level, hierarchical specification and its functionally

equivalent neural implementation.

The development of this software was undertaken to provide experimental support for the

framework for neural theory advanced in this thesis. Thus, ANNECS integrates genetic

and empirical methods of construction, the compilation and simulation components,

respectively. The key element which enables this to be carried out in a meaningful way is

the presence of hierarchy. The experimental results obtained from this work - the

development of ANNECS and its application to numberplate recognition - endorse the

methodology proposed by this thesis. Within a framework of the nature described in

Chapter Four, the functions computed by neural systems can be comprehended at

63

Chapter Five - Applying the Framework

arbitrary levels of abstraction.

ANNECS consists of circa 5000 lines of 'C' code and makes extensive use of the

SunView graphics software. It was developed over a period of about eighteen months and

forms approximately half the experimental work of this research. ANNECS is simple in

design and easy to use. It is largely menu-driven and thus performs most functions by use

of the mouse. The only typing required of the user is in order to name functions,

connections and interfaces, and to supply initial weight and threshold values.

2. Features of ANNECS

This section reviews the significant features of ANNECS and describes why their

implementation was necessary in order to substantiate this thesis.

Visualisation

Within the framework described in Chapter Four, description of a neural architecture

consists of a hierarchy of nethsts. Written in language-form, a netlist can be fairly

meaningless. Text is inherently sequential in the way in which it lies on the page, even if

what it expresses is something fundamentally parallel. A nethst is above all a structure,

and structures are perhaps best conceived visually. Thus, an essential requirement of

ANINECS is that it visualises specifications. Each component of a function is a real entity,

continually existant in the target neural implementation, and thus it makes sense to have

it represented by a real object at a particular place on the screen. This is not to say that the

same specifications could not be described linguistically, but that the style of specification

lends itself to, and is best understood by means of, visual representation. ANNECS uses

visualisation for the same reason that schematic capture tools use it.

Each type of function and each type of interface is represented by a user-defined icon.

This icon is used to capture function visually (see figure 5.1).

Similarly, the type of each connection is represented by a uniquely-patterned line. Cubic

splines are used to generate curved interconnections between primitive functions and

interfaces, in order to make structures look more biological! Arrows on connections

indicate the direction of the message path: connections are unidirectional.

Chapter Five - Applying the Framework 	 65

	

neuron 	 synapse 	 while loop 	recognise diagonal edge

cn 	- 	 1

 ko+
8 __

if... then ... else 	robot controller 	8-synapse bundle 	Recognise 'A'

Figure 5.1 Icons of Function and Connection Types

Libraries

As is customary in interactive editors (as opposed to entirely language-based methods of

specification) it is necessary to categorise function/connection types hierarchically so as

to be able to access them efficiently. ANNIECS achieves this by thç use if hierarcIical

libraries, one hierarchy for functions and another for connections. o carry -but

maintenance on these libraries, a number of housekeeping functions are provided.

Edit Object 	- used to load an object definition. An object is a function or a

connection type.

Create Object - used to create a new function or connection type.

Create Library - creates a new library as a member of another library.

Copy Item 	- will copy a member of a library, or a library and all its dependents, to

another library.

Move Item 	- the same as copy except that the source is deleted after copying.

Rename Item 	- self-explanatory.

Chapter Five - Applying the Framework 	 66

Delete Item 	- if item is a library, deletes all dependents as well, after prompting for

confirmation.

Store Library 	- 'snapshots' of a library can be stored under user control and reverted

to later in the development process, if so desired.

Load Library 	- to reinstate a previously stored 'snapshot' of a library.

Macro Expansion

Associated with each function are a number of user-defined macros. By use of these

ANINIECS will generate a textual description of a function. This description is derived

from the macros of the lower level functions in terms of which that function is defined.

At the primitive level, ANNECS generates a list of Horn Clause, PROLOG-style

predicates with 'conditional probabilities' (weights) and 'prior probabilities' (thresholds)

incorporated.

The purpose of this automatic generation of textual descriptions is:

to show the similarity between rule bases and neural nets at the primitive level,

and

to show that hierarchical linguistic descriptions of neural architectures can be

made.

Macros are expanded in the order in which they are defined. The expansion of one macro

can invoke the expansion of other functions to which it is connected. Thus, 'sequential'

code for functions can be generated, though this 'sequential' function is in effect

pipelined. For an example, see figure 5.3.

There is a reason for there being a number of macros associated with each function. The

user, when generating text, can specify that the nth macro be used for each function, so as

to enable generation in distinct languages. In addition to this, there is another parameter

for text generation which is depth of expansion. If the depth is greater than one, the text

for the components (in terms of which the top level function is defined) is generated

recursively to the specified depth, so as to generate modular 'source code'.

Chapter Five - Applying the Framework
	

67

Functions r* Addition
Subtraction
Multiplication

Input/Output Functions
Device Controllers
'C' Functions
Primitive Functional Units
Control Constructs 	Primitive Control -ø- Sequencing

Gates and Latches 	 Selection

High Level confror While
If... then ... else
Repeat.. .Until
For ...Next-Step

Designer 	Robot Control Project - Simple Robot

Numberplate Recogthtion Clever Robot
Face Recognition

Top Level

Test Library

Instances 	Designer Instances .Numbeiplate Recognition Instance- Column Recognisers

L Row Recognisers

Test Instances

Figure 5.2 Example Hierarchical Menu Layout: Functions

Specification

The specification of a neural system is made by the hierarchical description of functions.

The specification of each of these neural functions is made up of a neffist of lower level

functions and interfaces. Thus, the specification process consists of:

Chapter Five - Applying the Framework

Bit 1

Function 2_to_4_decoder;

if (Bit 0) 1
if (Bit 1) (

Bit A;
} else {

Bit B;

I
I else {

if (Bit 1) j
Bit C;

I else {
Bit D;

I
}

I

macro for if...then ... else function:

if (@1) {\n\t$2\u\n) else (\n\t$3\u\n}

\n 	start a new line

\t 	indent sebsequent new lines

\u 	cancel last indentation

@n insert label(s) of object attached to port

$n recursively expand macros for objects
connected to port n

Figure 5.3
Generation of textual description for function containing nested if. ..then...else

Chapter Five - Applying the Framework 	 69

creating instances of interfaces

creating instances of functions

interconnecting these functions and interfaces in the appropriate manner so as

to implement the desired function

The entire specification process is carried out by use of the mouse. The function or

interface type to be included in the function being defined is selected from its hierarchical

library. Its icon then joins a menu of 'current functions/interfaces' from which it is again

selected to become 'current function/Interface', before inclusion in the function being

defined. Input and output ports to the function are created by placing instances of

connection types, represented by icons. To read input received at a particular port a

connection is made from that interface port to the appropriate lower level function

required to deal with that input. Output from the function is sent to an output port in the

same way.

When creating connections between functions it is necessary, unless the function is

primitive, to specify the input and output ports on the destination and source functions.

This is done by the use of pop-up menus which indicate the ports of each function and

their connection-types by use of labels and icons, respectively. This is an elegant and

highly visual means of creating interconnections.

Each function is given a threshold and each connection a weighting that is continuous-

valued and user-defined. By default these are both 1.0. At the primitive level these values

are used as initial thresholds and weights in the compiled neural implementation, prior to

learning, though they may equally well be left random and undefined. At a higher level,

it is possible to use these values as high level thresholds and weights. It may be that

clusters of neurons in biological nets have an overall, high level threshold. Also, there

may be biological evidence that the weights of a group of synapses between two clusters

increase and decrease their weights largely in unison. These high level connections may

perhaps behave as if they have an aggregate weight.

There is no queueing of messages at input/output ports. If multiple messages are

received at the same port in the same time-step, they are simply passed in unison along

Chapter Five - Applying the Framework 	 70

the internal connections.

3. Compilation: Formation by Specification

The term Compilation is usually applied in a computing context to mean: generation of

machine code from a high level language. In the context of this thesis, however, it means

the generation of a neural architecture from a high level specification. Chapter Four

presents the framework within which this generation occurs. Two quite different methods

of performing this compilation were implemented in ANNECS.

The first method attempted seemed at first consideration to be the most sensible. It was

simply to flatten out the hierarchical specification, from the top down, whilst resolving

multiple references to common instances of functions, until no non-primitives exist; that

is, until the definition consists of a neural architecture. There are non-trivial problems

involved in doing this which will be described later. After implementing and testing this

approach it was seen, from preliminary experiments, that it was fundamentally limited.

Firstly, high level information had been discarded during the compilation process such

that it was not possible to understand, at a non-primitive level, learning that subsequently

took place. Secondly, learning algorithms could not exploit the hierarchy that was

inherent in the compiled network. The grouping between neurons, clusters of neurons,

synapses and bundles of synapses in biological nets,isto some extent contained in their

relative positioning in three-dimensional space. No analogue of this exists in traditional

artificial nets and thus it is necessary to retain this hierarchical information during

compilation. Hence, the second compilation method which was explored and eventually

adopted retained high level structure. It formed a nethst of netlists, which was used by a

non-primitive simulation model different from that implemented for the first compilation

method. As it turned out, the second method was easier to code, resulting in 1300 lines as

opposed to 1600 lines of code.

Compilation Method #1: Flattening

The key data structure underlying this method was a cactus stack. This is a vertical stack

from which horizontal stacks .grow outwards. Incidentally, this data structure is at the

Chapter Five - Applying the Framework
	

71

core of the compilation process of other object-oriented languages. A major problem

involved in flattening is to resolve references to a function in terms of which more than

one other function has been defined. The compilation method is basically as follows:

Push components of top level function to vertical stack.

For each non-primitive interface or function (not connection) push the

components in terms of which it is defined to a stack in the horizontal dimension (a

spine).

For each non-primitive interface or function on vertical stack, replace it with its

definition and resolve all connections to common instances, in terms of which more

than one function is defined. This collapses the horizontal stacks.

Repeat steps 2 & 3 until no non-primitive functions or interfaces exist on vertical

stack.

Take high level connections and flatten them into the lower level connections in

terms of which they are defined.

Repeat step 5 until no non-primitive connections between functions, and thus no

non-primitive interfaces, exist.

Figure 5.4 illustrates this process for the implementation of a specification of

if. .then. . .else in terms of logic gates. It should be emphasised that, whilst the resultant

neural implementation is typically very large, the specification from which that

implementation is derived is extremely concise and compact. This is a very powerful

feature of this methodology. The primitive, and apparently structureless, compiled

network does in fact contain hierarchy of function and can only be understood by

reference to its specification, in conjunction with the compilation process by which it was

Chapter Five - Applying the Framework

Condition 	 else

1!

not In 	 not Out

U

Condition 	 else

72

Figure 5.4 Stages in compilation of if...then. ..else by flattening

constructed (see section 5.5 for an example).

Chapter Five - Applying the Framework 	 73

Compilation Method 2: Resolution for High Level Simulation

In this method, the key data structure is a nethst of nethsts. This structure is created on a

one-dimensional stack by the following stages:

Push components of top level function to stack.

For each component of this function, if it is not an instance, or if it is an instance

and has not already been loaded, then load its definition to the top of the stack.

Resolve all references to this component.

Repeat steps 2 & 3 until all function definitions are loaded: the stack then

contains a neffist of netlists.

Function in terms ConnectioWlnterface
of which top level in terms of which top

Top Level Function Definition
No inction is lWel function deflr

functions 	ports

interconnections

Two Prftt. in top lv.1
function are same type

netlist

netlist of netlists

Figure 5.5 	Compilation of neural specification by netlitt-of-netlist formation

Netlist-of-Netlist Formation

It is necessary, during this process, to maintain a table of instances. An instance might

be, for example, a function which detects an edge of certain length and position in an

image and which is used by more than one higher level function. Connections must be

created to/from the cluster of neurons that recognises the edge to each of the higher level

functions, rather than creating two identical clusters of neurons which perform the same

function.

Chapter Five - Applying the Framework 	 74

The loading of functions and connection types is recursive and, at each level of recursion,

the total amount of space required by the function or interface during simulation is

computed. For example, an interface representing a five-by-six retina would require a

vector of size thirty during simulation.

4. Simulation: Formation by Learning

ANNECS enables the simulation of a compiled network according to one of a number of

models. Thus the same initial architecture can be made to learn according to different

models without changing the specification. The model for neurons and synapses is

selected separately.

Two different methods of simulation were explored, corresponding to the two methods of

compiling.

Flat Simulation - as in conventional neural simulators iM

High Level Simulation - composing and decomposing high level messages at

simulation time, according to the hierarchical specification. (set 	t c.

The high level simulator is most worthy of comment. Input data is read from input/output

files to interfaces with which those particular files have been associated. This data is

timestamped before sending it along connections from that source interface to destination

functions and interfaces, after which the timestamp for the source interface is increased

by one. When data is sent to a function, it is placed on the correct i/o port and that port's

timestamp is set equal to the timestamp of the port from which the data came. Any

functions to which data has been sent are also simulated. Thus, data propagates

downwards through various levels of hierarchy to the primitive level, where primitive

cell functions are performed. Simulation continues until all timestamps have been

incremented. The processing that is performed is the same as that performed on flat nets

in conventional simulators, except that there is hierarchy in messages and functions in the

nets.

Chapter Five - Applying the Framework
	

75

5. Example: A Simple Robot Controller

In order to demonstrate the principles of ANNECS it is useful to consider an example.

The robot moves around in a world containing stairs, objects and holes. When it finds an

object it should pick it up and carry it until it finds a hole, into which the object should be

dropped. Every other time the robot meets a stair, it should climb it; when not due to

climb a stair it should instead turn left. Our aim is to formulate a specification describing

this behavior and have ANNECS implement this as a functionally equivalent net. This

will enable us to understand the part played by each neuron in achieving the overall

function of the net.

The robot controller has been defined as one high level object in order to observe its

entirety (see figure 5.7). It could, of course, have been divided into smaller modules.

	

Chapter Five - Applying the Framework
	 vr,i

This specification is compiled to the network shown in figure 5.8.

Nø
c

if

found object 	
thenelse

found hole >
if

stop motor

thenelse

True

Boolean
pickup object 	False

carrying object

if
drop object 	490

then else

>,.

blocked >
if

start motor
then else

rue

Boolean

False

climbstair

turn left
climb stair

Figure 5.7 Specification of Simple Robot Controller in ANNECS

Section 4.5 discussed the issues concerning representations, the fact that ANNECS

is a framework and that it does not constrain specifications to one particular

representation. The specification of the robot controller given in Figure 5.7, for example,

contains a single line of control. It could be redefined to an alternative - though

functionally equivalent - representation as in Figure 5.9. Here, control is distributed and

the compiled network, though behaviorally equivalent, is slightly different in structure.

Chapter Five - Applying the Framework
	

77

This representation makes better use of its target architecture, a neural network, in that

control is more distributed. The first specification was effectively a completely pipelined

sequential implementation. This illustrates the fact that certain styles of representation are

more suited to neural realisation than others.

6. Improvements to ANNECS

ANNECS constitutes a major piece of software development, perhaps comparable to the

implementation of a conventional high level language compiler. A problem with the

implementation of ANNECS has been that the problems involved in neural specification

are all but unstudied and thus no body of experience is available to guide development.

This means that many improvements could be made to the software which, though not

essential to the experimental results of this thesis, would enhance it.

Chapter Five - Applying the Framework
	

78

if

found object
the 'else

found hole

if
stop motor 9

thenelse

True

Boolean
pickup object False

canying object

drop object

& if

9
thenelse

blocked

& if

9 rue
no

 Boolean

False
start motor

climbstair

climb stair
turn left

Fig 5.9 Alternative Specification of Simple Robot Controller

Both methods of compilation could be provided so that (a) high level learning can be

studied and (b) flat neural architectures can be downloaded for implementation on neural

hardware or simulation by conventional simulators. More learning and/or neuron models

could be implemented, and not all those that have been implemented have been tested.

Alternatively, neuron and synapse models could be made user-definable. The automatic

expansion of text using function macros is not fully functional.

Chapter Five - Applying the Framework 	 79

Having said this, the basic functionality of ANNECS is well-debugged and it is this that

is required for the substantiation of the methodology espoused in Chapter Four. ANNECS

is an embodiment of the framework put forward by this thesis and shows that neural

architectures can be generated to implement any hierarchically-described distributed

specification. Thus, ANNECS offers a potential means of combining genetic

(construction by specification) and empirical (construction by learning) methods of

construction.

The next chapter presents a case study which applies the ANNECS methodology to a real

world problem. The application of ANNECS to numberplate recognition is compared to a

conventional implementation of a numberplate recognition system which was developed

alongside the main line of research.

Chapter Six

Case Study: Automatic Numberplate Recognition

1. Introduction

This chapter applies the methodology developed in the preceding chapters to a difficult

real world problem, the problem of automatic numberplate (character) recognition. This

task involves locating and then reading the numberplate, given a picture of the vehicle -

and is an extremely difficult function to perform to high accuracy. Commercially

available numberplate recognition systems typically achieve recognition rates of only

60-80%. 165-169

Chapter Five showed that the framework presented in this thesis can be applied to

constructing neural networks. The methodology 'works' but whether or not it is useful

will only be determined by its application to genuine engineering problems. Thus, the

purpose of the work described in this chapter is to substantiate, by way of experiment, the

effectiveness of the methodology.

In more general terms, this chapter describes work which explores the application of this

methodology within the field of image processing. Image processing is concerned with

deducing the three-dimensional representation of objects which produces a two-

dimensional image. 170"7' The way in which one might go about specifying neural

implementations of standard image processing tasks such as thresholding, edge detection

and segmentation is explored. Applications within the field include: security and

surveillance; target detection and tracking; 172 assembly line monitoring; reading printed

or handwritten text for computer input; 173180 aids for the blind; analysis of medical

images; and many more. A whole new market in these areas seems to be opening up due

to the introduction of enabling technologies such as very cheap yet high-quality

cameras. 181 However, the problems yet to be solved are far from trivial. Tasks which

humans find easy, such as recognising a face, are very difficult to perform artificially. To

some extent the reverse is also true. Playing chess is quite taxing to most humans, yet it

Chapter Six - Case Study : Numberplate Recognition 	 81

can be performed to a high standard by computer. This thesis, confirming conclusions

which might be drawn from the 60-80% recognition rates quoted earlier, testifies to the

difficult nature of the problem of numberplate recognition.

This chapter first reviews some basic techniques in image processing and then describes

some applications of neural techniques to the field. An overview of the numberplate

recognition problem is then presented, followed by a description of a conventional (non-

neural) approach to the problem, performed for comparative purposes as part of this

research. Finally, the methodology advocated in this thesis is applied to the problem.

2. Basic Image Processing Techniques

Image Capture

It is not possible to perform any image processing unless there is some good means of

obtaining images - that is, a sensor. Biological neural nets have two image sensors par

excellence: eyes. Each of these sensors transmits its output down approximately one

million parallel data paths - the optic nerve - to the image processor par excellence: the

brain. These sensors have a non-linear resolution; the fovea, the area at the centre of the

retina and thus at the centre of the visual field, contains orders of magnitude more 'pixel

sensors' - rods and cones - than other parts of the retina. Biological sensors perform

neither grayscale nor colour sensing exclusively but combine both. Grayscale sensing is

used for certain functions to which it is best suited, such as edge detection and object

recognition. Colour enhances classification and recognition functions. In addition to

this, primitive processing such as edge detection is performed actually within the sensor.

The output transmitted down the optic nerve to the brain consists of edges and perhaps

other primitive data such as texture, as well as colour and grayscale.

Artificial sensors, on the other hand, typically output composite video at fifty frames a

second, with a resolution of the order of a million pixels. The video output is normally

sampled and digitised by a frame grabber which outputs a digitised representation of the

picture suitable for computer storage and analysis. Constraints imposed on the image

processor by the sensor include: the horizontal and vertical resolution, the dynamic range

and response profile of each pixel sensor, contrast and exposure control. 18 ' If the image

Chapter Six - Case Study : Numberplate Recognition 	 82

capture is performed badly, the subsequent image processing is constrained by this. This

principle also holds true for stages within the image processing process. The results of

each stage can only be as good as the results from preceding stages. In numberplate

recognition, for example, if the initial thresholding is performed poorly all subsequent

processing will inevitably suffer as a result.

Edge Detection

An edge may be defined to be an area of pixels where the rate of change of intensity is

greater than some threshold. If an image is 'differentiated' in the horizontal dimension,

vertical edges in the image correspond to peaks and troughs within the derivative. There

are many different methods for performing edge detection and the underlying theory is

well understood. 182 Perhaps the best-known and computationally most useful method is

the one proposed by Canny. 183

The human eye performs edge detection by means of lateral inhibition. 5 Linsker has

shown that multilayer perceptron-style architectures using Hebbian learning produce

edge detection functions, even with random training data. 36 Edge detection is probably

the most basic image processing operation carried out in the visual cortex and is certainly

essential for all higher level operations such as determining shapes and hence recognising

objects. What is of interest to this thesis is whether or not edge detection functions can

be specified and compiled to neural structures which approximate those found in

biological nets.

Various parameters are usually supplied to 'artificial' edge detection algorithms. These

include factors such as: the lateral distance over which to consider changes in intensity;

the threshold over which the change in intensity must be before it constitutes an edge; the

number of adjoining pixels which must be considered parts of an edge before an edge can

be considered to be present. But these linguistically-described parameters are merely

crude expressions of what is better mathematically expressed and analysed .112

The conventional numberplate recognition algorithm presented in this chapter first

performs thresholding, followed by edge detection on the resultant binary (black and

white) image. This edge detection on a binary image is very simple to perform and is

Chapter Six - Case Study: Numberplate Recognition 	 83

described in section 6.5. In general, thresholding and edge detection are very closely

related; if it is possible to edge detect, then it is usually possible to threshold, and vice

versa. However, thresholding discards more information than edge detection. Thus, it is

only suitable as the first processing stage for applications such as numberplate

recognition where the objects to be recognised are originally binary in nature.

Thresholding

Thresholding is the transformation of a grayscale image to a binary (black and white)

image. It is one of the hardest tasks to perform in the conventional numberplate

recognition algorithm. It consumes half the total processing time and over half the total

development time was required to achieve satisfactory results. If the thresholding is not

done well, all subsequent stages are doomed!

Methods of thresholding may be divided into global and local techniques. 184 Global

methods choose, on some basis, a threshold to be applied to every pixel in the image.

Conversely, local methods choose a different threshold for each local patch of the image.

The threshold for each block is typically determined from the grayscale values of local

pixels at run time, and thus the method is often called local adaptive thresholding. The

main problem involved in this is to find the best grayscale (threshold) such that when all

pixels with intensity greater than this are made white and all pixels with lower intensity

are made black, the resultant patch of image is most useful to subsequent segmentation

and recognition stages. Thus, in numberplate recognition it is desirable to select the best

threshold such that the black of characters and the white of the background plate are

clearly disambiguated. It is conceivable that the lower part of the plate will be in sunlight

whilst the upper part will be in the shadow of the bumper. Thus, the 'black' of the bottom

of the characters can be lighter than the 'white' of the background of the top of the plate.

This example illustrates the necessity for choosing thresholds locally at run time. The

threshold for the bottom of the plate should be higher than the threshold for the top of the

plate.

Three main methods of deriving these thresholds were explored whilst developing the

conventional recognition algorithm. These were:

Chapter Six - Case Study : Numberplate Recognition 	 84

Mean Thresholding - the mean of a block of pixels' intensity values is used as the

threshold. This method is simple and of use where the grayscale information is

approximately equally distributed about the optimum threshold.

Median Thresholding - the median of a block of pixels' intensity values is used

as a threshold. This method is also simple and is of particular use in applications

such as fingerprint recognition where it is desirable to have approximately half the

image black and half white such that, for example, the bands of a fingerprint are of

approximately equal width. 185

Histogram Thresholding - this includes a large class of techniques which

examine the shape of the histogram of a block of pixels' intensity values in order to

derive a threshold. 186 These methods are generally computationally more

expensive but are also more versatile. Comprehensive mathematical analyses of

these have been performed. 184,187

The' mean and median methods of thresholding were found to give insufficient

performance, and both for the same reason. If a block of pixels happens to overlap a

character on the plate such that there is either more character than background or vice

versa, the shape of the histogram will consist of two humps of unequal size. It is the

trough between these humps where the threshold should ideally be placed (see figure 6.1)

but both mean and median methods will shift the threshold from the trough towards the

larger of the humps.

In practice, of course, smoothing must be performed on the raw histogram before

anything else can be done. Ideally, two peaks will emerge from this process with a good

intervening trough where the threshold may be placed. Adaptive smoothing is often

required, however, since too much smoothing removes these peaks completely whilst too

little leaves too noisy a histogram. This problem is returned to later, in the description of

the conventional recognition algorithm in section 6.5.

Segmentation

At some point in the processing of an image it is necessary to take the results of low

level, local operations such as thresholding and edge detection and to build more global

Chapter Six - Case Study: Numberplate Recognition 	 85

0

0
0

grayscale

.g
coo rA

4)
'0

1-4 E

Figure 6.1 Flistogram and potential thresholds for a block of an image

representations of objects and scenes. Segmentation is one stage in the transformation of

local, low level results to global, high level representations. For most applications it is

very difficult to segment an image on the basis of raw image data. It is more usual to

perform segmentation on the basis of edges, blocks of thresholded images, texture and

surfaces (normally deduced from edges), feature points, stereo maps, and so on.

For example, in conventional numberplate recognition, two stage segmentation is

performed:

The thresholded image is divided into blocks of pixels which are separable from

the background and could thus be characters.

Characters are divided into blocks and the parameters of those blocks are used as

data for the classification process.

Chapter Six - Case Study: Numberplate Recognition 	 86

Segments are typically used as components from which higher level objects are formed,

perhaps using a hierarchical representation. For example, a car consists of a body +

wheels; a body consists of a bonnet + a middle + a boot; and so on. Figure 6.2 shows the

main processing stages in the conventional numberplate recognition algorithm.

Measurements/Classification

Having segmented an image it is necessary, in order to build a three-dimensional

representation of it, to relate these segments in some way so as to deduce the nature of

higher level objects. This is done by the measurement of segment parameters such as:

size, texture or mean intensity, shape, perspective. It is also done by the measurement of

relationships between segments, such as: the two-dimensional distance between them, the

three-dimensional distance between them, and so forth. For example, in face recognition

it may be possible to characterise the face by factors such as distance between the eyes,

nose and mouth, and the size and shape of the eyes or perhaps eyebrows. In numberplate

recognition, the plate - a high level object - is formed by considering the distance

between character segments. Characters are classified according to the parameters of the

segments from which they are composed.

Miscellaneous Techniques

This section looks at various image processing techniques not of direct relevance to this

research. A well known image processing operation is the Fourier Transform which

extracts from an image information in the frequency domain. This technique was

explored as a method of locating the numberplate in an image. Ideally, a horizontal

Fourier Transform of an image should give high frequency components for scan lines

containing the numberplate, owing to the sharp contrast between characters and plate.

Unfortunately, however, other objects such as the grill on the front of a car give rise to

conflicting results.

A general purpose image processing operation is a convolution. This involves passing a

mask pixel by pixel over the image in order to transform the image in some way. Each

pixel becomes the sum of, the product of each element of the mask with the pixel it

covers. This technique can be used to perform primitive operations such as edge

Chapter Six - Case Study: Numberplate Recognition 	 87

grayscale image

Threshold
Sensor 	 binary image

Clean

binary image

binary image // (Detect Edges

edges I

Detect Objects

object coords i-
feature coords

Filter Objects

character coords
+ likelihoods

RBT326T 	 Read Characters

characters +
confidences

Figure 6.2 Main stages in conventional numberplate recognition algorithm

detection, smoothing and contrast enhancement. Most image processing accelerator

boards include this function, owing to its versatility.

Chapter Six - Case Study : Numberplate Recognition 	 88

Optical techniques can be used to transform a 'normal' image in some way before

capturing it by sensor. Headlights can make an adjacent numberplate unreadable using

the visible spectrum. Thus, for some applications it may be desirable to use an infra-red

or ultra-violet source and to filter out the visible spectrum.

Stereo capture and processing is necessary for true three-dimensional vision. This is of

little relevance to numberplate recognition owing to the two-dimensional nature of

characters. However, it is of interest to us in view of the fact that humans use stereo for

three-dimensional interpretation of scenes. It is thought that biological nets probably

compute the depth of relatively few points and infer the third dimension of other points

from cues such as object characteristics.

3. Neural Techniques in Image Processing

There are too many neural models of image processing to allow a comprehensive review

in this section but what follows is a representative sample of work from the field.

Neocognitron

This model was developed by Fukushima et al, primarily to perform character

recognition.' 88"89 It consists of multiple layers, the higher layers containing successively

fewer units than the lower layers. Each layer combines features produced by the

preceding layer so as to produce higher and higher representations. Thus, the bottom

layer performs primitive functions such as edge detection, whilst the output layer

combines segments so as to classify characters. These functions are generated by the

application of competitive learning (see section 2.2).147 Rotation and translation

invariance is achieved by having identical feature detectors operating at multiple points in

the image. Unfortunately, an effect of this is to make the number of units so large that the

model is computationally inefficient.

Silicon Retina

This VLSI implementation, developed by Carver Mead, models the way in which

primitive image processing is performed in the brain 190 The biological retina has been

Chapter Six - Case Study: Numberplate Recognition 	 89

closely studied and is thus understood well enough to attempt an artificial implementation

of it. The aim was to implement retinal functions not merely functionally but also in the

way in which they are performed. For example, the logarithmic response profile of rods

and cones is performed by the sensor using analog circuits. The silicon retina produces

an output signal which is invariant to size and rotation. Other analog implementations of

retinal operations have been performed by Van der Spiegel et al. 191

Connectionist Models

Feldman and Ballard have carried out extensive analysis of the problems in applying

connectionism to image processing. 99,192,193 Results have shown that the internal data

representation is vitally important (see also section 4.5). As an aid to their work a neural

network simulator called ISCON was developed, and this is now widely used. 164

Self-Organisation in Primitive Vision

Linsker has achieved remarkable results by applying Hebbian learning to multilayer

perceptron-type architectures. 36 He has shown that, even in the absence of any real world

input data, primitive functions such as edge and texture detection are learnt. Structures

that are generated from this learning process seem to parallel those found in the

biological retina. What is unexpected in these results is that primitive image processing

functions are learnt when random data is used as a training set. This could explain how

mammals are born with the ability to recognise edges in spite of the fact that it is very

unlikely that the structures to perform edge detection are genetically specified.'

Grossbergian Boundary and Feature Contour Systems

These models perform edge detection, join edges to form parts of boundaries, complete

those partial boundaries to form complete boundaries, and then fill in the

colour/intensity/texture for each segment contained by a boundary. 194 There is some

parallel with cell structures found in primitive vision areas of mammalian brains. An

explicit distinction is made between boundaries and colour/intensity/texture and two

distinct but closely-interactive modules, the boundary contour system and the feature

contour system, exist to handle each of these aspects.

Chapter Six - Case Study : Numberplate Recognition
	

MI

Head-Centred Frame of Reference

This model consists of a multilayer perceptron trained using baclq*opagation.' 95 Input to

the network consists of an image containing some object and a representation of the

degree of extension of the eye muscles. The network is trained to translate the retinal

input to a head-centred frame of reference. Thus, the object in the field of view is mapped

to the same head-centred reference point, regardless of which way the eyes are turned.

Binocular Disparity

The brain computes depth information by combining output from two sensors separated

by about 6.5 cm. The structures which perform this operation are to some extent

observable and have motivated a model developed by Schwartz and Yeshurun.' 96 Their

work emphasises the role of computational maps (c.f. Kohonen nets) 6 ' in the visual

cortex.

4. Overview of Numberplate Recognition

Requirements for Numberplate Recognition

Use of numberplate recognition systems has shown that if they are not highly accurate

they are of no use at all. Current commercially available systems typically exhibit

recognition rates of 60-80%. No highly accurate and cost effective numberplate

recognition system yet exists. The reason for this is that the problems involved are

extremely difficult to surmount, contrary to what one might at first think.

An application of numberplate recognition which springs to mind is in road pricing. Here,

drivers are charged for use of a road perhaps according to its location, the level of

congestion and the time of day. In fact, numberplate recognition is not, and never will be,

a sufficiently reliable means of identifying a vehicle in order to charge its driver.

Electronic tagging is a more dependable technique, though not without its problems, and

has the added advantage of allowing transmission of information such as congestion

maps to the vehicle. However, it is necessary to have some method of enforcing an

electronic means of identification, at least in the short term - until tags are integrated into

Chapter Six - Case Study : Numberplate Recognition 	 91

car manufacture. In current road pricing systems numberplates are used as a means of

identifying offenders of the system.

It is where 100% accuracy is not required that automatic numberplate recognition can be

most useful. If numberplates can be identified and matched at key points in the road

network it becomes possible to extensively analyse the speed and direction of traffic

flows. Logging of numberplates passing these sites would also be of use to the police -

for example, in control of terrorism. Automatic access to private car parks could also be

controlled by numberplate recognition.

In general, numberplates are a relatively inaccurate method of identifying vehicles.

Almost certainly, the results of automatic recognition could not be used in court, even

though a picture of a speeding vehicle may perhaps constitute evidence in the future. In

spite of this inherent inaccuracy, however, applications do exist.

Problems involved in Numberplate Recognition

Software to read printed document text that has been scanned into a PC is widely

available and is often cheap. Such packages typically achieve accuracies of around

90-100%, depending on the textual quality of the source document. If this character

recognition task can be performed with such high reliability then why cannot similar

accuracy be obtained in numberplate recognition? Indeed, one would think numberplate

characters are easier to recognise, owing to their block-like font which is specially

designed for clarity.

The problem in numberplate recognition is not reading the characters but finding them.

The classification of a numberplate character, once it has been located, is relatively easy

and can be performed to high accuracy. This insight might lead us to try to recognise a

plate by attempting classification of all segments in the image. To some extent, humans

seem to recognise things in this way. We seem almost to locate characters by reading

them. Certainly, the location and classification processes are closely related and affect

each other intimately in the recognition process.

Finding by reading/classifying is too computationally expensive for non-biological

methods of computation. In order to apply the classifier it is necessary to know the

Chapter Six - Case Study : Numberplate Recognition 	 92

height, width and rotation of the character. Information emerging from lower level

processing, such as edges and segments, may be used as cues to this process to prune the

search space, but even this approach is flawed (see figure 6.3). In order to generate all

possible character locations it is necessary to use feature points, which are quite a low

level representation. The number of ways in which these points could be related to form

potential character locations is enormous.

The numberplate could be in bright sunlight. It could be in deep gloom. It could have

blazing headlights next to it. It could be hanging at an angle. The camera might not be

mounted head-on to the vehicle. It might not be mounted so that plates appear

horizontally in its field of view. The characters could be in any one of about eight

different fonts. The plate could be foreign. It might not obey British syntax. It could have

a badge or a 'smiley face' in the middle of it. The characters could be black on white or

they could be white on black. A towbar could stick up and partially obscure some

characters. A bumper might obscure the top of the plate. The plate might be secured to

the vehicle, usually on lorries, by means of a black band round it which lies across each

of the characters. Snow or rain or even fog might obscure the plate. The characters

within the plate could be irregularly spaced, such as:

24 BUS

Next to the plate there might be text in a similar font, such as:

WAYNE LUVS SHARON

or: RANK TAXIS

It is not known how far away the vehicle is. The numberplate could be at the top, bottom

or side of the vehicle. It could be travelling fast, requiring fast real-time processing.

:1.

)

Chapter Six - Case Study : Numberplate Recognition
	

93

White characters on black plate
	

SUZUKI, L, ALV INS

Psrtrfnic4tP rnii tin icrc -' L-d
	

rc14 	 +,-

Figure 6.3 illustration of difficulty in locating numberplate

The problems involved in numberplate recognition are becoming plain!

Chapter Six - Case Study : Numberplate Recognition 	 94

Potential Solutions

There are two broad approaches which might be attempted:

Locate characters before attempting classification.

Attempt classification on several parts of the image based on cues such as edges

and the location of characters which have already been recognised.

Method A was taken by the conventional implementation (section 6.5) whereas method B

is more suited to neural implementation (section 6.6). With the neural implementation it

is not the aim to produce a real-time system since, as described in section 2.1 - Very

Artificial Neural Networks, the parallelism of biological neural nets is far beyond present

artificial capabilities. Instead, what should be shown is that the methodology advocated in

this thesis can be applied to produce a neural implementation that would recognise in real

time, given hardware of the capability of biological hardware. Thus, the conventional

implementation processes an image orders of magnitude faster than the neural

implementation. This, of course, is because conventional algorithms are suited to

running on conventional hardware whereas neural implementations have to be simulated

sequentially.

An overall strategy for solving the recognition problem for each of these methods is

given below. (See also figure 6.2.)

Method A:

Threshold

Edge detect

Segment

Sort segments to local groups and select group containing numberplate

Classify characters

Chapter Six - Case Study : Numberplate Recognition
	

95

MethOd B:

Edge detect

Classify edges to form segments

Classify segments to form characters

Group recognised characters

Conventional Numberplate Recognition with near-100% accuracy

Introduction and Results

This section describes a non-neural implementation of a numberplate recognition system

which was developed in order—to explore the problem prior to applying the neural

methodology. It provides an excellent benchmark against which to compare the neural

implementation. In addition to this, it allows the examination of the difference between

the approach which is natural to a neural solution and the approach which is natural to a

traditional solution, for a variety of image processing operations such as edge detection.

The conventional algorithm is implemented in 'C', circa 6000 lines and executes on a.

Sun4 workstation in approximately 15 sec. The algorithm was initially developed on a

test set of thirty images (512 by 512) captured using a CCD camera and a framegrabber.

The development environment was Unix on a SUN 3/80. The total development time was

in the region of one year. After initial development, the algorithm was tested on a further

set of 170 images (512 by 512), captured using a camcorder, of stationary vehicles in on-

campus car parks.

Further development took place which gave rise to the following results:

99.43% - vehicles for which at least part of the plate was correctly read.

98.86% - vehicles for which the whole plate was correctly read.

99.94% - percentage of characters which were correctly read.

t Framegrabber used: Data Translation - Model 1451

Chapter Six - Case Study: Numberplate Recognition 	 96

At first glance these are remarkable results. However, on a closer consideration it will be

observed that the algorithm was developed on this image set and thus has been forced to

function as well as possible for each individual numberplate. Hence, these results cannot

be considered to be a fair trial of the system. It is anticipated that a full scale trial

involving 1000+ images will be performed in the near future. The results of this trial, /

however, will not be of direct relevance to this research. What matters is that the'

development of both conventional and neural implementations was based on a substantial

amount of test data.

It should also be noted that these figures are recognition rates as percentages of what was

humanly-readable -from the same image set. Requirements for a character to have been

correctly read were reasonably tolerant: it was permitted for an '0' to have been read as

an '0' or as a 'D'. Syntax forcing can, in many cases, disambiguate these similar

characters.

A 'workbench' has been implemented which allows manipulation of images intermediate

to the various stages in the processing. Figure 6.4 illustrates the stages involved in

conventional recognition, whilst figure 6.5 shows the relative execution times of the main

stages.

Thresholding

This stage transforms the raw grayscale image derived from the camera into a black and

white, binary image. Local adaptive thresholding based on histogram distribution analysis

is Used. 184' 186

In order for 	 to approach in accuracy what is humanly readable, the

requirements for thresholding are rigorous. The algorithm should be able to determine a

good threshold even if all the information is contained in only 20% of the dynamic range,

and even if that 20% may be at any point in the range. It is also possible that one part of

a character may be highly exposed (e.g. bright sunlight) whilst another part of it may be

under exposed (e.g. in shadow of the vehicle bumper). Thus, it is necessary for

thresholds to be chosen and applied locally and adaptively.

/
1

R - 0.031603

8-0.014912
P - 0.005023
6- 0.002199

F - 0.001660
E - 0.001038

B - 0,012951
8-0.011204
9 - 0.005314
6-0.003098
2-0.002885

Source grayscale image

Character confidences (n best matches)

I
.'1

Thresholded

Edge-detected

Chapter Six - Case Study: Numberplate Recognition
	 5 1

i1 	
;.Jw

OL

Characters segmented

:

1
a

Segmented into objects

Figure 6.4 Images at main stages in conventional processing of a numberplate

The algorithm operates on non-overlapping 8 by 8 pixel blocks of a 512 by 512 image

with 256 grayscales. The histogram for each block is formed with no subsampling, and

Chapter Six - Case Study: Numberplate Recognition
	

M.

50

9, total
1i.irie

U

Figure 6.5 Bar chart showing relative execution
times of main stages in processing

some smoothing is applied. Obviously, smoothing increases the chances of picking a

good threshold (within limits) but decreases sensitivity to thresholding 'black' and

'white' which differ in intensity by, say, only 10-20% of the dynamic range. After

smoothing, a 'goodness' function is applied to every peak 1 -trough-peak2 combination

where peak 1 and peak2 are either side of trough but not necessarily direct neighbours of

trough. This goodness is computed on the basis of various factors such as peak height,

trough-to-peak height, trough-to-peak width, and so on. The trough with the greatest

goodness is chosen as a provisional threshold. This threshold is then examined against

thresholds derived for neighbouring blocks, and its validity on this basis determined.

Some rationalisation and smoothing of thresholds is performed before they are applied to

the grayscale image, resulting in a binary image.

At first sight the generation of all peak-trough-peak combinations seems an absurdly

inefficient way of finding a good threshold. In practice, however, the average number of

combinations is around seven, and the worst recorded case for this test set was 127

Chapter Six - Case Study: Numberplate Recognition 	 99

combinations. Several alternative histogram analysis methods were investigated before

this one was adopted.

Cleaning

This is a simple filter which removes pixels not strongly joined to a cluster. That is, a

pixel is inverted if the number of its neighbours with the same intensity is less than some

threshold.

Edge Detection

This process inverts each black pixel if all its immediate neighbours are also black. Edge

detection on grayscale images can be extremely complex but since this process operates

on a binary image it is comparatively simple and very quick to perform.

Object Detection

Object detection tracks edges within the image to derive top, bottom, left and right

coordinates of distinct clusters. It also records coordinates of significant features such as

corners, forks and extreme limits of curves in various directions.

The process operates on an edge-detected binary image. At this stage, edges are all that is

needed to find distinct objects and pull out significant features. A distinct object is one

that is separated from the rest of the image and thus can be detected by tracking along its

boundary and recording the extreme limits reached in the x and y directions. An object

whose boundary is continuous and thus joins up to its starling point is likely to be a

character and is given a weighting to this effect. This weighting is taken into account,

along with other factors, in the next stage, when objects are filtered out such that only

characters remain. Since this process operates on edges within the image, black

characters and white characters will be detected in the same way, because the edge-

detected images for black and white characters are the same.

As the algorithm tracks along edges, it examines each pixel for significance as a feature.

A number of factors, such as the location and direction in which a line is moving, are

taken into account in order to enable recording of significant features such as corners,

Chapter Six - Case Study : Numberplate Recognition 	 100

forks, extreme points of curves, and so on. These are used in the next stage to locate

characters that were non-separable from the background.

This method of finding objects was chosen after experimentation with various other

methods such as the Fast Fourier Transform (FFT) and pixel thinning. With the FF1' the

problem was that other high-frequency parts of the vehicle, such as the radiator grill,

could not be distinguished from the high-frequency components obtained from the plate.

Thinning will, if carried to its limits, separate characters that are joined to the

background, but in the process has the potential to change characters. For example, a 'T'

whose top is joined to the background may be transformed into an 'I'.

Object Filter

This process takes the coordinates of features and distinct objects and, by analysing these

in conjunction with the thresholded image, produces the coordinates of the characters

within the plate, plus a measure of confidence that a character is actually present. This is

achieved in a number of stages:

Look for characters that are non-separable from the rest of the image, based on

feature coordinates and the location of distinct objects.

Sort all objects (potential characters) by size and location into groups; these

groups constitute potential parts of the plate.

Separate joined characters; this procedure is applied iteratively so that objects

that consist of more than two characters that have been joined will be successfully

separated.

Merge parts of the same plate; this involves matching groups to see if they are

parts of the same plate. This enables plates which contain characters on more than

one horizontal level to be identified.

Remove objects within objects: for example, the inside of an '0' will be detected

as an object, since it is a continuous edge, and should be removed.

Chapter Six - Case Study: Numberplate Recognition
	

101

By analysis of the distribution of black and white in each object compute a

measure of confidence as to its likelihood of being a character.

Compute the likelihood of each group of objects being the plate, based on factors

such as: number of objects in the group; likelihood of each object in the group

being a character; relative heights of objects in the group; and so on.

9. Select the group that comes top and pass it, with a measure of confidence in each

hypothesised character and the angle by which the plate must be rotated to make it

horizontal, to the next stage in the processing.

Character Classification

This uses a trained decision tree 197,198 with breadth-first, fuzzy search to obtain the n

most-probable characters. It is this stage that normalises for size, translation, rotation,

perspective and font.

Character reading is performed by segmenting each character according to the data

received from the preceding processing stage, such as character height, width and

rotation, and using the parameters of each segment as branching factors in the traversal of

a decision tree. 199 This tree is formed by training on character sets of all standard fonts.

Breadth-first, fuzzy search is employed to obtain the n most-probable characters, and a

measure of confidence in each result. 200,201 This confidence measure is combined with

the likelihood passed from the preceding stage to give an overall confidence for each

character and for the whole plate. As reading a character consists of descending the tree

down at most n branches, the time to read is O(n log 2 m), where m is the number of

segments into which the character is divided, equal to the tree height. Thus, the compute

time to read a character is low. The tree is a sparse binary tree which, when well trained,

consists of 0(300m) nodes. The criticism of the use of decision trees in pattern

recognition has been the heavy accumulation of errors at each branch. The overall error

is limited in this case by keeping the number of segments (and hence the number of

branches) m low and by using fuzzy search. The technique is surprisingly resilient to

increase in noise and to breaks in character contours, unlike some other classification

techniques.

Chapter Six - Case Study : Numberplate Recognition 	 102

The fact that this technique is based on training provides a good comparison with neural

classification which is also derived through training. The amount of training required to

generate a discriminative tree is low compared to traditional neural learning times, where

the network contains no explicit specification of a priori knowledge. 20204 In the first

100 images presented to the system, only 11% of characters were required for training in

order to give 100% accurate recognition.

The classifier defaults to trying to read black characters on a white background. If the

confidences are extremely low for most characters, it assumes that the characters must be

white on black and thus inverts the segments and reclassifies the characters.

6. Neural Numberplate Recognition

Introduction

This section describes the application of the framework of hierarchy, by use of ANNECS,

to three stages in the numberplate recognition algorithm. The intention is to determine the

usefulness - in engineering terms - of this method of implementation, and to substantiate

the use of hierarchy as a method of constructing and understanding neural systems. The

method is applied to local adaptive histogram-based thresholding, edge detection and

character classification. These three stages were selected for detailed examination

because each illustrates, in a different way, the importance of hierarchy. The histogram-

based thresholding, in particular, is not an application suited to traditional neural models.

Thus, it demonstrates the generality of this method of construction, the power of which

arises from its integration of specification and learning. More specifically, the aims of

these experiments are:

to compare ease of neural implementation using the framework of hierarchy

with ease of implementation using conventional programming;

to determine whether the functioning of neural systems constructed with this

method may be understood;

(c) to determine whether specification and learning may be integrated within the

method;

Chapter Six - Case Study: Numberplate Recognition
	 103

(d) to determine whether the application of hierarchy facilitates the scaling-up of

networks to 'system' level.

The character location stage in the conventional (non-neural) algorithm has not been

implemented neurally as it is a fundamentally sequential method with much random

access of pixels and thus is not naturally suited to neural implementation. This does not

mean to say that the framework is not applicable to character location but that results

from the experiments performed are sufficient to realise the above aims. A method of

location more natural to neural implementation is discussed later, in section 6.6.4.

Neural Local Adaptive Histogram-Based Thresholding

The manually-generated hierarchical specification for a neural system that performs this

task is given in Appendix B. The functionally equivalent 'C' implementation of this is

given in Appendix E. The neural specification basically implements the same function as

the 'C' specification, but in a fully distributed, parallel way. At each level of abstraction

in this neural specification, the functioning of the system can be understood. The

specification is similar to an object-oriented model in that each 'object' (i.e. cluster of

neurons) is continually existant within the resultant implementation, rather like a process.

Also, each 'object' is continually receiving and sending messages, which may be high

level data representations. For example, the 'form histogram' function receives an 8x8

patch of an image (which is ultimately implemented by ANNECS as 64 synapses) and

transmits the 32-bin histogram (implemented as 32 synapses) of the grayscales within this

patch. A datatype 1 8x8 patch' has been defined as consisting of four 4x4 patches; a 4x4

patch is defined as four 2x2 patches; these are defined in terms of pixels; and a pixel is

defined as a primitive connection, or synapse.

Similarly, the datatype 'histogram' has been defined in terms of 32 primitive connections.

Thus, a histogram is represented as the activities along this number of synapses. This

demonstrates the power of applying hierarchy to neural systems. At the highest level, an

entire image is presented to the system by the simple creation of an interface of type

'512x512 image'. This is compiled by ANNECS to 262144 primitive connections, but the

designer treats these as one, high level data path. Thus, this image can be passed to any

Chapter Six - Case Study Numberplate Recognition 	 MI

lower level functions (as shown in Figure 6.7) simply by the creation of a connection

(also of type '512x512 image') to the appropriate function. This hierarchy of data

representation, combined with the hierarchy of function, is what permits the neural

system to be understood at all relevant levels of abstraction. This sort of high level

Chapter Six - Case Study: Numberplate Recognition 	 105

abstraction of function and data seems also to be present in biological neural systems.

The optic nerve is an obvious analogue of the 'image' datatype defined in ANNECS.

Primitive connections, which implement these high level representations, cannot be

understood in isolation. It makes sense to abstract function, and data. It is this interelation

between levels of abstraction, that patently makes sense to the human designer, which

provides understanding of neural systems.

.12531

II
512

I_ 	1OCt8 II 	detect
Raw Orayscale Image Threshold 	Edge Detect 	Locate 	 Read Character 	Character Likelihoods

Figure 6.7 Top Level Specification of Neural Numberplate Recognition System

The neural implementation of histogram-based thresholding is basically the same as the

conventional approach, except in the method of threshold selection. As before, the 32-bin

histogram of each 8x8 patch of a 512x512 image is formed. This data is represented by

the activities along 32 synapses, but is treated as one high level type. The method by

which this histogram is formed is precisely specified, as shown in Appendix B. The

function which then selects a good threshold from this histogram is realised as -

effectively - a two layer multilayer perceptron, with one hidden layer containing 6 units.

In actual fact, nearly all neurons in the compiled system are 'hidden'; within the

framework of hierarchy, however, no neurons are actually hidden: the role of every

neuron can be identified.

Specification was used to determine the topology of the threshold-selection part of the

system; learning was then applied in order to derive weights appropriate for the selection

of a good threshold. This demonstrates the integration of explicit specification and

empirical derivation within this methodology. The training data for the learning was

obtained from the output of the conventional thresholding algorithm, using these

thresholds as an oracle. It was specified that each of the candidate thresholds was to be

defined in terms of six features. What these features were, and how each threshold was

defined in terms of them, was entirely learnt.

Chapter Six - Case Study: Numberplate Recognition

The performance of the resultant - specified and trained - net, was as good as the

performance of the conventional approach. 3168 neurons, interconnected by 14624

synapses, were required to threshold one 8x8 patch. Thus, for a completely distributed

threshold of a 5 12x5 12 image, of the order of 10 7 neurons and 6 x 107 connections are

required. This implementation thresholds the image in seven update cycles (assuming a

digitally-based simulation model). Alternatively, if the image is multiplexed onto the

network that thresholds just one patch, ((5 12/8)2 + 7) = 4103 update cycles are required

(using pipelining).

'I

k.

j

Figure 6.8 An image thresholded by the histogram-based neural implemention

The size of the training set was limited to 1000 samples, selected from regions

surrounding and including the numberplate, within several images differing in exposure.

When the training set was increased significantly in size, the network failed to converge

Chapter Six - Case Study: Numberplate Recognition 	 107

on a solution. If the training process is carried out for a significantly increased number of

epochs, the model fits the training data too well and gives poorer results for the test data.

If the training data was selected entirely from one image, test images with similar

exposure conditions were thresholded well, whereas images with different exposures

were not.

Finally, it should be noted that a reasonably large, yet highly efficient and sparse neural

system has been constructed. This was due to the application of specification by the use

of hierarchy, combined with learning. See figure 6.8 for an example of a thresholded

image produced by the neural implementation.

Neural Edge Detection

The same principles as described above are employed in this task. Again, the method by

which edges are detected is described hierarchically (see Appendix Q. An edge is

detected in the horizontal, and in the vertical, directions and in each direction a black-to-

white and a white-to-black edge is detected. No training is necessary to realise

satisfactory performance using this method (see figure 6.9 for a neurally edge-detected

image). Weights are preinitialised to implement the desired function. Since it is easy to

describe this function, there seems little point in trying to learn it. This is in contrast to

the threshold selection problem described in the previous section, in which it was not

known how to select a good threshold. In that instance it was appropriate to employ

learning.

An edge is detected across a maximum width of five pixels. To edge-detect a 512x512

grayscale image, with no multiplexing, of the order of 2x106 neurons and 7x106 synapses

are required. This edge-detects the image in three update cycles (see Appendix Q. Unlike

the conventional implementation of this function, the neural implementation will operate

on either grayscale or binary images. The conventional implementation was only required

to edge-detect binary images (see section 6.5.4).

Chapter Six - Case Study: Numberplate Recognition 	 HE

Figure 6.9 An edge-detected image produced by a specified neural system

Neural Character Location

The conventional character location algorithm achieves its task by tracking along edges,

flagging feature points, and performing much sorting and grouping of objects. This

algorithm is not suited to neural realisation - though that does not mean to say this cannot

be done. A solution more natural to neural implementation is to locate by recognising,

much as humans seem to do. If the character classification stage is sufficiently good, and

is fast, characters may be located by scanning the image and attempting to read a

character at each location. Since it is not known how large the characters are, it is also

necessary to attempt to read characters of several different sizes, at each location.

Chapter Six - Case Study: Numberplate Recognition 	 109

This approach was investigated by use of a neural character classifier developed in the

following section. It is necessary to apply a threshold to the results of the classifier, above

which it is concluded a character is present, and below which it is concluded it is not. The

classifier employed was trained on just one example (and thus only one font) of each

character, and consists, essentially, of a two-layer, fully-interconnected MLP with 30

inputs, 15 hidden units and 32 output units. During recognition on the 170 images, and

using a threshold of 0.3, 17% of locations not close to a character were falsely identified

as being characters. 11% of locations where a character was actually present fell below

this threshold. The average of the highest outputs (from the classifier) for correct

character locations was 0.69 15, whereas the same measure for locations where a

character was not present was 0.2259. The erroneous location of characters would be

virtually eliminated by the grouping of character location information at a higher level. If

a character has been 'strongly' located in a neighbouring position to one that has been

'weakly' located - and in fact falls below the threshold - this information can be used to

positively locate that character.

This approach was not exhaustively investigated because, in fact, it is neither supportive

nor destructive of the thesis. It does, however, indicate a method of location that is

natural to neural implementation.

Neural Character Classification

This task would traditionally be performed neurally by a multilayer perceptron (MLP) or

a Kohonen Net, or some such classifier. Taking the hierarchical approach, however, the

resultant implementation is not specific to any of these architectures. What is of concern,

is that the neural system can be understood, at all levels of complexity. It so happens that

the structure compiled by ANNECS from the specification supplied is a sparse MLP.

However, if it had been decided to implement a different solution, the resultant

implementation might have been similar to a Kohonen net. Which of these models the

structure happens to be is not relevant. What is important is that, by the application of

hierarchy, these systems are meaningful. Their construction is directed towards a solution

according to the principles of the framework, not by picking almost at random a model

just because it has 'worked' for similar problems. For the sparse MLP which ANINECS

compiles from the specification, the number of hidden units is derived from a priori

Chapter Six - Case Study: Numberplate Recognition 	 110

knowledge about the problem - not by trial and error. In traditional approaches, however,

this number is arrived at empirically, often by sheer guesswork.

Using ANNECS, the classification of characters was defined in terms of features from

which characters are composed. These features are obvious to the human designer. For

example, it is clear that an 'E' consists of a black column-1, row-1, row-3/4 and row-6.

These columns and rows are patently features from which an 'E' may be recognised and,

incidentally, from which many other characters such as 'F', 'T', 'D', 'B', 'H' may also be

recognised. Because of this, it is appropriate to define the functions which detect these

features as instances, and then to define characters in terms of the same instance of each

feature-detector.

This knowledge concerning how characters are written is imparted through specification,

the hierarchical nature of which makes it meaningful to the designer. Learning can then

be applied to optimise these 'approximate' classifications, and perhaps to learn

classifications of those characters for which it was not easy to specify their features.

Interestingly, when learning was applied from a random initial state, with no meaningful

structure built into the 'MLP', the features that were learnt, from which classifications

were made, were unlike the 'obvious' features first specified in ANNECS. Such a set of

completely-learnt features is shown in figure 6.10. This does not mean to say either that a

part-specified or that a learnt solution will be best. However, a solution that is part-

specified has a greater chance of learning a 'good' classification than a system which is

wholly empirically derived, even though its resultant performance will not necessarily be

as good. The problems concerning convergence in, for example, multilayer perceptrons

have already been discussed (see section 2.2.2). Such a system cannot be guaranteed to

learn a good classification, due to the existence of local minima in the solution space.

Single layer perceptrons, however, have been proven to converge to a solution, if such a

(linearly separable) solution exists. By the application of the framework of hierarchy, the

numberplate character classifier can be guaranteed to converge to a solution (provided, of

course, that such a solution as has been part-specified can actually exist). Because the

classifier is part-specified, and thus the role of (most) neurons is known, training can be

carried out layer by layer.

Chapter Six - Case Study : Numberplate Recognition
	

111

Figure 6.10 Features learnt from unspecified initial conditions

This process was performed based on a training set of one instance of each character (in

only one font). 13 primitive features were specified and then trained.t This training was

enabled by specifying which features were present in which characters. The perceptron

convergence algorithm was used, since the specification of features is effectively a

sparse, single-layer perceptron. These part-specified, part-learnt features are shown in

figure 6. 11.

These features were then 'frozen' (their weights were locked) and character

classifications were learnt, in terms of these primitive features. Two other primitive

features were permitted to be learnt, at this stage, to allow the learning of any

descriminative features not obvious to the designer. Again, this learning consisted

essentially of the perceptron convergence procedure and was guaranteed to converge,

given that a classifier could be learnt in terms of the already-learnt, primitive features.

The part-specified, part-learnt solution gave a performance of 73.262% t correct

t Some of these training experiments were carried out using the PDP Research Group
simulation tools, described in EXPLORATIONS IN PARALLEL DISTRIBUTED
PROCESSING: A Handbook of Models, Programs, and Exercises © 1987 by J. L.
McClelland and D. E. Rumeihart.

t This relatively poor performance is due to the existence of multiple fonts in the
character test set. The training set contained only one font.

Chapter Six - Case Study: Numberplate Recognition 	 112

classification when trained on just one example of each character (i.e. 32 training

pattern$). When a solution was learnt by a fully interconnected MLP with randomly-

initialised weights (and the same number of hidden units: 15), the performance was

85.562%. It is concluded that, for neuron-level operations, such as classification, a learnt

solution out-performs a part-specified solution. The only advantage, it seems, of part-

specifying at this low level is that the problem of local minima can be 'avoided'.

However, this does not mean to say that the designer's specification will not place the

network in a local minima - as actually happened.

The virtue of specification is more apparent at higher levels of complexity, at which

learning abilities are more restricted. The neural implementation of histogram-based,

local adaptive thresholding was completely reliant on specification. In more general

terms, it is highly unlikely that unnormalised, grayscale images could be used to train an

MLP to classify characters (see section 6.6.6 for a discussion of this); it is already

difficult enough for an MLP to learn a good classification based on segmented binary

images. What has been shown by the experiment described in this section is that - even

at the primitive level - weights can be part-specified from a priori information, and

'layered' learning can then be applied. (See section 7.3 for an alternative to traditional

learning methods, more suited to the framework of hierarchy.)

These experiments were performed on a test set of 1147 characters, drawn from the set of

170 numberplate images. Each character was located in the thresholded image (using the

conventional location algorithm) and segmented into 6 rows and 5 columns. The

proportion of each of these blocks that was black/white was used as input to the classifier

as a continuous value between 0 and 1. Thus, the hierarchical specification, at the top

level of abstraction, receives input through an interface of type 'retina' (see Appendix D).

This datatype is defined as consisting of six 'rows', and a row is defined in terms of

segments, each of which could be defined in terms of pixels but which, in this

specification, was defined in terms of a synapse. This synapse represents the proportion

of the block that is black/white.

1 32, not 36 (26 alpha plus 10 numeric), because some characters, such as Zero and
Capital-O, are identical.

Chapter Six - Case Study : Numberplate Recognition 	 113

Features such as the presence of a particular row or column, or a diagonal feature, are

defined ultimately in terms of these segments. Thus, a function that detects a horizontal

row at the top of the retina reads in the retina and extracts from this the first two rows.

The segments which make up these rows are then extracted and supplied, along synapses

which are appropriately-weighted so as to recognise the presence of this row, to a neuron

whose output will represent the presence of that feature. The function which recognises

an 'E' may then be defined in terms of primitive features such as this row.

Figure 6.11 Features after learning from specified initial conditions

When unspecified MLP-type architectures are scaled up the learning time increases

exponentially (see section 2.2.2). The use of specification places the model in an area

within the search space which can be as precise as the designer cares to make it. Thus,

this experiment again shows that hierarchical specification can be used to allow the

scaling-up of neural systems and to prevent this exponential increase in training time.

This method of constraining certain weights or connections has been used many times

before, simply as a means of constraining the search space so that a solution is actually

learnt. However, this constraint has not been undertaken within a formal framework

which provides a method for deriving these weights/structure. This would not be possible

without the application of hierarchy.

Chapter Six - Case Study : Numberplate Recognition 	 114

The relatively poor performance of these neural implementations compared to the

decision tree classifier is due to the fact that the neural systems (owing mainly to

compute-time limitations) were not trained on all the different fonts that exist in the test

set; the decision tree was trained on these different fonts. When trained on the same data

as was used for the development of the neural system, the decision tree gave a

comparable level of performance (85.9 18%).

Summary

The framework of hierarchy has been applied to non-trivial image processing problems

and implementations have been derived. These systems have been part-specified and part-

learnt. The neural implementation of histogram-based local adaptive thresholding, in

particular, demonstrates how an algorithm may be incorporated into a neural net,

resulting in a scaling-up of the model and a widening of neural applications. The

classification experiment has demonstrated the way in which specification can enable

learning.

Given the availability of neural hardware, these implementations of common image

- processing operations will - in terms of speed - out-perform conventional

implementations, which are fundamentally sequential. In addition to this, these

implementations make extremely efficient use of hardware, owing to the high degree of

specification in those parts of the system that can be specified. This results in very sparse

networks, which are amenable to efficient simulation or realisation by dedicated neural

hardware.

This work has attempted the recognition of a numberplate from a raw grayscale image by

means of an unadulterated neural implementation. This is in marked contrast to

traditional approaches which have performed most of the (pre-)processing using

conventional techniques. The neural element in these systems has tended to consist of a

simple classifier, tacked on the end of the conventional processing. it is in the

preprocessing that most of the work is performed. It is virtually inconceivable that an

MLP could be trained on unnormalised grayscale images in order to classify characters.

The range in exposure, not only between different characters but even within the same

character, is potentially extreme and renders the input data virtually without pattern. This

Chapter Six - Case Study : Numberplate Recognition
	 115

approach was briefly investigated. Two and three layer perceptrons, with various

configurations of numbers of hidden units, were trained on (already-segmented) grayscale

images. Under no conditions did the model converge to a solution. This, above all else,

highlights the virtues of the framework of hierarchy. Its application to this 'hard' problem

has achieved moderate results with an entirely neural implementation.

test set test data set
(containing training data) verification data set

Conventional 99.9% 85%

Specified Neural unavailable due to 73%

compute-time
Unspecified limitations 85%

Neural

The above table summarises the results obtained. It shows that, when tested with a genuine

verification data set (involving no data contained in the training set) the conventional and

neural systems are of comparable performance. As previously stated, it was not possible to

train the neural systems on multiple fonts owing to compute-time resource limitations..In

summary, therefore, these results show a very good level of performance for a neural

solution as compared with a more conventional technique.

Chapter Seven

Conclusions

This thesis claims that hierarchy is an essential concept for the understanding and

application of neural systems. How was this conclusion arrived at? Is it valid? Are the

supporting evidence and the experimental results sufficient to substantiate it? These

questions are answered in this chapter.

1. A Brief Review

It was first observed, in Chapter One, that neural systems are capable of astoundingly

complex function. When it was asked how this remarkable function emerges from the

interaction of primitive neural hardware it was seen that there were no coherent principles

by which this could be explained. Indeed, it was questioned whether such principles

actually existed.

The field of artificial neural networks was then examined for clues to the direction in

which a unifying neural theory might lie. In particular, it was argued that specification is

a necessary complement to learning; empirical derivation of a system cannot succeed in

the entire absence of specification. At present, however, neural specification is intuitive,

not meaningful; no coherent method exists for describing a neural system. The

relationship between specification and understanding was then explored: if the way in

which a neural system realises a function can be described then it is understood - at that

level of description. It was argued that lack of neural theory is stifling growth of the field

and that the concentration on traditional models (MLP, Kohonen, Hopfield, etc) will

probably not spawn unifying theory.

Chapter Three was concerned with deriving insights on neural theory from related

disciplines. Various metaphors of neural computation were explored, in the hope that the

theory of the metaphor would enrich neural theory. Connectionist expert systems were

presented as a metaphor of primitive neural computation. Neurons perform an

inferencing-style function, and MLPs in particular approximate the distribution of

116

Chapter Seven - Conclusions 	 117

uncertainty in MLP-structured expert systems. This provided understanding of neural

systems at the primitive level of computation. At higher levels of computation it was

suggested that it is possible to understand the distributed implementation of a high level

function in terms of lower level functions. The object-oriented paradigm was also of

relevance as it offered a natural method of modelling; it may be that the neural medium

of computation is suited to employing a similar paradigm through which to model the

world.

In Chapter Four, these metaphors were drawn together to formulate a framework within

which neural computation could be understood. The basis of this framework is hierarchy

and as such the framework offers a method for describing function as the appropriate

interrelation of lower level function. This framework relates high level function, via an

arbitrary number of intermediate levels of abstraction/implementation, to a realisation of

that function in terms of neural hardware. It explains how, by the appropriate interaction

of neural components, higher level function emerges.

Not content with merely academic propositions, a software tool was constructed which

embodies the principles of the framework (Chapter Five). ANINECS demonstrates how

hierarchical specifications, described in a fully distributed, object-oriented style can be

used to understand a neural system. The compiled network can be understood at various

levels of abstraction. Thus, it is possible to identify the role of each neuron, of each

connection, of each cluster of neurons and of each group of connections in the system.

ANINECS showed that the framework could be applied. It was then important to

determine the power of this method. This was assayed by applying the framework to the

task of numberplate recognition. Chapter Six described these experiments and

demonstrated several virtues of the method. It was seen that the method was extremely

powerful in that it enabled the construction of part-specified, part-learnt solutions.

Information that was 'obvious' to the designer, such as how a histogram should be

formed, was incorporated in the specification. Information not apparent to the designer,

such as how to select a threshold, was derived empirically. Using this method, it was

shown how neural systems could be scaled-up. Perhaps most significantly, neural

systems constructed by this method were not black boxes. It was possible to select any

neuron or connection from a network of 106 neurons and 107 interconnections and

Chapter Seven - Conclusions 	 118

identify its role. These results demonstrated that the framework, far from being a purely

theoretical approach, is useful in engineering terms.

What may be concluded from these observations?

2. Conclusion: Hierarchy is Foundational to Neural Theory

Three broad conclusions can be identified, each of which support the thesis that hierarchy

is the basis of neural theory.

A Framework of Hierarchy explains neural computation of complex function. It

seems obvious that a complex system cannot be understood by consideration of its

primitive components alone. The complexity is too much for human understanding. In

order to understand such systems it is essential that function is abstracted to arbitrary

levels of detail. This must be a step in the right direction with regard to neural systems.

The case study has demonstrated the value of this approach in that a large neural system

could be completely understood. This discards the 'black-box' syndrome traditionally

accepted by neural researchers as a natural characteristic of neural systems. Neither is

there any 'black magic' going on in such systems: the emergence of higher level function

from lower level function can be explained according to the principles of the framework.

Ultimately, a function at a high level of abstraction can be realised as the appropriate

interconnection of primitive processing elements.

It has not been proved, however, that all neural systems can be understood in terms of

this framework. It is conceivable that biological systems may not conform to these

principles. However, this does seem highly unlikely. To some extent, as described in

Chapter Two, hierarchy can be readily observed in brain structure both in modularity of

neurons and groupings of connections. Another factor which implies hierarchy as the

basis of biological neural systems is their method of generation (see section 4.4). A

compact method of encoding is required to describe brain-sized systems within the DNA.

A hierarchy of netlists provides such a compact encoding (see section 6.6.2 and

Appendix B, and section 6.6.3 and Appendix Q.

A Framework of Hierarchy allows the combination of specification and learning.

This conclusion is of wider relevance than to the neural field alone. The traditional view

Chapter Seven - Conclusions 	 119

has been that conventional and neural models of computation are radically different in

that one is specified and the other is empirically derived. This work prompts the

conclusion that this is a false distinction: rather, conventional models have been primarily

serial-based (and therefore unsuited to learning) whereas neural models are

fundamentally distributed. The framework of hierarchy by which neural systems may be

understood is essentially the same as that by which conventional distributed systems or

object-oriented systems may be understood. The difference with neural systems is in the

primitive components of the system: neurons and synapses, as opposed to ALUs and

buses. Neural systems are not predominantly empirically derived. (Artificial neural nets

are, though, and this probably explains their relative failure to achieve results.) Thus,

applying the framework of hierarchy to neural systems allows the combination of

specification and learning as methods of implementation. It might be that this medium of

computation has been adopted by nature precisely because it integrates specification and

learning. Whether or not this is so, the application of hierarchy to neural systems does

allow a priori knowledge to be combined with information that is best derived

empirically.

(ill) A Framework of Hierarchy facilitates the scaling-up of neural systems. The

principles of the framework provide a meaningful method of constraining network

topology such that learning can succeed (see section 6.6). By training locally (one layer at

a time) it can be guaranteed that a solution will be arrived at, given the designer has

chosen a sensible data representation and such a solution exists (see section 6.6.5). The

framework may also perhaps be used to integrate various traditional neural models, to

arbitrary levels of complexity. Indeed, it may be that a common understanding of the

traditional neural models (MLP, Hamming, Kohonen, etc) may be found in the

application of these principles.

3. Speculation: Hierarchy in Learning

Hitherto, 'firm' conclusions have been stated. Here, speculation regarding an area beyond

the experimental scope of this work is indulged in. It is interesting to surmise what the

full impact of hierarchy on learning might be.

Chapter Seven - Conclusions 	 120

Assume that, at an arbitrary level of abstraction, every function can be identified and its

operation understood in terms of its implementation at a lower level of abstraction. (At

the base level each function is a neuron and its operation is thus understood.) According

to this thesis, learning consists of the formation of higher level functions (as opposed to

merely optimising lower level functions) by the generation/modification of

interconnections between objects at a particular level of abstraction. (In effect, of course,

this consists of the modification of primitive synapse strengths.) if it is possible to

identify those new connections that have interrelated functions at some level so as to

realise a higher level function then learning can be understood within a hierarchical

context. Low level functions, such as edge detection, are learnt first - in terms of

primitive functions/neurons. These learnt functions are then identified so that their

interrelation to form higher level functions such as boundary and segment detection can

be identified, and so on, to ever higher levels of abstraction.

This understanding of learning is radically different from the traditional 'flat' methods of

modifying weights. By understanding the hierarchy that is being formed during learning

this structure can be used to interrelate the modification of weights. The hierarchy could

indentify which weights should be modified in relation to which other weights. This

relation has previously been enabled in an 'unintelligent' way by using the primitive

network topology. For example, weight changes may be propagated back through layers

in a multilayer perceptron; nearest neighbour connections are modified in Kohonen nets.

Hierarchical learning, however, would relate the weight changes on two synapses at

'opposite sides' of a neural system - because they both belong to the same higher level

connection. It must be stressed, however, that these thoughts are purely speculatory and

do not support or detract from the substance of this thesis.

4. Directions for Future Research

Two exciting new areas of research arise out of this work. The first, hierarchical learning,

has been sketched out in the previous section. The second is the unification of the

traditional neural models within the framework of hierarchy. if it can be shown that a

framework of hierarchy provides a common understanding of these models then the

weight of evidence that hierarchy actually is the basis of neural theory will be greatly

increased.

Chapter Seven - Conclusions
	 121

For a widespread application of this framework, including the integration of learning and

specification, better support software is required. ANNECS is not robust enough for full

scale systems development. Thus, another research area is the development of a software

toolset which enables the application of hierarchy to neural systems.

What has been explored is a new and radically different approach to neural computation.

The true power of hierarchical neural systems has yet to be demonstrated. Whether

hierarchy is in fact the basis of neural theory will probably not be agreed for some time to

come. However, several exciting and apparently-rewarding new avenues of research are

opening up.

122

References

Atkinson, R.L., Atkinson, R.C., and Hilgard, E.R. in Introduction to Psychology,

Harcourt Brace Jovanovich, London (1982).

von Neumann, J, "The General and Logical Theory of Automata" in Collected

Works, ed. A.H. Taub, 5, Pergarnon Press, New York (1963). (4 "1 kw
?vLk r'

Churchiand, P. in Neurophilosophy, MIT Press, London (1986).

Edelman, G.M., "Neural Darwinism," Basic Books, New York (1987).

Bullock, T.H., Orkland, R., and Grinnell, A. in Introduction to nervous systems,

W.H. Freeman, San Francisco (1977).

Kandel, E., Schwartz, J.H., and eds in Principles of neural science, Elsevier/North-

Holland, Oxford (1981).

Poritsky, R., "Two and three dimensional ultrastructure of boutons and glial cells

in the motoneuronal surface of the cat spinal cord," Journal of Comparative

Neurology, 135, pp. 423-452 (1969).

Shepherd, G.M. in Neurobiology, Oxford University Press, New York (1983).

Cornsweet, T.N. in Visual Perception, Academic Press, New York (1970).

Hawkins, R.D. and Kandel, E.R., "Steps toward a cell-biological alphabet for

elementary forms of learning" in Neurobiology of learning and memory, ed.

Weinberger, N.M., pp. 385-404, Guilford, New York (1984).

Suga, N, "The extent to which biosonar information is represented in the bat

auditory cortex," Dynamic Aspects of Neocortical Function, pp. 3 15-374, Wiley

(1984).

Simmons, J.A., "Acoustic-Imaging Computations by Echolocating Bats:

Unification of Diversely-Represented Stimulus Features into Whole Images,"

Advances in Neural Information Processing Systems, 2, pp. 2-9, Morgan-

123

Kaufmann Publishers, San Mateo, CA (1990).

Seneff, S., "A computational model for the peripheral auditory system: application

to speech recognition research," Proceedings IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 37.8.1-37.8.4 (April 1986).

Spence, C.D. and Pearson, J.C., "The Computation of Sound Source Elevation in

the Barn Owl," Advances in Neural Information Processing Systems, 2, pp. 10-17,

Morgan-Kaufmann Publishers, San Mateo, CA (1990).

Allman, J., "Reconstructing the evolution of the brain in primates through the use

of comparative neurophysiological and neuroanatomical data," Primate Brain

Evolution, pp. 13-28, Plenum, New York (1982).

Reeke, G.N. and Edelman, G.M., "Selective Neural Networks and their

Implications for Recognition Automata," International Journal of Supercomputer

Applications, 1, pp. 44-69 (1987).

Kuperstein, M., "An adaptive neural model for mapping invariant target position,"

Behavioural Neuroscience, 1, pp. 148-162 (1988).

Huang, W.Y. and Lippmann, R.P., "Neural Net and Traditional Classifiers" in

Neural Information Processing Systems, ed. Dana Z. Anderson, pp. 387-396,

American Institute of Physics, New York (1988).

Willshaw, D.J. and von der Malsburg, C., "A MarkerInduction Mechanism for the

Establishment of Ordered Neural Mapping: Its Application to the Retinotectal

Connections," Philosophical Transactions of the Royal Society, Series B., 287, pp.

203-243 (1979).

Bliss, T.V.P. and Lomo, T., "Long-lasting potentiation of synaptic transmission in

the dendate area of the anaesthetized rabbit following stimulation of the perforant

path," Physiology, 232, pp. 331-356 (1973).

Lynch, G., "Synapses, Circuits, and the Beginnings of Memory," MIT Press,

Cambridge, MA (1986).

124

Hebb, D. 0., "The Organisation of Behavior," Wiley, New York (1949).

Iverson, L.L., "The chemistry of the brain," Scientific American, 241 (3), pp.

134-149 (1979).

Rumelhart, D.E., Hinton, G.E., and Williams, R.J., "Learning Internal

Representations by Error Propagation," Parallel Distributed Processing :

Explorations in the Microstructure of Cognition, 1, pp. 318 - 362, MIT Press,

Cambridge, Mass. (1986).

Dehaene, S., Changeux, J., and Nadal, J., "Neural networks that learn temporal

sequences by selection," Proceedings National Academy Science, USA,

Biophysics, 84, pp. 2727-2713 (1987).

Tank, D. and Hopfield, J.J., "Concentrating information in time: analog neural

networks with applications to speech recognition problems," 1st International

Conference on Neural Networks, San Diego, CA, June 21-24, 1987, 4, pp. 455-468,

IEEE, New York (1987).

Kurogi, S., "A model of neural network for spatiotemporal pattern recognition,"

Biological Cybernetics, 57, pp. 103-114 (1987).

Clarke, E. and O'Malley, C.D. in The Human Brain and Spinal Cord: A Historical

Study illustrated by writings from Antiquity to the Twentieth Century, University of

California Press, Berkeley and Los Angeles (1968).

McCulloch, W. and Pitts, W., "A Logical Calculus of the Ideas Imminent in

Nervous Activity," Bulletin of Mathematical Biophysics, 5, pp. 115-133 (1943).

Minsky, Marvin in Computation . Finite and Infinite Machines, pp. 103-116,

Prentice-Hall, Eaglewood Cliffs, N.J. (1967).

Vellacott, O.R., "The Construction of Turing Machines from Threshold Logic

Units," Final Year Project (BSc (Eng)), Imperial College, London (1989).

125

von Neumann, J., "Probabilistic Logics and the Synthesis of Reliable Organisms

from Unreliable Components," Automata Studies, pp. 43-98, Princeton University

Press, Princeton (1956).

Muroga, S., "Threshold Logic and Its Applications," John Wiley & Sons, New

York (1971).

Lewis, P.M. and Coates, C.L., "Threshold Logic," John Wiley & Sons, New York

(1967).

Hurst, S.L., "Threshold Logic: An Engineering Survey," Mills and Boon Ltd,

London (1971).

Linsker, R., "Self-Organisation in a Perceptual Network," Computer, pp. 105-117

(March 1988).

Linsker, R., "From basic network principles to neural architectures: Emergence of

spatial-opponent cells," Proceedings of the National Academy of Sciences, USA

(Neurobiology), 83, pp. 7508-7512 (October 1986).

Linsker, R., "From basic network principles to neural architectures: Emergence of

orientation-selective cells," Proceedings of the National Academy of Sciences,

USA (Neurobiology), 83, pp. 8390-8394 (November 1986).

Linsker, R., "From basic network principles to neural architectures: Emergence of

orientation columns," Proceedings of the National Academy of Sciences, USA

(Neurobiology), 83, pp. 8779-8783 (November 1986).

Rosenblatt, F., "The Perceptron: A Probabilistic Model for Information Storage

and Organisation in the Brain," Psychological Review, 65, pp. 386-408 (1958).

Rosenblatt, F. in Principles of Neurodynamics: Perceptrons and the theory of Brain

Mechanisms, Spartan, Washington, DC (1961).

Minsky, M.L. and Papert, S.A. in Perceptrons : An Introduction to Computational

Geometry, pp. 15 1-158, MIT Press, Cambridge, MA (1969).

126

Duda, R.O. and Hart, P.E., "Pattern Classification and Scene Analysis," John

Wiley & Sons, New York (1973).

Rumeihart, D.E., Hinton, G.E., and Williams, R.J., "Learning Representations by

Back-Propagating Errors," Nature, 323, pp. 533-536 (1986).

Parker, D.B., "Learning Logic," Tech. Rep. TR-47, Center for Computational

Research in Economics and Management Science, MIT (April 1985).

Werbos, P., "Beyond Regression: New T," PhD Thesis, Harvard (August 1974).

Baum, E.B., "Generalising Back Propagation to Computing" in AlP Conference

Proceedings 151, Neural Networks for Computing, Snowbird, ed. John S. Denker,

pp. 47 - 52, American Institute of Physics (1986).

Gallant, S.I., "A Connectionist Learning Algorithm with Provable Generalisation

and Scaling Bounds," Neural Networks, 3, pp. 191-201, Pergamon Press (1990).

Gallant, S.I., "Perceptron-Based Learning Algorithms," IEEE Transactions on

Neural Networks, 1 (2), pp. 179-191 (June 1990).

Hampson, S.E. and Volper, D.J., "Disjunctive Models of Boolean Category

Learning," Biological Cybernetics, 56, pp. 121-137 (1987).

Hampson, S.E. and Volper, D.J., "Linear Function Neurons: Structure and

Training," Biological Cybernetics, 53, pp. 203-217 (1986).

Judd, S., "Learning in networks is hard," IEEE International Conference on

Neural Networks (ICNN-87), San Diego, CA, June 21-24, 1987, 2, pp. 685-692,

IEEE, New York (1987).

Albus, J., "Brain, Behavior and Robotics," BYTE Books (1981).

Sejnowski, T.J. and Rosenberg, C.M., "Parallel Networks that Learn to Pronounce

English Text," Complex Systems, 1, pp. 145-168 (1987).

127

Lippmann, R.P. and Martin, E.A., "Multi-style training for robust isolated-word

speech recognition," ICASSP 87, PP. 705-708 (April 1987).

Waibel, A., Hana.zawa, T., Hinton, G., Shikano, K., and Lang, K., "Phoneme

recognition using time-delay neural networks," Technical Report TR-1-006, ATR

Interpreting Telephony Research Laboratories, Japan (1987).

Barto, A.G. and Jordan, M.I., "Gradient Following without Backpropagation in

Layered Networks," IEEE International Conference on Neural Networks, San

Diego, CA, June 21-24, 1987, 2, pp. 629-636, IEEE, New York (1987).

Valiant, L.G., "Learning Disjunctions of Conjunctions," Proceedings 9th

International Joint Conference on Artificial Intelligence, pp. 560-566 (August

1985).

in Neurocomputing, A Reader, ed. Rosenfeld, E., MIT Press, MA (1988).

Cowan, J.D. and Sharp, D.H., "Neural Nets and Artificial Intelligence," Daedulus,

117, pp. 85-121 (January 1988).

Kohonen, T., "Sell-organisation and Associative Memory," pp. 68-81, Springer-

Verlag, New York (1984).

Hopfield, J.J., "Neural networks and physical systems with emergent collective

computational properties," Proceedings of the National Academy of Sciences, USA,

79, pp. 2554-2558 (April 1982).

Abu-Mostafa, Y. and St. Jacques, J., "Information Capacity of the Hopfield

Model," IEEE Transactions on Information Theory, 7, pp. 1-11 (1985).

Amit, D., Gutfreund, H., and Sompolinsky, H., "Storing infinite numbers of

patterns in a spin-glass model of neural networks," Phys. Rev. Lett, 55 (14), pp.

1530-1533 (1985).

65. McEliece, R et al, "The Capacity of the Hopfield Associative Memory," IEEE

Transactions on Information Theory, 1, pp. 33-45 (1987).

128

Kosko, B., "Adaptive Bidirectional associative memories," Applied Optics, 26, pp.

4947-4960 (1987).

Steinbuch, K. and Piske, U., "Learning Matrices and Their Applications," IEEE

Transactions on Electronic Computers, pp. 846-862 (1963).

Lippmann, R., Gold, B., and Malpass, M., "A comparison of hamming and

hopfield neural nets for pattern classification," Technical Representation 769, MIT

(1987).

Kanerva, P., "Self-propagating Search: A Unified Theory of Memory," Bradford

Books, MIT Press, Cambridge, MA (1988).

Lippmann, R.P., "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, pp. 4 - 22 (April, 1987).

DARPA, "Neural Network Study," pp. 87-89, AFCEA International Press, Fairfax,

Viginia (November 1988).

Draper, J., Hancock, H., Frankel, D., and Mize, A., "A microcomputer neural net

benchmarked against standard classification techniques," IEEE 1st International

Conference on Neural Networks, San Diego, 1987, 4, pp. 651-658 (1987).

Scofield, C.L., Reilly, D.L., Elbaum, C., and Cooper, L.N., "Pattern class

degeneracy in an unrestricted storage density medium" in Neural Information

Processing Systems, ed. Dana Z. Anderson, pp. 674-682, American Institute of

Physics, New York (1988).

Giles, C.L. and Maxwell, T., "Learning, Invariance and Generalisation in High-

Order Networks," Applied Optics, 26, pp. 4972-4978 (December 1987).

Carpenter, G.A. and Grossberg, S., "A Massively Parallel Architecture for a Self -

Organising Neural Pattern Recognition Machine," Computer Vision, Graphics and

Image Processing, 37, pp. 54-115 (1987).

129

Carpenter, G.A. and Grossberg, S., "Absolutely Stable Learning of Recognition

Codes by a Self-Organising Neural Network" in AlP Conference Proceedings 151,

Neural Networks for Computing, ed. John S. Denker, pp. 77-85, American Institute

of Physics (1986).

Pineda, F.J., "Generalisation of back-propagation to recurrent neural networks,"

Physical Review Letters, 59, pp. 2229-2232 (1987).

Hopfield, J.J. and Tank, D.W., "Computing with Neural Circuits," Science, 233,

pp. 625-633 (August 1986).

Tank, D.W. and Hopfield, J.J., "Collective computation in neuron-like circuits,"

Scientific American, 257, pp. 104-114 (December 1987).

C. Peterson and B. Soderberg, "A New Method for Mapping Optimization

problems onto Neural Networks," International Journal of Neural Systems, 1, 1,

pp. 3 - 22 (1989).

Marcus, R. , "On Parallel Execution of the Travelling Salesman Problem on a

Neural Network," Proceedings of the IEEE First International Conference on

Neural Networks, IV, pp. 735 - 739, San Diego, California (June 21 - 24, 1987).

Hinton, G.E., Sejnowski, T.E., and Ackley, D.H., "Boltzmann Machines:

Constraint Satisfaction Networks that Learn," Cognitive Science, 9, pp. 147 - 169

(May, 1984).

Hinton, G.E. and Sejnowski, T.J., "Learning and Relearning in Boltzmann

machines," Parallel Distributed Processing : Explorations in the Microstructure of

Cognition, 1, pp. 282-317, MIT Press, Cambridge, Mass. (1986).

Ackley, D.H., Hinton, G.E., and Sejnowski, T.E., "A Learning Algorithm for

Boltzmann Machines," Cognitive Science, 9, pp. 147 - 160 (1985).

Grossberg, S., "Nonlinear neural networks: Principles, mechanisms and

architectures," Neural Networks, 1, pp. 17-61 (1988).

130

Hendler, J.A., "Editorial: On The Need for Hybrid Systems," Connection Science,

1 (3), pp. 227-229 (1989).

Shavlik, J.W. and Towell, 0.0, "An Approach to Combining Explanation-Based

and Neural Learning Algorithms," Connection Science, 1 (3), pp. 231-252 (1989).

Utgoff, P.E., "Perceptron Trees: A Case Study in Hybrid Concept

Representations," Connection Science, 1 (4), pp. 377-391 (1989).

Komori, Y. and Hatazaki, K., "Phoneme Recognition Expert System using

Spectogram Reading Knowledge and Neural Networks," Trans. Inst. Electron. Inf.

Commun Eng., J73D-111 (1), pp. 10-18 (1989).

Wermter, S. and Lehnert, W.G., "A Hybrid Symbolic/Connectiomst Model for

Noun Phrase Understanding," Connection Science, 1 (3), pp. 255-272 (1989).

Bounds, D.G., Lloyd, P.J., and B. Matthew, "A Multilayer Perceptron Network for

the Diagnosis of Low Back Pain," RSRE Internal Report (1988).

Fu, L.M., "Integration of Neural Heuristics into Knowledge-Based Inference,"

Connection Science, 1 (3), pp. 325-340 (1989).

Tin-i, H., "Applying Neural Computing to Expert System Design: coping with

complex sensory data and attribute selection," INRIA. Foundations of Data

Organisation and Algorithms: 3rd International Conference, FODO 1989

Proceedings, pp. 474-488, Springer-Verlag, Paris, France (1989).

Kasabov, Nikola K., "Hybrid Connectiomst Rule-based Systems," Internal

Technical Representation, University of Essex (1989).

Kasabov, N. and Clarke, 0., "Templates Based Simulator (TBS): A Tool for real-

time classification and going from data to neural nets and then to rules," Internal

Technical Representation, University of Essex (1989).

Selverston, A.I., "Are central pattern generators understandable?," Behavioural

and Brain Sciences, 4 (3), pp. 535-57 1 (1980).

131

Calabrese, R.L., "Invertebrate central pattern generators: Modeling and

complexity," Behavioural and Brain Sciences, 4 (3), pp. 542-543 (1980).

Golden, R, "A Unified Framework for Connectionist Systems," Biological

Cybernetics, 59, pp. 109-120 (1988). 	-

Feldman, J.A. and Ballard, D.H., "Connectionist Models and Their Properties,"

Cognitive Science, 6 (3), pp. 205-254 (1982).

Brown, C.M., "Computer Vision and Natural Constraints," Science, 224, pp.

1299-1305 (1984).

Foster, C.L., "Algorithms, Abstraction and Implementation: A Massively

Multilevel Theory of Strong Equivalence of Complex Systems," PhD Thesis,

University of Edinburgh, UK (1990).

Venkatasubramaman, V., "Inexact reasoning in expert systems: a stochastic parallel

network approach," IEEE 2nd Conference in Artificial Intelligence Applications,

Miami Beach, 1985, pp. 13-15 (1985).

McMillan, C., Mozer, M.C., and Smolensky, P., "Learning rules in a neural

network," Proceedings of the International Joint Conference on Neural Networks,

Seattle, WA, July 1991 (1991).

Bochereau, L and Bourgine, P., "Extraction of Semantic Features and Logical

Rules from a Multilayer Neural Network," International Joint Conference on

Neural Networks '90, Washington, D.C., Applications, pp. 579- (1990).

Waterman, D.A. in A Guide to Expert Systems, Adison-Wesley, Reading, Mass.

(1986).

Buchanan, B.G. and Shortcliffe, E.H., "Rule-Based Expert Systems," Adison-

Wesley, Reading, MA (1984).

107. Ng, K.C. and Abramson, B., "Uncertainty Management in Expert Systems," IEEE

Expert, 5 (2), pp. 29-47 (April 1990).

132

Wise, B.P. and Henrion, M., "A Framework for Comparing Uncertain Inference

Systems to Probability" in Uncertainty in Artificial Intelligence, ed. J.F. Lemmer,

pp. 69-83, Elsevier Science Publishers, New York, NY (1986).

Bonissone, P.P. and Tong, R.M., "Reasoning with uncertainty in expert systems,"

International Journal of Man-Machine Studies, 22 (3), pp. 241-250 (1985).

Kerre, E.E., "Outline of an expert system for ECG diagnosis using fuzzy sets,"

Artificial Intelligence in Medicine, 1, pp. 139-144 (1989).

Lesmo, L., Saitta, L., and Torasso, P., "Dealing with uncertain knowledge in

medical decision-making: A case study in hepatology," Artificial Intelligence in

Medicine, 1, pp. 105-116 (1989).

Clark, D.A., "Numerical and Symbolic Approaches to Uncertainty Management in

Al," Artificial Intelligence Review, 4, pp. 109-146 (1990).

Lindley, D.V., "The Probability Approach to the Treatment of Uncertainty in

Artificial Intelligence and Expert Systems," Statistical Science, 2 (1), pp. 17-24

(1987).

Pearl, J. in Probabilistic Reasoning in Expert Systems, Morgan Kaufmann, Palo

Alto, CA (1988).

Wellman, M.P., "Fundamental Concepts of Qualitative Probabilistic Networks,"

Artificial Intelligence, 44, pp. 257-303 (1990).

Anderson, C.H. and Abrahams, E., "A Bayesian Probability Network" in AlP

Conference Proceedings 151, Neural Networks for Computing, ed. John S. Denker,

pp. 7-11, American Institute of Physics (1986).

Pearl, J., "How to do with probabilities what people say you can't," Proceedings

of the Second Conference on Artificial Intelligence Applications, 1, pp. 6-12, IEEE

Computing Society Press, Los Alamitos, Calif. (December 1985).

133

Zadeh, L.A., "Is Probability Theory sufficient for dealing with Uncertainty in

Artificial Intelligence: A Negative View" in Uncertainly in Artificial Intelligence,

ed. Lemmer, J.F., pp. 103-116, Elsevier Science Publishers, New York, NY (1986).

de Finetti, B. in Theory of Probability, John Wiley and Sons, New York, NY

(1974).

Gallant, S.I., "Bayesian Assessment of a connectionist model for fault detection,"

College of Computer Science, Northeastern Univ., Boston, Mass., TR NIJ-

CCS-87-25 (1987).

Pearl, J., "Fusion, propagation and structuring in belief networks," Artificial

Intelligence, 29 (3), pp. 241-288 (Sept 1986).

Pearl, J., "Reverend Bayes on inference engines: A distributed hierarchical

approach," Proceedings of the Second National Conference on Artificial

Intelligence, pp. 133-136, Pittsburgh, PA (1982).

Pearl, J., "On Evidential Reasoning in a hierarchy of hypotheses," Artificial

Intelligence, 28, pp. 9-15 (1986).

Shafer, G. in A Mathematical Theory of Evidence, Princeton University Press,

Princeton, NJ (1976).

Sumita, U., Masuda, Y., Tachi, M., and Ishikawa, Y., "Structural Analysis of the

Dempster-Shafer Theory and Related Limit Theorems," International Journal of

Expert Systems, 2 (2), pp. 163-198 (1989).

Zaleh, L.A., "A Simple View of the Shafer-Dempster Theory of Evidence and its

Implication for the Rule of Combination," Artificial Intelligence Magazine, 7, pp.

85-90 (1986).

Zadeh, L.A., "Review of Shafer's 'A Mathematical Theory of Evidence',"

Artificial Intelligence Magazine, 5, pp. 81-83 (1984).

134

Zadeh, L.A., "Fuzzy Sets as a Basis for a Theory of Possibility," Fuzzy Sets and

Systems, 1 (1), p. 3028 (1978).

Hogg, T. and Huberman, B.A., "Parallel computing structures capable of flexible

associations and recognition of fuzzy inputs," Journal of Statistical Physics, 41,

pp. 115-123 (1985).

Binaghi, E., "A Fuzzy Logic Inference Model for a Rule-Based System in Medical

Diagnosis," Expert Systems, 7 (3), pp. 134-141 (August 1990).

Gallant, S.I., "Connectionist Expert Systems," Communications of the ACM, 31

(2), pp. 152-169 (February 1988).

Cheeseman, P.C., "Learning of Expert System Data," Proceedings of the IEEE

Workshop on Principles of Knowledge-Based Systems (Denver, Cob., Dec 34).,

pp. 115-122, IEEE Press, New York (1984).

Fu, L.-M. and Fu, L.-C., "Mapping rule-based systems into neural architecture,"

Knowledge-Based Systems, 3, pp. 48-56 (1990).

Ruck, D.W., Rogers, S.K., Kabnsky, M., Oxley, M.E., and Suter, B.W., "The

Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant

Function," IEEE Transactions on Neural Networks, 1 (4), pp. 296-300, IEEE Press

(December 1990).

Wan, E.A., "Neural Network Classification: A Bayesian Interpretation," IEEE

Transactions on Neural Networks, 1 (4), pp. 303-305, IEEE Press (December

1990).

Yang, Q. and Bhargava, V.K., "Building expert systems by a modified perceptron

network with rule-transfer algorithms," Proceedings of the International Joint

Conference on Neural Networks '90 (San Diego, CA), II, pp. 77-82 (1990).

Lacher, R.C., Hruska, S.!., and Kuncicky, D.C., "Backpropagation Learning in

Expert Networks," FSUCS Technical Report 91-015, Department of Computer

Science, The Florida State University, Tallahassee, Florida 32306-4019 (January

135

1991).

O'Leary, D.E. and Kandelin, N.A., "Validating the Weights in Rule-Based

Systems," International Journal of Expert Systems, 1(3), pp. 253-279 (1988).

Michalski, R.S. and Chilanski, R.L., "Learning by being told and learning from

examples: an experimental comparison," Policy Analysis and Information Systems,

4, pp. 125-160 (1980).

Mooney, R.J., Shavlik, J.W., Towell, G.G., and Gove, A., "An experimental

comparison of symbolic and connectiomst learning algorithms," Proceedings of

the 11th International Joint Conference on Artificial Intelligence (Detroit, MI,

August 1989), pp. 775-780 (1989).

Hall, L.O. and Romaniuk, S.G., "FUZZNET: Toward a fuzzy connectionist expert

system development tool," Proceedings of the International Joint Conference on

Neural Networks '90 (Washington, DC), II, pp. 483-486 (1990).

Cheeseman, P.C., "A method of computing generalised Bayesian probability

values for expert systems," Proceedings of the 8th International Joint Conference

on Artificial Intelligence, pp. 198-202, Karlsruhe, W. Germany (Aug 8-12).

Deng, P., Holsapple, C.W., and Whinston, A.B., "A Skill Refinement Learning

Model for Rule-Based Expert Systems," IEEE Expert, 5 (2), pp. 15-28 (April

1990).

Gallant, S.I. and Balachandra, R., "Using automated techniques to generate an

expert system for R/D project monitoring," International Conference on

Economics and Artificial Intelligence (Aix-en-Provence, France, Sept 2-4, 1986),

pp. 87-92.

Gallant, S.I., "Automatic Generation of Expert Systems from Examples,"

Proceedings of the 2nd International Conference on Artificial Intelligence

Applications (Miami Beach, Fl., Dec 11-13, pp. 313-319, IEEE Press, New York

(1985).

136

Gallant, S.I., "Automated generation of expert systems for problems involving

noise and redundancy," AAAJ Workshop on Uncertainty in Artificial Intelligence

(Seattle, Wash., July 10-12, 1987), pp. 212-221 (1987).

Rumelhart, D.E. and Zipser, D., "Feature Discovery by Competitive Learning,"

Parallel Distributed Processing : Explorations in the Microstructure of Cognition,

1, pp. 151-193, MIT Press, Cambridge, Mass. (1986).

Fisher and McKusick, "An Empirical Comparison of 1D3 and Back-propagation,"

11th International Joint. Conference on Artificial Intelligence, Detroit 1989, 2, pp.

788-793 (1989).

Touretzkey and Pomerleau, "What's Hidden in the Hidden Layers?," Byte, pp.

227-233 (August 1989).

Weizenbaum, J, "Computer Power and Human Reason, From Judgement to

Calculation," pp. 46-71, Penguin Books Ltd. (1976).

Enslow, P.H., "What is a 'distributed' system?," Computer, pp. 13-21 (January

1978).

Foster, J.D., "The development of a concept for distributive processing,"

Compcon, San Francisco, CA (1976).

Sloman, M and Kramer, J in Distributed Systems and Computer Networks, pp.

20-76, Prentice-Hall International, UK (1987).

Brady, D. and Psaltis, D., "Perception Learning in Optical Neural Computers" in

Optical Computing . Scottish Summer Schools (Physics) Proceedings 1988, ed.

When-it, B.S., pp. 251-264, Edinburgh University Press, UK (1989).

Shastri, 1. and Feldman, J., "Semantic networks and neural nets," TR 131,

Computer Science Department, University of Rochester (June 1984).

156. Shastri, L. and Feldman, J., "Evidential Reasoning in Semantic Networks: A

formal theory," Proceedings of the 9th International Joint Conference on Artificial

137

Intelligence, pp. 465-474 (August 1985).

Chen, S.M., Ke, J.S., and Chang, J.F., "Knowledge Representation using Fuzzy

Petri Nets," IEEE Transactions on Knowledge and Data Engineering, 2 (3), pp.

311-319 (September 1990).

Kean, T. and Gray, J.P., "Configurable Hardware: anew paradigm for computing"

in Advanced Research in VLSI, ed. Seitz, pp. 279-295, MIT Press (1989).

Vellacott, O.R., "A Framework of Hierarchy for Neural Theory," International

Conference on Artificial Neural Networks 1991, November 18-20, Bournemouth,

UK, LEE (1991).

Marr, D. in Vision: A Computational Investigation into the Human Representation

and Processing of Visual Information, pp. 24-27, Freeman, San Francisco (1982).

Vellacott, O.R., "ANNECS: A Neural NEtwork Compiler and Simulator,"

International Joint Conference on Neural Nets 1991, July 8-12, Seattle, II, p. 991,

IEEE (1991).

Vellacott, O.R., "Compilation of Neural Nets from High Level Specifications,"

fEE Colloquium on Neural Networks: Design Techniques and Tools, pp. 9/1-9/4,

lEE, Savoy Place, London (March 1991).

Kramer, J., Magee, J., Sloman, M., and Lister, A., "CONIC : an Integrated

Approach to Distributed Computer Control Systems," lEE Proceedings, Part E,

130 (1), pp. 1-10 (January 1983).

Small, S.L., Shastri, L., Bnjcks, M.L., Kaufman, S.G., Cottrell, G.W., and Addanki,

S., "ISCON: A Network Construction Aid and Simulator for Connectiomst

Models," Dept. of Computer Science, Univ. of Rochester, TR 109 (April 1983).

Williams, P.G., Kirby, H.R., Montgomery, F.O., and Boyle, R.D., "Evaluation of

Video-Recognition Equipment for Number-Plate Matching," 2nd International

Conference on Road Traffic Monitoring, 299, pp. 89-93 (1989).

138

Eyesys Corporation, 17 Fairbanks Street, Suite 33, Brookline, MA 02146

(301-593-4938), "Automatic License Plate Recognition System," Product

Information Sheet (1990).

Hesson, J.H. and Harrington, K.A., "Systolic Image Processor for Automatic

Detection and Recognition of Traffic Violations," Proceedings of the International

Conference on Acoustics, Speech and Signal Processing, pp. 777-780, IEEE, Tokyo

(1986).

Lotufo, R.A., Morgan, A.D., Johnson, A.S., and Thomas, B.T., "A Transputer

Based Automatic Number-Plate Recognition System," Proceedings of the 2nd

International Conference on Applications of Transputers, pp. 196-202, lOS Press,

Southampton, U.K. (11-13 July 1990).

Elsydel: electromque et systemes, "NPR-200," Product Information Sheet, 63,

boulevard Bessieres - 75017 Paris ((1)42268157) (1989).

Rosenfeld, A., "Computer Vision: Basic Principles," Proceedings of the IEEE, 76

(8), pp. 863-868 (August 1988).

Fu, K.S. and Rosenfeld, A., "Pattern Recognition and Image Processing," IEEE

Trans. Comput., C-25, pp. 1336-1346 (Dec 1976).

Roth, M.W., "Survey of Neural Network Technology for Automatic Target

Recognition," IEEE Transactions on Neural Networks, 1 (1), pp. 28-43 (March

1990).

in Optical Character Recognition, ed. Stevens, M.E., Spartan, Washington, DC

(1962).

Hayashi, Y., Ohhashi, S., Sakata, M., and Nakao, T., "Alphanumeric character

recognition using a connectiomst model with the pocket algorithm," International

Journal of Neural Networks: Research and Applications, 1(3) (1989).

Ihara, J., Le Cun, Y., Graf, H.P., Boser, B., Denker, J.S., Guyon, I., Henderson, D.,

Howard, R.E., Hubbard, W., and Solla, S.A., "Optical Character Recognition and

139

Neural-Net Chips," Proceedings of Paris Conference on Neural Nets, pp. 651-655

(1990).

Lee, M.C. and Oldham, W.J.B., "Font Recognition by a Neural Network,"

International Journal of Man-Machine Studies, 33, pp. 41-61, Academic Press

(1990).

Martin, G.L. and Pittman, J.A., "Recognising Hand-Printed Letters and Digits" in

Advances in Neural Information Processing Systems 2, ed. D.S. Touretsky, pp.

405-414(1990).

Mon, S, Yamamoto, K., and Yasuda, M., "Research on machine recognition of

handprinted characters," IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6 (4), pp. 386-405 (1984).

Cheng, F.H., Hsu, W.H., and Chen, M.Y., "Recognition of Handwritten Chinese

Characters by Modified Hough Transform Techniques," IEEE Transactions on

Pattern Analysis and Machine Intelligence, 11(4), pp. 429-438 (April 1989).

Kahan, S., Pavlidis, T., and Baird, H.S., "On the Recognition of Printed Characters

of Any Font and Size," IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-9 (2), pp. 274-287 (March 1987).

Renshaw, D., Denyer, P.B., Wang, G., Lu, M., and et al, "ASIC Image Sensors,"

Proceedings of IEEE International Symposium on Circuits and Systems, pp.

7.3.1-7.3.4 (1990).

Marr, D. and Hildreth, E., "Theory of Edge Detection," Proceedings of the Royal

Society of London, A 207, pp. 187-217 (1980).

Canny, J., "A Computational Approach to Edge Detection," IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8 (6), pp. 679-698 (November 1986).

Sahoo, P.K., Soltani, S., Wong, A.K.C., and Chen, Y.C., "A Survey of

Thresholding Techniques," Computer Vision, Graphics, and Image Processing, 41,

pp. 233-260, Academic Press, San Diego (1988).

140

Anderson, S., Denyer, P.B., 1.eishy,D., Wang, G., and Bruce, W.H., "A single-

chip sensor and image processor for fingerprint identification," CICC 1991, p. 12.1

(1991).

Carlotto, M.J., "Histogram Analysis Using a Scale-Space Approach," IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-9 (1), pp.

121-129 (January 1987).

Jam, A.K., "Advances in Mathematical Models for Image Processing,"

Proceedings of the IEEE, 69 (5), pp. 502-528 (May 1981).

Fukushima, K., Miyake, S., and Ito, T., "Neocognitron: A neural network model

for a mechanism of visual pattern recognition," IEEE Trans. Syst. Man Cybern.

SMC-13, 5, pp. 826-834 (Sept-Oct 1983).

Fukushima, K., "A Neural Network for Visual Pattern Recognition," Computer,

pp. 65-75, IEEE, New York (March 1988).

Mead, C.A. and Mahowald, M.A., "A silicon model of early visual processing,"

Neural Networks, 1, pp. 91-97 (1988).

Van der Spiegel, J, Kreider, G., Claeys, C., Debusschere, I., Sandini, G., Dario, P.,

Fantini, F., Bellutti, P., and Soncini, G., "Analog VLSI Implementation of Neural

Systems," A Foveated Retina-like Sensor using CCD Technology, pp. 189-207,

Kluwer Academic Publishers.

in Connectionist Models and their Implications, ed. Feldman, J., Ablex Publishing

Company, Norwood, NJ (1987).

Feldman, J.A., "Connectiomst Models and Parallelism in High Level Vision," TR

146, Computer Science Department, University of Rochester (January 1985).

Grossberg, S. and Mingolla, E., "Neural dynamics of perceptual grouping:

Textures, boundaries, and emergent segmentations," Perception and

Psychophysics, 38, pp. 141-171 (1985).

141

Zipser, D., "Programming Neural Nets to do Spatial Computations," ICS 8608,

San Diego, CA, University of California, San Diego, Institute for Cognitive

Science (1986).

Yeshurun, Y and Schwartz, E.L., "An ocular dominance column map as a data

structure for stereo segmentation," IEEE 1st International Conference on Neural

Networks, San Diego, CA, June 1987, 4, pp. 371-380, IEEE, New York (1987).

Qing-Yun, S. and Fu, K.S., "A method for the design of binary tree classifiers,"

Pattern Recognition, 16, pp. 593-603 (1983).

Quinlan, J.R., "Induction of decision trees," Machine Learning, 1, pp. 81-106

(1986).

Wang, Q.R. and Suen, C.Y., "Large Tree Classifier with Heuristic Search and

Global Training," IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-9 (1), pp. 91-102 (July 1987).

Lee, L.S., Tseng, C.Y., Chen, K.J., Huang, J., Hwang, C.H., Ting, P.Y., Lin, L.J.,

and Chen, C.C., "A Mandarin Dictation Machine Based Upon a Hierarchical

Recognition Approach and Chinese Natural Language Analysis," IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12 (7), pp. 695-704

(July 1990).

Vlontzos, J.A. and Kung, S.Y., "Hidden Markov Models for Character

Recognition," Proceedings of the International Conference on Accoustics, Speech

and Signal Processing, pp. 1719-1722, IEEE Press (1989).

Lee, H.Y., Lee, Y.C., and Chen, H.H., "Handwritten character recognition with

neural networks," Proceedings of the International Joint Conference on Neural

Networks (Washington DC, June 18-22, 1989), II, p. 618 (1989).

Le Cun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson,

D., Howard, R.E., and Hubbard, W., "Handwritten digit recognition: Applications

of Neural Network Chips and Automatic Learning," IEEE Communications

Magazine, pp. 41-46 (November 1989).

142

204. Le Cun, Y., Jackel, L.D., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., and

Hubbard, W., "Handwritten Digit Recognition with a Back-Propagation Network"

in Advances in Neural Information Processing Systems 2, ed. D.S. Touretsky, pp.

396-404(1990).

Appendix A

Formal Presentation of Abstraction/Implementation

Define:

P: {port0biC,, port —# }

C : {connectionsource, source —port —# • dest, desi -port-# }

0: 10, P, C} I {neuron}

f[P, t]: Z

0 valid implementation: (forall Ok E 0):

((Ok = neuron) I
(°k valid implementation & (

(there exists P E Ok) & (there exists C E Ok) s.t.

(forall Ca ,b,c ,d E C):

((there exists Pa,b E P) & (there exists Pc,d E P) s.t.

1Po,b, ti = 'IPc,d, t])

143

Grayscale

/
connection of type

256x256 image
Threshold 512x512 Image

Function that thresholds
256x256 grayscale image

Amrc

[liege

Bottom Left
	

Bottom Right

Addendum to Appendix B

The following appendix contains the neural specification of Local Adaptive Histogram-

based Thresholding, as represented graphically within ANNECS. To understand how this

specification describes a complete neural system an explanation is required. For example,

consider the top level specification of thresholding, as shown below:

Here, a and b represent input and output ports in the interface to this function. c, d, e and f

represent lower level functions, in terms of which this function is defined. c, d, e and f hap-

pen, in this instance, to be the same type of function, a 256x256 image threshold. This func-

tion type is not shown in the Appendix, but is defined in the same way as the above

function, except that its interface ports are of type 256x256 image and it is defined in terms

of 128x128 image threshold functions.

Each of the connections, for example g and h, represent data paths. Thus, the above func-

tion reads in a 512x512 image, separates this into its four constituent quadrants and passes

these to c, d, e and f. When each of these 256x256 thresholding functions have processed

this data, they produce 256x256 binary images which are reassembled into a 512x512 im-

age at b.

Appendix B

Neural Specification of Local Adaptive Histogram-based Thresholding t

range

connection of type 	 Function that thresholds
256x256 image 	 256x256 grayscale image

Threshold 512x512 Image

connection of type
818 image

Orayscale Image

Threshold 8x8 Patch

cc
4;'

(8)

threshold to 4x4 patch

Apply Threshold to 8x8 Patch

t These functions/datatypes are as defined in ANNECS. Not all are shown: for
example, it is apparent that a 256x256 image threshold is defined similarly to a 512x512
threshold (above top).

144

Appendix B
	

145

Select Threshold

Form Histogram

Bin Value

Form Bin of Histogram from 8x8 Patch

Appendix B
	

146

ixels in bin

Form Bin of Histogram from 2x2 Patch

Test A and B for Equality

Connection of type 'histogram' 	
Connection of type 'threshold' - with one bin active

\

Id
Patch Histogram

Derive Threshold from Histogram

Appendix B
	

147

Out

Get Optimum Threshold from Histogram

It - is - Combine For. I
I 	+t8t -+H
Histogram 	 bin Goodness

Select Bin

tisospam
i

 Ft

Histogram 	Form Feature 	 Features

Form Feature

i. •i
I. .

I' ?turto I

Features 	 Combine Features 	Bin Goodness

Combine Features to form Bin Goodness

Appendix B
	

148

One bin in this histogram - corresponding 	 Each of these weights is set to
to the threshold - is active 	 generate an activity equal to

the threshold to be applied

Threshold

Bin 12 	Bin 13 	B1 14 	Bin 15

Get Grayscale of Bin

1 xe 1

Apply Threshold to Pixel

Addendum to Appendix C

The following appendix contains the neural specification of Edge Detection, as represented

graphically within ANNECS. To understand how this specification describes a complete

neural system an explanation is required. The top level function is not shown overleaf but

is defined in the same manner as the top level function for neural thresholding, as shown in

Appendix B. The functions shown overleaf implement primitive edge detection which is

carried out for every pixel in the image. In the first function shown, detect edge, data is fed

in through vertical and horizontal, and read out at 'Edgeness'. These input and output

points are ports within the interface to the function.

The second function shown overleaf implements functions Horizontal Edge and Vertical

Edge in detect edge. This function reads in a line of pixels (either horizontal or vertical) and

detects a black-to-white edge and a white-to-black edge and then combines the amount of

edge of each of these types that is present. The function which actually detects a black-to-

white edge is shown at the bottom of the page overleaf.

The function which combines the edge measure in the horizontal and vertical directions is

not shown. It consists of one neuron with two equally weighted inputs..

Appendix C

Neural Specification of Edge Detection

Vertical

Detect Edge

Detect Edge in a Direction (Horizontal or Vertical)

Line of
Edge

Detect Edge 	Detect Edge

Detect black-white edge

149

Addendum to Appendix P

The following appendix contains the neural specification of Character Classification, as

represented graphically within ANNECS. To understand how this specification describes a

complete neural system an explanation is required. The top level function, Read Character,

assumes the character has been located and normalised and thus is fed in as a retina of pix-

els, of size six rows by five columns. Within Read Character, retina is passed to a separate

function to recognise each possible character. Each of these functions then outputs a prob-

ability of that character being present and these probabilities are combined to give a com-

plete table of probabilities for each character.

Each character is defined in terms of functions to recognise primitive features such as Rec-

ognise Column. Thus, the function to recognise an 'E' is defined in terms of functions to

recognise Row 1, Row 3, Row 4, Row 6 and Column 1.

Da
in t
The 	-, 	 -

Probability

Appendix D

Neural Specification of Character Classification

Read Charader

required to redefine' it in
terms of rows. 	 Read Ch&UCt& E'

I.....
as •w
I.....
I.....
I.....

Examples of the way in which datalypes are defined:
a row consists of five pixels; a pixel is represented by a synapse

150

Appendix D
	

151

1st half of row 1 (excitatory)

P (X)

neuron 	 Probability of Half-Row

1st half of row 2 (inhibitory)

Recognise Half Row

excitatory

p (X)

neuron 	 Probability of Column
inhibitory

Co 1 i_n

Recognise Column

Transform Column-Ordered to Row-Ordered 'Retina' Dataxype

Appendix E

'C' Implementation of Histogram-based

Local Adaptive Thresholding t

local.c

/* Oliver Vellacott - 21/3/90 - local adaptive thresholding algorithm *1

#include <stdio.h>
#mclude "locaLh"

short
write_image_ok(fname)

char *fname;

FILE 5f,, = fopen(fiiazne, "w");

if(!f)
return FALSE;

elsef
rita(outjmage 1, Th AGE_SJZE5IMAGE_SIZE, fp);

return TRUE;

abort
read_image_ok(fname)

char *fime;

FILE 5f = fopen(Uame, "r");

if(!1l')
return FALSE;

else
fread(in image, 1, IMAGE_S1ZE1MAGE_SIZE, fp);
return TRUE;

t This is a much-pruned version of the local adaptive thresholding algorithm
developed as part of the conventional (non-neural) numberplate recognition system. It
implements the same function as the hierarchical neural specification in Appendix B
though, of course, in a different way.

152

Appendix E
	

153

void
c1earJistograznO

inti;

for (i=O-, i<D1VISIONS; i+i-) 	 -
bars[i]=0

void

formJüstogram(i, j)

mti,j;

mt k, 1;

clear_histogramo;
for (k=i; k < i+PATCH_SIZE; k += SUBSAMPLE_SIZE)

for (1=j; 1< j+PATCH_SIZE; 1 += SUBSAMPLE_SIZE)
bars[(int)injmage[k](I]ibmsize]+s-;

let
common_goodness(low_peak, high-peak, trough)

mt low-peak, high-peak, trough;

1* this computes a measure of the 'goodness' of the trough as a threshold
- with respect to the two peaks

mt width--trough-low-peak,
heightl=bars(low_peak)-bars[troughj,
height2=bars[high_peak]-bars(trough);

if (heighti <= Oil height2 <= 0)
return 0;

else
return ((height 1+width) 5height2);

mt
find_next_physical_trough(next_to_trough, upwards)

hit next-to-trough;
short upwards;

P find trough neighbouring next-to-trough in direction upwards;
if trough is more than one bin wide- 'level' - return
left of trough*!

Appendix E
	

154

jut i, j, lowest---9999;

if (upwards) { I' look to right *1
for (i=next_to_trough; i<DIVISIONS; i+) (
if(bars[i] <lowest)
lowest = bars[i];
Jelse if(bars[i] > lowest)
return (i-i);

return i; / reached edge of histogram I
}else (J' look to left 5/

left_of_frough=O;
for (iiext_to_trough; i>=0 i—) {

if (bars[i] <lowest)
lowest = bars[i];
}else if (bars[i] > lowest)
return (i+l);

)else {f* must check that have found rightmost edge of trough 5/

for (j=i.l;j>'=O;j--)
if (bars(j] > lowest)
left_of_trough=j+l;
return (i+l);

}else if (bsrsj] <lowest)

I

mt
flnd_next_peak(next_to_trough, upwards)

mt next_to_trough;
short upwards;

1* finds peak that neighbours next_to_trough in direction upwards 5/

mti, highest=O;

if (upwards) f f5 look for peak to right 5/

next_to_trough++;
for (i=next_to_trough; i<DIVISIONS; i++) (

if(i==DIVISIONS-l) { ! mashed edge of histogram 1
return DIVISIONS-1;

}else if (bars[i] >= highest) (* are moving up a peak 5/

highest = bars(i];
)else if (bars[iJ <highest) (f5 peak is last 'bar' looked at 1
return 0- 1);

}else (f* look for peak to left *1
next_to_trough—;
for (i=next_to_trough; i>=0 i—) {

if (1i) { 	f reached edge of histogram I
return i;

}else if (bars[i] >= highest) (?are moving up a peak 5/

highest = bars[i];
}else if (bars[il <highest) (? peak is last 'bar' locked at 5/

Appendix E
	

155

return (41);

mt
flnd_best_lowest(low...peak, high-peak, best-trough)

mt low-peak, high-peak, *best_trough;

F1' finds the trough between high -peak and low-peak with the best goodness *1

let goodness=-999, low_trough=O, tamp-goodness, temp-low-peak

low-trough = flnd_pext_physical_trough(low_peak, TRUE);
while (low_trough <high....peak)

temp_goodneas=common_goodness(low_peak, high-peak, low-trough);
if (temp_goodness> goodness)

goodness = temp-goodness;
*beat_tmugh = low-trough;

tamp-low-peak = find_next_peak(low_trough, TRUE);
low-trough = flnd_next_physical_trough(tempjow_peak. TRUE);

return goodness;

mt
flnd_best_middle(low_peak, high_peak, best_trough)

mt low-peak, high-peak, best-trough;

f* find best peak-trough-high-peak combination for
low-peak peak <high_peak;

return best threshold through best-trough *1

mt best-trough-perhaps, goodness=-999, temp-goodness, low-trough;

while (low_peak <high_peak)
temp_goodness = find_best_lowest(low_peak, high-peak, &best_trough_pethaps);
if (temp_goodness> goodness)

goodness = temp-goodness;
5best_trOugh = best_trough_perhaps;

low_trough = flndnext_physical_trough(low_peak, TRUE);
low-peak = flnd_next_peak(low_trough, TRUE);

I*******************ssss*******************************s*************I

mt
flnd_best_top(low_peak, high-peak, best_trough)

Appendix E
	

156

mt low-peak, high-peak, *bettmugh;
f* find beet low-peak-trough-peak combination for

low-peak <peak <= high_peak;
return best threshold through Thest_trough 1

let best-trough-perhaps, goodness=-999, temp-goodness, high-trough;

while (low-peak <high_peak) ((* keep same leftwards peak and
move through all peaks right of that /

temp-goodness = find_best_middle(low_peak, high_peak,
&best_trough_perhaps);

if (temp_goodness> goodness)
goodness = temp-goodness;
*best_trough = beat-trough- perhaps;

high-trough = flnd_next_physical_trough(high_peak, FALSE);
high-peak = flnd_next_peak(high_trough, FALSE);

return goodness;

byte
select_threahold(i, j)

mt i,j;

/" find a good threshold, based on the histogram for this patch */

mt low-peak, high-peak, low-trough-1, high_trough=DIVISIONS, best-trough;

form_histogram(i, j);
low-peak = flnd_next_peak(low_trough, TRUE); f* find leftmost peak 5/

high-peak = flnd_,iext_peak(high_u-ough, FALSE); ? find rightmost peak *1
if (low-peak >= high_peak-MIN_PEAK_SEPARATION)
I outermost peaks are v. close together, or there's only one peak 5/

if (low-peak <5) return 255; 	1* patch must be all black */
else return o; 	? patch must be all white 5/
else
flnd_best_top(low_peak, high-peak. &best_trough);

1* find best peakl-trough-peak2 combination */
return (byte)(((float)best_trough-0.5) 5(float)bin_size);

void
local_thresholdO

/5 threshold injmage to out-image *1

mt 1, j, k, 1, threshold;

for (i=&, i<IMAGE_SIZE; i+=PATH_SlZE)
for (j=O; j<IMAGE_SIZE; J+=PATCH_SIZE) f

threshold = selest_threahold(i, j);
for (k=i; ki+PATCR_SIZE ks-f)

for (l=j; kj+PATCH_SIZE; 1+-i-)

Appendix E
	

157

if (threshold < in_image[k](11)
out_image[kl[l] = 255;

else
out_image[k][11 = 0;

void
main(azgc, argv)

mt argc
char argv;

if(argc<3)
print'Not enough arguments local inimage outimageo);

else
if (!re0_image_ok(argv[1]))

printf("local: failed to load image.0);
else

print1"0hresho1ding %s..0, argv[1]);
local_thresholdO;
if (1write_image_ok(argv[2]))

printf"local: failed to write image.0);

Iocal.h

#define TRUE 1
#define FALSE 0
#define IMAGE-SIZE 512
#define MAX-DIVISIONS 256
#define SUBSAMPLE_SIZE 1
#define DIVISIONS 32
#define MIN-PEAK-SEPARATION 1
#defise PATCH-SIZE S

typedef unsigned char byte;

byte in_image[IMAGE_SIZE] [IMAGE_SIZE],
out_image[IMAGE_SIZE] [IMAGE-SIZE];

mt left_of_trough,
bin_size=MAX_DWISIONS/DWJSIONS,
bars[DWISIONS];

Appendix F

Published Work

Vellacott, Oliver R., A Framework of Hierarchy for Neural Theory, International

Conference on Artificial Neural Networks 1991, November 20-26, Bournemouth,

UK

Vellacott, Oliver R., ANNECS. A Neural NEtwork Compiler and Simulator, International

Joint Conference on Neural Nets 1991, July 8-12, Seattle, Vol II, p991

Vellaeott, Oliver R., Compilation of Neural Nets from High Level Specifications, lEE

Colloquium on Neural Networks: Design Techniques and Tools, March 1991,

Savoy Place, London, p9/1-9/4

158

A FRAMEWORK OF HIERARCHY FOR NEURAL THEORY

O.R. Veilacott

Edinburgh University, UK

INTRODUCrION

Perhaps the most striking feature of the current state
of the art in neural nets is the lack of unifying
theory. A multitude of models and successful
applications abound, each with its own piecemeal
'theory' explaining how it works. No overarching
principles exist, however, for bringing together these
diverse models and enabling a common
understanding. This lack of theory was pointed out
by von Neumann as far back as 19561 yet his paper
seems as relevant today as it was then. More
recently, Patricia Churchiand has described her own
search for neural theory, 2 concluding that none is
yet available, though much needed. Her book,
Neurophilosophy, gives an excellent description of
the role and requirements of a theory of neural
networks.

To be more down to earth, we have no method for
saying what the ith neuron in the jth layer of a
multilayer perceptron actually does. Maybe it is not
possible to answer this. Perhaps it is not possible to
describe that neuron's role. Maybe there is no
computational theory underlying neural cognition
which explains what each neuron and each
connection means. Maybe the only 'explanation' of
neural processing is some principle such as Neural
Darwinism3 which explains how a system evolves but
not how it performs its function at any non-
primitive level.

These objections seem unreasonable. Theory exists
to explain the operation of most other areas of the
universe: why should the field of neural nets be
different? At the primitive level at least, it is
possible to explain in computational terms how
inputs are transformed to outputs. This can be
understood in terms of connectivity, neuron states,
and so forth. Understanding is at present limited to
this level.

The Requirements for Neural Theory

Neural theory should provide a method for
understanding how a network implements Its
function. Similarly, it should supply a method for
explicitly constructing a network to implement any
specified function.

Biological neural networks are not generated
spontaneously. They are (initially) generated
according to the genetic code. Many animals are
born with certain abilities already existant. These
functions do not arise by magic but are derived
from a specification in the form of the genetic code.

It seems remarkable that this approach to the
construction of artificial neural nets has been all but
entirely. ignored. The generation of initial network
topology, upon which learning can build and upon
which learning relies, is foundational to the
formation of biological neural systems. A genuine
theory of neural nets would provide a method by
which artificial networks could be constructed from
meaningful genetic. specifications (note that these
bear no relation to genetic algorithms).

With current models it is the network topology
which enables learning to succeed. ART 'works'
because connection patterns are precisely specified
and highly constrained 4 Self-organisation relies on
the nearest neighbour interconnects of Kohonen
nets, et a! 5 This topology is effectively a genetic
constraint. The designer adopts a topology in a
subjective manner, dependent on various factors
such as number of inputs and outputs, likely number
of features at each level of representation, and so
on. This paper advocates making explicit the genetic
(or predetermined) element in the construction of a
neural system. This requires a method for generating
an architecture which implements (to some arbitrary
degree of precision) a described function.

Additionally, a neural theory would provide a
unified explanation of learning. The learning
problem may be viewed as the task of modifying
each weight in relation to the modification of other
relevant weights. Theory would explain what
weights were 'relevant' to other weights and provide
a method for relating the weight modifications such
that convergence was achieved. Current neural
models do not scale up for this reason. As the
network size increases the search space increases
exponentially and 'blind' learning breaks down. A
neural theory would (a) enable the initial network
topology to be constructed in a meaningful way such
that the search space was dramatically reduced and
(b) enable more constrained exploration of the
search space.

Hierarchy

The key concept underlying the framework
presented in this paper is hierarchy. This concept is
misting from current analysis and construction of
neural nets. At present, attention is focused almost
exclusively at the primitive level. When faced with
the questions: What does a network mean? and How
does a network compute its function? current
'theory' is powerless to respond. It simply is not
possible to understand a complex network in terms
of individual primitive neurons and synapses. This

problem is analagous to trying to deduce the
function of a one million-transistor digital integrated
circuit solely from a netlist of transistors The
physical layout is a clue to its various components
(as seems likely to be the case in biological neural
nets) and an experienced chip-designer may be able
to deduce some understanding of its function from
this. It may be possible to group transistors into D-
tpe flip-flops, group these into shift registers, and
so on. However, the very principle underlying this
process is hierarchy. Though hierarchy is not readily
apparent in a flat netlist of transistors (or, for that
matter, a netlist of neurons) it is present and
underpins the correct implementation and testing of
such a system. The problem of reverse-engineering a
neural implementation to a hierarchical
representation of its function is yet more complex
than for an integrated circuit: neural nets don't
process discrete values; they interconnect massively;
they have never been constructed from hierarchical
specifications so it is not known what cues to look
for in discerning which structures implement which
functions.

Hierarchy also underpins the framework by means
of which we comprehend text. Characters, which
have meaning at a low level, are related to form
words, which have meaning at a higher level. Words
are related to form phrases, phrases to form
sentences, sentences to form paragraphs, and so on
through subsections and sections to paper level. It is
not possible to either write or understand this paper
without a concept of hierarchy, however
subconcious that may be.

Yet another example of how essential hierarchy is to
our understanding is in the field of physics. It is not
sensible to try to understand the replication of DNA
in terms of subatomic particles. What is needed is
intermediate levels of representation which bridge
this gap. Each of these levels has its own 'theory'
describing how it relates to lower levels (a capability
we shall require for our neural framework). Atoms
are formed from subatomic particles, base molecules
from atoms, proteins and polymer chains from base
molecules. Levels of representation are essential to
our understanding of this.

An example which is closer to the neural problem,
in that it too is concerned with computation, is
hierarchy within software systems. A complex
program cannot be understood in terms of its
compiled binary machine code. Its function becomes
only vaguely-discernable if the binary is tranformed
to mnemonic machine codes. These in turn need to
be abstracted to programming constructs such as
tf.. then ... else, then to functions, higher level
functions, and so on up to module, subsystem and
system levels

It is helpful to consider these examples of hierarchy
in order to enable us to appreciate its virtues. Each
of these examples illustrates the crucial role of
hierarchy in comprehending a complex system..

The only level that is common to all models
constructed under the framework for neural theory
is the primitive level, that which contains neurons
and synapses. Though the framework is applicable
to all neural models, the way in which these models
form higher levels of representation is not
constrained by the framework and is instead
determined by the designer or (perhaps) the
learning process. The hierarchy presented in this
paper is not the same as modularity of networks,
which has been described in previous work as
hierarchy. The scenario where several subnets or
modules produce results which form input to a
'higher level' module is not taken to be true
hierarchy. Representations are only analysed above
the primitive level in a very restricted sense and
time is no hierarchy of data.

It has been argued that a multilevel representation,
in addition to a method of interrelating levels, is
essential to the understanding of neural systems.
Thus, the next section presents a framework of
hierarchy for understanding neural systems at
arbitrary levels of abstraction. The subsequent
section describes a software tool which embodies
this framework.

THE FRAMEWORK

The Concept of Levels

What we are concerned with is representing
functions and data, and performing transformations
between representations. We require a framework
which enables us to describe distributed functions
and data at arbitrary levels of abstraction and which
enables us to interrelate those levels. As discussed
in the previous section, the idea of levels is crucial
to this framework.

Abstraction contains the idea of capturing the
essence of something described at a greater level of
detail. It involves saying less about how something is
done and more about what is done. Abstraction
contains the concept of summarising (not
modifying) some description from a more to a less
concrete form. Implementation is the inverse
operation to abstraction. It involves putting a
description of a function into effect. It involves
making a function more concrete, saying the same
thing but in more detail, transforming what a
function is into how it should be performed.

Levels for Neural Representations

Within our framework we shall define the
neuronfsynapse level to be the primitive level. It is
conceivable that there are yet more primitive
implementations of this level but, for the purposes
of understanding neural systems, neurons and
synapses may be treated as primitive
representations. The contention of this paper is that
a neural network is a realisation of functioning that

can be meaningfully described and understood at
higher levels of abstraction.. As already discussed in
the introduction, that function cannot be
understood at the primitive level alone. The
framework must enable us to abstract and
implement functioning (and communication) in a
completely distributed manner. This is achieved by
the use of three basic concepts (see Figure 1):

a function - which transforms inputs to
outputs in some way.

a connection - which provides a means
of integrating functions.

an interface - by means of which a
function communicates with other functions.

 Functions 	 Lntcrf ace Lower Level

Interconnections 	
[]

F _ Ports

Fig 1. Concepts of the framework: Definition of a Function

Functions

Use of the term function can be misleading since
our functions are not restricted to returning a single,
or even composite, value. Instead, they are allowed
to take many inputs and produce many outputs,
simultaneously. Our use of the term is more closely
allied to the idea of an object, as used in object-
oriented models of computation. The difference
here is that objects in these models are typically
defined in terms of (sequential) imperative code,
and thus cannot naturally respond to simultaneous
inputs with simultaneous outputs. In this sense, our
use of the concept fisnction is closer to the way in
which a distributed system is defined. Here, a
distributed system (function) is defined in a
completely distributed manner such that the
distributed system (function) consists of the
appropriate interconnection of lower level
distributed systems (functions). This analogy is a

better parallel of the inherent distribution in neural
systems, though the valuable concepts in object
oriented modelling are not explicit.

Broadly speaking, a function at one level of
abstraction is implemented at a lower level (and in a
multiplicity of ways) by relating lower level
functions in such a way that together they produce
the desired behavior. This interrelation is performed
by message passing between functions. Where
messages come from and go to is defined by
interconnecting functions to form the appropriate
topology. This style of definition is more
declarative than most classical techniques (e.g.
imperative algorithms) for describing functions.

Connections

Just as levels of abstraction exist in representation of
functions, so connections represent levels of
abstraction in the representation of data. If the
axons transmitting visual information from the eye
to the visual cortex were to take random paths
through the rest of the brain it would be very
difficult indeed to deduce what was going on. In
practice, however, these nerves are tightly grouped
into a 'higher level' connection, the optic nerve. It
makes sense to understand the role these axons play
by grouping them together the grouping transmits
an 'image (actually a combination of intensity
values and primitive objects such as edges) to
another module within the brain.

A connection of type 'image may be defined in
terms of more primitive types of connection. For
example, an image may be defined as a row of
columns; or as a column of rows; or as a row of
columns of blocks; and so on. A row may be
defined in terms of pixels, which may themselves be
defined in terms of primitive synapses.

This hierarchy in connections is necessary to
facilitate high level message passing. Though at
implementation level an image is sent along, say, a
million primitive paths, at the conceptual level an
image is sent, period. This abstraction of data must
go hand in hand with the abstraction of function.

Interfaces

Each function, at each level of abstraction, has a
typed interface. This consists of one or more ports,
of particular connection-types, at which input is
received and from which output is sent. It is by
means of this interface that each function
communicates with the outside world. Thus, when
a function is defined - by interconnecting lower
level functions - these interconnections are made
to/from individual ports on those functions, not
directly to components of those functions. Thus,
each function has no control over its role in defining
higher level functions: all it 'knows about' and can
do is to perform its own function, transforming
inputs received at its interface to outputs which it

transmits via its interface. In this way, as in object-
oriented and distributed models, functions are
autonomous. This use of typed interfaces allows the
definition of a function to be restricted to one level
at a time.

Each non-primitive type of interface/connection is
defined in terms of lower level types. Thus, each
port in the interface of function X itself contains
ports - of lower level types. Connections external to
X must be of the same type as the port on X to
which they connect. Internal connections, however,
may connect to one of the port's lower level ports
which represent the types in terms of which the port
is defined. Using this latter method of connection
enables the function to decompose a high level
connection into its constituent types. Thus, for a
function to perform edge detection on input
received as type image it must first decompose this
image type to pixel level. Composition of higher
level connection types is achieved in the same
manner.

Instances

If it is necessary to define several functions in terms
of one common lower level function, an instance of
that function is required. For example, functions to
perform object detection and object classification
might both be defined in terms of a function which
detects edges at a particular point in an image.
Instead of creating two instances of this edge-
detection function it makes sense to use a common
instance, in terms of which both higher level
functions are defined. This is analagous to the
concepts of class and instance in object-oriented
modelling.

This capability permits compact implementation of
higher level functions; two functions are not
required to do the same thing. Most neurons, or
clusters of neurons, will typically be components of
more than one higher level function. Thus, the
implementations of multiple high level functions
- which consist ultimately of primitive

interconnections between primitive processors - will
normally be closely intertwined. In the same way,
instances of connections may be created so that
disparate functions may communicate via the same
communication path. This, of course, may not
make sense without the use of multiplexing, though
such connection instances may be a feature of
biological systems.

ANNECS: A NEURAL NETWORK COMPILER
AND SIMULATOR

Introduction

ANNECS is a software tool which embodies the
methodology for constructing neural nets proposed
in this paper and has been described more fully

7 It enables the formation - compilation

- of a neural network from a hierarchical
specification. It then enables learning of that net -
simulation - by applying one of a number of
learning algorithms. During compilation the high
level information contained in the hierarchy of the
specification is retained such that learning that
occurs can be understood.

Basically, ANNECS enables the user to define
functions in terms of appropriately interconnected
lower level functions. The only primitive function is
the neuron and the only primitive connection is the
synapse, though the model upon which each of these
is based can be selected by the user. Thus, all
functions are defined, ultimately, in terms of
neurons interconnected by synapses. The
compilation component of ANNECS performs this
translation between a high level, hierarchical
specification and its functionally equivalent neural
implementation.

The development of this software was undertaken to
provide experimental support for the framework for
neural theory advanced in this paper. Thus,
ANNE(3 integrates genetic and empirical methods
of construction, the compilation and simulation
components, respectively. The key element which
enables this to be carried out in a meaningful way is
the presence of hierarchy. The experimental results
obtained from this work - the development of
ANNECS and its application to several image
processing problems - endorse the methodology
proposed in this paper. Within a framework of this
nature neural architectures can be comprehended at
arbitrary levels of representation.

Features of ANNECS

Visualisation. Within the framework, description of
a neural architecture consists of a hierarchy of
netlists. Written in language-form, a netlist can be
fairly meaningless. Text is inherently sequential in
the way in which it lies on the page, even if what it

pres is something fundamentally parallel. A
netlist is above all a stnicture, and structures are
perhaps best conceived visually. Thus, an essential
feature of ANNECS is that it visualises
specifications. Each component of a function is a
real entity, continually existant in the target neural
implementation, and thus it makes sense to have it
represented by a real object at a particular place on
the screen. This is not to say that the same
specifications could not be described linguistically,
but that the manner of specification lends itself to,
and is best understood by means of, visual
representation. ANNECS uses visualisation for the
same reason that schematic capture tools use it.
Each type of function and each type of interface is
represented by a user-defined icon. This icon is used
to capture function visually.

Specification. The specification of a neural system is
made by the hierarchical description of functions.
The specification of each of these neural functions is

made up of a netlist of lower level functions and
interfaces. Thus, the specification process consists
of:

(1) creating instances of interfaces

(ii) creating instances of functions

(in) interconnecting these functions and
interfaces in the appropriate manner so as to
implement the desired function

Compilation: Formation by Specification. The
term Compilation is usually applied in a computing
context to mean: generation of machine code from a
high level language. In the context of this paper,
however, it means the generation of a neural
architecture from a high level specification. All
objects are defined ultimately in terms of just two
primitives, the neuron and the synapse. Thus, the
compilation method consist of recursively
expanding each object into its constituent objects,
until the definition consists of neurons and synapses
only. Since clusters of neurons are embodiments of
objects whose function is fully described within the
specification, the functioning of the network may be
understood.

Simulation: Formation by Learning. ANNECS
enables the simulation of a compiled network
according to one of a number of models. Thus the
same initial architecture can be made to learn
according to different models without changing the
specification. The model for neurons and the model
for synapses is selected separately.

SUMMARY

We have described a framework of hierarchy within
which representations of neural functions and data
may be transformed from level to level. Within this
framework, the function of a neural system may be
abstracted above the primitive level so that it may
be understood at arbitrary higher conceptual levels.
The framework is natural to neural systems in that
representations are completely distributed at each
level of abstraction. Neural Compilation, the process
by which a hierarchical specification of a neural
system is implemented, is facilitated by ANNECS, a
software tool. What is significant about this
framework is that it enables us to comprehend
neural systems at arbitrary levels of abstraction. As
we have discussed, this ability is essential for us to
be able to understand the operation of any non-
trivial system and should aid analysis of neural
systems by raising representations above the
primitive level.

Acknowledgements

My grateful than to Prof. P.B. Denyer, Dr. A.F.
Murray and Dr. D. Renshaw for overseeing and
guiding this work.

References

von Neumann, J, "The General and Logical
Theory of Automata," in Collected Works,
ed. AR Taub, vol.5, Pergamon Press, New
York, 1963.

Qiurchiand, P., in Neurophilosophy, Mn'
Press, London, 1986.

Edelman, G.M., Neural Darwinism, Basic
Books, New York, 1987.

Carpenter, G.A. and Gmssberg, S., "A
Massively Parallel Architecture for a Self -
Organising Neural Pattern Recognition
Machine," Computer Vision, Graphics and
Image Processing, vol. 37, pp. 54-115, 1987.

Kohonea, T., 	Self-organisation and
Associative Memory, pp. 68-81, Springer-
Verlag, New York, 1984.

Vellacott, O.R., "ANNECS: A Neural
NEtwork Compiler and Simulator,"
International Joint Conference on Neural Nets
1991, July 8-12, Seattle, vol. II, p. 991,
IEEE, 1991.

Vellacott, O.R., "Compilation of Neural
Nets from High Level Specifications," lEE
Colloquium on Neural Networks: Design
Techniques and Tools, pp. 9/1-9/4, lEE,
Savoy Place, London, March 1991.

ANNECS: A Neural Network Compiler and Simulator

O.R. Vellacott

Department of Electrical Engineering,
University of Edinburgh,

Kings Buildings,
Edinburgh, UK EH9 ML
email: oliver@uk.ac.ed.ee

Abstract

ANNECS is a software tool that compiles a high level, object-oriented specification to
a functionally equivalent neural network. It does this by realising each object in the specif-
ication as a functionally equivalent cluster of neurons and synapses. All objects are defined
ultimately in terms of just two primitives, the neuron and the synapse. Thus, the compila-
tion method consists of recursively expanding each object into its constituent objects, until
the definition consists of neurons and synapses only. Since clusters of neurons are embodi-
ments of objects whose function is fully described within the specification, the functioning
of the network may be completely understood. Moreover, since networks compiled in this
way are functionally equivalent to their algorithmic specification, Computation Theory may
be applied to these neural networks. An application which demonstrates these principles is
described. This is a simple robot controller which picks up objects and drops them into
holes as it moves around in a world containing stairs.

1. Motivation

ANNECS enables construction of an artificial neural net (ANN) from a high level
specification. Perhaps the main virtue of ANNs is that they learn solutions which could not
be specified by human designers. Therefore, why construct a neural net from a specifica-
tion? One would think it would be easier to implement the specification on a von Neumann
machine. That it is possible to construct an ANN that will implement any specification has
already been shown. 1

The motivation behind ANNECS is twofold. Firstly, a net that has some built-in
structure may have a better chance of learning and hence of deriving a complete solution.
The designer may be able to sketch out an approximate strategy for solving a problem,
upon which neural learning techniques can build. 2 It may be desirable to compile-in infor-
mation regarding high level strategy and to leave the manaement of uncertainty and the
adaptation to real-world data to neural learning techniques.' 4 The biological system itself
is formed with some structure (specified by the genetic code) built in, before any learning
takes place. Hence, the primary motivation for this approach is to enable construction of
ANNs which incorporate high level a priori knowledge, so as to combine (i) what is known

by the designer and (ii) what can only be learnt from real-world data.

Secondly, this approach aids understanding of the realisation of high level functioning
in ANNs.5 Using ANNECS, it is possible to implement various styles of specification and
to observe the efficiency with which those styles utilise neural hardware. Preliminary results
suggest that the object-oriented paradigm is the most natural framework within which to
understand higher level neural processing. We may not be able to prove that any one style
of specification maps into the best neural representation or, for that matter, the biological
representation. We can, however, construct nets whose functioning is understood at all lev-
els of abstraction. 6 Thus, ANNECS enables the study of representation of high level pro-
cessing in neural nets.

2. Specification

Specifications are expressed in an object-oriented style using graphical input in a
manner similar to schematic capture. Each object resides in a library and is defined in
terms of lower level objects, connected together in such a way as to produce the desired
function. There is just one primitive object, the neuron. Thus, all objects are defined ulti-
mately in terms of neurons. In a similar manner, datatypes are defined in terms of lower
level datatypes. The one primitive datatype is the synapse.

A low level object is defined by connecting neurons together so as to realise the
specification of that object's behavior. It is at this stage in the definition process that initial
weights and thresholds are specified—which may then evolve during simulation, according
to some learning algorithm. In addition to specifying the function of an object, by the way
in which lower level objects are connected/related, the designer also defines a typed inter-
face by which the object communicates with the outside world. For example, an object
which performs an f. .then. . .else function might be defined thus:

0.5

Call i.o\ 	0.52' 	 then

1.0

Condition 	 else

Figure 1. Definition of if...then... else object

Datatypes are formed by grouping together lower level datatypes. For example, an 8-
bit representation of an integer may be defined by grouping eight synapses to form this
higher level type. This may be an unnatural utilisation of neural hardware to represent
numeric values, but serves to show how multiple synapses may be grouped together and
thereafter treated as one, high level communication path of a particular type. When form-
ing a communication path between two objects, the types of the source and destination
interface slots must match the connection type. This is the only type-checking performed
by the compiler.

ANNECS is supplied to the user with a comprehensive library of objects which per-
form functions ranging from control constructs to integer arithmetic. The user defines
objects by use of the mouse, selecting predefined objects from the library and creating
instantiations of these in a 'definition area' on the screen; he then relates those objects by
connecting them with communication paths of appropriate types, specifying to which slot in
each interface the connection joins. Associated with each object, he defines a macro.
Using these macros, ANNECS generates textual descriptions of the specification with each
object. Several macros may be associated with each object so as to enable generation of text
in various languages: for example, C+ + syntax, or Simula syntax.

3. Compilation

Compilation consists ofrecursively expanding each object into its constituent objects
until the definition consists of neurons and synapses exclusively. Expanding objects until
only primitive objects (neurons) exist is relatively easy. However, it is more complex to
expand high level connections to their constituent synapses, and to determine how to
expand these connections across interfaces. This task is achieved, as in the compilation pro-
cess of other object-oriented languages, by the use of a cactus stack (a stack of stacks).
Here, to compile object A we push its constituent objects (B={x:x constituent of A}) onto the
main stack (the trunk of the cactus). The definitions for the constituent objects of A
(C={x:x is constituent of B}) are then pushed onto stacks (the spines of the cactus) which
grow outwards from the main stack. Connections between the constituents of the consti-
tuent objects of A (i.e. C), hitherto made via interfaces, are made direct. Thus, boundaries
between constituents of A are removed and the spines shrink back to leave A defined, not
in terms of its constituents (B), but in terms of its constituents' constituents (C). This pro-
cess is repeated until no interfaces exist between objects. The definition then consists of a
network of directly connected neurons.

Since the compiled net is 'flat' and consists of only neurons and synapses, the inherent
structure with which the net was formed is not apparent. It is not possible, by observation
of the net in isolation from its specification, to say which neurons cooperate to form which
high level objects. Thus, it is only possible to understand the high level functioning of the
net when viewed in relation to the specification.

The result of compilation is a netlist describing neurons (their initial thresholds) and
their interconnection by synapses (their initial weights). This 'flat' net may then be simu-
lated within ANNECS, in order to observe its behavior. Various learning algorithms can
be applied to compiled nets during simulation, 7 ' 8 but their effectiveness has not yet been
investigated. This investigation is now the primary aim of our work. Additionally, the neu-
ron function may be globally specified at simulation time to be, e.g. perceptron-type thres-
hold function, sigmoidal function, etc.

4. Application: Simple Robot Controller

In order to demonstrate the principles of ANNECS it is useful to consider an applica-
tion. Our robot moves around in a world containing stairs, objects and holes. When it
finds an object it should pick it up and carry it until it finds a hole, into which the object
should be dropped. Every other time the robot meets a stair, it should climb it; when not
due to climb a stair it should turn left instead. Our aim is to formulate a specification
describing this behavior and have ANNECS realise this as a functionally equivalent net.
This will enable us to understand the part played by each neuron in achieving the overall
function of the net.

We have defined our robot controller as one high level object in order to observe its
entirety. We could, of course, have split the functioning into smaller modules. Our robot
controller is thus defined:

if

found object
then-else

stop motor

Tine

Boolean
pickup object False

carrying object

blocked

found hole

?

r
drop obiec,,l

if

	

'? I 	start motor
_o.

dlimbstair 	<H 	turn left
climb stair

Figure 2. Specification of Simple Robot Controller in ANNECS

This specification is compiled to the following net:

Figure 3. Neural Implementation of Robot Controller - Compiled by ANNECS

5. Implications and Conclusions

Using ANNECS we can guarantee to construct a neural net that implements any
specification expressed in an object-oriented manner. It may be possible to apply learning to
nets thus formed and thus this may offer a powerful means of combining construction-by-
specification and construction-by-learning. That which may be specified by the designer is
built into the net in the form of structure and initial weights and thresholds. That which is
unknown by the designer—and may only be determined from real-world data—may be
learnt, adding detail to the high level strategy imparted by the designer. This approach is
biologically inspired and requires further investigation.

Not only can/sguarantee to construct a net which implements a described function,
but we can also understand how that net achieves its function. This is because, by relation
to the specification at any level of abstraction, we can understand the role of each neuron
and each cluster of neurons in achieving the overall objective. Only at the primitive level
do we observe the localist representation of one-neuron, one-concept. 9 At all levels above
this, an object is represented by the appropriate interconnection of other objects (clusters of
neurons). We cannot prove that this is how the biological system models the world, but it is
a highly plausible explanation.

ANNECS thus implements a potential theory for understanding neural nets. It
demonstrates how high level processing may be achieved by the structuring and weighting
of neural interconnections and thresholds. It should enable Computation Theory 10 to be

applied to neural processing, since nets formed by ANNECS are direct realisations of
Effective Procedures. This should provide valuable insight on how the biological system
represents, and reasons about, a world.

Acknowledgements

The author wishes to thank Prof P.B. Denyer, Dr A.F. Murray and Dr D. Renshaw
for their support and helpful criticism.

References

McCulloch, W. and Pitts, W., "A Logical Calculus of the Ideas Imminent in Nervous
Activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

Cheeseman, P.C., "Learning of Expert System Data," Proceedings of the IEEE
Workshop on Principles of Knowledge-Based Systems (Denver, Cob., Dec 34)., pp.
115-122, IEEE Press, New York, 1984.

Gallant, S.!., "Connectionist Expert Systems," Communications of the ACM, vol. 31
(2), pp. 152-169, February 1988.

Gallant, S.!., "Automatic Generation of Expert Systems from Examples," Proceed-
ings of the 2nd International Conference on Artificial intelligence Applications (Miami
Beach, Fl., Dec 11-13, pp. 313-319, IEEE Press, New York, 1985.

Feldman, J.A., "Neural Representation of Conceptual Knowledge." Dept. of Com-
puter Science, Univ. of Rochester, p. TR 189, June 1986.

von Neumann, J, "The General and Logical Theory of Automata," in Collected
Works, ed. A.H. Taub, vol. 5, Pergamon Press, New York, 1963.

Gallant, S.L, "Perceptron-Based Learning Algorithms," IEEE Transactions on Neural
Networks, vol. 1 (2), pp. 179-191, June 1990.

Hinton, G.E., "Connectionist Learning Procedures," Artificial Intelligence, vol. 40,

pp. 185-234, 1989.

Touretzky, D.S. and Hinton, G.E., "Symbols Among the Neurons: Details of a Con-
nectionist Inference Architecture," Proceedings of the international Joint Conference
on Artificial intelligence, pp. 238-243, 1985.

Minsky, Marvin, in Computation : Finite and Infinite Machines, pp. 103-116,
Prentice-Hall, Eaglewood Cliffs, N.J., 1967.

Compilation of Neural Nets from High Level Specifications

Oliver R. Vellacottt

This paper describes a software tool which compiles a high level, object oriented specifica-
tion to a functionally equivalent neural net. It also explores the implications of this
approach for the theory and construction of neural nets.

1. Specification of Function

The object oriented methodology 1 was chosen as the most natural framework within which
to specify neural systems for the following reasons. Each object in a definition is auto-
nomous; each cluster of neurons in a net is autonomous. Each object in a model is thought
of as a continuously executing process; each cluster of neurons that implements an object is
continuously active. Objects communicate by message passing; clusters of neurons commun-
icate by passing messages along multiple synapses. Objects are specified in terms of other
objects and ultimately in terms of one or more primitive objects; each cluster of neurons
may be perceived as interconnections of other clusters of neurons and ultimately as inter-
connections of primitive neurons.

Using the software tool, the specification of an object's function is entered graphically by
use of the mouse, in a manner similar to schematic capture. Each object is defined in
terms of a relationship between other objects. This relationship is pictorially represented on
the screen, with each object-type represented by an icon and each connection-type
represented by a uniquely-patterned line. Thus, an object which performs an if .. then... else

function might be defined:

Condidm 	 .1.0

Figure 1. Definition of iL..then...else object

In the same way that high level objects are defined, high level datatypes are also defined in
terms of lower level datatypes. For example, a representation of an eight-bit integer may be
formed by grouping eight synapses together and thereafter treating them as one, higher
level connection. This may be an unnatural method of representing numeric values using
neural hardware, but serves to show how high level message types may be created from one
primitive message type. High level connections between objects will thus be compiled as
multiple synaptic connections, passing direct from neuron to neuron. Using this graphical,
hierarchically-structured method of specifying a neural net's function, the designer is able
to clearly understand, at every level of abstraction, how each high level function is imple-
mented in terms of lower level functions and ultimately in terms of primitive neural
hardware.

t Department of Electrical Engineering, University of Edinburgh, Kings Buildings, Edinburgh,
UK. EM ML email: oliver@ikik.ac.ed.ee

9/1

Compilation of Specification

Compilation consists of recursively expanding each object into its constituent objects until
the definition consists exclusively of neurons and synapses. Expanding objects until only
primitive objects (neurons) exist is relatively easy. However, it is more complex to expand
high level connections to their constituent synapses, and to determine how to expand these
connections across interfaces. This task is achieved, as in the compilation process of other
object oriented languages, by the use of a cactus stack (a stack of stacks). Here, to compile
object A we push its constituent objects (B={x:x constituent of A}) onto the main stack (the
trunk of the cactus). The definitions for the constituent objects of A (C{x:x is constituent

of B}) are then pushed onto stacks (the spines of the cactus) which grow outwards from the
main stack. Connections between the constituents of the constituent objects of A (i.e. C),
hitherto made via interfaces, are made direct. Thus, boundaries between constituents of A

are removed and the spines shrink back to leave A defined, not in terms of its constituents

(B), but in terms of its constituents' constituents (C). This process is repeated until no inter-
faces exist between objects. The definition then consists of a network of directly connected
neurons.

Application : A Simple Robot Controller

A simple robot controller was built to illustrate the operation of the software tool. The
robot moves around in a world containing stairs, objects and holes. When it finds an object
it should pick it up and carry it until it finds a hole, into which the object should be
dropped. Every other time the robot meets a stair, it should climb it; when not due to
climb a stair it should turn left instead. A graphical representation of this specification is as
follows:

climb stair

Figure 2. Definition of Simple Robot Controller

9/2

This specification is compiled to the following net:

Figure 3. Compiled Robot Controller

From the graphically-expressed specification the software automatically generates, in addi-
tion to this compiled net, a hierarchically-structured, textual description of the functioning
of each object. This is achieved by the use of macros which the designer associates with
each object.

4. Implications of this work

There are two major implications of this work. Firstly, we have a potentially powerful
means of constructing neural nets, combining construction-by-specification and
construction-by-learning. Secondly, we have a framework within which to understand how
high level functions may be represented using neural hardware. These two areas are now
considered. - -

4.1. Combining Genetic and Empirical methods of Construction

A primary motivation for the use of neural nets, as opposed to more conventional methods
of computation, is that they Learn. There are many problems whose solution is not amen-
able to specification by a human but which may be learnt by use of neural techniques. 2 ' 3
These solutions generally derive from problems which require adaptation to 'fuzzy', con-
tradictory and often vast amounts of real-world data. What is amenable to specification,
however, is high level strategy for solving a problem. This is usually difficult for an unstruc-
tured net to learn, but is what humans are generally very good at suggesting.

Thus, the combination of high level strategy (imparted by the designer) and adaptation to
real-world, uncertain data (imparted by neural learning) should provide a very powerful
means of constructing neural nets that must perform non-trivial tasks. That which cannot
easily be specified is learnt and that which cannot easily be learnt is specified. It seems this
is the method of construction used by the biological system: the brain is formed by a combi-
nation of specification, from the genetic code, and learning.

The work described in this paper has investigated how a-priori knowledge regarding a
potential solution may be built-in to the structure of a net, in the form of initial weights
and/or thresholds. It has not attempted to determine whether known neural learning tech-
niques can be applied to nets constructed from a specification in the manner described.
This latter investigation has now become the primary aim of our ongoing work.

9/3

4.2. Theory of Neural Nets : representation of high level functions

As yet, there exists no recognised theory for understanding how neural nets perform high
level functions. Neural nets are often treated as black boxes with little concern as to how
they achieve their function. A consequence of this is that it is then difficult to see how per-
formance can be improved or modified in any particular direction and this may explain
their relative failure to produce significant practical results. By observation of an
apparently unstructured net it is very difficult to deduce any structure and hence to deter-
mine what part each neuron (or cluster of neurons) plays in the overall objective. 4 This is
true unless the network architecture is significantly constrained, e.g. to a multilayer percep-
tron. Even then, it is difficult to understand how the net achieves its function for all but
the simplest tasks. This is a problem inherent in bottom up analysis. The structure present
in a compiled net is not readily apparent by observation of 'flat', connection patterns,
weights and thresholds.

If, however, we construct a net using a top down method of specification, it is possible to
understand, at each level of abstraction, exactly how the net achieves its function. The role
of each neuron and of each cluster of neurons may be understood. Thus it is possible to
perceive how high level functions may be represented and computed by neural hardware.
This observation may constitute part of a possible theory for neural nets. It offers a means
of understanding how neural nets model a world, in terms of the object oriented paradigm.
We cannot prove that this is the means used by the biological system to represent a world,
except perhaps by interpreting how the genetic code specifies the brain structure, but it does
seem a highly plausible explanation.

Neural nets constructed from object oriented specifications are direct realisations of those
specifications. These specifications, however, are essentially Effective Procedures: they are
unambiguous descriptions of functioning. 5 Thus, by this route we can relate Computation
Theory, in its entirety, to neural nets. In other words, the theory of what is and what is not
computable applies equally to neural processing as to symbolic processing. This merely
serves to confirm McCulloch and Pitts' earlier derivation of this result. 6

References

Alpert, S.R., et al, "Object Oriented Programming (Special Issue)," IEEE Expert, vol.
5 (6), pp. 6-27, December 1990.

Gallant, S.!., "Connectionist Expert Systems," Communications of the ACM, vol. 31
(2), pp. 152-169, February 1988.

Cheeseman, P.C., "Learning of Expert System Data," Proceedings of the IEEE
Workshop on Principles of Knowledge-Based Systems (Denver, Cob., Dec 3-4)., pp.
115-122, IEEE Press, New York, 1984.

Touretzky, D.S. and Hinton, G.E., "Symbols Among the Neurons: Details of a Con-
nectionist Inference Architecture," Proceedings of the international Joint Conference
on Artificial intelligence, pp. 238-243, 1985.

Minsky, Marvin, in Computation 	Finite and infinite Machines, pp. 103-116,
Prentice-Hall, Eaglewood Cliffs,. N.J., 1967.

McCulloch, W. and Pitts, W., "A Logical Calculus of the Ideas Imminent in Nervous
Activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

9/4

