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Abstract 

There is currently no generally-accepted theory explaining how neural systems real-

ise complex function. Indeed, it is believed by some that neural systems are funda-

mentally opaque. A framework of hierarchy is proposed as the basis of neural 

theory. By the application of hierarchy to neural systems it is possible to explain 

how complex function is computed. At the primitive (hardware) level it is only 

possible to understand the computation of primitive functions. To understand the 

computation of higher level function it is necessary to abstract primitive function, 

via an arbitrary number of intermediate levels of complexity, to the appropriate 

level of abstraction. Application of the framework is facilitated by a software tool 

which implements a specification as a neural system, to which training can then be 

applied. This specification is hierarchical, and is described in a fully distributed, 

object-oriented style. Networks constructed by this method are not restricted to 

any of the traditional neural models. The class of topologies which may be imple-

mented is unrestricted. The framework is applied to the recognition of number -

plates. This practical demonstration shows that (a) hierarchy enables neural compu-

tation of complex function to be understood; (b) the application of hierarchy allows 

the integration of specification and learning as methods of implementation; and (c) 

the framework facilitates the scaling-up of neural systems. 
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Chapter One 

Introduction 

1. The Scarcity of Neural Theory 

The biological nervous system is capable of remarkable function, yet how it does this is 

an enigma. Every creature, from the cockroach to Man, depends utterly on its brain for its 

survival. By means of their nervous systems these creatures hunt, feed, avoid predators, 

find a mate and play. These functions rise to astoundingly complex levels (consider a lion 

intercepting its prey); yet this subtle and diverse function arises, in some mysterious way, 

out of the interaction of vast numbers of relatively simple and homogeneous nervous 

components. 

The components from which nervous systems are constructed are fairly well understood. 

Moreover, the principles by which these primitive nervous elements may be interrelated 

are conceptually simple. Not only this, but for some systems, the precise way in which 

these components are put together - their wiring diagram - is known. Yet even this 

description of what is occuring at the hardware level does not explain how complex 

function emerges. No coherent and general explanation of how higher functioning arises 

out of primitive neural interactions has yet been described. Neural systems remain, in 

reality, black boxes. 

Neural Theory is the set of principles by which the realisation of higher function by 

neural systems may be understood. These principles would explain, for example, how 

recognition of prey, calculation of trajectory and interception of a target may all be 

realised by the appropriate interconnection of neurons. By this test, neural theory is 

undoubtedly scarce. 

1 
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2. Artificial Neural Networks 

The development of Artificial Neural Networks is inspired by the capabilities of 

biological neural systems. Artificial neural systems employ a medium of computation (or 

representation) which approximates that adopted by nature. It is thought that, by so doing, 

functions natural to brains will be reproduced artificially. Whether this is possible is not a 

concern of this thesis. However, it is argued that lack of neural theory is responsible for 

the failure of artificial neural network development to achieve this aim. 

Hitherto, the approach has been to assemble a certain configuration of neural components 

(e.g. by lining the neurons up in rows and fully interconnecting between adjacent rows), 

defining rules by which the system may evolve, presenting training and test data, and 

observing what happens. This empirical approach has achieved moderate success in a 

relatively small class of applications. This failure to realise the expectations aroused by 

biological capabilities is largely due to an irrational emphasis on learning, at the expense 

of specification. This imbalance has come about as a result of the historical development 

of synthetic mediums of computation. The microprocessor is so much more suited (than a 

neural network) to silicon implementation and programming, that the main justification 

for the use of neural networks has been that they have learning abilities. 

This preponderence of empirical derivation, however, is not found in biological neural 

systems. Approximately 70% of the genetic code, according to some estimates, is 

devoted to specifying brain composition.'PP 38-44  One theme of this thesis is that it is this 

specification which enables learning to take place, in artificial as well as biological 

systems. Whether or not this is true, it is clear that the empirically-biased line of research 

has attempted to sidestep the issue concerning how higher function emerges within neural 

systems. 

Indeed, perhaps the most sinking feature of the current state of the art in neural nets is the 

lack of any unifying theory. A multitude of models and successful specialised 

applications abound, each with its own, piecemeal 'theory' explaining how it works. No 

overarching principles exist, however, for bringing together these diverse models and 

enabling a common understanding. This lack of theory was pointed out by von Neumann 

as far back as 19562  yet his paper seems as relevant today as it was then. More recently, 
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Patricia Churchiand has described her own search for neural theory, 3  and has concluded 

that none is yet available, though one is much needed. Her book, Neurophilosophy, gives 

an excellent description of the role and requirements of a theory of neural networks. 

This lack of theory is stifling the development of artificial neural nets. The field seems to 

have become trapped in a local minima of its own making. The empirical bias has even 

led some researchers to believe that there is no theory of neural nets. Perhaps this is 

correct! Maybe there is no method for saying what the ith neuron in the jth layer of a 

multilayer perceptron actually does. Maybe there is no computational theory underlying 

neural cognition which can identify the role of each neuron and each connection. 

Perhaps the only 'explanation' of neural processing is some principle such as Neural 
Darwinism4  which explains how a system evolves but not how it performs its function at 

any non-primitive level. Is it sufficient to continue to treat neural systems as black boxes, 

unconcerned that there is no framework for understanding how they realise complex 

function? The current attitude seems to be that not only are neural systems not 

understood, but that it is not necessary to understand how they work. The poor delivery 

of results belies this attitude. 

These objections seem unreasonable. Theory exists to explain the operation of many 

other areas of the universe. Why should neural computation be different? The field of 

neural nets cannot make do, as it may have assumed in the past, without theory. It cannot 

develop outside the confines of a framework which explains how higher functions are 

realised by neural processes. 

3. Overview 

A Summary of the Thesis 

This thesis describes principles which enable understanding of the way in which neural 

systems realise complex function. These principles form a framework within which 

complex functioning of neural systems may be comprehended. The key concept 

underlying this is hierarchy. Thus, the framework provides a method for 

abstracting/realising function at one level of complexity as functioning at another level of 

complexity. At the primitive (neural hardware) level it is only possible to understand the 
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computation of primitive functions. In order to understand the computation of higher 

functions it is necessary to abstract primitive functioning to higher levels of abstraction. 

This explains the emergence of higher level function within neural systems. Results of 

applying this framework should include: 

understanding of how neural systems realise complex function; 

the integration of specification and learning as methods of construction; 

the scaling up of artificial neural nets. 

A Strategy for Substantiation of the Thesis 

Chapter Two makes a close examination of the field and looks for evidence in past neural 

research to support the thesis. Adjacent fields are then searched, in Chapter Three, for 

metaphors of neural computation. The purpose in this is to derive understanding of neural 

computation from the extant understanding of the metaphors. 

Chapter Four then draws on these insights to propose a framework of hierarchy for neural 

theory. ANNECS is a software tool which facilitates the application of this framework, 

and is described in Chapter Five. This tool 'compiles' a hierarchical, object-oriented-

style, distributed specification to a neural system which realises that specification. 

Chapter Six describes the application of the framework, by use of ANNECS, to a real 

engineering problem within the field of image processing. Several stages in the 

recognition of a numberplate are implemented as a neural system and these experiments 

are used to determine the usefulness of the framework. Finally, Chapter Seven discusses 

the extent to which the thesis has been substantiated by the work carried out. 



Chapter Two 

Foundations 

This chapter reviews the field of neural nets and, in particular, work relevant to this 

research. The basic concepts of neural nets are first described, followed by a brief history 

of the development of the field. A resumé of the state of the art in neural nets is then 

described, indicating where the research described in this thesis fits in. 

1. Basic Concepts 

Neurons 

The biological neuron consists of a cell body and extensions from that body, along which 

it receives and transmits signals. The extensions consist of dendrites, along which input is 

received, and an axon, along which output is sent, though not all neurons have both. At 

birth, a human has virtually all the neurons it will ever have, approximately loll,  give or 

take an order of magnitude. 5,6  Between 15-85% of these die in infancy in a method that 

appears to be part of development and in some way programmed in. There is no known 

reason for this though Neural Darwinism (described later in this chapter) offers one 

explanation, as does the neural generative process described in this work. A neuron 

operates at about 100 Hz - much slower than typical electronic devices. Thus, for the 

brain to recognise a face in, say, 1 'sec there must be no more than 100 synaptic steps 

between retinal sensing and perception. This is known as the 100-step rule.3 pi7-412 

Artificial neurons are modeled more or less on the biological neuron though, as we shall 

see. later, this modelling is extremely crude in most networks. Our interest is not in the 

biological implementation of neural function, but in what that function is. Broadly 

speaking, a neuron performs summation and averaging of its inputs. In the short term, it 

acts as an all-or-none processor, emitting a constant-sized pulse whenever its state of 

excitement exceeds a threshold. Thus, in the long term, a neuron may be considered to 
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atrocyt. pfoc.s,, 

Fig 2.1 Biological Neuron (from Poritsky 1969) 

have a continuous-valued activity: its rate of firing over some period of time, which 

approximates the average of its inputs received during a preceding period. 

Synapses 

Synapses are points of contact between neurons. A synapse normally forms a link 

between an axon and a dendrite but, in some cases, connects an axon to an axon or a 

dendrite to a dendrite. 5,6  Basically, there are two types of synapse: electrical and 

chemical. 8  Electrical synapses either transmit a pulse unattenuated from a sending axon 

to a receiving dendrite or act by inductance between two neighbouring axons. Chemical 

synapses perform transfer of a signal reaching the end point of an axon to a receiving 

dendrite. This signal is transferred, as the name implies, chemically (by means of a 

neurotransmitter) and its amplification/attenuation is dependent on both the type of 

neurotransmitter and the amount that is present. This effect is approximated in artificial 

neural nets by the multiplication of a synapse weight (which models a combination of 

type of neurotransmitter and amount present) by the output from the sending neuron. 
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Figure 2.2 Artificial Neuron (with sigmoidal activation function) 

There are approximately five thousand synapses on a mammalian motor cell and ninety 

thousand on a Purkinje cell (a type of neuron) in the human cerebellar cortex. 3  in all, 

there are about 1015  synaptic connections in the human central nervous system, give or 

take an order of magnitude. The effect of a signal arriving at a synapse will be to either 

excite or inhibit the receiving neuron, depending on the type of synapse. 

Connectivity Patterns 

Neurons and synapses in the flatworm and in Man are essentially the same. What makes 

a human immensely superior in intelligence to a flatworm is the manner in which its 

neurons are connected. The principles underlying neural networks are blindingly simple - 

at least conceptually. Yet from these simple processing elements, connected via 

amplifying/attenuating contact points, can be produced remarkable abilities. The power 

exists in the patterns of connectivity. As yet, there is no systematic method for deriving a 

neural connection pattern to implement a given function. It is this problem that the 

research described in the following pages addresses. 
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Fig 2.3 Biological Synapse (from Churchiand 1986) 

There are about twenty neural 'circuits' that have been intensively studied and are well 

understood. For example, the pattern of connectivity which causes lateral inhibition 

between sensory neurons - thus giving rise to edge-detection in mammalian retinas - is 

well understood. Similarly, the 'circuits' enabling reflex actions in the sea hare,' °  

processing of sonar return signals by bats" , 2  and location of prey by OWIS,13,14  are well 

documented. 

Hierarchy 

Biological neural nets are not 'flat'. There is hierarchy present in even the most simple 

pp38-44 The human brain is composed of several major components such as the 

cerebral cortex, the thalamus, the cerebellum, and so on, which seem to have distinct 

roles. Within these main components, clusters of neurons are observable and, within these 

clusters, other clusters. Similarly with synapses, there exist groupings - for example, in 
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- 	excitatory connection 

- 	inhibitory connection 

Figure 2.4 A Hypothetical Artificial Neural Network 

the optic nerve. It seems clear that hierarchy does exist in the brain, a principle whose 

application to artificial neural nets is a central thrust of this work. Not only are modules 

observable in the brain but distinct functions seem to be associated with these modules. 

For example, reasonably precise maps of cerebral cortex function have been made. 15  At 

present, however, there is little notion of hierarchy in artificial neural nets. Neural 

Darwinism (see section 2.2.6) is one model containing implicit hierarchy, yet then only at 

two levels. Current neural analysis seems to be focused almost entirely at the primitive 

(i.e. synapse-neuron-synapse) level. This thesis suggests that the theory - and hence 

understanding - of neural nets may be advanced by the introduction of hierarchy. 

Some work has attempted the creation of modules within nets 4' 	but, in general, this 

'modularity' seems restricted to the integration of flat networks of differing models. 
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Formation 

Biological neural nets are formed by two methods that seem to work closely together: 

Genetic Specification: to some (unknown) extent the structure of the brain is derived 

from the genetic code. t This explicit method of construction is all but entirely lacking in 

artificial neural networks and is the primary novelty of this research. Hitherto, researchers 

may have assumed that the amount of information required to specify brain structure to a 

significant extent must be enormous and indeed, if the specification is made at the 

primitive level then this is true. However, a hierachical specification, as seems a sensible 

description from which to form a hierarchical brain, is orders of magnitude more compact 

than a primitive specification. Research has shown that connection patterns are, at least 

partly, genetically determined. 19  

Use of explicit hierarchical specifications from which to generate artificial nets has not 

been performed. However, what does constitute a specification in the formation of 

artificial neural nets is the network topology. This topology is highly specialised not only 

to the neural model but also to the application of the model. For example, the number of 

layers and the number of neurons in each layer in a multilayer perceptron (see section 

2.2.2) seem to be chosen in an ad hoc manner guided by the constraints of the 

application. This is in spite of the fact that it is this initial network structure which 

enables the learning process to succeed. Indeed, the choice of a feedforward net itself is a 

form of specification. Unfortunately, this choice of topology is not guided by any theory 

and thus is often made without any understanding of what will best enable learning. A 

theme of this work is that a priori knowledge should be imparted to a model in a more 

intelligent and meaningful way. 

Empirical Derivation: neural plasticity with training has been shown to occur in the 

somatosensory mammalian cortex and in the hypocamp us. 20' 2 ' As it would be a mistake 

to claim function is entirely learnt so it is a mistake to claim that function is entirely 

specified. Hebbian learning, the increase in size (weighting) of a synapse when both 

sending and receiving neurons are active, has been shown to occur in some areas of the 

Please note that the use of the word 'genetic' throughout this thesis bears no reference to 
genetic algorithms. 
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brain.22  In artificial neural nets, empirical data is used to derive desired behavior in one of 

three ways: 

Supervised Training: an external 'teacher' knows the desired response and 

inputs an appropriate error signal into the net. 

Unsupervised Training: internal clusters/categories of the input data are formed 

which typically compress the amount of input data that must be processed at some 

higher level. 

Self-Supervised Training: the network monitors its own performance and, on 

that basis, feeds an error signal back to itself. 

The net effect in each case is to attempt to modify the synaptic weights and, more rarely, 

the network topology or neuron thresholds so as to develop the desired behavior. This 

ability is probably considered the most important aspect of neural nets and it is here that 

most attention seems to have been focused. 

Very Artificial Neural Networks 

The brain is the inspiration for artificial neural nets and yet the analogy is inevitably 

crude and some artificial models cannot be considered worthy of the term neural. Here 

follows a list of some of the more obvious limitations of artificial models: 

The difference in size is immense. The brain is 109  times larger than typical 

artificial neural nets. A 100 MIPS computer would take somewhere between ten 

and a hundred years to simulate, even crudely, the processing that takes place in the 

brain during one second. 

Artificial neurons are gross approximations of biological neurons. There are five 

known distinct types of biological neurons: Purkinje, Golgi, Basket, Granule and 

Stellate cells. 3  Presumably each of these has a distinct role to play. 

At least forty different chemicals are known to be active in the brain. 23  Eleven of 

these have been shown to be neurotransmitters; the rest are probably active in 

performing some more or less global control. Given that there is normally a good 
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reason for the way nature does things, it seems probable that each of these 

chemicals acts in its own unique way for a reason. Most artificial neural models 

cannot remotely approach the emulation of these effects. 

The multiplication of synapse weight by cell output is unlikely to be an entirely 

accurate model of the chemical synapse. 

There seems to be little modelling of electrical synapses in artificial nets, or indeed 

any understanding of what part these might play. 

The volume of empirical data presented to a human during development is 

unimaginably vast compared to the restricted data set on which artificial neural nets 

are trained. 

There is currently no meaningful formation of neural nets from genetic 

specifications. 

Learning processes that have been shown to 'work' are almost certainly not 

approximations of biological dynamics?" 

Changes in synaptic strength in biological nets seem to be dependent on factors 

such as location, chemical environment, cell type, neurotransmitter used, in 

addition to activity which is the only one of these factors of which most artificial 

- 	learning algorithms are a function. 

The brain is, at least to some extent, modular; artificial models have little inherent 

concept of hierarchy. 

The continuous-valued neuron output used in neural simulations is but an 

approximation of the pulse-firing of biological neurons. 

The list of gross approximations seems endless! With all these shortcomings in mind, the 

'neuralness' of artificial neural nets seems decidedly weak. However, artificial neural nets 

do capture the essential features of biological nets and it is perhaps necessary to assume 

that these additional factors are but refinements to a basic theory which may be derived 

from known neural principles. Recently, serious attempts have been made to overcome 
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some of these shortcomings and, in particular, to improve the temporal characteristics in 

some models.4"6' 25-27 

2. A Brief History of Neural Nets 

This section sketches the development of the field of neural nets. It considers models in 

the following categories: Early Work, Perceptrons, Associative Memories, Pattern 

Classifiers, Recurrent Models and Hybrid Models. 

Early Work 

The study of the human central nervous system dates back to antiquity 28  but some of the 

first work in artificial neural nets was published in 1943 by McCulloch and Pitts. 29  In 

this, they proposed their threshold logic units and showed that any effective procedure 30 

(that is, any functioning that can be precisely described) could be implemented by a 

network of these units. Threshold logic units are somewhat different from today's 

artificial neurons and at that time no learning algorithms existed for them. However, as 

was noted by von Neumann their result concerning the computational power of neural 

networks is significant. 2  It shows that a neural net has at least the computational power of 

a von Neumann (or Turing) machine 31  and, since Farley and Clark showed in 1954 that a 

von Neumann machine has at least the computational power of a neural net, it must be 

deduced that neural nets and von Neumann machines are equivalent in computational 

power. The experimental results of this thesis support this conclusion and even suggest 

that modern programming representations, traditionally implemented on von Neumann 

machines, in fact map more naturally onto neural architectures. Symbolic and neural 

architectures are equivalent in computational power, though neural representations are 

probably more natural models of the world, as is suggested in section 4.5. 

Von Neumann's paper The General and Logical Theory of Automata 2 discusses the 

results of McCulloch and Pitts and, in spite of its title, actually laments the lack of any 

theory of neural nets. His paper seems as relevant today as it was then. Other work by 

von Neumann showed that a threshold logic-type network could be self-reproducing. 32  

Shortly after this, threshold logic units became of interest as a potential means of 
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constructing computers, even resulting in the implementation of one small machine. 335  

Also at this time, Hebb published his landmark book on biological neural learning, now 

known as Hebbian learnine which has since been shown to generate models that 

perform visual feature detection. 36-39 

Single and Multilayer Perceptrons 

The single layer perceptron, a more 'biological' neural model than that of McCulloch and 

Pitts, was first proposed by Rosenblatt in 1958. 0  It consists of a single layer of 

processing units similar to the artificial neuron presented in figure 2.2. In neither the 

single layer nor the multilayer perceptron are there any connections between neurons in 

the same layer .41  The computational power of the single layer perceptron has been 

extensively analysed and shown to be limited to the computation of linear separable 

functions.42  This, after overexaggerated claims for the perceptron's power, led to an 

unwarranted period of disenchantment with neural nets. This was in spite of the fact that 

Minsky and Papert, in demonstrating the single layer perceptron's limitations, themselves 

pointed out that a multilayer perceptron with feedback as well as feedforward 

connections had the computational power of a von Neumann machine. 42  The initial 

popularity of the single layer perceptron was due to the existence of learning algorithms, 

the perceptron convergence algorithm 41 ' 43  and the LMS algorithm, 43  which were proved 

to converge to a correct linear classifier if such a classifier could exist. 

The multilayer perceptron gained in popularity with the rediscovery of 
backpropagationA45 first reported in  1974 46  and still probably the most popular 

learning algorithm. This is a form of supervised learning and basically computes the 

difference between the actual output and the desired output and, working backwards from 

the output nodes to the input nodes, modifies synaptic weights and neuron thresholds 

appropriately. It has not been possible to prove that a multilayer perceptron converges, to 

correct classification using backpropagation. Indeed, the algorithm will often become 

trapped in local minima in the classification space. Largely because of this, many 

variants on backpropagation have been proposed .47-49  This thesis advocates placing the 

initial network in the region of the global minimum by means of specification, and 

allowing learning to advance the net to the exact global minima (see figure 2.5). 
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area in search space within which 
specification places network 

Figure 2.5 Use of Specification in Constraining Search Space 

Recent work has demonstrated the problems that occur when multilayer perceptrons are 

scaled up in size. 50,51  It has been proved that the time taken for a single layer perceptron 

to learn an arbitrary, linearly-separable function grows exponentially with the number of 

inputs. Similarly, the search space for a multilayer perceptron grows exponentially with 

number of inputs, and thus the problem of learning an arbitrary classification is 

NP-complete.52  This supports this thesis's argument that a stronger element of 

specification is needed in initial network configurations before it will be possible to scale 

them up. Steps in this direction have been made by specifying and fixing weights in 

initial layers. 18 ' 53  In spite of these limitations, however, backpropagation has proved 

useful for many applications. 11.54-56 Several alternative training algorithms have been 

proposed for multilayer perceptrons.'8'50'57'58 
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Associative Memories 

Early work in this area was performed by Kohonen amongst others .59-61  The best-known 

neural model was proposed by Hopfield62  and achieves energy minimisation based on the 

outer product rule. This model has been exhaustively analysed 63-66  and shown to be of 

limited capacity and inefficient in its use of hardware. Other associative memory models 

are the Hamming or Unary Net 67,68  and Sparsely-Distributed models .69  Neither of these 

models suffer from the efficiency and capacity limitations of the Hopfield net. It could be 

argued that the reason for this is that the element of specification is far stronger in these 

models than in the Hopfield model, which has an unconstrained topology. More a priori 

knowledge concerning associative memory is built into the Hamming and Sparsely-

Distributed models in the form of network structure. 

Classification and Clustering Models 

Classification is an essential function for real-time response in, for example, vision - the 

experimental area for this research. In theory, a three-layer multilayer perceptron will 

perform any classification though in practice, as already described, learning algorithms 

cannot guarantee to converge to such a classifier. An excellent review of classifiers has 

been performed by Lippmann70  and analyses of their relative merits have been made. 11,50 

Various taxonomies of neural classifiers have been attempted .71 These typically divide 

classifiers into those that take binary and those that take continuous-valued input. 

Beneath that, classifiers may be further subdivided into those that are trained under 

supervision and those that are unsupervised. In most classifiers connections are 

predominantly feedforward; exceptions to this are the ART, Hopfield and Darwin II 

models. In most cases, the model implements a classical algorithm (see table 2. l).72  This 

provides further evidence that a priori knowledge is available in most situations which 

could be incorporated in the model in the form of more explicit specification. 

Supervised Classifiers include single and multilayer perceptrons, Hopfield, Hamming, 

RCE,73  Feature Map 18  and High-Order networks. 74  Of most interest to this research are 

High-Order network models. These contain more complex operations at each node than 

the conventional summation and averaging. Since it has been shown that these higher 
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Neural Model Classical Algorithm 

Hamming Net Optimum Classifier 
ART I Leader Clustering Algorithm 
Perceptron Gaussian Classifier 
Multilayer Perceptron Mixture 
RCE k-Nearest Neighbour 
Feature Map Classifier k-Nearest Neighbour 
Kohonen Self-Organising Feature Maps k-Means Clustering Algorithm 

Table 2.1 Correspondence between neural models and classical algorithms 

level functions may themselves be implemented as neural nets, 29  a High-Order network 

may be considered as a network of clusters of neurons; in other words, a network model 

containing hierarchy (though this is not in fact how the model was conceived). It is the 

presence of hierarchy in neural models which is a central concern of this thesis. 

Unsupervised Classifiers include ART 75,76  (Adaptive Resonance Theorem), Kohonen 61 

and Darwin I1416  models. Within the ART and Kohonen models clusters of neurons are 

formed during training; this perhaps indicates the emergence of two-level hierarchy in 

these models. Darwin II is probably the model most closely allied to the neural 

methodology advocated in this thesis. It derives from a theory called Neural Darwinism4  

which takes a more biological approach to the generation of network structure. It does 

this during 'embryogenesis' by generating many clusters (typically of 100-1000 neurons) 

which then constitute a pool of candidate components, or a repertoire, from which the 

final network is drawn. A neural version of natural selection then takes effect with the 

broad principle that those clusters that are active, survive, and are strongly connected to 

other active clusters. Clusters that are very rarely active - and thus, it is deemed, not 

serving any useful function - die, as seems to occur in normal child brain development. 

This model shows undoubted emergence of hierarchy, though still only at two levels: 

clusters are fonned from neurons, not from other clusters of neurons. Natural selection 

does seem likely to be a guiding principle in brain development, but still doesn't explain 

how complex functioning occurs - how inputs are transformed to outputs, at any non-

primitive level. It may explain how functions develop but doesn't explain how those 

functions are neurally implemented or what those functions actually are. The theory is of 

especial interest to this work since the initial network and cluster structures are generated 
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as if from a genetic code. In fact, however, this 'genetic code' is not a meaningful 

specification describing actual structures and, as I understand it, acts so as to generate a 

repertoire of randomly-connected structures. 

Recurrent Networks 

These are models which do not contain predominantly feedforward connections. In 

general, they can perform time dependent tasks in addition to having the capabilities of 

feedforward nets, though training is more difficult owing to their (normally) less-

constrained architectures. Backpropagation has recently been generalised for recurrent 

nets, though it still suffers from the same limitations as with feedforward nets. 47,77 

Hopfield and Tank have applied the Hopfield model to global optimisation problems such 

as the Travelling Salesman Problem, results showing yet again the problems in scaling 

up. 78,79  Here again, specification might have a role to play in imparting knowledge 

obvious to a human - such as which cities the salesman should definitely visit in a certain 

sequence - and thus initialising and making resistant to change relevant synaptic 

weights. 80' 8 ' 

Boltzmann machines use the technique of simulated annealing in order to avoid being 

trapped in local minima in the search space during training. 8284  The model suffers from 

training times that are too long for it to be of practical use. 

Cellular Automata32  also fall into the class of recurrent nets, as do Winner-Take-All 

nets.85  ART, developed by Grossberg and Carpenter, is also highly recurrent. 75  Training 

seems to be enabled in ART because its recurrent connections are accurately specified 

and thus highly constrained. It seems that many neural models have avoided recurrence 

because the added lack of constraint limits the learning procedure. It has not been 

possible to generate any realistic general purpose learning algorithm for recurrent nets 

owing to the unconstrained topology. This only supports the argument advanced by this 

thesis that specification is necessary in order for learning to succeed. This thesis advances 

a methodology for incorporating meaningful specification (as opposed to just a particular 

type of topology) in recurrent nets. A newcomer to the field of neural nets might be 

struck by the artificial constraint of layered feedforward nets, observing that biological 

nets do not seem to impose such a constraint. What is lacking is a technique for mapping 
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meaningful specification into network structure, thus enabling learning. Layering with 

feedforward connections does seem to be an arbitrary and artificial constraint. 

Hybrid Models 

These are systems that integrate symbolic and 'subsymbolic' (i.e. neural) methods of 

computation. Ideally, such systems combine the strengths of each method so as to 

compensate for the weaknesses of the other. 86 ' 87  It has been claimed that symbolic and 

subsymbolic methods of computation are complementary: tasks not suited to symbolic 

models, for example low level perceptual processes, are suited to neural methods; tasks 

such as planning, whilst apparently not suited to neural models, are suited to symbolic 

modelling. 86  Hybrid systems should, it is claimed, enable a cross-fertilisation between 

these two radically different methods of computation. 

Problems to which hybrid systems have been applied include classification', 88  speech 

recognition,89  noun-phrase understanding, 90  diagnosis of back-pain?' and optimisation of 

knowledge-based inference 92,93  Recent work has also performed the translation of 

symbolic representations into functionally equivalent subsymbolic representations at a 

primitive, one-to-one level; and vice versa? 4 ' 95  This has implications for this thesis in 

that it shows that in principle it is possible to construct a neural net from a specification. 

3. State of the Art 

A Multitude of Models 

A striking feature of the current scene is the number of independent and apparently-

unrelated models. About thirty distinct models can be identified, each suited to a small 

area of tasks, each with its own ad hoc 'theory'. This 'theory' explains how the model 

works in its own relatively small domain: how it learns, its limitations, its computational 

power, its efficiency, and so on. The less computationally-powerful models normally 

guarantee convergence during training - for example, with the single layer perceptron 

and the Hamming net. The more computationally-powerful models have less constrained 

architectures and hence the potential to perform more powerful tasks but are limited in 
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their convergence during training. The exceptions to this are those recurrent architectures 

containing closely-specified connections - for example, Grossberg's ART. It is this 

added element of specification which enables successful learning. Arriving at an 

appropriate network topology, however, seems at best to be a 'black art'. In practice, the 

topology seems to be derived through the designer's intuitive incorporation of a classical 

algorithm into the model's architecture. The ART model, for instance, seems to have been 

constructed with adaptive filters in mind. 

Almost none of these models scale up well. For most, the training problem is NP-

complete. Remarkably, virtually no work has attempted construction of an initial network 

architecture from a meaningful specification. Since it is known that about seventy percent 

of human DNA is devoted to specifying generation of the central nervous system it seems 

absurd that no work has been spent on applying this method to constructing artificial 

neural nets. The reason for this must be simply that it is not known how networks could 

be specified. The key concept that is missing is hierarchy. 

Most results delivered by neural nets are only new in that they are learnt. The vast 

majority of neural applications are functionally equivalent to well-understood, classical 

algorithms. What is novel, is that these functions have been learnt. It has been argued that 

the only reason these models do work, however, is because they were designed, however 

intuitive the design process, to implement known classical algorithms. That design 

process was effectively the incorporation of specification into the model. This thesis 

advocates making that specification explicit and meaningful. 

The Lack of Theory 

Perhaps the most striking thing about the state of the art is the absence of any unifying 

theory. 3  What theory that exists is piecemeal explanation here and there, not overarching 

principle that would unify the diversity of models, so enabling a common understanding. 

Theory would unify neural applications to classification, clustering, optimisation, 

association, competition, control, planning and world representation. Von Neumann's 

paper bemoaning lack of neural theory is as relevant today as it was when written.2 
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What a Neural Theory might look like 

The individual components of the biological nervous system are starting to be 

understood. Artificial neurons can approximate biological ones, however crudely. What is 

not known is how ensembles of neurons produce remarkable functions. Not only is it not 

known how a particular architecture enables, for example, an owl to intercept a 

zigzagging mouse, but neither is there any framework for deriving such an architecture. 

Current research seems to be unguided by any quest for theory, 96  which tends to make it 

necessarily random and directionless. Conversely, theory-testing would guide why an 

experiment should be performed 97  

What is needed is a framework within which the role of neurons, clusters of neurons, 

synapses, groups of synapses, systems and subsystems can be understood: not an 

explanation of how the brain works but a framework within which such an explanation 

could be formulated. 98  This framework would provide a methodology for deriving a 

neural architecture to satisfy an arbitrary specification. Such a framework would 

necessarily require a means of meaningfully describing and thus understanding the 

architecture. It would explain how neural processes operate to transform inputs to outputs 

and how those processes are realised by patterns of connectivity. 

The evidence such a theory has to build on may yet be insufficient. What is known is the 

basic characteristics of primitive processors and primitive interconnections. It is known 

that clusters of neurons and groups of synapses exist in biological nets and that that 

clustering presumably serves some purpose. 3  It is known that biological nets are divided 

into subsystems and modules. 15  It is known that processes should ideally be modeled so 

as to satisfy the 100-step rule so that, for example, visual perception can take place in 

about 100 msec using biological-rate neurons. 99"00 

 

Where this thesis fits in 

This work proposes a framework for understanding neural nets by the introduction of 

hierarchy and modularity. With this framework in place, it is possible to generate initial 

network architectures that incorporate specifications described to an arbitrary degree of 

precision. It is thought that taking this approach to the construction of neural models will: 
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reduce training time by meaningful topology constraint, thus placing the 
'I1  

network in the neighbourhood of a solution within the seach space (see figure 2.5); 

this should also allow the scaling-up of neural systems. 

enable understanding at arbitrary levels of representation as to how a neural 

net implements a given function.' ° ' 

Constructing networks from specifications may seem to be going against the spirit of 

neural networks, in that their greatest virtue is that they learn. However, throughout this 

chapter it has been extensively argued from the literature that not only are biological nets 

largely constructed by specification but that existing artificial models incorporate implicit 

specification. 



Chapter Three 

Deducing Neural Theory from Related Disciplines 

This chapter reviews work in disciplines related to Neural Nets. The understanding of a 

new field such as neural nets seems most unlikely to come about by spontaneous 

generation. Theory can emerge from new insights or by the systematic investigation of 

specific problems. In the absence of these, however, new theory can be formed as a result 

of the cross-fertilisation of related disciplines. Thus, this chapter seeks to deduce a 

framework for understanding neural models from theory in the related fields of: 

connectionist expert systems, distributed systems, object-oriented modeling and 

miscellaneous non-neural connectionist approaches. The purpose is to find metaphors of 

neural computation that may enable the proposal of a framework within which neural 

processing may be understood. If the metaphor is well-studied, then that should allow the 

application of that understanding to neural processing. This could enable answers to be 

given to questions such as: What is the role of a neuron within the network? What 

function does a cluster of neurons perform? What is the role of a cluster within the 

network? How is function distributed? What internal representations are natural models 

of the world? And so on. The preceding chapter sought to place this thesis in context 

within the field of neural nets. This chapter places the thesis in the context of the wider 

field of computation and modeling. 

1. Connectionist Expert Systems 

In the last two years, a large amount of attention has been focused on the relationship 

between neural networks and rule based systems. 102-104  Results of this work have shown 

that some neural models approximate rule based systems, not just in what they compute 

but also in how they compute it, at each stage in the processing. This 'equivalence' has 

given rise to the term connectionist expert system, which is the subject of this section. 

23 
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Expert System Concepts 

An expert system consists essentially of three elements: a rule base, an inference engine 

and a user interface. A rule base normally consists of Horn Clause predicates °5"°6  of 

the form: 

conclusion if condition 0  & condition 1  & ... & condition. 

The inference engine, as its name implies, performs logical inferencing from these rules. 

The user interface enables the user to query the system. Thus, if the rule base contained 

the following rules: 

loves(X, Y) if rich(Y) & beautiful(Y) & male(X) & female(Y). 

male(Jason). 

female(Kylie). 

female(Jane). 

beautiful(Jane). 

nch(Kylie). 

nch(Jane). 

- and the system is queried with: 

loves(Jason, Y)? 

The inference engine will try to deduce who Jason loves, on the basis of the knowledge 

contained in the rules. The answer obtained is that Jason loves Jane because she is 

female, beautiful and rich, but not Kylie because, though female and rich, she is not 

beautiful. 

In reality, Jason would almost certainly not love someone on the basis of true/false 

predicates. Any real world expert system should be able to handle uncertainty.' 0 ' 09  

Hence, most contemporary expert system models compute the likelihood of various 

competing hypotheses, on the basis of unrliable data. Such systems seem to have been 

most successful in their application to medical diagnosis. 110,111 Here, the system is asked 

to decide between various hypothetical illnesses, given an array of unproven symptoms. 
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There are four areas of uncertainty involved in calculating the likelihood of a 

hypothesis: 107 112 

(1) Data - How rich is Kylie? 

Importance of data to conclusion - Is it more important that she is rich than 

beautiful? 

Inference - How reliable is this rule? 

Conclusion - How likely is the hypothesis? 

Strictly speaking, however, since the conclusion from one inference will often form the 

input data to another, (i) and (iv) may be considered the same area of uncertainty. 

Various theories have been proposed to model one or more of these areas of uncertainty. 

Most widely used amongst these is a model which uses Bayesian techniques and is based 

on Probability Theory. 108,113-115  In spite of its popularity, 116117  which is probably due to 

its solid base of theory, the Probability model has significant shortcomings. 118420 

Ignorance is not modeled, and the inference step contains no analogue of neural 

inhibition. 121  The model is restricted to binary data only and thus does not model 

uncertainty in data ((i) above). 107  Hierarchical models exist, 122,123  but this 'hierarchy' 

seems restricted to partitions within 'flat' networks that evaluate simple predicates. The 

Dempster-Shafer model, a variant on the Bayesian model, was developed in order to 

overcome some of these limitations. 1126  Unfortunately, a side effect of this was to make 

the model computationally intractable. 107,127 

Possibility theory, also known as fuzzy logic, was developed primarily by Zadeh and is 

based on fuzzy set theory. 1 "29  Unlike probability theory, possibility theory does model 

uncertainty in data ((1) above) but not uncertainty in importance of data ((ii) above). 

Unlike Dempster-Shafer models, it is computationally efficient and has resulted in a 

number of applications. 110"30  Various other uncertainty management methods such as 

certainty factors have been proposed, which seem to be largely ad hoc techniques not 

grounded in theory. 107 
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The relevance of these models will become apparent later in the chapter. Suffice it for 

now to say that each model is limited in some significant respect. Probability models do 

not model uncertainty in data; Dempster-Shafer models seem theoretically sound but are 

computationally unrealistic; Possibility models do not model weighting of data; and the 

'ad hoc techniques', though empirically derived, can give inconsistent answers. 

Structure 

The fundamental similarity between neural nets and rule bases is in their structure. A 

Horn Clause has the same structure as a neuron in that several (continuous-valued) inputs 

combine, in some way, to produce one (continuous-valued) output. 

a l  

activity 

evidence 1  

evidence 

conclusion 	if 	evidence 

evidence 
n 

Figure 3.1 Structural Similarity between Neuron and Rule 

In the same way that neurons are structurally equivalent to rules, some neural models are 

structurally equivalent to rule bases.'31"32 
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beautiful if good-figure & blond & large-eyes. 
virtuous if never-late & consistent & does-washing-up. 
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Figure 3.2 Structural Similarity between Neural Models and Rule Bases 

Dynamics 

By dynamics is meant the processing of information within the model - as opposed to its 

static topology. It has been seen that neural and rule based models are structurally 

equivalent. The present concern is to determine whether they are dynamically equivalent: 

do neural models approximate rule based models in the way they process information? A 

neural model has a specific topology, weights and thresholds: are there analogues of these 

components within rule based models which enable us to understand their role in neural 

models? If so, a metaphor for neural processing may exist which illumines neural theory. 
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First Gallant, 131  and then others, 133  have shown empirically the 'equivalence' of some 

neural and rule based models. Connectionisr Expert Systems perform evaluations in an 

event-driven control strategy, as do neural models. Traditionally, expert systems have 

employed a goal-directed order of evaluation as a control strategy. This, however, is 

simply a difference in order of evaluation, not in what is computed at each node. Within 

the connectionist expert system model, synaptic weights may represent uncertainty in 

importance of data ((ii) above), neuron thresholds may represent the validity of a rule 

((iii) above: its predisposition to fire) and cell outputs may represent certainty of data and 

hypotheses ((i) & (iv) above). 

More recently, it has been rigorously proven that a multilayer perceptron approximates a 

Bayes optimal discriminant function. 134,135  This shows that some, if not all, neural 

models approximate various rule based uncertainty management models. 136  Building on 

this work, Lacher et al 137  have applied the neural learning algorithm backpropagation to 

connectionist expert systems, which they have dubbed Expert Networks. Other work has 

observed various aspects of this 'equivalence' between neural and rule based 

learning. 131-140  It is beyond the scope of this thesis to enter into a detailed analysis of this 

work. Of interest to us, by way of results, is the role played by each component of a 

neural model - topology, weights, thresholds - in the expert system metaphor. 

Neurons may be understood as performing primitive inferencing. Their thresholds 

contain some concept of the prior probability of a hypothesis being correct: the cell's 

predisposition to fire. Synaptic weights perform (as they were perhaps unwittingly 

named) weighting of evidence. The network topology interrelates inferences so as to 

realise the desired global function. 

A feature of expert systems is that they automatically generate explanations of how they 

arrived at an answer. This capability has been incorporated in neural modeling software 

produced by the Hecht-Neilsen Corporation and in Neuraiworks Professional,t which 

give 'explanations' by tracing through heavily-weighted synapses back to inputs. A tool 

designed explicitly for the development of connectionist expert systems has' also been 

produced. 141 

Produced by Neuraiware Inc. 
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Figure 3.3 

Relationship between Rule-Based Uncertainty Management and Neural Dynamics 

Primitive vs. High Level 

Much work relating expert systems to neural nets has compared neural nets and expert 

systems containing first order predicate rules only. First order predicates are boolean 

functions that take no arguments, as opposed to second order predicates, which do take 
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arguments. Comparisons between second order predicate rule bases and neural nets have 

been performed 137  but these models assume the existence of processes more complex 

than the simple summation- and-thresholding of a neuron at each node. In Gallant's 

model, 131  for instance, the neural part of the system implements uncertainty 

management; the higher level capabilities of expert systems are not implemented 

neurally. Higher level features of expert systems include: variable binding, variable 

instantiation, the use of a stack to perform recursive inference, list processing and explicit 

control by use of operations such cut. 105  This in no way invalidates this 'metaphor' of 

neural computation since first order equivalence alone enables the opening up of the 

neural 'black box' to see how, at a primitive (neuron/synapse) level, functions are 

computed. However, it is relevant to this thesis to consider how these higher level 

functions might be implemented by neural models. As will be seen, a more natural 

analogy of these capabilities is the object-oriented model. Thus, the consideration of 

higher level functioning will be left to one side for now and it is simply noted that 

connectiomst expert systems provide understanding of primitive neural processing. 

Specification vs. Learning 

Expert systems have traditionally been constructed by specification. It is this element 

which gives insight on 'equivalent' neural models. However, much work has been spent 

in getting expert systems to learn. 132,142-146  Some of these methods, arrived at in 

isolation from neural learning techniques, may lend insight on neural learning. For 

example, one skill refinement model is modeled on market forces within an economy. 

Each rule is viewed as a buyer and seller within a 'knowledge market'. It buys proof of 

its conditions from other rules, and sells its conclusion to other rules on the basis of how 

well it can be established. Thus, rules which find it 'cheap' to prove their hypotheses are 

used often by other rules since they are inexpensive. When asked to support a hypothesis 

a rule will be given a certain amount of credit (based on how vital the proof of the 

hypothesis is) with which to buy proof of its own conditions, which are themselves 

hypotheses belonging to other rules. The rule with the most credit will be evaluated first. 

In this way, the best method of establishing a hypothesis is determined. This seems to be 

some parallel of competitive learning. 147  It also suggests an analogue of Hebbian 

22  learning.  
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Other expert system refinement models appear to be applications of neural learning. 131,137 

Backpropagation may be used to determine the optimum conditional (threshold) and prior 

probabilities (weights) in a Bayesian-type model. An empirical comparison of 

connectiomst and symbolic learning in general' 40  and comparisons of 1D3 (a symbolic 

learning algorithm) and backpropagation' 48  have been performed. 

In summary, the virtue of the expert system metaphor of neural computation is that it 

enables the opening up of the neural 'black box' so that what is occuring inside may be 
Understood.  103,104,149 Unfortunately, this understanding is limited to the primitive level of 

representation. Thus, we now turn to another related discipline, in which hierarchy is 

more explicit: distributed systems. 

2. Distributed Systems 

The Motivation for Distribution 

Undoubtedly the most successful computation-engine ever to have been built is the von 

Neumann machine. It is universally powerful, 30"50  flexible, 'easily' programmed and, 

above all, well understood. Compare this with neural nets which, though universally 

powerful, 29  are certainly not well understood, thus not easily programmed and thus not 

flexible. Indeed, so many resources have been invested in the von Neumann machine that 

it is hard to imagine an alternative method of computation becoming predominant, at 

least in the near future. In spite of this fact, however, the von Neumann machine does 

have a major flaw: the von Neumann bottleneck. The von Neumann model of 

computation is basically sequential which, though vast efforts have been made to widen 

and speedup this bottleneck, does fundamentally restrict the speed of computation. This 

has driven huge research into unifying the power of multiple processors and a good 

understanding of the problems involved in this has emerged. '51"52  

One method of combining processors to solve a particular function is to farm out 

subordinate functions - in a hierarchical manner - to slave processors. This model leaves 

the master processor with absolute control: lower level functions/processes do not exist 

until invoked by a higher level function. This technique is not of interest to us since it 
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seems unlikely that functions are farmed out to vacant areas of a neural network. 

The Neural Metaphor 

What is relevant by way of distributed theory, however, is the method by which a 

process/function may be divided into autonomous, cooperating processes which, by 

working together, compute the same function. This theory seems of direct relevance to 

neural models since it indicates how function may be distributed across neurons and 

across clusters of neurons and how communication may be distributed across synapses 

and groups of synapses. Thus, by 'distributed system' this thesis means: a model of 

computation in which one or more functions are divided, in some manner, so that each 

subdivision is performed as an autonomous process executing on its own dedicated 

hardware and is interrelated in such a way as to implement those functions. 

A significant factor determining the way in which function is distributed is the target 

hardware. It is likely that a function will be distributed in a different way if each node is 

a von Neumann machine than from if each node is a neuron. The experimental results of 

this thesis (chapters Five and Six) show that function can be recursively distributed in 

such a way that each bottom level, atomic function is implemented by a neuron. If 

function is not distributed to this very primitive level then higher processing powers are 

needed at each node. It seems clear, therefore, that nature has chosen to use a completely 

distributed model of computation: it is not sensible to subdivide a neuron function. 

Intuitively, the reason for the choice of the neuron as primitive processor and of the 

synapse as primitive connection must be that these are the commonest 'denominators' of 

distributed function. It must be most 'natural' to realise higher level (human) functions in 

terms of interconnected neurons. Functions such as perception are presumably more 

naturally expressed in terms of interconnected neurons than in terms of interconnected 

logic gates, for example. The experimental results of this research indicate that the 

converse is also true: functions unnatural to humans, such as long division, are better 

represented in terms of logic gates than neurons. Neural nets thus will not take over from 

conventional machines in most tasks to which computers are currently put. 

A key feature which distributed and neural systems have in common is their redundancy 

and fault-tolerance. Of the order of 100 neurons die out in the human brain each day, yet 
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it continues to function. Similarly, distributed systems are defined with built-in 

redundancy so that if, for example, one node fails, other nodes will detect this and take 

over its functions. 

This thesis argues that some aspects of neural models can best be understood within the 

field of distributed systems. The methodology by which function is distributed implies a 

framework within which neural distributed processing may be understood: clusters of 

neurons perform describable functions; 29  their computation is distributed across other 

appropriately-connected clusters of neurons; ultimately, all processing is distributed to 

primitive (neuron) level; and in the same way, high level messages between functions are 

distributed as lower level messages and, ultimately, as synaptic connections. 

Autonomy and Control 

A feature of distributed models is that each component has autonomy. Each component 

does not depend for its existence/creation on another component. It may receive requests 

to perform tasks but chooses whether or not to perform these at its own discretion. Within 

itself it has complete control, but outside itself it is powerless. All it can do if it requires 

some resource is to request it. 

A distributed function cannot be understood in terms of its isolated components. What 

defines that function is the way in which its parts are interrelated by communication. Still 

less may a function be understood in terms of the components of its components. This is 

precisely the scenario encountered with neural nets. It is not possible to understand the 

function of a network by observation of the interconnection of individual neurons. In 

conventional distributed systems there exists hierarchy such that the role of each function 

can only be understood at a higher level. In the same way, it seems likely that neural 

distributed function will only be understood through hierarchy. Thus, the role of each 

cluster of neurons - that is, of each function - will only be determined through its 

interrelationship with other clusters. 
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Communication 

Autonomous processes that cooperate to perform some higher level function must, in 

order to achieve this, communicate in some way. This is performed in traditional 

distributed systems by message passing. 153  Each module/function typically has a well-

defined interface by means of which it can send and receive messages. 

In most distributed systems, functions are not completely distributed to their most 

primitive, atomic form. Thus, in each function a degree of sequentiality is retained. 

Typically, each autonomous process is an imperative program executing on a von 

Neumann processor. In this case, it is necessary to have sophisticated message passing 

facilities, with queueing of incoming messages and blocking of process execution when 

waiting for certain messages. The metaphor that best fits neural models, however, is the 

completely distributed system, in which every component of every function (except the 

atomic function) is itself distributed. Thus, every function executes in parallel - and 

thus, incidentally, such communications complications as queueing do not arise. 

The most significant result of the distribution of computation is increase in 

communication. Inevitably, the more that computation is distributed, the more 

intercommunication is required. Indeed, if it were possible to obtain unlimited, high 

speed communication between distributed processes, there would be few problems in 

distributing systems. The problem then would be how to distribute function, whereas at 

present the problem is how to distribute function whilst minimising and localising 

intercommunication. Too much distribution, using conventional hardware, replaces a 

processing (von Neumann) bottleneck with a communications bottleneck. 

Neural nets are, it seems, completely distributed systems and thus, as discussed in 

Chapter Two, have massive intercommunication. It is hard to conceive a manner in which 

the amount of connectionism in biological neural nets will ever be replicated artificially 

in electronic hardware. This is due to the two-dimensional nature of electronic circuits as 

compared with the three dimensions within which the brain works, though electronics 

does have a third dimension of time. Optical implementations of artificial nets 154  seem, 

apart from chemical implementations - which would effectively replicate biological nets, 

to be the only viable method of implementing massive connectiomsm artificially. 
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Incidentally, completely distributed functions communicating and processing optically 

would seem to be the fastest possible execution of that function that could ever exist. This 

is not to say that the function could not be represented in a different way (see section 4.5) 

so that it executed faster or slower. However, each particular expression of a function 

could not be executed faster than its completely distributed optical implementation. 

3. Object-Oriented Modeling 

Motivation 

The development of programming languages and modeling methods was strongly 

influenced by the von Neumann machine. Modeling techniques developed so as to best 

utilise the sequential nature of this method of computation. Most high level languages 

are thus fundamentally sequential and the incorporation of parallel features within them 

seems unnatural. The framework presented in this thesis (see Chapter Four) is a more 

natural method of modeling entirely parallel systems and requires a different approach to 

'programming' within it. This framework does allow sequential flow of control but is 

most suited to completely parallel/distributed representations. The use of sequential 

control is as unnatural to it as is the use of distributed control within conventional 

languages. 

The motivation for object-oriented methods is to create supposedly more natural models 

of a world. (For an explanation of how all computing may be regarded as world-

modeling, see Weizenbaum.)' 5°  An object-oriented model contains a set of processes, 

each of which represents, and behaves in the same way as, an object in the world being 

modeled. The behavior of these objects is typically described in a conventional, 

sequential language. 

Object-Oriented Concepts 

The object-oriented methodology has developed its own terminology, much of which is 

still in a state of flux and not yet standardised. Here follow some of the basic concepts 

involved: 
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Object - an autonomous process representing and behaving like some entity in the 

world being modeled. For example, a process might represent a Porsche. 

Attribute - a characteristic of an object. For example, size, colour, etc. 

Class - the definition of a type of object. For example, Car or Porsche. 

Instance - an object of a particular class. For example, Toby's Porsche. 

Inheritance - the means by which one object can be defined to be a special case of 

another, more general, class/type. For example, 'Porsche' would inherit the 

attributes of 'Car'. 

Subclass - a class that inherits the attributes of another class. 'Porsche' is a 

subclass of 'Car'. 

Method - an operation that can be performed by an object and which is typically 

invoked by the receipt of the appropriate message from another object. 

'Pure' Object-Oriented Modeling 

The framework for neural theory presented within this thesis is inspired largely by 

concepts in the field of object-oriented modeling. This field has moved away from 

sequential techniques in the modeling of a world. Attempts are made to create more 

natural models of a world by creating within the model a process to represent each object 

in that world. The definition of that object's behavior is still, however, described in 

conventional - basically sequential - code. The framework presented in this thesis differs 

from this in that each object is defined exclusively in terms of other objects, much as 

function is subdivided in completely distributed systems (section 3.2). Thus, the model is 

completely parallel and constitutes a natural framework within which to describe neural 

structures. This is what is meant by pure object-oriented modeling. 

The object-oriented paradigm seems a good metaphor for neural computation owing to its 

natural representation of a world. It is conceivable that the brain models the world in the 

same way. Objects are 'understood' in terms of more primitive objects in the same way 

that clusters of neurons are defined in terms of lower level clusters. This argument is 
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advanced in the next chapter (section 4.5). 

Non-Neural Connectionism 

Besides the three major metaphors for neural computation already discussed, there are 

various other non-neural network formalisms, each of which may offer its own insights 

on neural modeling. The relationship between semantic nets and neural nets has been 

explored. 155,156  Fuzzy petri nets are networks similar to expert networks 137  and perform 

primitive knowledge-based processing. 157  Configurable hardware is a class of target 

architectures for completely distributed implementations. 158  Neural models could perhaps 

be included in this class even though these architectures traditionally contain logic gate 

functions at primitive nodes. 

Summary 

In this chapter various disciplines related to neural nets have been discussed. Expert 

systems, distributed systems and object-oriented paradigms are all disciplines in their 

own right and, to some extent, seem to be variations on a common theme. Each discipline 

is, as has been argued, intimately related to neural modeling and each offers unique 

insights on neural theory. 

From connectionist expert systems we have gained a potential understanding of primitive 

neural functioning - a well-understood metaphor for cell function, synapses and network 

topology. From distributed systems we have gleaned a framework containing hierarchy 

for the distribution of computation to a target architecture containing primitive processors 

such as the neuron and primitive connections such as the synapse. From object-oriented 

modeling we have deduced a potential framework for neural representations that is, 

above all, a natural method of modeling the world. The unification of these three 

'theories' forms the foundation for the next chapter, which proposes a framework for 

neural theory. 



Chapter Four 

A Framework for Neural Theory 

1. Introduction 

The key concept underlying this thesis is hierarchy. 159  This concept is all but entirely 

absent from current analysis and construction of neural nets. At present, attention is 

focused almost exclusively at the primitive level. When faced with the questions: What 

does a network mean? and How does a network compute its function? current 'theory' is 

powerless to respond. It simply is not possible to understand a complex network in terms 

of individual primitive neurons and synapses. This problem is analagous to trying to 

deduce the function of a one million-transistor digital integrated circuit solely from a 

netlist of transistors. The physical layout is a clue to its various components (as seems 

likely to be the case in biological neural nets) and an experienced chip-designer may be 

able to deduce some understanding of its function from this. It may be possible to group 

transistors into D-type flip-flops, group these into shift registers, and so on. However, the 

very principle underlying this process is hierarchy. Though hierarchy is not readily 

apparent in a flat netlist of transistors (or, for that matter, a netlist of neurons) it is present 

and actually underpins the correct implementation and testing of such a system. The 

problem of reverse-engineering a neural implementation to a hierarchical representation 

of its function is yet more complex than for an integrated circuit: neural nets don't 

process discrete values; they interconnect massively; they have never been constructed 

from hierarchical specifications so it is not known what cues to look for in discerning 

which structures implement which functions. 

To take another example, one could try reading this thesis by selecting characters at 

random from its pages. Hierarchy underpins the framework by means of which we 

comprehend text. Characters, which have meaning at a low level, are related to form 

words, which have meaning at a higher level. Words are related to form phrases, phrases 

to form sentences, sentences to form paragraphs, and so on through subsections and 

sections, to chapters and thesis. It is not possible to either write or understand this thesis 

38 
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without a concept of hierarchy, however subconcious that may be. 

Yet another example of how essential hierarchy is to our understanding is in the field of 

physics. It is not sensible to try to understand the replication of DNA in terms of 

subatomic particles. What is needed is intermediate levels of representation which bridge 

this gap. Each of these levels has its own 'theory' describing how it relates to lower 

levels (a capability required for the neural framework). Atoms are formed from 

subatomic particles, base molecules from atoms, proteins and polymer chains from base 

molecules. Levels of representation are essential to our understanding of this. 

An example which is closer to the neural problem, in that it too is concerned with 

computation, is hierarchy within software systems. A complex program cannot be 

understood in terms of its compiled binary machine code. Its function becomes only 

vaguely-discernable if the binary is tranformed to mnemonic machine codes. These in 

turn need to be abstracted to programming constructs such as if .. then ... else, then to 

functions, higher level functions, and so on up to module, subsystem and system levels. 

It is helpful to consider these examples of hierarchy in order to enable us to appreciate its 

virtues. A final example, especially relevant to this thesis (see Chapter Six), is in image 

processing. It is not possible to read a numberplate, or recognise a face, or match two 

fingerprints, or any other non-trivial image processing task, simply by consideration of a 

two-dimensional array of intensity values. All the necessary information to perform any 

of these tasks may be present in this array but it cannot be directly transformed into the 

representation we are seeking. Instead, it must pass through a hierarchy of levels of 

representation: typically, pixels must be transformed to edges, edges to boundaries, 

boundaries to segments, segments to measurements and measurements to classifications. 

The theory by which these transformations are made is at the very heart of image 

processing, as is the problem of finding the best sequence of representations through 

which to pass in arriving at the goal. 

Each of these examples illustrates the crucial role of hierarchy in comprehending a 

complex system. Each example contains relatively few levels of hierarchy - though 

perhaps intermediate levels could be inserted which we have not mentioned. Where these 

examples differ from the framework of hierarchy advocated in this thesis is in their lack 
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of homogeneity. A different set of rules exists at each level (barring silicon compilation 

and software definition) for mapping one level of representation to another. The 

framework of hierarchy for neural nets, however, is not restricted to a certain number of 

levels and is homogeneous throughout the levels. 

The only level that is common to all models constructed under this framework is the 

primitive level, that which contains neurons and synapses. Though the framework is 

applicable to all neural models, the way in which these models form higher levels of 

representation is not constrained by the framework and is instead determined by the 

designer or (perhaps) the learning process. The hierarchy presented in this thesis is not 

the same as modularity of networks, which has been described in previous work as 

hierarchy. The scenario where several subnets or modules produce results which form 

input to a 'higher level' module is not taken to be true hierarchy. Representations are only 

analysed above the primitive level in a very restricted sense. There is no hierarchy of 

data. 

It has been argued that a multilevel representation, in addition to a method of interrelating 

levels, is essential to the understanding of neural systems. Thus, the next section (4.2) 

presents a framework of hierarchy for understanding neural systems at arbitrary levels of 

abstraction. The subsequent section (4.3) presents a method for relating levels by means 

of state-sequence analysis. 101  Section 4.4 considers whether it is plausible that 

specifications made within this framework can be biologically encoded within the genetic 

code. In addition, the implications of the presence of hierarchy for learning are explored. 

Finally, the importance of adopting a good representation at each level is discussed. 

The Concept of Levels 

The purpose here is to represent functions and data, and to perform transformations 

between these representations. A framework is required which enables the description of 

distributed functions and data at arbitrary levels of abstraction and which enables the 

interrelation of those levels. 159  As discussed in the previous section, the idea of levels is 

crucial to this framework. Perhaps the best-known analysis of levels is that given by 

Marr. 16°  He identifies three main levels of representation, at which understanding is 

essential: 
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Computational Theory - what is the goal of the computation, why is it 

appropriate, and what is the logic of the strategy by which it can be carried out. 

Representation and Algorithm - how can this computational theory be 

implemented? In particular, what is the representation for input and output, and 

what is the algorithm for the transformation? 

Hardware Implementation - How can the representation and algorithm be 

realised physically? 

Marr cites these as three levels at which any machine carrying out an information 

processing task must be understood. He also sketches the main levels of representation 

involved in image processing; these levels are representations of data - not function, as 

above. 

I prefer to think of the levels of representation of function as in Figure 4.1. The pyramid 

illustrates not the increased complexity as a function is implemented but the concept that 

a function at any particular level of abstraction can be implemented in a usually large, 

and sometimes enormous, number of ways. Similarly, there exists a common abstraction 

for many different implementations of a function.' ° ' 

Abstraction and Implementation 

Abstraction contains the idea of capturing the essence of something described at a greater 

level of detail. It involves saying less about how something is done and more about what 

is done. Abstraction contains the concept of summarising (not modifying) some 

description from a more to a less concrete form. 

Implementation is the inverse operation to abstraction. It involves putting a description of 

a function into effect. It involves making a function more concrete, saying the same thing 

but in more detail, transforming what a function is into how it should be performed. 

There is considerable debate over what is the best view of levels. '0' pp12-64 The concept 

of levels now developed is sufficient to describe the framework for neural theory. 
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Figure 4.1 Relationship between Levels, Abstraction and Implementation 

Levels for Neural Representations 

Within the framework the neuron/synapse level will be defined as the 

'primitive'/realisation level, the base of the pyramid in Figure 4.1. It is conceivable that 

there are yet more primitive implementations of this level but, for the purposes of 

understanding neural systems, neurons and synapses will be treated as primitive 

representations. The contention of this thesis is that a neural network is a realisation of 

functioning that can be meaningfully described and understood at higher levels of 

abstraction. As already discussed in the introduction to this chapter, that function cannot 

be understood at the primitive/realisation' level alone. The framework must enable the 

abstraction and implemention of functioning in a completely distributed manner. This is 
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achieved by the use of three basic concepts (see also figure 4.2): 

a function - which transforms inputs to outputs in some way. 

a connection - which provides a means of integrating functions. 

an interface - by means of which a function communicates with other 

functions - the 'outside world'. 

Figure 4.2 Concepts of the Framework: Definition of a Function 
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2. The Framework 

Functions 

Use of the term function can be misleading since our functions are not restricted to 

returning a single, or even composite, value. Instead, they are allowed to take many 

inputs and produce many outputs, simultaneously. Our use of the term is more closely 

allied to the idea of an object, as used in object-oriented models of computation (see 

section 3.3). The difference here is that objects in these models are typically defined in 

terms of (sequential) imperative code, and thus cannot naturally respond to simultaneous 

inputs with simultaneous outputs. In this sense, our use of the concept function is closer 

to the way in which a distributed system is defined. Here, a distributed system (function) 

is defined in a completely distributed manner such that the distributed system (function) 

consists of the appropriate interconnection of lower level distributed systems (functions). 

This analogy is a better parallel of the inherent distribution in neural systems, though the 

valuable concepts in object-oriented modelling are not explicit. For a discussion of these 

issues see sections 3.2 and 3.3. 

Call
1.o\\  02' 	 then 

0 
Condition 	 else 

Figure 4.3 Definition of if. ..then. . .else function 

Broadly speaking, a function at one level of abstraction is implemented at a lower level 

(and in a multiplicity of ways) by interrelating lower level functions in such a way that 

together they produce the desired behavior. (See figure 4.3 for an example of the way in 



Chapter Four - The Framework 	 45 

which an if .. then ... else function may be implemented in terms of primitive functions and 

connections.) This interrelation is performed by message passing between functions (see 

section 3.3). Where messages come from and go to is defined by interconnecting 

functions to form the appropriate topology. This style of definition is more declarative 

than most classical techniques (e.g. imperative algorithms) for describing functions. 

Connections 

Just as levels of abstraction exist in representation of function, so connections represent 

levels of abstraction in the representation of data. If the synapses transmitting visual 

information from the eye to the part of brain that processes visual information were to 

take random paths through the rest of the brain it would be very difficult indeed to deduce 

what was going on. In practice, however, these nerves are tightly grouped into a 'higher 

level' connection, the optic nerve. It makes sense to understand the role these synapses 

play by grouping them together: the grouping transmits an 'image' (actually a 

combination of intensity values and primitive objects such as edges) to another module 

within the brain. 

As described in Chapter Six (section 6.6) a connection of type 'image' may be defined in 

terms of more primitive types of connection. For example, an image may be defined as a 

row of columns; or as a column of rows; or as a row of columns of blocks; and so on. A 

row may be defined in terms of pixels, which may themselves be defined in terms of 

primitive synapses. (See Figure 4.4.) 

This hierarchy in connections is necessary to facilitate high level message passing. 

Though at implementation level an image is sent along, say, a million primitive paths, at 

the conceptual level an image is sent, period. This abstraction of data must go hand in 

hand with the abstraction of function. 

Interfaces 

Each function, at each level of abstraction, has a typed interface. This consists of one or 

more ports, of particular connection-types, at which input is received and from which 

output is sent. It is by means of this interface that each function communicates with the 
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image 

top left 	top right 	bottom left 	bottom right 

Figure 4.4 Definition of 'image' connection type in terms of quadrants 

outside world. Thus, when a function is defined - by interconnecting lower level 

functions - these interconnections are made to/from individual ports on those functions, 

not directly to components of those functions. Thus, each function has no control over its 

role in defining higher level functions; all it 'knows about' and can do is to perform its 

own function, transforming inputs received at its interface to outputs which it transmits 

via its interface. In this way, as in distributed and object-oriented models (see sections 

3.2 and 3.3), functions are autonomous. This use of typed interfaces allows the definition 

of a function to be restricted to one level at a time. 

Each non-primitive type of connection is defined in terms of lower level types. Thus, 

each port in the interface of function X itself contains ports - of lower level types. 

Connections external to X must be of the same type as the port on X to which they 

connect. Internal connections, however, may connect to one of the port's lower level 

ports which represent the types in terms of which the port is defined. Using this latter 

method of connection enables the function to decompose a high level connection into its 

constituent types. Thus, for a function to perform edge detection on input received as type 
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image it must first decompose this image type to pixel level. Composition of higher level 

connection types is achieved in the same manner. 

Instances 

If it is necessary to define several 

Zuirre$deeti 

 injerms of one common lower level function, 
-P;'4)

an instance of that function is 	 . Fof example, functions to perform object 
A 

detection and object classification might both be defined in terms of a function which 

detects edges at a particular point in an image. Instead of creating two instances of this 

edge-detection function it makes sense to use a common instance, in terms of which both 

higher level functions are defined. This is analagous to the concepts of class and instance 

in object-oriented modelling (see section 3.3). 

Level n 

Level n1E 
 

Instances 

Figure 4.5 Definition of Multiple Functions in terms of Common Instances 

This capability permits compact implementation of higher level functions; two functions 

are not required to do the same thing. Most neurons, or clusters of neurons, will typically 

be components of more than one higher level function. Thus, the implementations of 

multiple high level functions - which ultimately consists of primitive interconnections 

between primitive processors - will normally be closely intertwined. Several high level 

functions will typically be implemented in terms of common neurons, or common 

clusters of neurons, each function interconnecting these in different ways. In the same 
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way, instances of connections may be created so that disparate functions may 

communicate via the same communication path. This, of course, may not make sense 

without the use of multiplexing though such connection instances may be a feature of 

biological systems. 

Summary 

A framework of hierarchy has been described within which representations may be 

transformed between levels of abstraction. Neural Compilation, the process by which a 

hierarchical specification of a neural system is implemented, is facilitated by ANNECS, a 

software tool described in Chapter Five. What is significant about this framework is that 

it enables the understanding of neural systems at arbitrary levels of abstraction. As has 

been discussed, this ability is essential for the understanding of the operation of any non-

trivial system and should aid analysis of neural systems by raising representations above 

the primitive level. The next section considers how levels may be formally related to 

each other and how transformations may be made between one level of representation 

and another. 

3. A State-Oriented Analysis of the Framework 

A function can be represented in many different ways. It could be described in a high 

level language such as Prolog or Pascal; it could be represented in machine code for a 

68000 microprocessor; it might be described in terms of logic gates, or a state transition 

table; it might be represented as a Turing Machine; it might be realised by a neural 

network. How can these representations be compared? When are two implementations of 

a function computationally equivalent? When is a function a common abstraction of 

other functions? 

Recent work' °' has presented a method for characterising functions so that their 

relationship to each other can be analysed. This theory is also of use in analysing the 

neural framework of hierarchy. Thus, a description of the basic principles of Foster's 

approach is made and this approach is then applied to the relationship between levels of 

abstraction of neural function. 
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Foster's State-Sequence Characterisation of Function 

A function (i.e. algorithm, neural network, digital integrated circuit, etc) is characterised 

by a set of state-sequences. A state-sequence is, obviously, a sequence of states through 

which the function passes. A state consists of all the variables contained in the function - 

which may include, for example, instructions or network topology, as well as data. This 

is best illustrated by Foster's example of a Pascal-style representation of an exclusive-or 

function: 

program xor; 

var x, y, z: mteger; 

begin 

readln(x); 

readln(y); 

if (x=y) then 

z :=O; 

else 

z:= 1; 

writeln(z); 

end. 

This function will start off in the following state: 

x: U 

Y: U 

z: U 

next instruction: readln(x); 

'x', 'y', 'z' and 'next instruction' are labels (or variable names) to which are attached 

states. Initially, x, y and z are all undefined: U. As the function executes, these states will 

change in the following sequence: 
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x: 0 

Y: U 

z:U 

next instruction: readln(y); 

x: 0 

Y: 1 

z: U 

next instruction: x=y?; 

x: 0 

Y: 1 

z: U 

next instruction: z=1; 

x: 0 

Y: 1 

z: 1 

next instruction: writeln(z); 

x: 0 

Y: 1 

z: 1 

next instruction: U 

As Foster shows, a neural realisation of the exclusive-or function can be characterised 

using the same method. Here, however, variables are continuous-valued, not discrete, and 

must be represented to some arbitrary degree of precision. The labels (0, 1, 2, 3, 4) 

correspond to the neurons in Figure 4.6: 
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Figure 4.6 Neural Implementation of Exclusive-Or Function 

0:U 1:U 2:U 

3:U 4:U 

0:0 1:U 2:U 3:U 4:U 

0:0 1:1 2:U3:U 4:U 

0:0 1:1 2:0.983:0.02 4:0.98 

These examples convey the method of the approach and illustrate how classical and 

connectiomst implementations of a function can be compared. A function is 

characterised by a set of state-sequences because it can only be exhaustively described in 
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terms of input and output by producing a state-sequence for each input/output 

combination. Obviously, this method of characterisation explodes with increase in 

complexity of function or data but this is not of concern. What is required is not a 

practical but a theoretical means of characterising an algorithm and interrelating it with 

its abstraction and implementations. 

Hierarchical State-Sequences 

Implicit in the previous examples was the concept of detail, which may be viewed as a 

form of hierarchy. The Pascal representation would typically be compiled and assembled 

to a machine code representation for execution on a von Neumann architecture. That 

machine code level of representation will contain several other variables used in 

computing intermediate results. Thus, if we were to take our state-sequence analysis to 

machine code level, intermediate sequences would typically be required to transform 

between each of the major states listed in the example. For the neural implementation, 

however, it doesn't make sense to insert intermediate state-sequences because the neural 

realisation is 'primitive'. (As previously described, it is possible to subdivide neuron 

function but, for the purpose of this analysis, the neuron/synapse level is taken as the 

primitive level.) 

The process of 'filling in' more detailed state-sequences corresponds to implementation, 

whereas , the process Qf removing intermediate state-sequences corresponds to 
(.t 4src Ii.) 

abstraction. Foi'example, the state-sequence description of the neural exclusive-or could 

be abstracted to omit the states of neurons two and three. Effectively, the function would 

then be described entirely in terms of its input and output states through time. 

A State-Oriented Description of the Framework 

A method that interrelates levels within the framework is required. This will determine 

how a function is implemented and how it is abstracted. A hierarchy of state-sequences, 

in addition to some simple constraints, enables the study of this relationship. 

For illustrative purposes, take the hypothetical function - expressed within the 

framework - as shown in Figure 4.8. All that is shown is the interface to the function. By 
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Figure 4.7 Using state-sequences to describe hierarchy 

defining state-sequences for inputs supplied to, and outputs received from, this interface, 

the function can be comprehensively characterised. This is an implementation-

independent method of specifying what the function does. 

The class of correct implementations of this function is suprisingly large. Informally, any 

configuration of lower level functions which obeys certain simple constraints is a valid 

implementation. (See Appendix A for a formal treatment of this.) To describe these 
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Figure 4.8 Interface of some hypothetical function 
and state-sequence describing function 

constraints, it is useful to consider an example of a valid implementation, as shown in 

Figure 4.9. 

Each lower level function used to implement the hypothetical function has its own state-

sequence. It is not of importance, at this stage, how these functions are themselves 

implemented. What is required is that they satisfy constraints imposed on them by the 

topology in which they have been interrelated so as to implement the hypothetical 

function. The constraint which will ensure that the topology is a correct implementation 
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Figure 4.9 Example Implementation of Hypothetical Function 

of the function is as follows: where interface ports in two functions/interfaces are 

connected, the state on each port must be the same (or undefined) at each point in time. 

Thus, for the implementation of the hypothetical function in Figure 4.9, the state-

sequences for the functions in terms of which it is implemented are as shown in Figure 

4.10 (a are algebraic variables denoting the state on a port at time t). 

State-Oriented Abstraction and Implementation 

If all functions within a hierarchical specification of a neural system satisfy these 

constraints then, by induction on state-sequences, the neural realisation satisfies the top-

level function specification. The base case here, is the state-sequence of a neuron, which 

approximates some mathematical model. Note that, for the purpose of this analysis, the 

synaptic multiplication is incorporated in the state-sequence of a neuron. ANNECS is a 

software tool which performs this implementation of a high level function as a neural 

network (see Chapter Five). When a function is successively implemented in terms of its 
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Figure 4.10 State-sequence characterisation of functions which form 
a valid implementation of the hypothetical function 

components such that each stage in the implementation satisfies the constraints outlined 

above, the resultant realisation must be a valid implementation of the top level 

specification. 
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The representation of a function in terms of its defining functions' state-sequences instead 

of its own state-sequence corresponds to implementation as described by Foster.' °' The 

reverse process corresponds to Foster's definition of abstraction. This hierarchical state-

oriented method of analysis offers a means of relating levels in a formal way. 

Biological Considerations 

This section considers the ease with which this framework may be embodied by 

biological processes. This involves exploring how a hierarchical specification may be 

represented in a genetic code and how such a representation may be interpreted during 

growth. It is also interesting to consider what role hierarchy might play during learning. 

It should be emphasised that this section (alone) is purely speculative and not central to 

the thesis. it is included for the sake of interest alone. 

Genetic Encoding of Hierarchical Specifications 

It is beyond the scope of this thesis to consider whether what is known about DNA and 

cell replication is sufficient to say whether hierarchical specifications of neural nets may 

be encoded and interpreted during development. What we can say is what level of 

biological functionality is required in order to achieve these objectives. 

A complete specification of a neural system may be viewed as a neffist of nethsts (see 

section 5.3). This structure may be genetically encoded and thus guide brain-generation, 

given the following capabilities: 

It must be possible to point to a certain point in the DNA chain. 

It must be possible to move the pointer to another point in the chain, dependent 

on what it previously pointed to. 

It must be possible to give a neuron a label (in order to specify connections). 

A method for genetically encoding a specification is illustrated in Figure 4.11. 

Brain development, under this scenario, basically consists of moving pointers along the 

chain. When a cell replicates, one cell (a) contains the pointer moved along to the next 
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Function 4.11 fllustration of the way in which a specification might be genetically encoded 

unit in the chain; the other cell (b) contains the pointer moved to a new cluster definition. 

Thus, generation will propagate down through the hierarchy to the primitive level. As cell 

(a) moves its pointer through all the clusters/functions which make up a certain level of 

definition, it will eventually come to some 'stop' code, whereupon the cell should die out. 

What that cell has represented is a particular implementation of a function at a non-

primitive level in the hierarchy. When it has spawned the generation of the functions in 

terms of which it is defined, it has no role left and so dies out. This may explain why 

many neurons die out during biological development in a way that appears to be 

programmed in (see section 2.1). Presumably, neurons could be created to form 

connections to neighbouring neurons which have a common label. These labels could be 

determined by the position of the pointer within the chain. 

Hierarchical Learning 

It seems likely that levels of hierarchy in connections exist in biological systems. The 

optic nerve is an obvious example. Since these hierarchies are probably represented by 

the spatial alignment of connections it seems likely that some biological effects may 

cause 'high level learning'. Artificial learning algorithms that 'work' (section 2.2) relate 

modification of one synapse to modifications of other synapses by, for example, 

backpropagation of errors. This relationship between modifications is necessary in order 

to converge on a solution. However, the method of relating synapse modifications is 

almost certainly non-biological. Abstracting neural functions to higher levels of 
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Figure 4.12 Illustration of how a network may develop from a genetically-encoded hierarchical specification 

representation may supply an alternative method for relating weight-changes. This would 

come about as a result of the hierarchy inherent in connection patterns. There may be 

biological evidence that the strengths of a group of synapses between two clusters of 

neurons increase and decrease largely in unison (see also section 7.3). Again, it is 

stressed that these thoughts are entirely speculatory. 

5. Discussion on Representations 

What is a Representation? 

Marr describes a representation as "a formal system for making explicit certain entities or 

types of information, together with a specification of how the system does this." 60  For 

example, a model of the solar system is a representation of it. The Arabic, Roman and 

binary numeral systems are representations of numeric values. Arabic representations 

model a number by a string of symbols drawn from the set {0,1,2,3,4,5,6,7,8,9}. A 

representation is formed by decomposing the number into a sum of multiples of powers 

of 10 and concatenating these values into a string with higher powers to the left and lower 
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powers to the right. For example: 37 = 3x10 1  + 7x100. Binary representations, on the 

other hand, decompose the number into a sum of multiples of powers of two. Thus, 37 in 

Arabic representation becomes 100101 in binary. Roman representations use rules not 

directly based on powers of any number and thus the representation is not suited to 

performing arithmetic. 

The way in which visual information can be transformed from one representation to 

another has already been discussed (section 4.1). Pixel intensity values can be 

transformed to edges, edges to boundaries, boundaries to segments, segments to 

measurements and measurements to high level representations of objects. There are many 

other ways in which representations of visual information can be transformed. For 

example, pixel intensity values can be represented as a histogram. A scan line (a 

horizontal or vertical line of pixels in the image) can be represented by a graph which 

plots intensity against pixel index. An image can be inverted by taking: pixel[iJ[j] = max-

intensity - p&el[i][j]. An image can be transformed into a representation within the 

frequency domain by performing a Fourier Transform. 

Each of these examples serves to illustrate what is meant by a representation. 

Computation itself, in its most basic definition, may be viewed as the transformation of 

representations, by means of some method of combination, to other forms of 

representation. Thus, the number 37 can be represented as 30+7, or 29+8, or 28+9.. .or 
3*(5*(5..3))+7... An image can be represented, at one extreme level, as an array of 

intensity values or, at another, as a description of the objects pictured, such as the name of 

the person whose face is visible. We are back to levels again. 

This discussion is of relevance to us for two reasons. First, it is worth again stating that 

the framework for neural theory is not a particular representation. It is a formalism within 

which representations are made. Thus, this thesis is not primarily about representations. 

It does not attempt to answer what is or is not a 'good' representation. In particular, it 

does not concern itself with how the brain represents the world. A suggestion of this is 

given later in this section, but a mere suggestion it remains. In fact, there is no such thing 

as a fundamentally good representation. The question should rather be: what is a 

representation good for? Binary representation of numbers is good for determining 

whether a number is a power of two; it is bad for deciding whether it is a power of ten. 
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The binary representation of data suited to von Neumann computation is almost certainly 

not how numeric values are represented in the brain. The instruction-oriented 

representation of functions within von Neumann machines is almost certainly not the way 

in which functions are represented in the brain. 

Just as there are usually many possible implementations of a function, so there are many 

possible ways of representing a function neurally. This thesis does not say which way is 

best but it does provide a method for implementing and comparing those representations. 

What representations are natural to neural realisation? 

In Chapter Three the virtues of a relatively recent methodology for creating natural 

models of a world were discussed. Object-oriented modelling seems to be the most 

'natural' method of modeling a world that exists. Each entity in the world is realised by 

an entity in the model; its interactions with other entities are realised - in a 'natural' way 

- by passing messages. What is interesting about this is that these representations are 

elegantly implemented within the neural framework. Each object in a definition is 

autonomous; each cluster of neurons in a net is autonomous. Each object in a model is 

thought of as a continuously executing process; each cluster of neurons that implements 

an object is continuously existant and active. Objects communicate by message passing; 

clusters of neurons communicate by passing messages along multiple synapses. Objects 

are specified in terms of other objects and ultimately in terms of one or more primitive 

objects; each cluster of neurons may be perceived as interconnections of other clusters of 

neurons and ultimately as interconnections of primitive neurons. 

As noted in Chapter Two (section 2.2) a von Neumann machine may be implemented in 

terms of neurons. This is a very unnatural use of neural hardware since it uses a parallel 

method of computation in a sequential manner, just as we do, slowly, when performing 

mental arithmetic. As the adoption of the Arabic representation of numbers was essential 

for the development of mathematics so the use of representations which are natural to 

neural implementation is essential for the advancement of neural computation. The limit 

to which this thesis can go is to say that the framework presented is suited to the 

expression of distributed, object-oriented-style implementations, and that neural systems 

are supremely distributed and are concerned with forming natural (i.e. perhaps object- 
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oriented) models of the world. Thus, it seems likely that representations that are easy to 

describe within the framework will make good use of neural hardware. 

6. Summary 

A framework whose basis is hierarchy has been presented which enables neural systems 

to be understood at arbitrary levels of abstraction. The concept of levels is applicable to 

both function and data. The formal relationship between levels in this hierarchy has been 

analysed and simple constraints for the correct implementation of a function have been 

identified. This framework, whilst facilitating the creation of distributed representations, 

does not identify what constitutes a 'good' representation. 

The next chapter describes an embodiment of the framework in the form of a software 

tool. The following chapter then describes an application of the framework to a real-

world problem. 



Chapter Five 

ANNECS : A Neural NEtwork Compiler and Simulator 

1. Introduction 

ANNECS is a software tool which embodies the methodology for constructing neural 

nets proposed in Chapter Four. 161,162  It enables the formation - compilation - of a neural 

network from a hierarchical specification. It then enables learning of that net - simulation 

- by applying one of a number of learning algorithms. During compilation the high level 

information contained in the hierarchy of the specification is retained such that learning 

that occurs can be understood. The software that performs a function closest to 

ANNECS' is probably the CONIC toolkit for constructing distributed systems. 163 

ANNECS however, whilst sharing some principles of operation with CONIC, is oriented 

exclusively towards neural implementations. 

Basically, ANNECS enables the user to define functions in terms of appropriately 

interconnected lower level functions. The only primitive function is the neuron and the 

only primitive connection is the synapse, though the model upon which each of these is 

based can be selected by the user. Thus, all functions are defined, ultimately, in terms of 

neurons interconnected by synapses. The compilation component of ANNECS performs 

this translation between a high level, hierarchical specification and its functionally 

equivalent neural implementation. 

The development of this software was undertaken to provide experimental support for the 

framework for neural theory advanced in this thesis. Thus, ANNECS integrates genetic 

and empirical methods of construction, the compilation and simulation components, 

respectively. The key element which enables this to be carried out in a meaningful way is 

the presence of hierarchy. The experimental results obtained from this work - the 

development of ANNECS and its application to numberplate recognition - endorse the 

methodology proposed by this thesis. Within a framework of the nature described in 

Chapter Four, the functions computed by neural systems can be comprehended at 

63 
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arbitrary levels of abstraction. 

ANNECS consists of circa 5000 lines of 'C' code and makes extensive use of the 

SunView graphics software. It was developed over a period of about eighteen months and 

forms approximately half the experimental work of this research. ANNECS is simple in 

design and easy to use. It is largely menu-driven and thus performs most functions by use 

of the mouse. The only typing required of the user is in order to name functions, 

connections and interfaces, and to supply initial weight and threshold values. 

2. Features of ANNECS 

This section reviews the significant features of ANNECS and describes why their 

implementation was necessary in order to substantiate this thesis. 

Visualisation 

Within the framework described in Chapter Four, description of a neural architecture 

consists of a hierarchy of nethsts. Written in language-form, a netlist can be fairly 

meaningless. Text is inherently sequential in the way in which it lies on the page, even if 

what it expresses is something fundamentally parallel. A nethst is above all a structure, 

and structures are perhaps best conceived visually. Thus, an essential requirement of 

ANINECS is that it visualises specifications. Each component of a function is a real entity, 

continually existant in the target neural implementation, and thus it makes sense to have 

it represented by a real object at a particular place on the screen. This is not to say that the 

same specifications could not be described linguistically, but that the style of specification 

lends itself to, and is best understood by means of, visual representation. ANNECS uses 

visualisation for the same reason that schematic capture tools use it. 

Each type of function and each type of interface is represented by a user-defined icon. 

This icon is used to capture function visually (see figure 5.1). 

Similarly, the type of each connection is represented by a uniquely-patterned line. Cubic 

splines are used to generate curved interconnections between primitive functions and 

interfaces, in order to make structures look more biological! Arrows on connections 

indicate the direction of the message path: connections are unidirectional. 
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Figure 5.1 Icons of Function and Connection Types 

Libraries 

As is customary in interactive editors (as opposed to entirely language-based methods of 

specification) it is necessary to categorise function/connection types hierarchically so as 

to be able to access them efficiently. ANNIECS achieves this by thç use if hierarcIical 

libraries, one hierarchy for functions and another for connections. o carry -but 

maintenance on these libraries, a number of housekeeping functions are provided. 

Edit Object 	- used to load an object definition. An object is a function or a 

connection type. 

Create Object - used to create a new function or connection type. 

Create Library - creates a new library as a member of another library. 

Copy Item 	- will copy a member of a library, or a library and all its dependents, to 

another library. 

Move Item 	- the same as copy except that the source is deleted after copying. 

Rename Item 	- self-explanatory. 
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Delete Item 	- if item is a library, deletes all dependents as well, after prompting for 

confirmation. 

Store Library 	- 'snapshots' of a library can be stored under user control and reverted 

to later in the development process, if so desired. 

Load Library 	- to reinstate a previously stored 'snapshot' of a library. 

Macro Expansion 

Associated with each function are a number of user-defined macros. By use of these 

ANINIECS will generate a textual description of a function. This description is derived 

from the macros of the lower level functions in terms of which that function is defined. 

At the primitive level, ANNECS generates a list of Horn Clause, PROLOG-style 

predicates with 'conditional probabilities' (weights) and 'prior probabilities' (thresholds) 

incorporated. 

The purpose of this automatic generation of textual descriptions is: 

to show the similarity between rule bases and neural nets at the primitive level, 

and 

to show that hierarchical linguistic descriptions of neural architectures can be 

made. 

Macros are expanded in the order in which they are defined. The expansion of one macro 

can invoke the expansion of other functions to which it is connected. Thus, 'sequential' 

code for functions can be generated, though this 'sequential' function is in effect 

pipelined. For an example, see figure 5.3. 

There is a reason for there being a number of macros associated with each function. The 

user, when generating text, can specify that the nth macro be used for each function, so as 

to enable generation in distinct languages. In addition to this, there is another parameter 

for text generation which is depth of expansion. If the depth is greater than one, the text 

for the components (in terms of which the top level function is defined) is generated 

recursively to the specified depth, so as to generate modular 'source code'. 
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Figure 5.2 Example Hierarchical Menu Layout: Functions 

Specification 

The specification of a neural system is made by the hierarchical description of functions. 

The specification of each of these neural functions is made up of a neffist of lower level 

functions and interfaces. Thus, the specification process consists of: 
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Figure 5.3 
Generation of textual description for function containing nested if. ..then...else 
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creating instances of interfaces 

creating instances of functions 

interconnecting these functions and interfaces in the appropriate manner so as 

to implement the desired function 

The entire specification process is carried out by use of the mouse. The function or 

interface type to be included in the function being defined is selected from its hierarchical 

library. Its icon then joins a menu of 'current functions/interfaces' from which it is again 

selected to become 'current function/Interface', before inclusion in the function being 

defined. Input and output ports to the function are created by placing instances of 

connection types, represented by icons. To read input received at a particular port a 

connection is made from that interface port to the appropriate lower level function 

required to deal with that input. Output from the function is sent to an output port in the 

same way. 

When creating connections between functions it is necessary, unless the function is 

primitive, to specify the input and output ports on the destination and source functions. 

This is done by the use of pop-up menus which indicate the ports of each function and 

their connection-types by use of labels and icons, respectively. This is an elegant and 

highly visual means of creating interconnections. 

Each function is given a threshold and each connection a weighting that is continuous-

valued and user-defined. By default these are both 1.0. At the primitive level these values 

are used as initial  thresholds and weights in the compiled neural implementation, prior to 

learning, though they may equally well be left random and undefined. At a higher level, 

it is possible to use these values as high level thresholds and weights. It may be that 

clusters of neurons in biological nets have an overall, high level threshold. Also, there 

may be biological evidence that the weights of a group of synapses between two clusters 

increase and decrease their weights largely in unison. These high level connections may 

perhaps behave as if they have an aggregate weight. 

There is no queueing of messages at input/output ports. If multiple messages are 

received at the same port in the same time-step, they are simply passed in unison along 
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the internal connections. 

3. Compilation: Formation by Specification 

The term Compilation is usually applied in a computing context to mean: generation of 

machine code from a high level language. In the context of this thesis, however, it means 

the generation of a neural architecture from a high level specification. Chapter Four 

presents the framework within which this generation occurs. Two quite different methods 

of performing this compilation were implemented in ANNECS. 

The first method attempted seemed at first consideration to be the most sensible. It was 

simply to flatten out the hierarchical specification, from the top down, whilst resolving 

multiple references to common instances of functions, until no non-primitives exist; that 

is, until the definition consists of a neural architecture. There are non-trivial problems 

involved in doing this which will be described later. After implementing and testing this 

approach it was seen, from preliminary experiments, that it was fundamentally limited. 

Firstly, high level information had been discarded during the compilation process such 

that it was not possible to understand, at a non-primitive level, learning that subsequently 

took place. Secondly, learning algorithms could not exploit the hierarchy that was 

inherent in the compiled network. The grouping between neurons, clusters of neurons, 

synapses and bundles of synapses in biological nets,isto some extent contained in their 

relative positioning in three-dimensional space. No analogue of this exists in traditional 

artificial nets and thus it is necessary to retain this hierarchical information during 

compilation. Hence, the second compilation method which was explored and eventually 

adopted retained high level structure. It formed a nethst of netlists, which was used by a 

non-primitive simulation model different from that implemented for the first compilation 

method. As it turned out, the second method was easier to code, resulting in 1300 lines as 

opposed to 1600 lines of code. 

Compilation Method #1: Flattening 

The key data structure underlying this method was a cactus stack. This is a vertical stack 

from which horizontal stacks .grow outwards. Incidentally, this data structure is at the 
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core of the compilation process of other object-oriented languages. A major problem 

involved in flattening is to resolve references to a function in terms of which more than 

one other function has been defined. The compilation method is basically as follows: 

Push components of top level function to vertical stack. 

For each non-primitive interface or function (not connection) push the 

components in terms of which it is defined to a stack in the horizontal dimension (a 

spine). 

For each non-primitive interface or function on vertical stack, replace it with its 

definition and resolve all connections to common instances, in terms of which more 

than one function is defined. This collapses the horizontal stacks. 

Repeat steps 2 & 3 until no non-primitive functions or interfaces exist on vertical 

stack. 

Take high level connections and flatten them into the lower level connections in 

terms of which they are defined. 

Repeat step 5 until no non-primitive connections between functions, and thus no 

non-primitive interfaces, exist. 

Figure 5.4 illustrates this process for the implementation of a specification of 

if. .then. . .else in terms of logic gates. It should be emphasised that, whilst the resultant 

neural implementation is typically very large, the specification from which that 

implementation is derived is extremely concise and compact. This is a very powerful 

feature of this methodology. The primitive, and apparently structureless, compiled 

network does in fact contain hierarchy of function and can only be understood by 

reference to its specification, in conjunction with the compilation process by which it was 
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Figure 5.4 Stages in compilation of if...then. ..else by flattening 

constructed (see section 5.5 for an example). 
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Compilation Method 2: Resolution for High Level Simulation 

In this method, the key data structure is a nethst of nethsts. This structure is created on a 

one-dimensional stack by the following stages: 

Push components of top level function to stack. 

For each component of this function, if it is not an instance, or if it is an instance 

and has not already been loaded, then load its definition to the top of the stack. 

Resolve all references to this component. 

Repeat steps 2 & 3 until all function definitions are loaded: the stack then 

contains a neffist of netlists. 

Function in terms ConnectioWlnterface 
of which top level in terms of which top 

Top Level Function Definition 
No  inction is lWel function deflr 

functions 	ports 

interconnections 

Two Prftt. in top lv.1 
function are same type 

netlist 

netlist of netlists 

Figure 5.5 	Compilation of neural specification by netlitt-of-netlist formation 

Netlist-of-Netlist Formation 

It is necessary, during this process, to maintain a table of instances. An instance might 

be, for example, a function which detects an edge of certain length and position in an 

image and which is used by more than one higher level function. Connections must be 

created to/from the cluster of neurons that recognises the edge to each of the higher level 

functions, rather than creating two identical clusters of neurons which perform the same 

function. 
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The loading of functions and connection types is recursive and, at each level of recursion, 

the total amount of space required by the function or interface during simulation is 

computed. For example, an interface representing a five-by-six retina would require a 

vector of size thirty during simulation. 

4. Simulation: Formation by Learning 

ANNECS enables the simulation of a compiled network according to one of a number of 

models. Thus the same initial architecture can be made to learn according to different 

models without changing the specification. The model for neurons and synapses is 

selected separately. 

Two different methods of simulation were explored, corresponding to the two methods of 

compiling. 

Flat Simulation - as in conventional neural simulators iM 

High Level Simulation - composing and decomposing high level messages at 

simulation time, according to the hierarchical specification. (set 	t c. 

The high level simulator is most worthy of comment. Input data is read from input/output 

files to interfaces with which those particular files have been associated. This data is 

timestamped before sending it along connections from that source interface to destination 

functions and interfaces, after which the timestamp for the source interface is increased 

by one. When data is sent to a function, it is placed on the correct i/o port and that port's 

timestamp is set equal to the timestamp of the port from which the data came. Any 

functions to which data has been sent are also simulated. Thus, data propagates 

downwards through various levels of hierarchy to the primitive level, where primitive 

cell functions are performed. Simulation continues until all timestamps have been 

incremented. The processing that is performed is the same as that performed on flat nets 

in conventional simulators, except that there is hierarchy in messages and functions in the 

nets. 
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5. Example: A Simple Robot Controller 

In order to demonstrate the principles of ANNECS it is useful to consider an example. 

The robot moves around in a world containing stairs, objects and holes. When it finds an 

object it should pick it up and carry it until it finds a hole, into which the object should be 

dropped. Every other time the robot meets a stair, it should climb it; when not due to 

climb a stair it should instead turn left. Our aim is to formulate a specification describing 

this behavior and have ANNECS implement this as a functionally equivalent net. This 

will enable us to understand the part played by each neuron in achieving the overall 

function of the net. 

The robot controller has been defined as one high level object in order to observe its 

entirety (see figure 5.7). It could, of course, have been divided into smaller modules. 



	

Chapter Five - Applying the Framework 
	 vr,i 

This specification is compiled to the network shown in figure 5.8. 
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Figure 5.7 Specification of Simple Robot Controller in ANNECS 

Section 4.5 discussed the issues concerning representations, the fact that ANNECS 

is a framework and that it does not constrain specifications to one particular 

representation. The specification of the robot controller given in Figure 5.7, for example, 

contains a single line of control. It could be redefined to an alternative - though 

functionally equivalent - representation as in Figure 5.9. Here, control is distributed and 

the compiled network, though behaviorally equivalent, is slightly different in structure. 
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This representation makes better use of its target architecture, a neural network, in that 

control is more distributed. The first specification was effectively a completely pipelined 

sequential implementation. This illustrates the fact that certain styles of representation are 

more suited to neural realisation than others. 

6. Improvements to ANNECS 

ANNECS constitutes a major piece of software development, perhaps comparable to the 

implementation of a conventional high level language compiler. A problem with the 

implementation of ANNECS has been that the problems involved in neural specification 

are all but unstudied and thus no body of experience is available to guide development. 

This means that many improvements could be made to the software which, though not 

essential to the experimental results of this thesis, would enhance it. 



Chapter Five - Applying the Framework 
	

78 

if 

found object 
the 'else 

found hole 

if 
stop motor 9 

thenelse 

True 

Boolean 
pickup object False 

canying object 

drop object 

& if 

9 
thenelse 

blocked 

& if 

9 rue 
no 

 Boolean 

False 
start motor 

climbstair 

climb stair 
turn left 

Fig 5.9 Alternative Specification of Simple Robot Controller 

Both methods of compilation could be provided so that (a) high level learning can be 

studied and (b) flat neural architectures can be downloaded for implementation on neural 

hardware or simulation by conventional simulators. More learning and/or neuron models 

could be implemented, and not all those that have been implemented have been tested. 

Alternatively, neuron and synapse models could be made user-definable. The automatic 

expansion of text using function macros is not fully functional. 



Chapter Five - Applying the Framework 	 79 

Having said this, the basic functionality of ANNECS is well-debugged and it is this that 

is required for the substantiation of the methodology espoused in Chapter Four. ANNECS 

is an embodiment of the framework put forward by this thesis and shows that neural 

architectures can be generated to implement any hierarchically-described distributed 

specification. Thus, ANNECS offers a potential means of combining genetic 

(construction by specification) and empirical (construction by learning) methods of 

construction. 

The next chapter presents a case study which applies the ANNECS methodology to a real 

world problem. The application of ANNECS to numberplate recognition is compared to a 

conventional implementation of a numberplate recognition system which was developed 

alongside the main line of research. 



Chapter Six 

Case Study: Automatic Numberplate Recognition 

1. Introduction 

This chapter applies the methodology developed in the preceding chapters to a difficult 

real world problem, the problem of automatic numberplate (character) recognition. This 

task involves locating and then reading the numberplate, given a picture of the vehicle - 

and is an extremely difficult function to perform to high accuracy. Commercially 

available numberplate recognition systems typically achieve recognition rates of only 

60-80%. 165-169 

Chapter Five showed that the framework presented in this thesis can be applied to 

constructing neural networks. The methodology 'works' but whether or not it is useful 

will only be determined by its application to genuine engineering problems. Thus, the 

purpose of the work described in this chapter is to substantiate, by way of experiment, the 

effectiveness of the methodology. 

In more general terms, this chapter describes work which explores the application of this 

methodology within the field of image processing. Image processing is concerned with 

deducing the three-dimensional representation of objects which produces a two-

dimensional image. 170"7' The way in which one might go about specifying neural 

implementations of standard image processing tasks such as thresholding, edge detection 

and segmentation is explored. Applications within the field include: security and 

surveillance; target detection and tracking; 172  assembly line monitoring; reading printed 

or handwritten text for computer input; 173180  aids for the blind; analysis of medical 

images; and many more. A whole new market in these areas seems to be opening up due 

to the introduction of enabling technologies such as very cheap yet high-quality 

cameras. 181  However, the problems yet to be solved are far from trivial. Tasks which 

humans find easy, such as recognising a face, are very difficult to perform artificially. To 

some extent the reverse is also true. Playing chess is quite taxing to most humans, yet it 
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can be performed to a high standard by computer. This thesis, confirming conclusions 

which might be drawn from the 60-80% recognition rates quoted earlier, testifies to the 

difficult nature of the problem of numberplate recognition. 

This chapter first reviews some basic techniques in image processing and then describes 

some applications of neural techniques to the field. An overview of the numberplate 

recognition problem is then presented, followed by a description of a conventional (non-

neural) approach to the problem, performed for comparative purposes as part of this 

research. Finally, the methodology advocated in this thesis is applied to the problem. 

2. Basic Image Processing Techniques 

Image Capture 

It is not possible to perform any image processing unless there is some good means of 

obtaining images - that is, a sensor. Biological neural nets have two image sensors par 

excellence: eyes. Each of these sensors transmits its output down approximately one 

million parallel data paths - the optic nerve - to the image processor par excellence: the 

brain. These sensors have a non-linear resolution; the fovea, the area at the centre of the 

retina and thus at the centre of the visual field, contains orders of magnitude more 'pixel 

sensors' - rods and cones - than other parts of the retina. Biological sensors perform 

neither grayscale nor colour sensing exclusively but combine both. Grayscale sensing is 

used for certain functions to which it is best suited, such as edge detection and object 

recognition. Colour enhances classification and recognition functions. In addition to 

this, primitive processing such as edge detection is performed actually within the sensor. 

The output transmitted down the optic nerve to the brain consists of edges and perhaps 

other primitive data such as texture, as well as colour and grayscale. 

Artificial sensors, on the other hand, typically output composite video at fifty frames a 

second, with a resolution of the order of a million pixels. The video output is normally 

sampled and digitised by a frame grabber which outputs a digitised representation of the 

picture suitable for computer storage and analysis. Constraints imposed on the image 

processor by the sensor include: the horizontal and vertical resolution, the dynamic range 

and response profile of each pixel sensor, contrast and exposure control. 18 ' If the image 
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capture is performed badly, the subsequent image processing is constrained by this. This 

principle also holds true for stages within the image processing process. The results of 

each stage can only be as good as the results from preceding stages. In numberplate 

recognition, for example, if the initial thresholding is performed poorly all subsequent 

processing will inevitably suffer as a result. 

Edge Detection 

An edge may be defined to be an area of pixels where the rate of change of intensity is 

greater than some threshold. If an image is 'differentiated' in the horizontal dimension, 

vertical edges in the image correspond to peaks and troughs within the derivative. There 

are many different methods for performing edge detection and the underlying theory is 

well understood. 182  Perhaps the best-known and computationally most useful method is 

the one proposed by Canny. 183  

The human eye performs edge detection by means of lateral inhibition. 5  Linsker has 

shown that multilayer perceptron-style architectures using Hebbian learning produce 

edge detection functions, even with random training data. 36  Edge detection is probably 

the most basic image processing operation carried out in the visual cortex and is certainly 

essential for all higher level operations such as determining shapes and hence recognising 

objects. What is of interest to this thesis is whether or not edge detection functions can 

be specified and compiled to neural structures which approximate those found in 

biological nets. 

Various parameters are usually supplied to 'artificial' edge detection algorithms. These 

include factors such as: the lateral distance over which to consider changes in intensity; 

the threshold over which the change in intensity must be before it constitutes an edge; the 

number of adjoining pixels which must be considered parts of an edge before an edge can 

be considered to be present. But these linguistically-described parameters are merely 

crude expressions of what is better mathematically expressed and analysed .112 

The conventional numberplate recognition algorithm presented in this chapter first 

performs thresholding, followed by edge detection on the resultant binary (black and 

white) image. This edge detection on a binary image is very simple to perform and is 
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described in section 6.5. In general, thresholding and edge detection are very closely 

related; if it is possible to edge detect, then it is usually possible to threshold, and vice 

versa. However, thresholding discards more information than edge detection. Thus, it is 

only suitable as the first processing stage for applications such as numberplate 

recognition where the objects to be recognised are originally binary in nature. 

Thresholding 

Thresholding is the transformation of a grayscale image to a binary (black and white) 

image. It is one of the hardest tasks to perform in the conventional numberplate 

recognition algorithm. It consumes half the total processing time and over half the total 

development time was required to achieve satisfactory results. If the thresholding is not 

done well, all subsequent stages are doomed! 

Methods of thresholding may be divided into global and local techniques. 184  Global 

methods choose, on some basis, a threshold to be applied to every pixel in the image. 

Conversely, local methods choose a different threshold for each local patch of the image. 

The threshold for each block is typically determined from the grayscale values of local 

pixels at run time, and thus the method is often called local adaptive thresholding. The 

main problem involved in this is to find the best grayscale (threshold) such that when all 

pixels with intensity greater than this are made white and all pixels with lower intensity 

are made black, the resultant patch of image is most useful to subsequent segmentation 

and recognition stages. Thus, in numberplate recognition it is desirable to select the best 

threshold such that the black of characters and the white of the background plate are 

clearly disambiguated. It is conceivable that the lower part of the plate will be in sunlight 

whilst the upper part will be in the shadow of the bumper. Thus, the 'black' of the bottom 

of the characters can be lighter than the 'white' of the background of the top of the plate. 

This example illustrates the necessity for choosing thresholds locally at run time. The 

threshold for the bottom of the plate should be higher than the threshold for the top of the 

plate. 

Three main methods of deriving these thresholds were explored whilst developing the 

conventional recognition algorithm. These were: 
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Mean Thresholding - the mean of a block of pixels' intensity values is used as the 

threshold. This method is simple and of use where the grayscale information is 

approximately equally distributed about the optimum threshold. 

Median Thresholding - the median of a block of pixels' intensity values is used 

as a threshold. This method is also simple and is of particular use in applications 

such as fingerprint recognition where it is desirable to have approximately half the 

image black and half white such that, for example, the bands of a fingerprint are of 

approximately equal width. 185 

Histogram Thresholding - this includes a large class of techniques which 

examine the shape of the histogram of a block of pixels' intensity values in order to 

derive a threshold. 186  These methods are generally computationally more 

expensive but are also more versatile. Comprehensive mathematical analyses of 

these have been performed. 184,187 

The' mean and median methods of thresholding were found to give insufficient 

performance, and both for the same reason. If a block of pixels happens to overlap a 

character on the plate such that there is either more character than background or vice 

versa, the shape of the histogram will consist of two humps of unequal size. It is the 

trough between these humps where the threshold should ideally be placed (see figure 6.1) 

but both mean and median methods will shift the threshold from the trough towards the 

larger of the humps. 

In practice, of course, smoothing must be performed on the raw histogram before 

anything else can be done. Ideally, two peaks will emerge from this process with a good 

intervening trough where the threshold may be placed. Adaptive smoothing is often 

required, however, since too much smoothing removes these peaks completely whilst too 

little leaves too noisy a histogram. This problem is returned to later, in the description of 

the conventional recognition algorithm in section 6.5. 

Segmentation 

At some point in the processing of an image it is necessary to take the results of low 

level, local operations such as thresholding and edge detection and to build more global 
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Figure 6.1 Flistogram and potential thresholds for a block of an image 

representations of objects and scenes. Segmentation is one stage in the transformation of 

local, low level results to global, high level representations. For most applications it is 

very difficult to segment an image on the basis of raw image data. It is more usual to 

perform segmentation on the basis of edges, blocks of thresholded images, texture and 

surfaces (normally deduced from edges), feature points, stereo maps, and so on. 

For example, in conventional numberplate recognition, two stage segmentation is 

performed: 

The thresholded image is divided into blocks of pixels which are separable from 

the background and could thus be characters. 

Characters are divided into blocks and the parameters of those blocks are used as 

data for the classification process. 
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Segments are typically used as components from which higher level objects are formed, 

perhaps using a hierarchical representation. For example, a car consists of a body + 

wheels; a body consists of a bonnet + a middle + a boot; and so on. Figure 6.2 shows the 

main processing stages in the conventional numberplate recognition algorithm. 

Measurements/Classification 

Having segmented an image it is necessary, in order to build a three-dimensional 

representation of it, to relate these segments in some way so as to deduce the nature of 

higher level objects. This is done by the measurement of segment parameters such as: 

size, texture or mean intensity, shape, perspective. It is also done by the measurement of 

relationships between segments, such as: the two-dimensional distance between them, the 

three-dimensional distance between them, and so forth. For example, in face recognition 

it may be possible to characterise the face by factors such as distance between the eyes, 

nose and mouth, and the size and shape of the eyes or perhaps eyebrows. In numberplate 

recognition, the plate - a high level object - is formed by considering the distance 

between character segments. Characters are classified according to the parameters of the 

segments from which they are composed. 

Miscellaneous Techniques 

This section looks at various image processing techniques not of direct relevance to this 

research. A well known image processing operation is the Fourier Transform which 

extracts from an image information in the frequency domain. This technique was 

explored as a method of locating the numberplate in an image. Ideally, a horizontal 

Fourier Transform of an image should give high frequency components for scan lines 

containing the numberplate, owing to the sharp contrast between characters and plate. 

Unfortunately, however, other objects such as the grill on the front of a car give rise to 

conflicting results. 

A general purpose image processing operation is a convolution. This involves passing a 

mask pixel by pixel over the image in order to transform the image in some way. Each 

pixel becomes the sum of, the product of each element of the mask with the pixel it 

covers. This technique can be used to perform primitive operations such as edge 
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Figure 6.2 Main stages in conventional numberplate recognition algorithm 

detection, smoothing and contrast enhancement. Most image processing accelerator 

boards include this function, owing to its versatility. 
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Optical techniques can be used to transform a 'normal' image in some way before 

capturing it by sensor. Headlights can make an adjacent numberplate unreadable using 

the visible spectrum. Thus, for some applications it may be desirable to use an infra-red 

or ultra-violet source and to filter out the visible spectrum. 

Stereo capture and processing is necessary for true three-dimensional vision. This is of 

little relevance to numberplate recognition owing to the two-dimensional nature of 

characters. However, it is of interest to us in view of the fact that humans use stereo for 

three-dimensional interpretation of scenes. It is thought that biological nets probably 

compute the depth of relatively few points and infer the third dimension of other points 

from cues such as object characteristics. 

3. Neural Techniques in Image Processing 

There are too many neural models of image processing to allow a comprehensive review 

in this section but what follows is a representative sample of work from the field. 

Neocognitron 

This model was developed by Fukushima et al, primarily to perform character 

recognition.' 88"89  It consists of multiple layers, the higher layers containing successively 

fewer units than the lower layers. Each layer combines features produced by the 

preceding layer so as to produce higher and higher representations. Thus, the bottom 

layer performs primitive functions such as edge detection, whilst the output layer 

combines segments so as to classify characters. These functions are generated by the 

application of competitive learning (see section 2.2).147 Rotation and translation 

invariance is achieved by having identical feature detectors operating at multiple points in 

the image. Unfortunately, an effect of this is to make the number of units so large that the 

model is computationally inefficient. 

Silicon Retina 

This VLSI implementation, developed by Carver Mead, models the way in which 

primitive image processing is performed in the brain 190  The biological retina has been 
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closely studied and is thus understood well enough to attempt an artificial implementation 

of it. The aim was to implement retinal functions not merely functionally but also in the 

way in which they are performed. For example, the logarithmic response profile of rods 

and cones is performed by the sensor using analog circuits. The silicon retina produces 

an output signal which is invariant to size and rotation. Other analog implementations of 

retinal operations have been performed by Van der Spiegel et al. 191  

Connectionist Models 

Feldman and Ballard have carried out extensive analysis of the problems in applying 

connectionism to image processing. 99,192,193 Results have shown that the internal data 

representation is vitally important (see also section 4.5). As an aid to their work a neural 

network simulator called ISCON was developed, and this is now widely used. 164  

Self-Organisation in Primitive Vision 

Linsker has achieved remarkable results by applying Hebbian learning to multilayer 

perceptron-type architectures. 36  He has shown that, even in the absence of any real world 

input data, primitive functions such as edge and texture detection are learnt. Structures 

that are generated from this learning process seem to parallel those found in the 

biological retina. What is unexpected in these results is that primitive image processing 

functions are learnt when random data is used as a training set. This could explain how 

mammals are born with the ability to recognise edges in spite of the fact that it is very 

unlikely that the structures to perform edge detection are genetically specified.' 

Grossbergian Boundary and Feature Contour Systems 

These models perform edge detection, join edges to form parts of boundaries, complete 

those partial boundaries to form complete boundaries, and then fill in the 

colour/intensity/texture for each segment contained by a boundary. 194  There is some 

parallel with cell structures found in primitive vision areas of mammalian brains. An 

explicit distinction is made between boundaries and colour/intensity/texture and two 

distinct but closely-interactive modules, the boundary contour system and the feature 

contour system, exist to handle each of these aspects. 
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Head-Centred Frame of Reference 

This model consists of a multilayer perceptron trained using baclq*opagation.' 95  Input to 

the network consists of an image containing some object and a representation of the 

degree of extension of the eye muscles. The network is trained to translate the retinal 

input to a head-centred frame of reference. Thus, the object in the field of view is mapped 

to the same head-centred reference point, regardless of which way the eyes are turned. 

Binocular Disparity 

The brain computes depth information by combining output from two sensors separated 

by about 6.5 cm. The structures which perform this operation are to some extent 

observable and have motivated a model developed by Schwartz and Yeshurun.' 96  Their 

work emphasises the role of computational maps (c.f. Kohonen nets) 6 ' in the visual 

cortex. 

4. Overview of Numberplate Recognition 

Requirements for Numberplate Recognition 

Use of numberplate recognition systems has shown that if they are not highly accurate 

they are of no use at all. Current commercially available systems typically exhibit 

recognition rates of 60-80%. No highly accurate and cost effective numberplate 

recognition system yet exists. The reason for this is that the problems involved are 

extremely difficult to surmount, contrary to what one might at first think. 

An application of numberplate recognition which springs to mind is in road pricing. Here, 

drivers are charged for use of a road perhaps according to its location, the level of 

congestion and the time of day. In fact, numberplate recognition is not, and never will be, 

a sufficiently reliable means of identifying a vehicle in order to charge its driver. 

Electronic tagging is a more dependable technique, though not without its problems, and 

has the added advantage of allowing transmission of information such as congestion 

maps to the vehicle. However, it is necessary to have some method of enforcing an 

electronic means of identification, at least in the short term - until tags are integrated into 
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car manufacture. In current road pricing systems numberplates are used as a means of 

identifying offenders of the system. 

It is where 100% accuracy is not required that automatic numberplate recognition can be 

most useful. If numberplates can be identified and matched at key points in the road 

network it becomes possible to extensively analyse the speed and direction of traffic 

flows. Logging of numberplates passing these sites would also be of use to the police - 

for example, in control of terrorism. Automatic access to private car parks could also be 

controlled by numberplate recognition. 

In general, numberplates are a relatively inaccurate method of identifying vehicles. 

Almost certainly, the results of automatic recognition could not be used in court, even 

though a picture of a speeding vehicle may perhaps constitute evidence in the future. In 

spite of this inherent inaccuracy, however, applications do exist. 

Problems involved in Numberplate Recognition 

Software to read printed document text that has been scanned into a PC is widely 

available and is often cheap. Such packages typically achieve accuracies of around 

90-100%, depending on the textual quality of the source document. If this character 

recognition task can be performed with such high reliability then why cannot similar 

accuracy be obtained in numberplate recognition? Indeed, one would think numberplate 

characters are easier to recognise, owing to their block-like font which is specially 

designed for clarity. 

The problem in numberplate recognition is not reading the characters but finding them. 

The classification of a numberplate character, once it has been located, is relatively easy 

and can be performed to high accuracy. This insight might lead us to try to recognise a 

plate by attempting classification of all segments in the image. To some extent, humans 

seem to recognise things in this way. We seem almost to locate characters by reading 

them. Certainly, the location and classification processes are closely related and affect 

each other intimately in the recognition process. 

Finding by reading/classifying is too computationally expensive for non-biological 

methods of computation. In order to apply the classifier it is necessary to know the 
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height, width and rotation of the character. Information emerging from lower level 

processing, such as edges and segments, may be used as cues to this process to prune the 

search space, but even this approach is flawed (see figure 6.3). In order to generate all 

possible character locations it is necessary to use feature points, which are quite a low 

level representation. The number of ways in which these points could be related to form 

potential character locations is enormous. 

The numberplate could be in bright sunlight. It could be in deep gloom. It could have 

blazing headlights next to it. It could be hanging at an angle. The camera might not be 

mounted head-on to the vehicle. It might not be mounted so that plates appear 

horizontally in its field of view. The characters could be in any one of about eight 

different fonts. The plate could be foreign. It might not obey British syntax. It could have 

a badge or a 'smiley face' in the middle of it. The characters could be black on white or 

they could be white on black. A towbar could stick up and partially obscure some 

characters. A bumper might obscure the top of the plate. The plate might be secured to 

the vehicle, usually on lorries, by means of a black band round it which lies across each 

of the characters. Snow or rain or even fog might obscure the plate. The characters 

within the plate could be irregularly spaced, such as: 

24 BUS 

Next to the plate there might be text in a similar font, such as: 

WAYNE LUVS SHARON 

or: RANK TAXIS 

It is not known how far away the vehicle is. The numberplate could be at the top, bottom 

or side of the vehicle. It could be travelling fast, requiring fast real-time processing. 
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White characters on black plate 
	

SUZUKI, L, ALV INS 

Psrtrfnic4tP rnii tin icrc -' L-d 
	

rc14 	 +,- 

Figure 6.3 illustration of difficulty in locating numberplate 

The problems involved in numberplate recognition are becoming plain! 
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Potential Solutions 

There are two broad approaches which might be attempted: 

Locate characters before attempting classification. 

Attempt classification on several parts of the image based on cues such as edges 

and the location of characters which have already been recognised. 

Method A was taken by the conventional implementation (section 6.5) whereas method B 

is more suited to neural implementation (section 6.6). With the neural implementation it 

is not the aim to produce a real-time system since, as described in section 2.1 - Very 

Artificial Neural Networks, the parallelism of biological neural nets is far beyond present 

artificial capabilities. Instead, what should be shown is that the methodology advocated in 

this thesis can be applied to produce a neural implementation that would recognise in real 

time, given hardware of the capability of biological hardware. Thus, the conventional 

implementation processes an image orders of magnitude faster than the neural 

implementation. This, of course, is because conventional algorithms are suited to 

running on conventional hardware whereas neural implementations have to be simulated 

sequentially. 

An overall strategy for solving the recognition problem for each of these methods is 

given below. (See also figure 6.2.) 

Method A: 

Threshold 

Edge detect 

Segment 

Sort segments to local groups and select group containing numberplate 

Classify characters 
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MethOd B: 

Edge detect 

Classify edges to form segments 

Classify segments to form characters 

Group recognised characters 

Conventional Numberplate Recognition with near-100% accuracy 

Introduction and Results 

This section describes a non-neural implementation of a numberplate recognition system 

which was developed in order—to explore the problem prior to applying the neural 

methodology. It provides an excellent benchmark against which to compare the neural 

implementation. In addition to this, it allows the examination of the difference between 

the approach which is natural to a neural solution and the approach which is natural to a 

traditional solution, for a variety of image processing operations such as edge detection. 

The conventional algorithm is implemented in 'C', circa 6000 lines and executes on a. 

Sun4 workstation in approximately 15 sec. The algorithm was initially developed on a 

test set of thirty images (512 by 512) captured using a CCD camera and a framegrabber. 

The development environment was Unix on a SUN 3/80. The total development time was 

in the region of one year. After initial development, the algorithm was tested on a further 

set of 170 images (512 by 512), captured using a camcorder, of stationary vehicles in on-

campus car parks. 

Further development took place which gave rise to the following results: 

99.43% - vehicles for which at least part of the plate was correctly read. 

98.86% - vehicles for which the whole plate was correctly read. 

99.94% - percentage of characters which were correctly read. 

t Framegrabber used: Data Translation - Model 1451 
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At first glance these are remarkable results. However, on a closer consideration it will be 

observed that the algorithm was developed on this image set and thus has been forced to 

function as well as possible for each individual numberplate. Hence, these results cannot 

be considered to be a fair trial of the system. It is anticipated that a full scale trial 

involving 1000+ images will be performed in the near future. The results of this trial, / 

however, will not be of direct relevance to this research. What matters is that the' 

development of both conventional and neural implementations was based on a substantial 

amount of test data. 

It should also be noted that these figures are recognition rates as percentages of what was 

humanly-readable -from the same image set. Requirements for a character to have been 

correctly read were reasonably tolerant: it was permitted for an '0' to have been read as 

an '0' or as a 'D'. Syntax forcing can, in many cases, disambiguate these similar 

characters. 

A 'workbench' has been implemented which allows manipulation of images intermediate 

to the various stages in the processing. Figure 6.4 illustrates the stages involved in 

conventional recognition, whilst figure 6.5 shows the relative execution times of the main 

stages. 

Thresholding 

This stage transforms the raw grayscale image derived from the camera into a black and 

white, binary image. Local adaptive thresholding based on histogram distribution analysis 

is Used.  184' 186 

In order for 	 to approach in accuracy what is humanly readable, the 

requirements for thresholding are rigorous. The algorithm should be able to determine a 

good threshold even if all the information is contained in only 20% of the dynamic range, 

and even if that 20% may be at any point in the range. It is also possible that one part of 

a character may be highly exposed (e.g. bright sunlight) whilst another part of it may be 

under exposed (e.g. in shadow of the vehicle bumper). Thus, it is necessary for 

thresholds to be chosen and applied locally and adaptively. 

/ 
1 
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Figure 6.4 Images at main stages in conventional processing of a numberplate 

The algorithm operates on non-overlapping 8 by 8 pixel blocks of a 512 by 512 image 

with 256 grayscales. The histogram for each block is formed with no subsampling, and 
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Figure 6.5 Bar chart showing relative execution 
times of main stages in processing 

some smoothing is applied. Obviously, smoothing increases the chances of picking a 

good threshold (within limits) but decreases sensitivity to thresholding 'black' and 

'white' which differ in intensity by, say, only 10-20% of the dynamic range. After 

smoothing, a 'goodness' function is applied to every peak 1 -trough-peak2  combination 

where peak 1  and peak2  are either side of trough but not necessarily direct neighbours of 

trough. This goodness is computed on the basis of various factors such as peak height, 

trough-to-peak height, trough-to-peak width, and so on. The trough with the greatest 

goodness is chosen as a provisional threshold. This threshold is then examined against 

thresholds derived for neighbouring blocks, and its validity on this basis determined. 

Some rationalisation and smoothing of thresholds is performed before they are applied to 

the grayscale image, resulting in a binary image. 

At first sight the generation of all peak-trough-peak combinations seems an absurdly 

inefficient way of finding a good threshold. In practice, however, the average number of 

combinations is around seven, and the worst recorded case for this test set was 127 
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combinations. Several alternative histogram analysis methods were investigated before 

this one was adopted. 

Cleaning 

This is a simple filter which removes pixels not strongly joined to a cluster. That is, a 

pixel is inverted if the number of its neighbours with the same intensity is less than some 

threshold. 

Edge Detection 

This process inverts each black pixel if all its immediate neighbours are also black. Edge 

detection on grayscale images can be extremely complex but since this process operates 

on a binary image it is comparatively simple and very quick to perform. 

Object Detection 

Object detection tracks edges within the image to derive top, bottom, left and right 

coordinates of distinct clusters. It also records coordinates of significant features such as 

corners, forks and extreme limits of curves in various directions. 

The process operates on an edge-detected binary image. At this stage, edges are all that is 

needed to find distinct objects and pull out significant features. A distinct object is one 

that is separated from the rest of the image and thus can be detected by tracking along its 

boundary and recording the extreme limits reached in the x and y directions. An object 

whose boundary is continuous and thus joins up to its starling point is likely to be a 

character and is given a weighting to this effect. This weighting is taken into account, 

along with other factors, in the next stage, when objects are filtered out such that only 

characters remain. Since this process operates on edges within the image, black 

characters and white characters will be detected in the same way, because the edge-

detected images for black and white characters are the same. 

As the algorithm tracks along edges, it examines each pixel for significance as a feature. 

A number of factors, such as the location and direction in which a line is moving, are 

taken into account in order to enable recording of significant features such as corners, 
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forks, extreme points of curves, and so on. These are used in the next stage to locate 

characters that were non-separable from the background. 

This method of finding objects was chosen after experimentation with various other 

methods such as the Fast Fourier Transform (FFT) and pixel thinning. With the FF1' the 

problem was that other high-frequency parts of the vehicle, such as the radiator grill, 

could not be distinguished from the high-frequency components obtained from the plate. 

Thinning will, if carried to its limits, separate characters that are joined to the 

background, but in the process has the potential to change characters. For example, a 'T' 

whose top is joined to the background may be transformed into an 'I'. 

Object Filter 

This process takes the coordinates of features and distinct objects and, by analysing these 

in conjunction with the thresholded image, produces the coordinates of the characters 

within the plate, plus a measure of confidence that a character is actually present. This is 

achieved in a number of stages: 

Look for characters that are non-separable from the rest of the image, based on 

feature coordinates and the location of distinct objects. 

Sort all objects (potential characters) by size and location into groups; these 

groups constitute potential parts of the plate. 

Separate joined characters; this procedure is applied iteratively so that objects 

that consist of more than two characters that have been joined will be successfully 

separated. 

Merge parts of the same plate; this involves matching groups to see if they are 

parts of the same plate. This enables plates which contain characters on more than 

one horizontal level to be identified. 

Remove objects within objects: for example, the inside of an '0' will be detected 

as an object, since it is a continuous edge, and should be removed. 
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By analysis of the distribution of black and white in each object compute a 

measure of confidence as to its likelihood of being a character. 

Compute the likelihood of each group of objects being the plate, based on factors 

such as: number of objects in the group; likelihood of each object in the group 

being a character; relative heights of objects in the group; and so on. 

9. Select the group that comes top and pass it, with a measure of confidence in each 

hypothesised character and the angle by which the plate must be rotated to make it 

horizontal, to the next stage in the processing. 

Character Classification 

This uses a trained decision tree 197,198  with breadth-first, fuzzy search to obtain the n 

most-probable characters. It is this stage that normalises for size, translation, rotation, 

perspective and font. 

Character reading is performed by segmenting each character according to the data 

received from the preceding processing stage, such as character height, width and 

rotation, and using the parameters of each segment as branching factors in the traversal of 

a decision tree. 199  This tree is formed by training on character sets of all standard fonts. 

Breadth-first, fuzzy search is employed to obtain the n most-probable characters, and a 

measure of confidence in each result. 200,201  This confidence measure is combined with 

the likelihood passed from the preceding stage to give an overall confidence for each 

character and for the whole plate. As reading a character consists of descending the tree 

down at most n branches, the time to read is O(n log 2  m), where m is the number of 

segments into which the character is divided, equal to the tree height. Thus, the compute 

time to read a character is low. The tree is a sparse binary tree which, when well trained, 

consists of 0(300m) nodes. The criticism of the use of decision trees in pattern 

recognition has been the heavy accumulation of errors at each branch. The overall error 

is limited in this case by keeping the number of segments (and hence the number of 

branches) m low and by using fuzzy search. The technique is surprisingly resilient to 

increase in noise and to breaks in character contours, unlike some other classification 

techniques. 
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The fact that this technique is based on training provides a good comparison with neural 

classification which is also derived through training. The amount of training required to 

generate a discriminative tree is low compared to traditional neural learning times, where 

the network contains no explicit specification of a priori knowledge. 20204  In the first 

100 images presented to the system, only 11% of characters were required for training in 

order to give 100% accurate recognition. 

The classifier defaults to trying to read black characters on a white background. If the 

confidences are extremely low for most characters, it assumes that the characters must be 

white on black and thus inverts the segments and reclassifies the characters. 

6. Neural Numberplate Recognition 

Introduction 

This section describes the application of the framework of hierarchy, by use of ANNECS, 

to three stages in the numberplate recognition algorithm. The intention is to determine the 

usefulness - in engineering terms - of this method of implementation, and to substantiate 

the use of hierarchy as a method of constructing and understanding neural systems. The 

method is applied to local adaptive histogram-based thresholding, edge detection and 

character classification. These three stages were selected for detailed examination 

because each illustrates, in a different way, the importance of hierarchy. The histogram-

based thresholding, in particular, is not an application suited to traditional neural models. 

Thus, it demonstrates the generality of this method of construction, the power of which 

arises from its integration of specification and learning. More specifically, the aims of 

these experiments are: 

to compare ease of neural implementation using the framework of hierarchy 

with ease of implementation using conventional programming; 

to determine whether the functioning of neural systems constructed with this 

method may be understood; 

(c) to determine whether specification and learning may be integrated within the 

method; 
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(d) to determine whether the application of hierarchy facilitates the scaling-up of 

networks to 'system' level. 

The character location stage in the conventional (non-neural) algorithm has not been 

implemented neurally as it is a fundamentally sequential method with much random 

access of pixels and thus is not naturally suited to neural implementation. This does not 

mean to say that the framework is not applicable to character location but that results 

from the experiments performed are sufficient to realise the above aims. A method of 

location more natural to neural implementation is discussed later, in section 6.6.4. 

Neural Local Adaptive Histogram-Based Thresholding 

The manually-generated hierarchical specification for a neural system that performs this 

task is given in Appendix B. The functionally equivalent 'C' implementation of this is 

given in Appendix E. The neural specification basically implements the same function as 

the 'C' specification, but in a fully distributed, parallel way. At each level of abstraction 

in this neural specification, the functioning of the system can be understood. The 

specification is similar to an object-oriented model in that each 'object' (i.e. cluster of 

neurons) is continually existant within the resultant implementation, rather like a process. 

Also, each 'object' is continually receiving and sending messages, which may be high 

level data representations. For example, the 'form histogram' function receives an 8x8 

patch of an image (which is ultimately implemented by ANNECS as 64 synapses) and 

transmits the 32-bin histogram (implemented as 32 synapses) of the grayscales within this 

patch. A datatype 1 8x8 patch' has been defined as consisting of four 4x4 patches; a 4x4 

patch is defined as four 2x2 patches; these are defined in terms of pixels; and a pixel is 

defined as a primitive connection, or synapse. 

Similarly, the datatype 'histogram' has been defined in terms of 32 primitive connections. 

Thus, a histogram is represented as the activities along this number of synapses. This 

demonstrates the power of applying hierarchy to neural systems. At the highest level, an 

entire image is presented to the system by the simple creation of an interface of type 

'512x512 image'. This is compiled by ANNECS to 262144 primitive connections, but the 

designer treats these as one, high level data path. Thus, this image can be passed to any 
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lower level functions (as shown in Figure 6.7) simply by the creation of a connection 

(also of type '512x512 image') to the appropriate function. This hierarchy of data 

representation, combined with the hierarchy of function, is what permits the neural 

system to be understood at all relevant levels of abstraction. This sort of high level 
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abstraction of function and data seems also to be present in biological neural systems. 

The optic nerve is an obvious analogue of the 'image' datatype defined in ANNECS. 

Primitive connections, which implement these high level representations, cannot be 

understood in isolation. It makes sense to abstract function, and data. It is this interelation 

between levels of abstraction, that patently makes sense to the human designer, which 

provides understanding of neural systems. 

.12531 

II 
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Raw Orayscale Image Threshold 	Edge Detect 	Locate 	 Read Character 	Character Likelihoods 

Figure 6.7 Top Level Specification of Neural Numberplate Recognition System 

The neural implementation of histogram-based thresholding is basically the same as the 

conventional approach, except in the method of threshold selection. As before, the 32-bin 

histogram of each 8x8 patch of a 512x512 image is formed. This data is represented by 

the activities along 32 synapses, but is treated as one high level type. The method by 

which this histogram is formed is precisely specified, as shown in Appendix B. The 

function which then selects a good threshold from this histogram is realised as - 

effectively - a two layer multilayer perceptron, with one hidden layer containing 6 units. 

In actual fact, nearly all neurons in the compiled system are 'hidden'; within the 

framework of hierarchy, however, no neurons are actually hidden: the role of every 

neuron can be identified. 

Specification was used to determine the topology of the threshold-selection part of the 

system; learning was then applied in order to derive weights appropriate for the selection 

of a good threshold. This demonstrates the integration of explicit specification and 

empirical derivation within this methodology. The training data for the learning was 

obtained from the output of the conventional thresholding algorithm, using these 

thresholds as an oracle. It was specified that each of the candidate thresholds was to be 

defined in terms of six features. What these features were, and how each threshold was 

defined in terms of them, was entirely learnt. 
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The performance of the resultant - specified and trained - net, was as good as the 

performance of the conventional approach. 3168 neurons, interconnected by 14624 

synapses, were required to threshold one 8x8 patch. Thus, for a completely distributed 

threshold of a 5 12x5 12 image, of the order of 10 7  neurons and 6 x 107  connections are 

required. This implementation thresholds the image in seven update cycles (assuming a 

digitally-based simulation model). Alternatively, if the image is multiplexed onto the 

network that thresholds just one patch, ((5 12/8)2  + 7) = 4103 update cycles are required 

(using pipelining). 

'I 

k. 

j 

Figure 6.8 An image thresholded by the histogram-based neural implemention 

The size of the training set was limited to 1000 samples, selected from regions 

surrounding and including the numberplate, within several images differing in exposure. 

When the training set was increased significantly in size, the network failed to converge 
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on a solution. If the training process is carried out for a significantly increased number of 

epochs, the model fits the training data too well and gives poorer results for the test data. 

If the training data was selected entirely from one image, test images with similar 

exposure conditions were thresholded well, whereas images with different exposures 

were not. 

Finally, it should be noted that a reasonably large, yet highly efficient and sparse neural 

system has been constructed. This was due to the application of specification by the use 

of hierarchy, combined with learning. See figure 6.8 for an example of a thresholded 

image produced by the neural implementation. 

Neural Edge Detection 

The same principles as described above are employed in this task. Again, the method by 

which edges are detected is described hierarchically (see Appendix Q. An edge is 

detected in the horizontal, and in the vertical, directions and in each direction a black-to-

white and a white-to-black edge is detected. No training is necessary to realise 

satisfactory performance using this method (see figure 6.9 for a neurally edge-detected 

image). Weights are preinitialised to implement the desired function. Since it is easy to 

describe this function, there seems little point in trying to learn it. This is in contrast to 

the threshold selection problem described in the previous section, in which it was not 

known how to select a good threshold. In that instance it was appropriate to employ 

learning. 

An edge is detected across a maximum width of five pixels. To edge-detect a 512x512 

grayscale image, with no multiplexing, of the order of 2x106  neurons and 7x106  synapses 

are required. This edge-detects the image in three update cycles (see Appendix Q. Unlike 

the conventional implementation of this function, the neural implementation will operate 

on either grayscale or binary images. The conventional implementation was only required 

to edge-detect binary images (see section 6.5.4). 
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Figure 6.9 An edge-detected image produced by a specified neural system 

Neural Character Location 

The conventional character location algorithm achieves its task by tracking along edges, 

flagging feature points, and performing much sorting and grouping of objects. This 

algorithm is not suited to neural realisation - though that does not mean to say this cannot 

be done. A solution more natural to neural implementation is to locate by recognising, 

much as humans seem to do. If the character classification stage is sufficiently good, and 

is fast, characters may be located by scanning the image and attempting to read a 

character at each location. Since it is not known how large the characters are, it is also 

necessary to attempt to read characters of several different sizes, at each location. 
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This approach was investigated by use of a neural character classifier developed in the 

following section. It is necessary to apply a threshold to the results of the classifier, above 

which it is concluded a character is present, and below which it is concluded it is not. The 

classifier employed was trained on just one example (and thus only one font) of each 

character, and consists, essentially, of a two-layer, fully-interconnected MLP with 30 

inputs, 15 hidden units and 32 output units. During recognition on the 170 images, and 

using a threshold of 0.3, 17% of locations not close to a character were falsely identified 

as being characters. 11% of locations where a character was actually present fell below 

this threshold. The average of the highest outputs (from the classifier) for correct 

character locations was 0.69 15, whereas the same measure for locations where a 

character was not present was 0.2259. The erroneous location of characters would be 

virtually eliminated by the grouping of character location information at a higher level. If 

a character has been 'strongly' located in a neighbouring position to one that has been 

'weakly' located - and in fact falls below the threshold - this information can be used to 

positively locate that character. 

This approach was not exhaustively investigated because, in fact, it is neither supportive 

nor destructive of the thesis. It does, however, indicate a method of location that is 

natural to neural implementation. 

Neural Character Classification 

This task would traditionally be performed neurally by a multilayer perceptron (MLP) or 

a Kohonen Net, or some such classifier. Taking the hierarchical approach, however, the 

resultant implementation is not specific to any of these architectures. What is of concern, 

is that the neural system can be understood, at all levels of complexity. It so happens that 

the structure compiled by ANNECS from the specification supplied is a sparse MLP. 

However, if it had been decided to implement a different solution, the resultant 

implementation might have been similar to a Kohonen net. Which of these models the 

structure happens to be is not relevant. What is important is that, by the application of 

hierarchy, these systems are meaningful. Their construction is directed towards a solution 

according to the principles of the framework, not by picking almost at random a model 

just because it has 'worked' for similar problems. For the sparse MLP which ANINECS 

compiles from the specification, the number of hidden units is derived from a priori 
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knowledge about the problem - not by trial and error. In traditional approaches, however, 

this number is arrived at empirically, often by sheer guesswork. 

Using ANNECS, the classification of characters was defined in terms of features from 

which characters are composed. These features are obvious to the human designer. For 

example, it is clear that an 'E' consists of a black column-1, row-1, row-3/4 and row-6. 

These columns and rows are patently features from which an 'E' may be recognised and, 

incidentally, from which many other characters such as 'F', 'T', 'D', 'B', 'H' may also be 

recognised. Because of this, it is appropriate to define the functions which detect these 

features as instances, and then to define characters in terms of the same instance of each 

feature-detector. 

This knowledge concerning how characters are written is imparted through specification, 

the hierarchical nature of which makes it meaningful to the designer. Learning can then 

be applied to optimise these 'approximate' classifications, and perhaps to learn 

classifications of those characters for which it was not easy to specify their features. 

Interestingly, when learning was applied from a random initial state, with no meaningful 

structure built into the 'MLP', the features that were learnt, from which classifications 

were made, were unlike the 'obvious' features first specified in ANNECS. Such a set of 

completely-learnt features is shown in figure 6.10. This does not mean to say either that a 

part-specified or that a learnt solution will be best. However, a solution that is part-

specified has a greater chance of learning a 'good' classification than a system which is 

wholly empirically derived, even though its resultant performance will not necessarily be 

as good. The problems concerning convergence in, for example, multilayer perceptrons 

have already been discussed (see section 2.2.2). Such a system cannot be guaranteed to 

learn a good classification, due to the existence of local minima in the solution space. 

Single layer perceptrons, however, have been proven to converge to a solution, if such a 

(linearly separable) solution exists. By the application of the framework of hierarchy, the 

numberplate character classifier can be guaranteed to converge to a solution (provided, of 

course, that such a solution as has been part-specified can actually exist). Because the 

classifier is part-specified, and thus the role of (most) neurons is known, training can be 

carried out layer by layer. 
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Figure 6.10 Features learnt from unspecified initial conditions 

This process was performed based on a training set of one instance of each character (in 

only one font). 13 primitive features were specified and then trained.t This training was 

enabled by specifying which features were present in which characters. The perceptron 

convergence algorithm was used, since the specification of features is effectively a 

sparse, single-layer perceptron. These part-specified, part-learnt features are shown in 

figure 6. 11. 

These features were then 'frozen' (their weights were locked) and character 

classifications were learnt, in terms of these primitive features. Two other primitive 

features were permitted to be learnt, at this stage, to allow the learning of any 

descriminative features not obvious to the designer. Again, this learning consisted 

essentially of the perceptron convergence procedure and was guaranteed to converge, 

given that a classifier could be learnt in terms of the already-learnt, primitive features. 

The part-specified, part-learnt solution gave a performance of 73.262% t correct 

t Some of these training experiments were carried out using the PDP Research Group 
simulation tools, described in EXPLORATIONS IN PARALLEL DISTRIBUTED 
PROCESSING: A Handbook of Models, Programs, and Exercises © 1987 by J. L. 
McClelland and D. E. Rumeihart. 

t This relatively poor performance is due to the existence of multiple fonts in the 
character test set. The training set contained only one font. 
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classification when trained on just one example of each character (i.e. 32 training 

pattern$). When a solution was learnt by a fully interconnected MLP with randomly-

initialised weights (and the same number of hidden units: 15), the performance was 

85.562%. It is concluded that, for neuron-level operations, such as classification, a learnt 

solution out-performs a part-specified solution. The only advantage, it seems, of part-

specifying at this low level is that the problem of local minima can be 'avoided'. 

However, this does not mean to say that the designer's specification will not place the 

network in a local minima - as actually happened. 

The virtue of specification is more apparent at higher levels of complexity, at which 

learning abilities are more restricted. The neural implementation of histogram-based, 

local adaptive thresholding was completely reliant on specification. In more general 

terms, it is highly unlikely that unnormalised, grayscale images could be used to train an 

MLP to classify characters (see section 6.6.6 for a discussion of this); it is already 

difficult enough for an MLP to learn a good classification based on segmented binary 

images. What has been shown by the experiment described in this section is that - even 

at the primitive level - weights can be part-specified from a priori information, and 

'layered' learning can then be applied. (See section 7.3 for an alternative to traditional 

learning methods, more suited to the framework of hierarchy.) 

These experiments were performed on a test set of 1147 characters, drawn from the set of 

170 numberplate images. Each character was located in the thresholded image (using the 

conventional location algorithm) and segmented into 6 rows and 5 columns. The 

proportion of each of these blocks that was black/white was used as input to the classifier 

as a continuous value between 0 and 1. Thus, the hierarchical specification, at the top 

level of abstraction, receives input through an interface of type 'retina' (see Appendix D). 

This datatype is defined as consisting of six 'rows', and a row is defined in terms of 

segments, each of which could be defined in terms of pixels but which, in this 

specification, was defined in terms of a synapse. This synapse represents the proportion 

of the block that is black/white. 

1 32, not 36 (26 alpha plus 10 numeric), because some characters, such as Zero and 
Capital-O, are identical. 
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Features such as the presence of a particular row or column, or a diagonal feature, are 

defined ultimately in terms of these segments. Thus, a function that detects a horizontal 

row at the top of the retina reads in the retina and extracts from this the first two rows. 

The segments which make up these rows are then extracted and supplied, along synapses 

which are appropriately-weighted so as to recognise the presence of this row, to a neuron 

whose output will represent the presence of that feature. The function which recognises 

an 'E' may then be defined in terms of primitive features such as this row. 

Figure 6.11 Features after learning from specified initial conditions 

When unspecified MLP-type architectures are scaled up the learning time increases 

exponentially (see section 2.2.2). The use of specification places the model in an area 

within the search space which can be as precise as the designer cares to make it. Thus, 

this experiment again shows that hierarchical specification can be used to allow the 

scaling-up of neural systems and to prevent this exponential increase in training time. 

This method of constraining certain weights or connections has been used many times 

before, simply as a means of constraining the search space so that a solution is actually 

learnt. However, this constraint has not been undertaken within a formal framework 

which provides a method for deriving these weights/structure. This would not be possible 

without the application of hierarchy. 



Chapter Six - Case Study : Numberplate Recognition 	 114 

The relatively poor performance of these neural implementations compared to the 

decision tree classifier is due to the fact that the neural systems (owing mainly to 

compute-time limitations) were not trained on all the different fonts that exist in the test 

set; the decision tree was trained on these different fonts. When trained on the same data 

as was used for the development of the neural system, the decision tree gave a 

comparable level of performance (85.9 18%). 

Summary 

The framework of hierarchy has been applied to non-trivial image processing problems 

and implementations have been derived. These systems have been part-specified and part-

learnt. The neural implementation of histogram-based local adaptive thresholding, in 

particular, demonstrates how an algorithm may be incorporated into a neural net, 

resulting in a scaling-up of the model and a widening of neural applications. The 

classification experiment has demonstrated the way in which specification can enable 

learning. 

Given the availability of neural hardware, these implementations of common image 

- processing operations will - in terms of speed - out-perform conventional 

implementations, which are fundamentally sequential. In addition to this, these 

implementations make extremely efficient use of hardware, owing to the high degree of 

specification in those parts of the system that can be specified. This results in very sparse 

networks, which are amenable to efficient simulation or realisation by dedicated neural 

hardware. 

This work has attempted the recognition of a numberplate from a raw grayscale image by 

means of an unadulterated neural implementation. This is in marked contrast to 

traditional approaches which have performed most of the (pre-)processing using 

conventional techniques. The neural element in these systems has tended to consist of a 

simple classifier, tacked on the end of the conventional processing. it is in the 

preprocessing that most of the work is performed. It is virtually inconceivable that an 

MLP could be trained on unnormalised grayscale images in order to classify characters. 

The range in exposure, not only between different characters but even within the same 

character, is potentially extreme and renders the input data virtually without pattern. This 
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approach was briefly investigated. Two and three layer perceptrons, with various 

configurations of numbers of hidden units, were trained on (already-segmented) grayscale 

images. Under no conditions did the model converge to a solution. This, above all else, 

highlights the virtues of the framework of hierarchy. Its application to this 'hard' problem 

has achieved moderate results with an entirely neural implementation. 

test set test data set 
(containing training data)  verification data set 

Conventional 99.9% 85% 

Specified Neural unavailable due to 73% 

compute-time 
Unspecified limitations 85% 

Neural 

The above table summarises the results obtained. It shows that, when tested with a genuine 

verification data set (involving no data contained in the training set) the conventional and 

neural systems are of comparable performance. As previously stated, it was not possible to 

train the neural systems on multiple fonts owing to compute-time resource limitations..In 

summary, therefore, these results show a very good level of performance for a neural 

solution as compared with a more conventional technique. 



Chapter Seven 

Conclusions 

This thesis claims that hierarchy is an essential concept for the understanding and 

application of neural systems. How was this conclusion arrived at? Is it valid? Are the 

supporting evidence and the experimental results sufficient to substantiate it? These 

questions are answered in this chapter. 

1. A Brief Review 

It was first observed, in Chapter One, that neural systems are capable of astoundingly 

complex function. When it was asked how this remarkable function emerges from the 

interaction of primitive neural hardware it was seen that there were no coherent principles 

by which this could be explained. Indeed, it was questioned whether such principles 

actually existed. 

The field of artificial neural networks was then examined for clues to the direction in 

which a unifying neural theory might lie. In particular, it was argued that specification is 

a necessary complement to learning; empirical derivation of a system cannot succeed in 

the entire absence of specification. At present, however, neural specification is intuitive, 

not meaningful; no coherent method exists for describing a neural system. The 

relationship between specification and understanding was then explored: if the way in 

which a neural system realises a function can be described then it is understood - at that 

level of description. It was argued that lack of neural theory is stifling growth of the field 

and that the concentration on traditional models (MLP, Kohonen, Hopfield, etc) will 

probably not spawn unifying theory. 

Chapter Three was concerned with deriving insights on neural theory from related 

disciplines. Various metaphors of neural computation were explored, in the hope that the 

theory of the metaphor would enrich neural theory. Connectionist expert systems were 

presented as a metaphor of primitive neural computation. Neurons perform an 

inferencing-style function, and MLPs in particular approximate the distribution of 

116 



Chapter Seven - Conclusions 	 117 

uncertainty in MLP-structured expert systems. This provided understanding of neural 

systems at the primitive level of computation. At higher levels of computation it was 

suggested that it is possible to understand the distributed implementation of a high level 

function in terms of lower level functions. The object-oriented paradigm was also of 

relevance as it offered a natural method of modelling; it may be that the neural medium 

of computation is suited to employing a similar paradigm through which to model the 

world. 

In Chapter Four, these metaphors were drawn together to formulate a framework within 

which neural computation could be understood. The basis of this framework is hierarchy 

and as such the framework offers a method for describing function as the appropriate 

interrelation of lower level function. This framework relates high level function, via an 

arbitrary number of intermediate levels of abstraction/implementation, to a realisation of 

that function in terms of neural hardware. It explains how, by the appropriate interaction 

of neural components, higher level function emerges. 

Not content with merely academic propositions, a software tool was constructed which 

embodies the principles of the framework (Chapter Five). ANINECS demonstrates how 

hierarchical specifications, described in a fully distributed, object-oriented style can be 

used to understand a neural system. The compiled network can be understood at various 

levels of abstraction. Thus, it is possible to identify the role of each neuron, of each 

connection, of each cluster of neurons and of each group of connections in the system. 

ANINECS showed that the framework could be applied. It was then important to 

determine the power of this method. This was assayed by applying the framework to the 

task of numberplate recognition. Chapter Six described these experiments and 

demonstrated several virtues of the method. It was seen that the method was extremely 

powerful in that it enabled the construction of part-specified, part-learnt solutions. 

Information that was 'obvious' to the designer, such as how a histogram should be 

formed, was incorporated in the specification. Information not apparent to the designer, 

such as how to select a threshold, was derived empirically. Using this method, it was 

shown how neural systems could be scaled-up. Perhaps most significantly, neural 

systems constructed by this method were not black boxes. It was possible to select any 

neuron or connection from a network of 106  neurons and 107  interconnections and 
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identify its role. These results demonstrated that the framework, far from being a purely 

theoretical approach, is useful in engineering terms. 

What may be concluded from these observations? 

2. Conclusion: Hierarchy is Foundational to Neural Theory 

Three broad conclusions can be identified, each of which support the thesis that hierarchy 

is the basis of neural theory. 

A Framework of Hierarchy explains neural computation of complex function. It 

seems obvious that a complex system cannot be understood by consideration of its 

primitive components alone. The complexity is too much for human understanding. In 

order to understand such systems it is essential that function is abstracted to arbitrary 

levels of detail. This must be a step in the right direction with regard to neural systems. 

The case study has demonstrated the value of this approach in that a large neural system 

could be completely understood. This discards the 'black-box' syndrome traditionally 

accepted by neural researchers as a natural characteristic of neural systems. Neither is 

there any 'black magic' going on in such systems: the emergence of higher level function 

from lower level function can be explained according to the principles of the framework. 

Ultimately, a function at a high level of abstraction can be realised as the appropriate 

interconnection of primitive processing elements. 

It has not been proved, however, that all neural systems can be understood in terms of 

this framework. It is conceivable that biological systems may not conform to these 

principles. However, this does seem highly unlikely. To some extent, as described in 

Chapter Two, hierarchy can be readily observed in brain structure both in modularity of 

neurons and groupings of connections. Another factor which implies hierarchy as the 

basis of biological neural systems is their method of generation (see section 4.4). A 

compact method of encoding is required to describe brain-sized systems within the DNA. 

A hierarchy of netlists provides such a compact encoding (see section 6.6.2 and 

Appendix B, and section 6.6.3 and Appendix Q. 

A Framework of Hierarchy allows the combination of specification and learning. 

This conclusion is of wider relevance than to the neural field alone. The traditional view 
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has been that conventional and neural models of computation are radically different in 

that one is specified and the other is empirically derived. This work prompts the 

conclusion that this is a false distinction: rather, conventional models have been primarily 

serial-based (and therefore unsuited to learning) whereas neural models are 

fundamentally distributed. The framework of hierarchy by which neural systems may be 

understood is essentially the same as that by which conventional distributed systems or 

object-oriented systems may be understood. The difference with neural systems is in the 

primitive components of the system: neurons and synapses, as opposed to ALUs and 

buses. Neural systems are not predominantly empirically derived. (Artificial neural nets 

are, though, and this probably explains their relative failure to achieve results.) Thus, 

applying the framework of hierarchy to neural systems allows the combination of 

specification and learning as methods of implementation. It might be that this medium of 

computation has been adopted by nature precisely because it integrates specification and 

learning. Whether or not this is so, the application of hierarchy to neural systems does 

allow a priori knowledge to be combined with information that is best derived 

empirically. 

(ill) A Framework of Hierarchy facilitates the scaling-up of neural systems. The 

principles of the framework provide a meaningful method of constraining network 

topology such that learning can succeed (see section 6.6). By training locally (one layer at 

a time) it can be guaranteed that a solution will be arrived at, given the designer has 

chosen a sensible data representation and such a solution exists (see section 6.6.5). The 

framework may also perhaps be used to integrate various traditional neural models, to 

arbitrary levels of complexity. Indeed, it may be that a common understanding of the 

traditional neural models (MLP, Hamming, Kohonen, etc) may be found in the 

application of these principles. 

3. Speculation: Hierarchy in Learning 

Hitherto, 'firm' conclusions have been stated. Here, speculation regarding an area beyond 

the experimental scope of this work is indulged in. It is interesting to surmise what the 

full impact of hierarchy on learning might be. 
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Assume that, at an arbitrary level of abstraction, every function can be identified and its 

operation understood in terms of its implementation at a lower level of abstraction. (At 

the base level each function is a neuron and its operation is thus understood.) According 

to this thesis, learning consists of the formation of higher level functions (as opposed to 

merely optimising lower level functions) by the generation/modification of 

interconnections between objects at a particular level of abstraction. (In effect, of course, 

this consists of the modification of primitive synapse strengths.) if it is possible to 

identify those new connections that have interrelated functions at some level so as to 

realise a higher level function then learning can be understood within a hierarchical 

context. Low level functions, such as edge detection, are learnt first - in terms of 

primitive functions/neurons. These learnt functions are then identified so that their 

interrelation to form higher level functions such as boundary and segment detection can 

be identified, and so on, to ever higher levels of abstraction. 

This understanding of learning is radically different from the traditional 'flat' methods of 

modifying weights. By understanding the hierarchy that is being formed during learning 

this structure can be used to interrelate the modification of weights. The hierarchy could 

indentify which weights should be modified in relation to which other weights. This 

relation has previously been enabled in an 'unintelligent' way by using the primitive 

network topology. For example, weight changes may be propagated back through layers 

in a multilayer perceptron; nearest neighbour connections are modified in Kohonen nets. 

Hierarchical learning, however, would relate the weight changes on two synapses at 

'opposite sides' of a neural system - because they both belong to the same higher level 

connection. It must be stressed, however, that these thoughts are purely speculatory and 

do not support or detract from the substance of this thesis. 

4. Directions for Future Research 

Two exciting new areas of research arise out of this work. The first, hierarchical learning, 

has been sketched out in the previous section. The second is the unification of the 

traditional neural models within the framework of hierarchy. if it can be shown that a 

framework of hierarchy provides a common understanding of these models then the 

weight of evidence that hierarchy actually is the basis of neural theory will be greatly 

increased. 
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For a widespread application of this framework, including the integration of learning and 

specification, better support software is required. ANNECS is not robust enough for full 

scale systems development. Thus, another research area is the development of a software 

toolset which enables the application of hierarchy to neural systems. 

What has been explored is a new and radically different approach to neural computation. 

The true power of hierarchical neural systems has yet to be demonstrated. Whether 

hierarchy is in fact the basis of neural theory will probably not be agreed for some time to 

come. However, several exciting and apparently-rewarding new avenues of research are 

opening up. 
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Appendix A 

Formal Presentation of Abstraction/Implementation 

Define: 

P: {port0biC,, port —# } 

C : {connectionsource, source —port —# • dest, desi -port-# } 

0: 10, P, C} I {neuron} 

f[P, t]: Z 

0 valid implementation: (forall Ok E 0): 

((Ok = neuron) I 
(°k valid implementation & ( 

(there exists P E Ok) & ( there exists C E Ok) s.t. 

(forall Ca ,b,c ,d E C): 

((there exists Pa,b  E P) & (there exists Pc,d  E P) s.t. 

1Po,b, ti = 'IPc,d, t]) 
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Addendum to Appendix B 

The following appendix contains the neural specification of Local Adaptive Histogram-

based Thresholding, as represented graphically within ANNECS. To understand how this 

specification describes a complete neural system an explanation is required. For example, 

consider the top level specification of thresholding, as shown below: 

Here, a and b represent input and output ports in the interface to this function. c, d, e and f 

represent lower level functions, in terms of which this function is defined. c, d, e and f hap-

pen, in this instance, to be the same type of function, a 256x256 image threshold. This func-

tion type is not shown in the Appendix, but is defined in the same way as the above 

function, except that its interface ports are of type 256x256 image and it is defined in terms 

of 128x128 image threshold functions. 

Each of the connections, for example g and h, represent data paths. Thus, the above func-

tion reads in a 512x512 image, separates this into its four constituent quadrants and passes 

these to c, d, e and f. When each of these 256x256 thresholding functions have processed 

this data, they produce 256x256 binary images which are reassembled into a 512x512 im-

age at b. 



Appendix B 

Neural Specification of Local Adaptive Histogram-based Thresholding t 

range 

connection of type 	 Function that thresholds 
256x256 image 	 256x256 grayscale image 

Threshold 512x512 Image 

connection of type 
818 image 

Orayscale Image 

Threshold 8x8 Patch 

cc 
4;' 

(8) 

threshold to 4x4 patch 

Apply Threshold to 8x8 Patch 

t These functions/datatypes are as defined in ANNECS. Not all are shown: for 
example, it is apparent that a 256x256 image threshold is defined similarly to a 512x512 
threshold (above top). 
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Bin Value 

Form Bin of Histogram from 8x8 Patch 
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One bin in this histogram - corresponding 	 Each of these weights is set to 
to the threshold - is active 	 generate an activity equal to 

the threshold to be applied 

Threshold 

Bin 12 	Bin 13 	B1  14 	Bin 15 

 

Get Grayscale of Bin 

1 xe 1 

Apply Threshold to Pixel 



Addendum to Appendix C 

The following appendix contains the neural specification of Edge Detection, as represented 

graphically within ANNECS. To understand how this specification describes a complete 

neural system an explanation is required. The top level function is not shown overleaf but 

is defined in the same manner as the top level function for neural thresholding, as shown in 

Appendix B. The functions shown overleaf implement primitive edge detection which is 

carried out for every pixel in the image. In the first function shown, detect edge, data is fed 

in through vertical and horizontal, and read out at 'Edgeness'. These input and output 

points are ports within the interface to the function. 

The second function shown overleaf implements functions Horizontal Edge and Vertical 

Edge in detect edge. This function reads in a line of pixels (either horizontal or vertical) and 

detects a black-to-white edge and a white-to-black edge and then combines the amount of 

edge of each of these types that is present. The function which actually detects a black-to-

white edge is shown at the bottom of the page overleaf. 

The function which combines the edge measure in the horizontal and vertical directions is 

not shown. It consists of one neuron with two equally weighted inputs.. 
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Neural Specification of Edge Detection 

Vertical 

Detect Edge 

Detect Edge in a Direction (Horizontal or Vertical) 

Line of 
Edge 

Detect Edge 	Detect Edge 

Detect black-white edge 

149 



Addendum to Appendix P 

The following appendix contains the neural specification of Character Classification, as 

represented graphically within ANNECS. To understand how this specification describes a 

complete neural system an explanation is required. The top level function, Read Character, 

assumes the character has been located and normalised and thus is fed in as a retina of pix-

els, of size six rows by five columns. Within Read Character, retina is passed to a separate 

function to recognise each possible character. Each of these functions then outputs a prob-

ability of that character being present and these probabilities are combined to give a com-

plete table of probabilities for each character. 

Each character is defined in terms of functions to recognise primitive features such as Rec-

ognise Column. Thus, the function to recognise an 'E' is defined in terms of functions to 

recognise Row 1, Row 3, Row 4, Row 6 and Column 1. 
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Appendix D 

Neural Specification of Character Classification 

Read Charader 

required to redefine' it in 
terms of rows. 	 Read Ch&UCt& E' 

I..... 
as •w 
I..... 
I..... 
I..... 

Examples of the way in which datalypes are defined: 
a row consists of five pixels; a pixel is represented by a synapse 
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1st half of row 1 (excitatory) 

P (X) 

neuron 	 Probability of Half-Row 

1st half of row 2 (inhibitory) 

Recognise Half Row 

excitatory 

p (X) 

neuron 	 Probability of Column 
inhibitory 

Co 1 i_n 

Recognise Column 

Transform Column-Ordered to Row-Ordered 'Retina' Dataxype 



Appendix E 

'C' Implementation of Histogram-based 

Local Adaptive Thresholding t 

local.c 

/* Oliver Vellacott - 21/3/90 - local adaptive thresholding algorithm *1 

#include <stdio.h> 
#mclude "locaLh" 

short 
write_image_ok(fname) 

char *fname; 

FILE 5f,, = fopen(fiiazne, "w"); 

if(!f) 
return FALSE; 

elsef 
rita(outjmage 1, Th AGE_SJZE5IMAGE_SIZE, fp); 

return TRUE; 

abort 
read_image_ok(fname) 

char *fime; 

FILE 5f = fopen(Uame, "r"); 

if(!1l') 
return FALSE; 

else 
fread(in image, 1, IMAGE_S1ZE1MAGE_SIZE, fp); 
return TRUE; 

t This is a much-pruned version of the local adaptive thresholding algorithm 
developed as part of the conventional (non-neural) numberplate recognition system. It 
implements the same function as the hierarchical neural specification in Appendix B 
though, of course, in a different way. 
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void 
c1earJistograznO 

inti; 

for (i=O-, i<D1VISIONS; i+i-) 	 - 
bars[i]=0 

void 

formJüstogram(i, j) 

mti,j; 

mt k, 1; 

clear_histogramo; 
for (k=i; k < i+PATCH_SIZE; k += SUBSAMPLE_SIZE) 

for (1=j; 1< j+PATCH_SIZE; 1 += SUBSAMPLE_SIZE) 
bars[(int)injmage[k](I]ibmsize]+s-; 

let 
common_goodness(low_peak, high-peak, trough) 

mt low-peak, high-peak, trough; 

1* this computes a measure of the 'goodness' of the trough as a threshold 
- with respect to the two peaks 

mt width--trough-low-peak, 
heightl=bars(low_peak)-bars[troughj, 
height2=bars[high_peak]-bars(trough); 

if (heighti <= Oil height2 <= 0) 
return 0; 

else 
return ((height 1+width) 5height2); 

mt 
find_next_physical_trough(next_to_trough, upwards) 

hit next-to-trough; 
short upwards; 

P find trough neighbouring next-to-trough in direction upwards; 
if trough is more than one bin wide- 'level' - return 
left of trough*! 
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jut i, j, lowest---9999; 

if (upwards) { I' look to right *1 
for (i=next_to_trough; i<DIVISIONS; i+) ( 
if(bars[i] <lowest) 
lowest = bars[i]; 
Jelse if(bars[i] > lowest) 
return (i-i); 

return i; / reached edge of histogram I 
}else ( J' look to left 5/ 

left_of_frough=O; 
for (iiext_to_trough; i>=0 i—) { 

if (bars[i] <lowest) 
lowest = bars[i]; 
}else if (bars[i] > lowest) 
return (i+l); 

)else {f* must check that have found rightmost edge of trough 5/ 

for (j=i.l;j>'=O;j--) 
if (bars(j] > lowest) 
left_of_trough=j+l; 
return (i+l); 

}else if (bsrsj] <lowest) 

I 

mt 
flnd_next_peak(next_to_trough, upwards) 

mt next_to_trough; 
short upwards; 

1* finds peak that neighbours next_to_trough in direction upwards 5/ 

mti, highest=O; 

if (upwards) f f5  look for peak to right 5/ 

next_to_trough++; 
for (i=next_to_trough; i<DIVISIONS; i++) ( 

if(i==DIVISIONS-l) { ! mashed edge of histogram 1 
return DIVISIONS-1; 

}else if (bars[i] >= highest) (* are moving up a peak 5/ 

highest = bars(i]; 
)else if (bars[iJ <highest) ( f5 peak is last 'bar' looked at 1 
return 0- 1); 

}else ( f* look for peak to left *1 
next_to_trough—; 
for (i=next_to_trough; i>=0 i—) { 

if (1i) { 	f reached edge of histogram I 
return i; 

}else if (bars[i] >= highest) (?are moving up a peak 5/ 

highest = bars[i]; 
}else if (bars[il <highest) ( ? peak is last 'bar' locked at 5/ 
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return (41); 

mt 
flnd_best_lowest(low...peak, high-peak, best-trough) 

mt low-peak, high-peak, *best_trough; 

F1' finds the trough between high -peak and low-peak with the best goodness *1 

let goodness=-999, low_trough=O, tamp-goodness, temp-low-peak 

low-trough = flnd_pext_physical_trough(low_peak, TRUE); 
while (low_trough <high....peak) 

temp_goodneas=common_goodness(low_peak, high-peak, low-trough); 
if (temp_goodness> goodness) 

goodness = temp-goodness; 
*beat_tmugh = low-trough; 

tamp-low-peak = find_next_peak(low_trough, TRUE); 
low-trough = flnd_next_physical_trough(tempjow_peak. TRUE); 

return goodness; 

mt 
flnd_best_middle(low_peak, high_peak, best_trough) 

mt low-peak, high-peak, best-trough; 

f* find best peak-trough-high-peak combination for 
low-peak peak <high_peak; 

return best threshold through best-trough *1 

mt best-trough-perhaps, goodness=-999, temp-goodness, low-trough; 

while (low_peak <high_peak) 
temp_goodness = find_best_lowest(low_peak, high-peak, &best_trough_pethaps); 
if (temp_goodness> goodness) 

goodness = temp-goodness; 
5best_trOugh = best_trough_perhaps; 

low_trough = flndnext_physical_trough(low_peak, TRUE); 
low-peak = flnd_next_peak(low_trough, TRUE); 

I*******************ssss*******************************s*************I 

mt 
flnd_best_top(low_peak, high-peak, best_trough) 
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mt low-peak, high-peak, *bettmugh; 
f* find beet low-peak-trough-peak combination for 

low-peak <peak <= high_peak; 
return best threshold through Thest_trough 1 

let best-trough-perhaps, goodness=-999, temp-goodness, high-trough; 

while (low-peak <high_peak) ((* keep same leftwards peak and 
move through all peaks right of that / 

temp-goodness = find_best_middle(low_peak, high_peak, 
&best_trough_perhaps); 

if (temp_goodness> goodness) 
goodness = temp-goodness; 
*best_trough = beat-trough- perhaps; 

high-trough = flnd_next_physical_trough(high_peak, FALSE); 
high-peak = flnd_next_peak(high_trough, FALSE); 

return goodness; 

byte 
select_threahold(i, j) 

mt i,j; 

/" find a good threshold, based on the histogram for this patch */ 

mt low-peak, high-peak, low-trough-1, high_trough=DIVISIONS, best-trough; 

form_histogram(i, j); 
low-peak = flnd_next_peak(low_trough, TRUE); f* find leftmost peak 5/ 

high-peak = flnd_,iext_peak(high_u-ough, FALSE); ? find rightmost peak *1 
if (low-peak >= high_peak-MIN_PEAK_SEPARATION) 
I outermost peaks are v. close together, or there's only one peak 5/ 

if (low-peak <5) return 255; 	1* patch must be all black */ 
else return o; 	? patch must be all white 5/ 
else 
flnd_best_top(low_peak, high-peak. &best_trough); 

1* find best peakl-trough-peak2 combination */ 
return (byte)(((float)best_trough-0.5) 5(float)bin_size); 

void 
local_thresholdO 

/5 threshold injmage to out-image *1 

mt 1, j, k, 1, threshold; 

for (i=&, i<IMAGE_SIZE; i+=PATH_SlZE) 
for (j=O; j<IMAGE_SIZE; J+=PATCH_SIZE) f 

threshold = selest_threahold(i, j); 
for (k=i; ki+PATCR_SIZE ks-f) 

for (l=j; kj+PATCH_SIZE; 1+-i-) 
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if (threshold < in_image[k](11) 
out_image[kl[l] = 255; 

else 
out_image[k][11 = 0; 

void 
main(azgc, argv) 

mt argc 
char argv; 

if(argc<3) 
print'Not enough arguments local inimage outimageo); 

else 
if (!re0_image_ok(argv[1])) 

printf("local: failed to load image.0); 
else 

print1"0hresho1ding %s..0, argv[1]); 
local_thresholdO; 
if (1write_image_ok(argv[2])) 

printf"local: failed to write image.0); 

Iocal.h 

#define TRUE 1 
#define FALSE 0 
#define IMAGE-SIZE 512 
#define MAX-DIVISIONS 256 
#define SUBSAMPLE_SIZE 1 
#define DIVISIONS 32 
#define MIN-PEAK-SEPARATION 1 
#defise PATCH-SIZE S 

typedef unsigned char byte; 

byte in_image[IMAGE_SIZE] [IMAGE_SIZE], 
out_image[IMAGE_SIZE] [IMAGE-SIZE]; 

mt left_of_trough, 
bin_size=MAX_DWISIONS/DWJSIONS, 
bars[DWISIONS]; 



Appendix F 

Published Work 

Vellacott, Oliver R., A Framework of Hierarchy for Neural Theory, International 

Conference on Artificial Neural Networks 1991, November 20-26, Bournemouth, 

UK 

Vellacott, Oliver R., ANNECS. A Neural NEtwork Compiler and Simulator, International 

Joint Conference on Neural Nets 1991, July 8-12, Seattle, Vol II, p991 

Vellaeott, Oliver R., Compilation of Neural Nets from High Level Specifications, lEE 

Colloquium on Neural Networks: Design Techniques and Tools, March 1991, 

Savoy Place, London, p9/1-9/4 

158 



A FRAMEWORK OF HIERARCHY FOR NEURAL THEORY 

O.R. Veilacott 

Edinburgh University, UK 

INTRODUCrION 

Perhaps the most striking feature of the current state 
of the art in neural nets is the lack of unifying 
theory. A multitude of models and successful 
applications abound, each with its own piecemeal 
'theory' explaining how it works. No overarching 
principles exist, however, for bringing together these 
diverse models and enabling a common 
understanding. This lack of theory was pointed out 
by von Neumann as far back as 19561  yet his paper 
seems as relevant today as it was then. More 
recently, Patricia Churchiand has described her own 
search for neural theory, 2  concluding that none is 
yet available, though much needed. Her book, 
Neurophilosophy, gives an excellent description of 
the role and requirements of a theory of neural 
networks. 

To be more down to earth, we have no method for 
saying what the ith neuron in the jth layer of a 
multilayer perceptron actually does. Maybe it is not 
possible to answer this. Perhaps it is not possible to 
describe that neuron's role. Maybe there is no 
computational theory underlying neural cognition 
which explains what each neuron and each 
connection means. Maybe the only 'explanation' of 
neural processing is some principle such as Neural 
Darwinism3  which explains how a system evolves but 
not how it performs its function at any non-
primitive level. 

These objections seem unreasonable. Theory exists 
to explain the operation of most other areas of the 
universe: why should the field of neural nets be 
different? At the primitive level at least, it is 
possible to explain in computational terms how 
inputs are transformed to outputs. This can be 
understood in terms of connectivity, neuron states, 
and so forth. Understanding is at present limited to 
this level. 

The Requirements for Neural Theory 

Neural theory should provide a method for 
understanding how a network implements Its 
function. Similarly, it should supply a method for 
explicitly constructing a network to implement any 
specified function. 

Biological neural networks are not generated 
spontaneously. They are (initially) generated 
according to the genetic code. Many animals are 
born with certain abilities already existant. These 
functions do not arise by magic but are derived 
from a specification in the form of the genetic code. 

It seems remarkable that this approach to the 
construction of artificial neural nets has been all but 
entirely. ignored. The generation of initial network 
topology, upon which learning can build and upon 
which learning relies, is foundational to the 
formation of biological neural systems. A genuine 
theory of neural nets would provide a method by 
which artificial networks could be constructed from 
meaningful genetic. specifications (note that these 
bear no relation to genetic algorithms). 

With current models it is the network topology 
which enables learning to succeed. ART 'works' 
because connection patterns are precisely specified 
and highly constrained 4  Self-organisation relies on 
the nearest neighbour interconnects of Kohonen 
nets, et a! 5  This topology is effectively a genetic 
constraint. The designer adopts a topology in a 
subjective manner, dependent on various factors 
such as number of inputs and outputs, likely number 
of features at each level of representation, and so 
on. This paper advocates making explicit the genetic 
(or predetermined) element in the construction of a 
neural system. This requires a method for generating 
an architecture which implements (to some arbitrary 
degree of precision) a described function. 

Additionally, a neural theory would provide a 
unified explanation of learning. The learning 
problem may be viewed as the task of modifying 
each weight in relation to the modification of other 
relevant weights. Theory would explain what 
weights were 'relevant' to other weights and provide 
a method for relating the weight modifications such 
that convergence was achieved. Current neural 
models do not scale up for this reason. As the 
network size increases the search space increases 
exponentially and 'blind' learning breaks down. A 
neural theory would (a) enable the initial network 
topology to be constructed in a meaningful way such 
that the search space was dramatically reduced and 
(b) enable more constrained exploration of the 
search space. 

Hierarchy 

The key concept underlying the framework 
presented in this paper is hierarchy. This concept is 
misting from current analysis and construction of 
neural nets. At present, attention is focused almost 
exclusively at the primitive level. When faced with 
the questions: What does a network mean? and How 
does a network compute its function? current 
'theory' is powerless to respond. It simply is not 
possible to understand a complex network in terms 
of individual primitive neurons and synapses. This 



problem is analagous to trying to deduce the 
function of a one million-transistor digital integrated 
circuit solely from a netlist of transistors The 
physical layout is a clue to its various components 
(as seems likely to be the case in biological neural 
nets) and an experienced chip-designer may be able 
to deduce some understanding of its function from 
this. It may be possible to group transistors into D-
tpe flip-flops, group these into shift registers, and 
so on. However, the very principle underlying this 
process is hierarchy. Though hierarchy is not readily 
apparent in a flat netlist of transistors (or, for that 
matter, a netlist of neurons) it is present and 
underpins the correct implementation and testing of 
such a system. The problem of reverse-engineering a 
neural implementation to a hierarchical 
representation of its function is yet more complex 
than for an integrated circuit: neural nets don't 
process discrete values; they interconnect massively; 
they have never been constructed from hierarchical 
specifications so it is not known what cues to look 
for in discerning which structures implement which 
functions. 

Hierarchy also underpins the framework by means 
of which we comprehend text. Characters, which 
have meaning at a low level, are related to form 
words, which have meaning at a higher level. Words 
are related to form phrases, phrases to form 
sentences, sentences to form paragraphs, and so on 
through subsections and sections to paper level. It is 
not possible to either write or understand this paper 
without a concept of hierarchy, however 
subconcious that may be. 

Yet another example of how essential hierarchy is to 
our understanding is in the field of physics. It is not 
sensible to try to understand the replication of DNA 
in terms of subatomic particles. What is needed is 
intermediate levels of representation which bridge 
this gap. Each of these levels has its own 'theory' 
describing how it relates to lower levels (a capability 
we shall require for our neural framework). Atoms 
are formed from subatomic particles, base molecules 
from atoms, proteins and polymer chains from base 
molecules. Levels of representation are essential to 
our understanding of this. 

An example which is closer to the neural problem, 
in that it too is concerned with computation, is 
hierarchy within software systems. A complex 
program cannot be understood in terms of its 
compiled binary machine code. Its function becomes 
only vaguely-discernable if the binary is tranformed 
to mnemonic machine codes. These in turn need to 
be abstracted to programming constructs such as 
tf.. then ... else, then to functions, higher level 
functions, and so on up to module, subsystem and 
system levels 

It is helpful to consider these examples of hierarchy 
in order to enable us to appreciate its virtues. Each 
of these examples illustrates the crucial role of 
hierarchy in comprehending a complex system.. 

The only level that is common to all models 
constructed under the framework for neural theory 
is the primitive level, that which contains neurons 
and synapses. Though the framework is applicable 
to all neural models, the way in which these models 
form higher levels of representation is not 
constrained by the framework and is instead 
determined by the designer or (perhaps) the 
learning process. The hierarchy presented in this 
paper is not the same as modularity of networks, 
which has been described in previous work as 
hierarchy. The scenario where several subnets or 
modules produce results which form input to a 
'higher level' module is not taken to be true 
hierarchy. Representations are only analysed above 
the primitive level in a very restricted sense and 
time is no hierarchy of data. 

It has been argued that a multilevel representation, 
in addition to a method of interrelating levels, is 
essential to the understanding of neural systems. 
Thus, the next section presents a framework of 
hierarchy for understanding neural systems at 
arbitrary levels of abstraction. The subsequent 
section describes a software tool which embodies 
this framework. 

THE FRAMEWORK 

The Concept of Levels 

What we are concerned with is representing 
functions and data, and performing transformations 
between representations. We require a framework 
which enables us to describe distributed functions 
and data at arbitrary levels of abstraction and which 
enables us to interrelate those levels. As discussed 
in the previous section, the idea of levels is crucial 
to this framework. 

Abstraction contains the idea of capturing the 
essence of something described at a greater level of 
detail. It involves saying less about how something is 
done and more about what is done. Abstraction 
contains the concept of summarising (not 
modifying) some description from a more to a less 
concrete form. Implementation is the inverse 
operation to abstraction. It involves putting a 
description of a function into effect. It involves 
making a function more concrete, saying the same 
thing but in more detail, transforming what a 
function is into how it should be performed. 

Levels for Neural Representations 

Within our framework we shall define the 
neuronfsynapse level to be the primitive level. It is 
conceivable that there are yet more primitive 
implementations of this level but, for the purposes 
of understanding neural systems, neurons and 
synapses may be treated as primitive 
representations. The contention of this paper is that 
a neural network is a realisation of functioning that 



can be meaningfully described and understood at 
higher levels of abstraction.. As already discussed in 
the introduction, that function cannot be 
understood at the primitive level alone. The 
framework must enable us to abstract and 
implement functioning (and communication) in a 
completely distributed manner. This is achieved by 
the use of three basic concepts (see Figure 1): 

a function - which transforms inputs to 
outputs in some way. 

a connection - which provides a means 
of integrating functions. 

an interface - by means of which a 
function communicates with other functions. 

 Functions 	 Lntcrf ace Lower Level 

Interconnections 	
[ ] 

F _ Ports 

Fig 1. Concepts of the framework: Definition of a Function 

Functions 

Use of the term function can be misleading since 
our functions are not restricted to returning a single, 
or even composite, value. Instead, they are allowed 
to take many inputs and produce many outputs, 
simultaneously. Our use of the term is more closely 
allied to the idea of an object, as used in object-
oriented models of computation. The difference 
here is that objects in these models are typically 
defined in terms of (sequential) imperative code, 
and thus cannot naturally respond to simultaneous 
inputs with simultaneous outputs. In this sense, our 
use of the concept fisnction is closer to the way in 
which a distributed system is defined. Here, a 
distributed system (function) is defined in a 
completely distributed manner such that the 
distributed system (function) consists of the 
appropriate interconnection of lower level 
distributed systems (functions). This analogy is a 

better parallel of the inherent distribution in neural 
systems, though the valuable concepts in object 
oriented modelling are not explicit. 

Broadly speaking, a function at one level of 
abstraction is implemented at a lower level (and in a 
multiplicity of ways) by relating lower level 
functions in such a way that together they produce 
the desired behavior. This interrelation is performed 
by message passing between functions. Where 
messages come from and go to is defined by 
interconnecting functions to form the appropriate 
topology. This style of definition is more 
declarative than most classical techniques (e.g. 
imperative algorithms) for describing functions. 

Connections 

Just as levels of abstraction exist in representation of 
functions, so connections represent levels of 
abstraction in the representation of data. If the 
axons transmitting visual information from the eye 
to the visual cortex were to take random paths 
through the rest of the brain it would be very 
difficult indeed to deduce what was going on. In 
practice, however, these nerves are tightly grouped 
into a 'higher level' connection, the optic nerve. It 
makes sense to understand the role these axons play 
by grouping them together the grouping transmits 
an 'image (actually a combination of intensity 
values and primitive objects such as edges) to 
another module within the brain. 

A connection of type 'image may be defined in 
terms of more primitive types of connection. For 
example, an image may be defined as a row of 
columns; or as a column of rows; or as a row of 
columns of blocks; and so on. A row may be 
defined in terms of pixels, which may themselves be 
defined in terms of primitive synapses. 

This hierarchy in connections is necessary to 
facilitate high level message passing. Though at 
implementation level an image is sent along, say, a 
million primitive paths, at the conceptual level an 
image is sent, period. This abstraction of data must 
go hand in hand with the abstraction of function. 

Interfaces 

Each function, at each level of abstraction, has a 
typed interface. This consists of one or more ports, 
of particular connection-types, at which input is 
received and from which output is sent. It is by 
means of this interface that each function 
communicates with the outside world. Thus, when 
a function is defined - by interconnecting lower 
level functions - these interconnections are made 
to/from individual ports on those functions, not 
directly to components of those functions. Thus, 
each function has no control over its role in defining 
higher level functions: all it 'knows about' and can 
do is to perform its own function, transforming 
inputs received at its interface to outputs which it 



transmits via its interface. In this way, as in object-
oriented and distributed models, functions are 
autonomous. This use of typed interfaces allows the 
definition of a function to be restricted to one level 
at a time. 

Each non-primitive type of interface/connection is 
defined in terms of lower level types. Thus, each 
port in the interface of function X itself contains 
ports - of lower level types. Connections external to 
X must be of the same type as the port on X to 
which they connect. Internal connections, however, 
may connect to one of the port's lower level ports 
which represent the types in terms of which the port 
is defined. Using this latter method of connection 
enables the function to decompose a high level 
connection into its constituent types. Thus, for a 
function to perform edge detection on input 
received as type image it must first decompose this 
image type to pixel level. Composition of higher 
level connection types is achieved in the same 
manner. 

Instances 

If it is necessary to define several functions in terms 
of one common lower level function, an instance of 
that function is required. For example, functions to 
perform object detection and object classification 
might both be defined in terms of a function which 
detects edges at a particular point in an image. 
Instead of creating two instances of this edge-
detection function it makes sense to use a common 
instance, in terms of which both higher level 
functions are defined. This is analagous to the 
concepts of class and instance in object-oriented 
modelling. 

This capability permits compact implementation of 
higher level functions; two functions are not 
required to do the same thing. Most neurons, or 
clusters of neurons, will typically be components of 
more than one higher level function. Thus, the 
implementations of multiple high level functions 
- which consist ultimately of primitive 

interconnections between primitive processors - will 
normally be closely intertwined. In the same way, 
instances of connections may be created so that 
disparate functions may communicate via the same 
communication path. This, of course, may not 
make sense without the use of multiplexing, though 
such connection instances may be a feature of 
biological systems. 

ANNECS: A NEURAL NETWORK COMPILER 
AND SIMULATOR 

Introduction 

ANNECS is a software tool which embodies the 
methodology for constructing neural nets proposed 
in this paper and has been described more fully 

7 It enables the formation - compilation 

- of a neural network from a hierarchical 
specification. It then enables learning of that net - 
simulation - by applying one of a number of 
learning algorithms. During compilation the high 
level information contained in the hierarchy of the 
specification is retained such that learning that 
occurs can be understood. 

Basically, ANNECS enables the user to define 
functions in terms of appropriately interconnected 
lower level functions. The only primitive function is 
the neuron and the only primitive connection is the 
synapse, though the model upon which each of these 
is based can be selected by the user. Thus, all 
functions are defined, ultimately, in terms of 
neurons interconnected by synapses. The 
compilation component of ANNECS performs this 
translation between a high level, hierarchical 
specification and its functionally equivalent neural 
implementation. 

The development of this software was undertaken to 
provide experimental support for the framework for 
neural theory advanced in this paper. Thus, 
ANNE(3 integrates genetic and empirical methods 
of construction, the compilation and simulation 
components, respectively. The key element which 
enables this to be carried out in a meaningful way is 
the presence of hierarchy. The experimental results 
obtained from this work - the development of 
ANNECS and its application to several image 
processing problems - endorse the methodology 
proposed in this paper. Within a framework of this 
nature neural architectures can be comprehended at 
arbitrary levels of representation. 

Features of ANNECS 

Visualisation. Within the framework, description of 
a neural architecture consists of a hierarchy of 
netlists. Written in language-form, a netlist can be 
fairly meaningless. Text is inherently sequential in 
the way in which it lies on the page, even if what it 

pres is something fundamentally parallel. A 
netlist is above all a stnicture, and structures are 
perhaps best conceived visually. Thus, an essential 
feature of ANNECS is that it visualises 
specifications. Each component of a function is a 
real entity, continually existant in the target neural 
implementation, and thus it makes sense to have it 
represented by a real object at a particular place on 
the screen. This is not to say that the same 
specifications could not be described linguistically, 
but that the manner of specification lends itself to, 
and is best understood by means of, visual 
representation. ANNECS uses visualisation for the 
same reason that schematic capture tools use it. 
Each type of function and each type of interface is 
represented by a user-defined icon. This icon is used 
to capture function visually. 

Specification. The specification of a neural system is 
made by the hierarchical description of functions. 
The specification of each of these neural functions is 



made up of a netlist of lower level functions and 
interfaces. Thus, the specification process consists 
of: 

(1) creating instances of interfaces 

(ii) creating instances of functions 

(in) interconnecting these functions and 
interfaces in the appropriate manner so as to 
implement the desired function 

Compilation: Formation by Specification. The 
term Compilation is usually applied in a computing 
context to mean: generation of machine code from a 
high level language. In the context of this paper, 
however, it means the generation of a neural 
architecture from a high level specification. All 
objects are defined ultimately in terms of just two 
primitives, the neuron and the synapse. Thus, the 
compilation method consist of recursively 
expanding each object into its constituent objects, 
until the definition consists of neurons and synapses 
only. Since clusters of neurons are embodiments of 
objects whose function is fully described within the 
specification, the functioning of the network may be 
understood. 

Simulation: Formation by Learning. ANNECS 
enables the simulation of a compiled network 
according to one of a number of models. Thus the 
same initial architecture can be made to learn 
according to different models without changing the 
specification. The model for neurons and the model 
for synapses is selected separately. 

SUMMARY 

We have described a framework of hierarchy within 
which representations of neural functions and data 
may be transformed from level to level. Within this 
framework, the function of a neural system may be 
abstracted above the primitive level so that it may 
be understood at arbitrary higher conceptual levels. 
The framework is natural to neural systems in that 
representations are completely distributed at each 
level of abstraction. Neural Compilation, the process 
by which a hierarchical specification of a neural 
system is implemented, is facilitated by ANNECS, a 
software tool. What is significant about this 
framework is that it enables us to comprehend 
neural systems at arbitrary levels of abstraction. As 
we have discussed, this ability is essential for us to 
be able to understand the operation of any non-
trivial system and should aid analysis of neural 
systems by raising representations above the 
primitive level. 
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Abstract 

ANNECS is a software tool that compiles a high level, object-oriented specification to 
a functionally equivalent neural network. It does this by realising each object in the specif-
ication as a functionally equivalent cluster of neurons and synapses. All objects are defined 
ultimately in terms of just two primitives, the neuron and the synapse. Thus, the compila-
tion method consists of recursively expanding each object into its constituent objects, until 
the definition consists of neurons and synapses only. Since clusters of neurons are embodi-
ments of objects whose function is fully described within the specification, the functioning 
of the network may be completely understood. Moreover, since networks compiled in this 
way are functionally equivalent to their algorithmic specification, Computation Theory may 
be applied to these neural networks. An application which demonstrates these principles is 
described. This is a simple robot controller which picks up objects and drops them into 
holes as it moves around in a world containing stairs. 

1. Motivation 

ANNECS enables construction of an artificial neural net (ANN) from a high level 
specification. Perhaps the main virtue of ANNs is that they learn solutions which could not 
be specified by human designers. Therefore, why construct a neural net from a specifica-
tion? One would think it would be easier to implement the specification on a von Neumann 
machine. That it is possible to construct an ANN that will implement any specification has 
already been shown. 1  

The motivation behind ANNECS is twofold. Firstly, a net that has some built-in 
structure may have a better chance of learning and hence of deriving a complete solution. 
The designer may be able to sketch out an approximate strategy for solving a problem, 
upon which neural learning techniques can build. 2  It may be desirable to compile-in infor-
mation regarding high level strategy and to leave the manaement of uncertainty and the 
adaptation to real-world data to neural learning techniques.' 4  The biological system itself 
is formed with some structure (specified by the genetic code) built in, before any learning 
takes place. Hence, the primary motivation for this approach is to enable construction of 
ANNs which incorporate high level a priori knowledge, so as to combine (i) what is known 



by the designer and (ii) what can only be learnt from real-world data. 

Secondly, this approach aids understanding of the realisation of high level functioning 
in ANNs.5  Using ANNECS, it is possible to implement various styles of specification and 
to observe the efficiency with which those styles utilise neural hardware. Preliminary results 
suggest that the object-oriented paradigm is the most natural framework within which to 
understand higher level neural processing. We may not be able to prove that any one style 
of specification maps into the best neural representation or, for that matter, the biological 
representation. We can, however, construct nets whose functioning is understood at all lev-
els of abstraction. 6  Thus, ANNECS enables the study of representation of high level pro-
cessing in neural nets. 

2. Specification 

Specifications are expressed in an object-oriented style using graphical input in a 
manner similar to schematic capture. Each object resides in a library and is defined in 
terms of lower level objects, connected together in such a way as to produce the desired 
function. There is just one primitive object, the neuron. Thus, all objects are defined ulti-
mately in terms of neurons. In a similar manner, datatypes are defined in terms of lower 
level datatypes. The one primitive datatype is the synapse. 

A low level object is defined by connecting neurons together so as to realise the 
specification of that object's behavior. It is at this stage in the definition process that initial 
weights and thresholds are specified—which may then evolve during simulation, according 
to some learning algorithm. In addition to specifying the function of an object, by the way 
in which lower level objects are connected/related, the designer also defines a typed inter-
face by which the object communicates with the outside world. For example, an object 
which performs an f. .then. . .else function might be defined thus: 

0.5 

Call i.o\ 	0.52' 	 then 

1.0 

Condition 	 else 

Figure 1. Definition of if...then... else object 



Datatypes are formed by grouping together lower level datatypes. For example, an 8-
bit representation of an integer may be defined by grouping eight synapses to form this 
higher level type. This may be an unnatural utilisation of neural hardware to represent 
numeric values, but serves to show how multiple synapses may be grouped together and 
thereafter treated as one, high level communication path of a particular type. When form-
ing a communication path between two objects, the types of the source and destination 
interface slots must match the connection type. This is the only type-checking performed 
by the compiler. 

ANNECS is supplied to the user with a comprehensive library of objects which per-
form functions ranging from control constructs to integer arithmetic. The user defines 
objects by use of the mouse, selecting predefined objects from the library and creating 
instantiations of these in a 'definition area' on the screen; he then relates those objects by 
connecting them with communication paths of appropriate types, specifying to which slot in 
each interface the connection joins. Associated with each object, he defines a macro. 
Using these macros, ANNECS generates textual descriptions of the specification with each 
object. Several macros may be associated with each object so as to enable generation of text 
in various languages: for example, C+ + syntax, or Simula syntax. 

3. Compilation 

Compilation consists ofrecursively expanding each object into its constituent objects 
until the definition consists of neurons and synapses exclusively. Expanding objects until 
only primitive objects (neurons) exist is relatively easy. However, it is more complex to 
expand high level connections to their constituent synapses, and to determine how to 
expand these connections across interfaces. This task is achieved, as in the compilation pro-
cess of other object-oriented languages, by the use of a cactus stack (a stack of stacks). 
Here, to compile object A we push its constituent objects (B={x:x constituent of A}) onto the 
main stack (the trunk of the cactus). The definitions for the constituent objects of A 
(C={x:x is constituent of B}) are then pushed onto stacks (the spines of the cactus) which 
grow outwards from the main stack. Connections between the constituents of the consti-
tuent objects of A (i.e. C), hitherto made via interfaces, are made direct. Thus, boundaries 
between constituents of A are removed and the spines shrink back to leave A defined, not 
in terms of its constituents (B), but in terms of its constituents' constituents (C). This pro-
cess is repeated until no interfaces exist between objects. The definition then consists of a 
network of directly connected neurons. 

Since the compiled net is 'flat' and consists of only neurons and synapses, the inherent 
structure with which the net was formed is not apparent. It is not possible, by observation 
of the net in isolation from its specification, to say which neurons cooperate to form which 
high level objects. Thus, it is only possible to understand the high level functioning of the 
net when viewed in relation to the specification. 

The result of compilation is a netlist describing neurons (their initial thresholds) and 
their interconnection by synapses (their initial weights). This 'flat' net may then be simu-
lated within ANNECS, in order to observe its behavior. Various learning algorithms can 
be applied to compiled nets during simulation, 7 ' 8  but their effectiveness has not yet been 
investigated. This investigation is now the primary aim of our work. Additionally, the neu-
ron function may be globally specified at simulation time to be, e.g. perceptron-type thres-
hold function, sigmoidal function, etc. 



4. Application: Simple Robot Controller 

In order to demonstrate the principles of ANNECS it is useful to consider an applica-
tion. Our robot moves around in a world containing stairs, objects and holes. When it 
finds an object it should pick it up and carry it until it finds a hole, into which the object 
should be dropped. Every other time the robot meets a stair, it should climb it; when not 
due to climb a stair it should turn left instead. Our aim is to formulate a specification 
describing this behavior and have ANNECS realise this as a functionally equivalent net. 
This will enable us to understand the part played by each neuron in achieving the overall 
function of the net. 

We have defined our robot controller as one high level object in order to observe its 
entirety. We could, of course, have split the functioning into smaller modules. Our robot 
controller is thus defined: 

if 

found object 
then-else 

stop motor 

Tine 

Boolean 
pickup object False 

carrying object 

blocked 

found hole 

? 

r 
drop obiec,,l 

if 

	

'? I 	start motor 
_o. 

dlimbstair 	<H 	turn left 
climb stair 

Figure 2. Specification of Simple Robot Controller in ANNECS 



This specification is compiled to the following net: 

Figure 3. Neural Implementation of Robot Controller - Compiled by ANNECS 

5. Implications and Conclusions 

Using ANNECS we can guarantee to construct a neural net that implements any 
specification expressed in an object-oriented manner. It may be possible to apply learning to 
nets thus formed and thus this may offer a powerful means of combining construction-by-
specification and construction-by-learning. That which may be specified by the designer is 
built into the net in the form of structure and initial weights and thresholds. That which is 
unknown by the designer—and may only be determined from real-world data—may be 
learnt, adding detail to the high level strategy imparted by the designer. This approach is 
biologically inspired and requires further investigation. 

Not only can/sguarantee to construct a net which implements a described function, 
but we can also understand how that net achieves its function. This is because, by relation 
to the specification at any level of abstraction, we can understand the role of each neuron 
and each cluster of neurons in achieving the overall objective. Only at the primitive level 
do we observe the localist representation of one-neuron, one-concept. 9  At all levels above 
this, an object is represented by the appropriate interconnection of other objects (clusters of 
neurons). We cannot prove that this is how the biological system models the world, but it is 
a highly plausible explanation. 

ANNECS thus implements a potential theory for understanding neural nets. It 
demonstrates how high level processing may be achieved by the structuring and weighting 
of neural interconnections and thresholds. It should enable Computation Theory 10  to be 



applied to neural processing, since nets formed by ANNECS are direct realisations of 
Effective Procedures. This should provide valuable insight on how the biological system 
represents, and reasons about, a world. 
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Compilation of Neural Nets from High Level Specifications 

Oliver R. Vellacottt 

This paper describes a software tool which compiles a high level, object oriented specifica-
tion to a functionally equivalent neural net. It also explores the implications of this 
approach for the theory and construction of neural nets. 

1. Specification of Function 

The object oriented methodology 1 was chosen as the most natural framework within which 
to specify neural systems for the following reasons. Each object in a definition is auto-
nomous; each cluster of neurons in a net is autonomous. Each object in a model is thought 
of as a continuously executing process; each cluster of neurons that implements an object is 
continuously active. Objects communicate by message passing; clusters of neurons commun-
icate by passing messages along multiple synapses. Objects are specified in terms of other 
objects and ultimately in terms of one or more primitive objects; each cluster of neurons 
may be perceived as interconnections of other clusters of neurons and ultimately as inter-
connections of primitive neurons. 

Using the software tool, the specification of an object's function is entered graphically by 
use of the mouse, in a manner similar to schematic capture. Each object is defined in 
terms of a relationship between other objects. This relationship is pictorially represented on 
the screen, with each object-type represented by an icon and each connection-type 
represented by a uniquely-patterned line. Thus, an object which performs an if .. then... else 

function might be defined: 

Condidm 	 .1.0 

Figure 1. Definition of iL..then...else object 

In the same way that high level objects are defined, high level datatypes are also defined in 
terms of lower level datatypes. For example, a representation of an eight-bit integer may be 
formed by grouping eight synapses together and thereafter treating them as one, higher 
level connection. This may be an unnatural method of representing numeric values using 
neural hardware, but serves to show how high level message types may be created from one 
primitive message type. High level connections between objects will thus be compiled as 
multiple synaptic connections, passing direct from neuron to neuron. Using this graphical, 
hierarchically-structured method of specifying a neural net's function, the designer is able 
to clearly understand, at every level of abstraction, how each high level function is imple-
mented in terms of lower level functions and ultimately in terms of primitive neural 
hardware. 

t Department of Electrical Engineering, University of Edinburgh, Kings Buildings, Edinburgh, 
UK. EM ML email: oliver@ikik.ac.ed.ee  
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Compilation of Specification 

Compilation consists of recursively expanding each object into its constituent objects until 
the definition consists exclusively of neurons and synapses. Expanding objects until only 
primitive objects (neurons) exist is relatively easy. However, it is more complex to expand 
high level connections to their constituent synapses, and to determine how to expand these 
connections across interfaces. This task is achieved, as in the compilation process of other 
object oriented languages, by the use of a cactus stack (a stack of stacks). Here, to compile 
object A we push its constituent objects (B={x:x constituent of A}) onto the main stack (the 
trunk of the cactus). The definitions for the constituent objects of A (C{x:x is constituent 

of B}) are then pushed onto stacks (the spines of the cactus) which grow outwards from the 
main stack. Connections between the constituents of the constituent objects of A (i.e. C), 
hitherto made via interfaces, are made direct. Thus, boundaries between constituents of A 

are removed and the spines shrink back to leave A defined, not in terms of its constituents 

(B), but in terms of its constituents' constituents (C). This process is repeated until no inter-
faces exist between objects. The definition then consists of a network of directly connected 
neurons. 

Application : A Simple Robot Controller 

A simple robot controller was built to illustrate the operation of the software tool. The 
robot moves around in a world containing stairs, objects and holes. When it finds an object 
it should pick it up and carry it until it finds a hole, into which the object should be 
dropped. Every other time the robot meets a stair, it should climb it; when not due to 
climb a stair it should turn left instead. A graphical representation of this specification is as 
follows: 

climb stair  

Figure 2. Definition of Simple Robot Controller 
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This specification is compiled to the following net: 

Figure 3. Compiled Robot Controller 

From the graphically-expressed specification the software automatically generates, in addi-
tion to this compiled net, a hierarchically-structured, textual description of the functioning 
of each object. This is achieved by the use of macros which the designer associates with 
each object. 

4. Implications of this work 

There are two major implications of this work. Firstly, we have a potentially powerful 
means of constructing neural nets, combining construction-by-specification and 
construction-by-learning. Secondly, we have a framework within which to understand how 
high level functions may be represented using neural hardware. These two areas are now 
considered. - - 

4.1. Combining Genetic and Empirical methods of Construction 

A primary motivation for the use of neural nets, as opposed to more conventional methods 
of computation, is that they Learn. There are many problems whose solution is not amen-
able to specification by a human but which may be learnt by use of neural techniques. 2 ' 3  
These solutions generally derive from problems which require adaptation to 'fuzzy', con-
tradictory and often vast amounts of real-world data. What is amenable to specification, 
however, is high level strategy for solving a problem. This is usually difficult for an unstruc-
tured net to learn, but is what humans are generally very good at suggesting. 

Thus, the combination of high level strategy (imparted by the designer) and adaptation to 
real-world, uncertain data (imparted by neural learning) should provide a very powerful 
means of constructing neural nets that must perform non-trivial tasks. That which cannot 
easily be specified is learnt and that which cannot easily be learnt is specified. It seems this 
is the method of construction used by the biological system: the brain is formed by a combi-
nation of specification, from the genetic code, and learning. 

The work described in this paper has investigated how a-priori knowledge regarding a 
potential solution may be built-in to the structure of a net, in the form of initial weights 
and/or thresholds. It has not attempted to determine whether known neural learning tech- 
niques can be applied to nets constructed from a specification in the manner described. 
This latter investigation has now become the primary aim of our ongoing work. 
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4.2. Theory of Neural Nets : representation of high level functions 

As yet, there exists no recognised theory for understanding how neural nets perform high 
level functions. Neural nets are often treated as black boxes with little concern as to how 
they achieve their function. A consequence of this is that it is then difficult to see how per-
formance can be improved or modified in any particular direction and this may explain 
their relative failure to produce significant practical results. By observation of an 
apparently unstructured net it is very difficult to deduce any structure and hence to deter-
mine what part each neuron (or cluster of neurons) plays in the overall objective. 4  This is 
true unless the network architecture is significantly constrained, e.g. to a multilayer percep-
tron. Even then, it is difficult to understand how the net achieves its function for all but 
the simplest tasks. This is a problem inherent in bottom up analysis. The structure present 
in a compiled net is not readily apparent by observation of 'flat', connection patterns, 
weights and thresholds. 

If, however, we construct a net using a top down method of specification, it is possible to 
understand, at each level of abstraction, exactly how the net achieves its function. The role 
of each neuron and of each cluster of neurons may be understood. Thus it is possible to 
perceive how high level functions may be represented and computed by neural hardware. 
This observation may constitute part of a possible theory for neural nets. It offers a means 
of understanding how neural nets model a world, in terms of the object oriented paradigm. 
We cannot prove that this is the means used by the biological system to represent a world, 
except perhaps by interpreting how the genetic code specifies the brain structure, but it does 
seem a highly plausible explanation. 

Neural nets constructed from object oriented specifications are direct realisations of those 
specifications. These specifications, however, are essentially Effective Procedures: they are 
unambiguous descriptions of functioning. 5  Thus, by this route we can relate Computation 
Theory, in its entirety, to neural nets. In other words, the theory of what is and what is not 
computable applies equally to neural processing as to symbolic processing. This merely 
serves to confirm McCulloch and Pitts' earlier derivation of this result. 6  
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