
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2003

Query-Based Learning for Aerospace Applications Query-Based Learning for Aerospace Applications

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Emad W. Saad

J. J. Choi

J. L. Vian

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
D. C. Wunsch et al., "Query-Based Learning for Aerospace Applications," IEEE Transactions on Neural
Networks, Institute of Electrical and Electronics Engineers (IEEE), Jan 2003.
The definitive version is available at https://doi.org/10.1109/TNN.2003.820826

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229176500?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TNN.2003.820826
mailto:scholarsmine@mst.edu

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003 1437

Query-Based Learning for Aerospace Applications
Emad W. Saad, Jai J. Choi, John L. Vian, and Donald C. Wunsch, II

Abstract—Models of real-world applications often include a
large number of parameters with a wide dynamic range, which
contributes to the difficulties of neural network training. Creating
the training data set for such applications becomes costly, if not
impossible. In order to overcome the challenge, one can employ
an active learning technique known as Query-Based Learning
(QBL) to add performance-critical data to the training set during
the learning phase, thereby efficiently improving the overall
learning/generalization. The performance-critical data can be
obtained using an inverse mapping called network inversion
(discrete network inversion and continuous network inversion)
followed by oracle query. This paper investigates the use of both
inversion techniques for QBL learning, and introduces an original
heuristic to select the inversion target values for continuous
network inversion method. Efficiency and generalization was
further enhanced by employing node decoupled extended Kalman
filter (NDEKF) training and a causality index (CI) as a means to
reduce the input search dimensionality. The benefits of the overall
QBL approach are experimentally demonstrated in two aerospace
applications: a classification problem with large input space and
a control distribution problem.

Index Terms—Active learning, aerospace application, causality
index (CI), control distribution, crew escape system, efficient
training, emergency egress safety, mapping, network inversion,
node decoupled extended Kalman filter (NDEKF), pattern recog-
nition, query-based learning (QBL).

I. INTRODUCTION

T HE quality of the training data is a key ingredient for
neural network (NN) application. In aerospace industry,

data generation sometimes can be very expensive, if not im-
possible. This reality motivates us not only to seek economical
data generation techniques but also to investigate training
methods that can utilize a limited amount of data. A supervised
learning technique with a teacher (oracle) in the loop, known
as query-based learning (QBL) [1]–[4] has been proposed to
address the practical needs by incrementally adding training
data as the learning progresses. QBL is an active learning
technique [5], [6] where the learner actively selects its training
data, as opposed to passive learning, where the learner uses
a fixed set of training data repeatedly. For instance, optimal
experiment design, [7], [8] actively selects the new training pat-
tern in every learning cycle to minimize the learner’s variance.
Sample query [9] method is an incremental approach, which

Manuscript received May 15, 2000; revised May 30, 2001 and March 3, 2003.
E. W. Saad is with Southern Methodist University, Richardson, TX 75081

USA (e-mail: esaad@engr.smu.edu).
J. J. Choi is with Boeing Phantom Works, Seattle, WA98124 USA (e-mail:

jai.j.choi@boeing.com). He is also with the University of Washington, Seattle,
WA 98195 USA.

J. L. Vian is with Boeing Phantom Works, Seattle, WA 98124 USA (e-mail:
john.vian@boeing.com).

D. C. Wunsch, II is with University of Missouri-Rolla, Rolla, MO 65409 USA
(e-mail: dwunsch@ece.umr.edu).

Digital Object Identifier 10.1109/TNN.2003.820826

adaptively changes the sample size taken from each class.
In pedagogical pattern selection approach [10], the training
patterns are presented when specific learning error conditions
are met. These active learning techniques are more complex
and expensive due to the additional data generation processes
[5], [11]–[13].

Most of these methods are devoted to pattern classification
problems. When QBL is applied to a classification problem
[1], a typical scenario is to train a NN using a small number
of training data. In order to assess the learning status, one
can invert the network using the network inversion method
described below. Once created, each inversion vector is then
queried through an oracle to find the corresponding target.
Recall that, in supervised learning, the training data consists
of input and target values. The newly created training data are
then added to the existing data set in order to continue training.
Because of the interaction by the query mechanism, the overall
learning is called QBL.

The QBL process hinges upon network inversion. The
network inversion iteratively searches for vectors, in the input
space, called inversion vectors, which give rise to a specific
inversion target value.1 The network weight values need to be
fixed for the network inversion. We can categorize the inversion
into two types: discrete network inversion and continuous
network inversion. Each method depends on the types of
output values—the discrete value case, which is typical in
classification problems, and the continuous case typical in
continuous mapping/prediction problems. Accordingly, we use
the term discrete network inversion and continuous network
inversion to reflect the nature of the NN output.

The selection of the inversion target value is relatively intu-
itive in discrete network inversion. For example, in a binary clas-
sification problem (two classes that use 0 and 1 as network target
value), the inversion target of represents the classifica-
tion boundary. The inversion vectors obtained above can be in-
terpreted as the network version of the classification boundary.
We can use these vectors to gauge the status of learning. Obvi-
ously, the closer the inversion vectors to the true classification
boundary, the better the network performance becomes. One can
also invert the partially trained network for a range of target
values for instance, instead of a single target in-
version strategy. For continuous network inversion, the choice
of the inversion target value is not trivial. One needs to know
what range of target values is worthy of network inversion. One
way to find the critical value (or range of values) is based on
the absolute training error. We can apply inversion whenever
the network produces a large error that is outside of a preset
threshold. In that case, the output value of the network can be
directly used as the inversion target value.

1Note that this value is different from the target value of training data.

1045-9227/03$17.00 © 2003 IEEE

1438 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

In order for an inversion vector to be useful for training, we
need to obtain the true target value of the vector by querying it
to an oracle. An oracle (teacher) exists in a variety of forms such
as mathematical equations, simulation models, human experts,
or experiments.

In this paper, for the sake of notations and completeness, we
review a formulation of discrete network inversion followed by
QBL learning process in Section II. A technique of generating
continuous network inversion data is also presented. In Sec-
tion III and IV, applications of the QBL methods are detailed for
two aerospace problems, ejection safety classification and ejec-
tion seat modeling, respectively. The former addresses decision
on the ejection safety level based on the initial state of ejection
parameters of a fighter jet ejection seat. This problem is char-
acterized by a huge search space due to the high dimensionality
and wide dynamic range of input parameters. The second appli-
cation is a continuous mapping problem that maps propulsion
control moments to nozzle commands in a four-nozzle control-
lable ejection seat. In this application, it is desirable to reduce
the maximum absolute value of the network error. Based on the
simulation studies through these applications, we draw some
conclusions in Section V.

II. QBL

A. Discrete Network Inversion

What the trained network perceives about the classification
boundary may be totally different from the true boundary.
This is bound to happen when we have inadequate training
data or in the early stage of network learning. If there is a
way to ask the trained network about what it does or does not
understand about the input data, that would increase the chance
to improve on-going training. The network inversion [14]
precisely addresses this issue. In order to establish notations,
we first lay out the basic network structure. During the forward
path of network training, the activation output of a neuron unit
is given as

(1)

and

(2)

where is the number of neurons in the previous layer, is
the threshold, is an activation function, andrepresents the
output of a unit. The most commonly used activation functions
are the sigmoid

(3)

or the hyperbolic tangent

(4)

The latter is asymmetric, and has the advantage of acceler-
ating the learning process [15]. In the activation functions (3)

and (4), a scaling factorcan be introduced for better learning
[15] such that (3) becomes

(5)

and (4) becomes

(6)

The forward mapping from input to output is achieved by
finding a set of weights which minimizes the sum squared error

(7)

where is the target output, is the actual network output,
and is the number of neurons in the output layer.

The reverse process of producing input vectors that yield a
predetermined target output is referred to as network inver-
sion [14]. The inversion target output is usually chosen to rep-
resent the output values which are hard for the network to learn.
For example, in case of a neural network used for classification
with binary output (0 and 1), the inversion target output value
would be 0.5 in order to represent the decision boundary. For a
given inversion target value,, the corresponding input vectors
of length , , can be obtained by
back-propagating the inversion error,, given in (8), through a
partially trained network with it’s weight values frozen.

(8)

The inversion process is an iterative search method in the input
space. Once an initial search point with components is
randomly assigned, the update rule for the activation potential

in the input layer at the iteration is given as

(9)

The derivative for the neuron units in layeris obtained by
a chain rule [16] as follows:

(10)

For the neurons in the output layer, the derivative becomes

(11)

SAAD et al.: QUERY-BASED LEARNING FOR AEROSPACE APPLICATIONS 1439

Fig. 1. Effect of adding jitters to query data. The points closer to the true
boundary may move to the opposite class due to the added jitter, while the points
far away from the decision boundary remain unaffected. Points from class A are
shown as o’s, while points from class B are shown as x’s. The arrows indicate
the direction in which a point was moved by jitter and crossed the boundary.

The inversion vector components at the input layer is obtained
by

(12)

which guarantees that the network input will be in the range of
the activation function. Thus, constrained iterative inversion is
used as explained in [14].

The inversion vectors are then queried to an oracle to
produce the true target values for a newly generated
set of training data (,). We can also add random noise (jitter)

to produce another training vector (,).
While adding jitter (noise) to the input data without cor-

recting the target output might seem to adversely affect the
network training, it has been shown that the strategy has
the effect of smoothing the decision boundary and actually
improving the generalization [17]–[26]. Depending on the
variance of the noise, jitter may have a greater impact on the
data points closer to the decision boundary as illustrated in
Fig. 1. These points, when jittered, can move across the deci-
sion boundary. On the other hand, the data points farther away
from the decision boundary are not affected by adding jitters.
Can this be the case for query based learning, especially when
the number of data points along the boundary is sparse? In this
case, we believe that when the decision boundary is smooth
and the classes are well separated, adding jitter may adversely
impact the learning. We will investigate this conjecture in our
experiments in a later section.

B. Continuous Network Inversion

As we mentioned in an earlier section, the choice of the in-
version target value for continuous network inversion is a chal-
lenging task. Very limited work has been devoted in this area (in
[27] an active learning is applied to locally weighted regression).
In the control distribution application, we are most interested in
minimizing the maximum error at the output, not just the rms
error. In order to reduce such errors, we pre-set an acceptable
error bound (threshold) and use it as a guide for the continuous
network inversion.

The proposed continuous network inversion is as follows:
Upon freezing the network weights, a test data set is fed to the
trained network. The test data is generated in a fashion sim-
ilar to the training data using the oracle and is uniformly dis-
tributed over the input space. The cost of the test data gener-
ation is equal to the cost of the training data generation, but is
obviously generated only once and does not need inversion. The
corresponding network output is then compared with the desired
target value. Whenever the absolute error

is greater than a pre-set threshold (the
choice of which relies on personal discretion), the actual neural
network output value is used as the inversion target value. Once,
of course, having set the inversion target value, the inversion
algorithm is identical to the discrete network inversion case.
During the inversion process, the network input is initialized
using a random value as explained in Section II-A. Therefore
the network output is no more equal to the target value. The
nonzero error gradient is used to change the input value until
another input point is found where the output error is close to
zero. Iteratively, using different initial random input points, sev-
eral input patterns are obtained, for each inversion target value.

C. Practical Techniques for Efficient Training: Causality
Index and Error Bias

1) Causality Index:The causality index (CI) as a means to
measure the output sensitivity to the network input, is used to
improve the generalization capability [29], [30]. Based on the
dependency of an output on each input, we can eliminate certain
input parameters with low sensitivity. Obviously the larger the
number of inputs eliminated based on CI analysis, the faster the
network inversion becomes. Consequently, it speeds up the QBL
process. Note that the network inversion is a search algorithm
in the input space based on the error observation in the network
output. The CI value for a feed-forward network with a single
hidden layer having hidden units is computed by

(13)

where is the weight value between theth output unit and
the th unit in the hidden layer. is the weight value between
the th hidden unit and theth input unit.

In order to compare CI values of different NN architectures,
a normalized causality index is defined as

(14)

where and are the number of output and input neurons,
respectively. The causality index provides the following prac-
tical insights into feed-forward NN applications.

1) The causality index defined in (13) and (14) measures the
average sensitivity of the output nodewith respect to
the input node.

2) A positive causality index means that an increase in the
input causes an increase in the output and vice versa. A
negative causality index means that an increase in the

1440 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

Fig. 2. Safe escape scenario.

input value results in a decrease in the output value and
vice versa. In the ejection safety model problem in Sec-
tion III, a positive causality index implies that the increase
of the input parameter makes the ejection safer.

3) While a large causality index value indicates that the cor-
responding input has a greater impact on the output, a
small one does not necessarily mean irrelevancy of the
input parameter to the output. In addition, an input vari-
able may have a small causality index if the relation be-
tween the output and the input is symmetric, (e.g., the
roll angle at zero angular rates in our application in Sec-
tion III). In this case, the causality index is positive in one
half space, and negative in the other half space. The net
average is zero, (or very close to zero since, practically,
networks are never able to exactly model the true rela-
tion).

2) Minimization of False-Negative Error:Another impor-
tant practical aspect in classification is to distinguish types of
misclassification alarm. Not all alarms are treated equal in real
world. For instance, let’s consider the safe and unsafe classifica-
tion cases. The first type of alarm, referred to as nuisance alarm,
is encountered when a trained network declares an input unsafe
although the correct classification should be safe. The second
type, referred to as false negative, occurs if the trained net-
work declares the incoming input vector the other way around.
Clearly, the false negative alarm is of greater concern. Mini-
mizing false negatives thus has a greater importance, even at
the expense of a reasonable increase in nuisance alarm rate and
added computational costs. The approach to achieving this is
to introduce a penalty factor [31] that can skew the cost func-
tion emphasizing the danger of false negatives by using the
weighting factor

(15)

where

(16)

TABLE I
FLIGHT PARAMETERS DETERMINING THE ESCAPESAFETY

The penalty factor is equal to 1 if classification is exact, but
is equal to the constant for false negatives, and is equal to

for nuisance alarms. To restrict false positives,is greater
than . This technique is used in Section III-B-4.

Another way to bias the network decision toward more con-
servative safe decisions is to present more unsafe examples close
to the decision boundary in the training set. Applying this idea
on the query data has even a greater effect since the query data
generally lies closer to the decision boundary. This is demon-
strated by example in Section III-B-4, but is generally appli-
cable.

III. A EROSPACEAPPLICATION I: SAFE ESCAPESYSTEM

In this section we present the application of QBL in deter-
mining the safe ejection envelope for a fighter jet [32], as illus-
trated in Fig. 2. We are trying to model the safe escape enve-
lope as a function of airplane velocity, attitude, and other pa-
rameters known as initial conditions of an escape, as shown in
Table I. It is a deterministic two-class decision problem. The
ideal system should inform the pilot of the ejection safety status
beforehand. Ejection safety can be simulated off-line via high
fidelity ejection seat simulation, using EASY5 software [33].
One ejection simulation takes approximately 4 s on either a Sil-
icon Graphics or a Pentium Pro 200 processor, which makes
it invalid for on-flight real-time application. The main justifi-
cation of using neural networks to replace the simulation soft-
ware is the speed advantage needed in such life and death sit-
uation. Training data for NN simulations are supplied offline

SAAD et al.: QUERY-BASED LEARNING FOR AEROSPACE APPLICATIONS 1441

Fig. 3. QBL is used in an iterative manner to improve classification
performance.

using EASY5 simulations. The goal is to predict the ejection
safety based on the flight parameters.

The safety criteria is as follows: when the total recovery ve-
locity becomes 50 ft/s, if the recovery altitude is higher than or
equal to 50 ft, the ejection is declared as safe. There are eight
flight parameters that affect the ejection safety. These parame-
ters are the airplane attitude: pitch and roll angle, the flight path
angle (FPA), the angular rates p, q, and r, the ejection altitude,
and airplane speed.

Due to the high dimensionality of the input space, sampling
with a reasonable resolution as shown in Table I would give

points. Gener-
ating this amount of data would take approximately 35 years.2

Training a neural network using an advanced training algorithm
like the NDEKF [31], [34]–[36] takes about one hour per 10 000
points using a Pentium Pro 200 processor. Thus, training the
whole data set approximately needs an additional 3.5 years. This
simply means that it is impossible to uniformly sample the input
space with a reasonable resolution as suggested in Table I. Since,
practically, we can only generate a tiny fraction of the necessary
number of data, QBL strategy is applied in an iterative manner
as depicted in Fig. 3 in order to efficiently generate and use the
data.

A. CI as Sensitivity Measure of Input Components

The CI (14) has been calculated to evaluate the sensitivity of
each input parameters and use it as a guidance to further elim-
inate noncontributing parameters. The sample results shown in
Table II are typical CI values obtained under various network
architectures, training strategy, and data selection. The results
coincide with expert’s assessment and demonstrate the value of
using CI for data preparation. Since human experts consider the

2These processors are outdated. However, even using contemporary proces-
sors (in 2003) commonly available in the labs, data generation of 300 000 000
points using EASY5 is impractical.

FPA and thealtitudecritical parameters in determining the safe
escape, we expect them to exhibit higher positive CI values. In
the mean time, thevelocityof the fighter should exhibit negative
CI values because the higher the velocity, the worse the safety of
the escapee becomes. For the rest of the input parameters, the CI
values may exhibit inconsistency due to either their negligible
impact on the safety decision and/or due to their nonmonotonic
relationship with the safety outcomes (see Section II-C-1).

Based on the CI calculations, we picked the three inputs with
the largest CI values for the purpose of visualization as shown in
Fig. 4. The plot shows little overlapping between the two classes
(safe class and unsafe class). This means that with reduced di-
mensionality, the classification problem becomes well defined
in the sense that the classification decision boundary is well sep-
arated and smooth.

B. Computer Experiment Results

For a feedforward multilayer network, the input components
are scaled in [-1,1]. The dynamic range of individual input pa-
rameters is given in Table I. The network has one bipolar output
indicating the safety of the ejection. The NDEKF method has
been used for the training. As typical in NN application, we
used three different data sets for training, validation, and testing.
The validation set is presented to the network after each epoch
during the training. The testing set is used after finishing the
whole training. The network architectures have been determined
by trial and error. The best results have been obtained with a
single hidden layer network with five hidden neurons. All neu-
rons have a bipolar sigmoid activation function described in (6).

1) A Comparison Case:In this section, we make a compar-
ison between QBL and standard backpropagation (BP) learning.
We fixed the angular rates to zero, and thus reduced the input
space to five dimensions (note that only half of the roll angle
range needs to be covered due to the output symmetry with re-
spect to the roll angle at zero angular rates). This reduced space
could then be uniformly sampled with a reasonably high reso-
lution without QBL. Two cases have been compared. In the first
case (Table IV), a neural network has been trained on a sparse
data set with QBL. In the second case (Table V), the network
has been trained on a high-resolution data set with standard BP
learning.

For the QBL case, we randomly generated 9,900 data
points and created three data sets (each contains 3300 points)
for training, validation, and testing. We ran five computer
simulations each with 9900 points generated using different
random number generators. For the standard BP learning,
we used 73 712 random data points for training. For each
of the validation and testing sets in this case, we generated
about 86 000 points (the actual number is slightly different
due to convergence failure of the EASY5 steady-state analysis
for some extreme initial ejection conditions) by uniformly
sampling the input space using the resolution of Table III.

Another on-going research issue in QBL learning is when to
start to introduce query data into the training set, i.e., when to
stop the training and start network inversion. In this experiment,
we used the following heuristics while evaluating the validation
error.

1442 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

TABLE II
THE NORMALIZED CI VALUES ARE CONSISTENTLY HIGH FOR THEFLIGHT PATH ANGLE, ALTITUDE AND VELOCITY

Fig. 4. Input data projection in 3-D. The classes are highly separable. Dots
represent the safe class, while+s indicate the unsafe class.

TABLE III
HIGH RESOLUTIONSAMPLING WITH ZERO ANGULAR RATES

1) We observed that in order to benefit from QBL, the net-
work needs to be partially trained while it forms a crude
classification boundary, i.e., we should stop training pre-
maturely. Therefore, we empirically chose to stop the
training before 100 epochs (in a training scenario of 415
epochs total).

2) Using the epoch guideline set from heuristic 1 above, we
trained the network until the validation error (rms sense)
reached its local minimum and the error starts to increase.
The validation error may have more than one local min-
imum within few epochs. In this case, we stop the learning
after it reaches the last local minimum (see [37]).

Based on these heuristics, as shown in Fig. 5 and Fig. 6, the
inversion took place near the last local minimum of the valida-
tion rms error at or before 100 epochs. At that point, using the
network inversion target value of , corresponding to the

TABLE IV
TESTING RESULTS OF THE5-INPUTSCOMPARISONCASE

TABLE V
TRAINING WITH A HIGH RESOLUTION DATA SET WITHOUT QBL

Fig. 5. Typical rms error performance for QBL learning. Network inversion
was performed after 57 epochs. The training continued using the combined
data set (original random data and queried data) for 261 more epochs where
the testing is conducted.

Fig. 6. Typical classification error count on both training and validation sets
for QBL.

SAAD et al.: QUERY-BASED LEARNING FOR AEROSPACE APPLICATIONS 1443

TABLE VI
RESULTS OF ATWO-STAGE QUERY-BASED LEARNING SCENARIO

network decision boundary, we introduced inversion data into
the training.

After adding the QBL data and continuing the network
training, we also used heuristic 2 above for stopping (Heuristic
1 was not used since we do not want a partially trained network
this time).

There are many ways of how to combine the query data with
the original data (e.g., use only query data to continue training
or add it to the original data) and whether to reset the network
weights or not. We got the best result when the query data was
added to the original random data. Then training was continued
from the last state of weights.

Table IV and Table V summarize the test results. Using QBL
improved the neural network performance by 19% in average.
Table V compares the test results of the standard BP learning
with 73 712 data points against the average of the five 3300 data
points cases when trained without QBL (This time the 3300 data
points cases are tested on the same high-resolution data set for
the sake of a consistent comparison). With a much larger number
of training data the improvement in testing data was only about
6%. From this experiment, we can see that QBL produced a
much higher error improvement even though the number of data
points used in QBL is significantly lower.

2) The Full Dimension Problem:Once we validated the use
of QBL in the comparison case, we now deal with the original
problem, where all the 8 input parameters are used. Unlike the
5-input case, where angular rates were ignored, we could not
assume output symmetry with respect to the roll angle.

Since we were convinced that the QBL was found to be
most effective when we start with a small and sparse data
set in the previous section, we started the training with 100
randomly distributed training points. This is an extremely
small amount compared to the total number of data needed
to reasonably cover the entire search space (see Table I). We
stopped training after 40 epochs where the validation error
reached its minimum. Query data has then been generated,
and training continued from the last state of weights. The
network has then been inverted a second time, and the network
underwent a second stage of QBL. At each stage the network
was tested on 1234 test data and the error rate was calculated.
The test data was generated in a fashion similar to the training
data using an oracle, except that the test points were evenly
distributed in the input space, while the training points were
randomly distributed. Table VI shows that QBL lowered the
test error by 67% in the first stage and after the second stage
the overall error reduction was 72%.

In order to demonstrate the benefit of QBL statistically, here
again we ran five simulations each with different training, val-

TABLE VII
SAMPLING RATES FOR THEFULL DIMENSION PROBLEM

TABLE IX
JITTER RESULTS ONMULTIPLE RUNS

TABLE VIII
TESTINGRESULTS OF THEFULL DIMENSION (8 INPUT PARAMETERS) PROBLEM

idation, and test data. A training, validation, and testing set of
3000 uniform random samples each have been generated using
the dynamic ranges given in Table VII. We used the previously
discussed validation technique.

Table VIII summarizes the test results of the full dimension
problem with and without query. Using QBL improved the test
by 14% in average.

3) Impact of Jitter on QBL Learning:Here we show the ex-
perimental results using jitter added to the inversion data as ex-
plained in Section II-A. We summarize the results in Table IX.

1444 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

Fig. 7. Jitter can adversly affect training if we have only sparse data and the
problem is well separable. The network overfits the decision boundary.

In the first five cases (case 1–case 5) the network had five in-
puts; the angular rates were removed. The last five cases used all
input parameters—eight inputs. Random noise used is Gaussian
with 0.0 mean and 0.001 standard deviation. The results of the
ten runs with the infusion of jitter to the inversion data showed
no improvement. This might be an indication that the decision
boundary is relatively smooth and the classification boundary is
separable (see Fig. 4). In addition, during the QBL process, we
started with sparse training data and even after adding the query
data the data set is still sparse. We believe that along a smooth
and separated decision boundary, adding jitters to the inversion
data may adversely impact the learning as shown in Fig. 7. This
is due to the fact that the jitter unnecessarily forms a complex
decision boundary (zigzag form, for instance) and forces the net-
work to overfit, especially when the data is sparse.

4) Minimizing False Negatives:We use the penalty factor
technique described in (15) and (16): , while is varied
as shown in Table X. The first two cases shown in the table are
for a roughly trained network using 100 training samples. Intro-
duction of the penalty factor decreased the number of false neg-
atives and also decreased the total error rate. The results are con-
sistent in the subsequent cases where larger training sets were
used, up to the point where the total errors begin to increase in
the last case. In all cases, we used again a validation set, this
time stopping at the minimum of the false-negative errors rather
than the total errors.

In Table XI we demonstrate the idea of minimizing false
negatives by skewing the training data as described in Sec-
tion II-C-2. In case 2 of the table, we generated 595 inversion
data points, and added only the unsafe instances (234 points)
to the original data set of case 1. We noticed a considerable
decrease in the number of false negative alarms, at the expense
of some increase in the total number of errors. The test set used
below had 2048 samples.

IV. A EROSPACEAPPLICATION II: CONTROL DISTRIBUTION

Difficult mapping problems occur routinely in engineering
applications due to underspecification or control power limi-
tations of physical systems. NNs have been shown to provide
a compact and efficient means for implementing this type of

mapping function for real-time simulation or embedded con-
troller applications [38]. In the control loop of the ejection seat,
it is desired to map desired moment components to achievable
thrust commands to be applied to the four rocket nozzles. Con-
trol thrusts typically contain constraints that create a limited en-
velope of feasible moment combinations. This results in a map-
ping function that is not one to one, and therefore not directly
invertible. The functional relationship of the moment and the
thrust spaces is illustrated in Fig. 8.

The input for this problem is the set of desired moments to
be applied to the body, shown as the rangeof a noninjec-
tive function . The output is the set of physically achievable
thrusts satisfying the system constraints, represented by the in-
verse image of under , shown as . A restriction of to a
subset of , labeled , is shown as the injective function. The
mapping of interest is . This is obtained by mapping

to , and then using . The mapping of points
in to requires using pseudoinverse, iterative linear search,
or other optimization procedures.These methods produce dis-
crete data that describe the inverse mapping function. Fig. 9
provides an illustration and block diagram description of the
problem.

A 3-D moment envelope determined for a system with four
rockets is shown in Fig. 10. The size and shape of this feasible
envelope is defined by the individual and total thrust constraints
given in (17) and (18). This is the set of moments depicted as
the set in Fig. 8.

(17)

and

(18)

where is the number of nozzles and the thrust unit is lb. In
addition, one of the nozzles may fail. In this case

(19)

where is the index of the failing nozzle. A linear optimization
technique was used to generate desired moments to thrust data.

A. Results

A three-input-four-output multilayer feedforward network
was used to map the moment components (, ,)
into four thrust commands which can produce these moments,
or the closest possible moments if the original ones are not
feasible, according to the original data generated by the oracle.
Two hidden layers were used containing 10 neurons in the first
hidden layer and five in the second layer. QBL was used to
emphasize relearning of data sets with large errors. The process
goal is to keep the absolute testing error within the required
upper limit for all test patterns.

The multilayer feedforward network was trained using 1331
initial learning data. The data were generated by dividing the
input space into 10 divisions along each dimension, then adding
some noise to the step size. The training set had high noise level,

SAAD et al.: QUERY-BASED LEARNING FOR AEROSPACE APPLICATIONS 1445

TABLE X
TESTING RESULTSUSING A PENALTY FACTOR

TABLE XI
REDUCING FALSE NEGATIVES BY USING ONLY UNSAFE SAMPLES IN THE QUERY DATA

Fig. 8. Mapping between thrust and moment spaces.M is the desired set of
moments.L is the achievable set of moments by the corresponding constrained
set of thrustsT .

Fig. 9. Nonlinear moments to thrusts mapping. The inverse transform� is
nonlinear due to the total thrust and individual maximum thrust constraints.

the validation set (used during training) had medium noise level,
and the test set had no noise. Thus, the three data sets have sim-
ilar distribution. The NDEKF algorithm was used for training
the network.

Test results revealed that though the error of the first and third
outputs (and) were maintained within the same range, the
errors of and exhibited several spikes where the error ex-
ceeded 500 lb, as shown in Fig. 11(a). All these spikes happened
during the first 500 points of the test set. had 26 points with
error larger than 500 lb, while had 24 points, always occur-
ring simultaneously with corresponding points. Using the 26
points where error exceeded 500 lb, as target values, query
data was generated a first time, using network inversion as de-
scribed above, resulting in 127 new training data. Using the or-
acle, corresponding real outputs have been found. The newly

Fig. 10. Achievable moment envelope for the control of a four-rocket ejection
seat, with all four nozzles working.

generated 127 patterns were uniformly distributed in the orig-
inal training data set. 127 original patterns were removed so
that the length of the data sets would stay fixed to 1331. This
would allow comparison of results based on the quality of data,
and eliminating the effect of data set length. The network was
then retrained, restarting with initial random weights. After this
first query cycle, re-testing the network showed a reduction in
the number of points of larger error to only 19 for bothand

. A second inversion and query have been done using these
19 points resulting in 96 new training data points. These points
were added to the 127 points obtained from the first query cycle
and the total of 223 data points have been incorporated with the
original data in the same fashion as in the first cycle. Using this
third data set, the network has been retrained again restarting
with initial random weights. Test results showed further reduc-
tion in the number of error spikes to 18 and 17 points inand

, respectively. Fig. 12 shows the decrease in number of error
spikes after the first and second application of QBL.

1446 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

(a)

(b)

(c)

Fig. 11. (a) Error ofT before using QBL. (b) Error ofT after first use of
QBL. (c) Error ofT after second use of QBL. The number of error spikes is
decreased.

Fig. 12. Occurrence of error exceeding 500 lb. The number of occurrences is
decreased from 26 to 19 after first application of QBL and again to 17 after
second application of QBL.

Fig. 11 shows the progress made in testing error. After the
first query, the testing error is significantly reduced. After the
second query, most of the positive error spikes have been elimi-
nated, as shown in Fig. 11(c). Investigation of applying the QBL
technique to target reduction of the negative error values is on-
going.

The backpropagation algorithm has also been applied to train
the feed-forward network (with 10-5 hidden units). Overall re-
sults seem to agree with that of the NDEKF algorithm. Fig. 13
shows typical learning curves for training data and validation
data sets. Various different learning gains, momentum gains,
and random seed values were tried. The convergence speed for
the QBL method is drastically improved. The maximum error
in the figures is the maximum error among 4 outputs.

V. CONCLUSION

QBL facilitates maximum utilization of training data, which
is necessary for problems where data generation is expensive.

(a)

(b)

(c)

(d)

Fig. 13. Backpropagation RMS and maximum errors. (a) Learning curve of
the training data set without query set. (b) Testing error conducted with the
validation set for every 10 epochs of training without query set. (c) Learning
curve of the training data set with query data. (d) Testing error conducted with
the validation set for every 10 epochs of training with query data.

We have shown the effectiveness of QBL in two aerospace
applications. QBL was successfully applied to a classification
problem as well as to a continuous mapping problem. When
to invert the network and how to incorporate newly generated
query data into training processes are on-going research topics.
In the classification problem, the neural network was inverted to
find inputs along the network decision boundary. We validated
the use of QBL using a comparison case. QBL has improved
the network performance by 19% in the comparison case
and by 14% in the full-dimension problem. We also showed

SAAD et al.: QUERY-BASED LEARNING FOR AEROSPACE APPLICATIONS 1447

that after querying the oracle, data obtained from only one
class could be used to minimize false negatives. In continuous
mapping problems, choosing the inversion target value is more
complicated. In our control distribution problem, the goal was
to reduce the maximum error. This is also a primary objective in
many other engineering problems. Systems can have envelopes
of operation that make certain input patterns occur more
frequently than others. If errors exist at these frequent input
patterns, performance may drastically degrade. The inversion
target values can be chosen for input data points that exhibit
such degradation. We used the corresponding network output
values of those input data points as the inversion targets. We
also have shown the possibility to reduce the maximum positive
error using QBL. In utilizing newly acquired query data, one
can use both the original and the query data and re-train the
network. One can also retrain the network with the query data
only. Additionally, the network can be incrementally retrained
(i.e., retraining the network from previous weights), or can be
reinitialized before retraining.

In addition, we have analyzed the use of the CI to evaluate
the sensitivity of the input variables and choosing the most in-
fluential ones. We have also experimentally shown the effect
of adding jitter to the query data. Although, the evidence may
not be extensive, we believe that adding jitters may adversely
impact the training for the classification task when having a
well-separable and smooth boundary, especially, when only a
small number of data is available along the boundary. Added jit-
ters may create more complicated decision landscape and force
the network to overfit.

In combination, the techniques herein can allow significantly
enhanced performance, for these examples and a variety of sim-
ilar applications.

REFERENCES

[1] J. Hwang, J. Choi, S. Oh, and R. Marks, II, “Query-based learning ap-
plied to partially trained multilayer perceptrons,”IEEE Trans. Neural
Networks, vol. 2, pp. 131–136, Jan. 1991.

[2] , “Query learning based on boundary search and gradient computa-
tion of trained multilayer perceptrons,” inProc. Int. Joint Conf. Neural
Networks, San Diego, 1990, pp. 57–62.

[3] S. Oh, R. Marks, II, and M. El-Sharkawi, “Query based learning in a
multilayered perceptron in the presence of data jitter,” inProc. First Int.
Forum on Applications of Neural Networks to Power Systems, pp. 57–62.

[4] J. Hwang and H. Li, “Interactive query learning for isolated speech
recognition,” in Proc. IEEE-SP Workshop on Neural Networks for
Signal Processing II, pp. 93–102.

[5] D. Cohn, “Neural network exploration using optimal experiment de-
sign,” Neural Networks, vol. 9, no. 6, pp. 1071–1083, 1996.

[6] K. Fukumizu, “Statistical active learning in multilayer perceptrons,”
IEEE Trans. Neural Networks, vol. 11, 2000.

[7] V. Fedorov,Theory of Optimal Experiments. New York: Academic,
1972.

[8] D. MacKay, “Information-based objective functions for active data se-
lection,” Neural Computation, vol. 4, no. 4, pp. 589–603.

[9] J. Ratsaby, “Incremental learning with sample queries,”IEEE Trans.
Pattern Anal. Machine Intell., vol. 20, pp. 883–888, 1998.

[10] C. Christian, “Pedagogical pattern selection strategies,”Neural Net-
works, vol. 7, no. 1, pp. 175–181, 1994.

[11] D. Angluin, “A note on the number of queries needed to identify regular
languages,”Inform. Contr., vol. 51, pp. 76–87, 1982.

[12] D. Cohn, L. Atlas, and R. Ladner, “Training connectionist networks
with queries and selective sampling,” inAdvances in Neural Informa-
tion Processing Systems 2, D. Touretzky, Ed. Cambridge, MA: MIT
Press, 1990.

[13] E. Baum and K. Lang, “Neural network algorithms that learn in polyno-
mial time from examples and queries,”IEEE Trans. Neural Networks,
vol. 2.

[14] A. Linden and J. Kindermann, “Inversion of multilayer nets,” inProc.
Int. Joint Conf. Neural Networks, vol. II, Wash., DC, 1989, pp. 425–430.

[15] S. Haykin, Neural Networks: A Comprehensive Founda-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1998.

[16] P. Werbos, “Backpropagation through time: what it does and how to do
it,” Proc. IEEE, vol. 7, pp. 1550–1560, 1990.

[17] R. Reed, R. J. Marks, II, and S. Oh, “Similarities of error regularization,
sigmoid gain scaling, target smoothing, and training with jitter,”IEEE
Trans. Neural Networks, vol. 6, pp. 529–538, 1995.

[18] R. Reed, S. Oh, and R. J. Marks, II, “An equivalence between sigmoidal
gain scaling and training with noisy (jittered) input data,” inProc.
RNNS/IEEE Symp. Neuroinformatics Neurocomputing, Rostov-on-Don,
Russia, 1992.

[19] D. C. Plaut, S. J. Nowlan, and G. E. Hinton, “Experiments on learning
in a multilayered perceptron in the presence of data jitter,” Carnegie-
Mellon Univ., Tech. Rep. CMU-CS-86-126, 1986.

[20] J. L. Elman and D. Zipser, “Learning the hidden structure of speech,”J.
Accoust. Soc. Amer., vol. 83, no. 4, pp. 1615–1626, 1988.

[21] P. Refregier and J. M. Vignolle, “An improved version of the pseudo-
inverse solution for classification and neural networks,”Europhys. Lett.,
vol. 10, no. 4, pp. 387–392, 1989.

[22] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization
by weight-elimination applied to currency exchange rate prediction,” in
Proc. Int. Joint Conf. Neural Networks, vol. I, Seattle, WA, 1991, pp.
837–841.

[23] J. Sietsma and R. J. F. Dow, “Creating artificial neural networks that
generalize,”Neural Networks, vol. 4, no. 1, pp. 67–79, 1991.

[24] S. Oh, R. J. Marks, II, and M. A. El-Sharkawi, “Query based learning in a
multilayered perceptron in the presence of data jitter,” inApplications of
Neural Networks to Power Systems, M. S. El-Sharkawi and R. J. Marks,
II, Eds. New York: IEEE, 1991, pp. 72–75.

[25] C. H. Séquin and R. D. Clay, “Fault tolerance in feed-forward artifi-
cial neural networks,” inNeural Networks: Concepts, Applications, and
Implementations, P. Antognetti and V. Milutinovié, Eds. Englewood
Cliffs, NJ: Prentice-Hall, 1991, vol. IV, pp. 111–141.

[26] J. I. Minnix, “Fault tolerance of the backpropagation neural network
trained on noisy inputs,” inProc. Int. Joint Conf. Neural Networks, vol.
I, Baltimore, MD, 1992, pp. 847–852.

[27] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,”J. Artific. Intell. Res., vol. 4, pp. 129–145, 1996.

[28] K. Baba, I. Enbutu, and M. Yoda, “Explicit representation of knowledge
acquired from plant historical data using neural network,” inProc. Int.
Joint Conf. on Neural Networks, vol. II, Washington, 1992, pp. 579–583.

[29] Z. Boger, “Knowledge extraction from artificial neural networks
models,” inProc. IEEE Int. Conf. on Syst., Man and Cybern., vol. 4,
Orlando, FL, 1997, pp. 3030–3035.

[30] B. Mak and R. Blanning, “An empirical measure of element contribution
in neural networks,”IEEE Trans. Syst., Man and Cybern., vol. 28, pp.
561–564, 1998.

[31] E. W. Saad, D. V. Prokhorov, and D. C. Wunsch, II, “Comparative study
of stock trend prediction using time delay, recurrent and probabilistic
neural networks,”IEEE Trans. Neural Networks, vol. 9, no. 6, 1998.

[32] E. W. Saad, J. J. Choi, J. L. Vian, and D. C. Wunsch, II, “Efficient training
techniques for classification with vast input space,” inProc. Int. Joint
Conf. Neural Networks, Wash., DC, 1999.

[33] EASY5 User’s Guide, The Boeing Company, Seattle, WA, 1997.
[34] S. Singhal and L. Wu, “Training multilayer perceptrons with the

extended Kalman algorithm,” inAdvances in Neural Information
Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 133–140.

[35] G. V. Puskorius and L. A. Feldkamp, “Roles of learning rates, artifi-
cial process noise and square root filtering for extended Kalman filter
training,” in Proc. Int. Joint Conf. Neural Networks, Wash., DC, July
1999.

[36] , “Decoupled extended Kalman filter training of feedforward lay-
ered networks,” inProc. Int. Joint Conf. Neural Networks, vol. I, Seattle,
WA, 1991, pp. 771–777.

[37] L. Prechelt, “Automatic early stopping using cross validation: quanti-
fying the criteria,”Neural Networks, vol. 11, no. 4, pp. 761–767, 1998.

[38] J. L. Vian and N. A. Visnevski, “Neural Networks for Nonlinear Control
Distribution,” in Proc. Int. Federation of Automatic Control: 3rd Symp.
Intelligent Components and Instruments for Control Applications, An-
necy, France, 1997, pp. 229–234.

1448 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

Emad W. Saad(S’95–M’00) received the B.S. de-
gree with Honors from Ain Shams University, Cairo,
Egypt, in 1992. He received the M.S. and Ph.D. de-
grees in electrical engineering in 1996 and 1999, re-
spectively, from the Applied Computational Intelli-
gence Laboratory, Texas Tech University, Lubbock.

Since October 2003, he has been a Postdoctoral
Fellow with the Research Center for Advanced
Manufacturing, Southern Methodist University,
Richardson, TX, where he develops neural network
and signal and image processing applications for

sensing and control of manufacturing processes. Prior to that, he was with
MCI, Richardson, TX, since 2000, where he developed network optimization
algorithms using genetic algorithms, graph theory, and operations research.
Prior to his position with MCI, he was with Deep View Systems, West
Bloomfield, MI, in 1999, where he worked on neural networks and data
mining for financial and business applications. In the summers of 1997 and
1998, he was with The Boeing Company, Seattle, WA, under a contract
with Texas Tech University, where he was working on neural networks with
query-based learning and computational applications for aerospace decision
and control problems. His research interests include pattern recognition, time
series prediction, signal processing, neurocontrol, adaptive critic designs,
optimization, and data mining.

Jai J. Choi received the B.S. and M.S.E. degrees
in electronics engineering from Inha University,
Inchon, Korea, in 1979 and 1981 and the M.S.E.E.
and Ph.D. degrees in electrical engineering from the
University of Washington, Seattle, WA, in 1987 and
1990, respectively.

In 1990, he joined The Boeing Company, Seattle,
where he is currently an Associate Technical Fellow
with the Mathematics and Computing Technology
Group, Computer Science Department, Phantom
Works. His research is in the area of intelligent

information processing and management. His expertise includes adaptive signal
processing and control, neural networks and fuzzy logic, wavelet analysis,
machine learning, computer security analysis, adaptive system modeling, and
manufacturing intelligence. Since 1992, he has been an Affiliate Professor
and graduate faculty member with the electrical engineering department,
University of Washington, Seattle. He is also an adjunct faculty member at
Henry Cogswell College, Everett, WA.

He is currently an Associate Editor for the IEEE TRANSACTIONS ONNEURAL

NETWORKS. He has organized and chaired sessions in various international con-
ferences including IEEE World Congress on Computational Intelligence, IEEE
International Conference on Neural Networks, IEEE International Symposium
on Circuits and Systems, and IEEE International Joint Conference on Neural
Networks, and others.

John L. Vian (M’87–SM’91) received the B.S. de-
gree in mechanical engineering from Purdue Univer-
sity, West Lafayette, IN, in 1981, and the M.S. degree
in aeronautical engineering and the Ph.D. degree in
electrical engineering from Wichita State University,
Wichita, KS, in 1986 and 1991, respectively.

He is a Technical Fellow with Boeing Phantom
Works, Seattle WA, where he is currently responsible
for leading enabling technology research in diagnos-
tics, prognostics, and vehicle health management.
His experience is in flight control, safety-critical

decision and control systems, dynamic modeling and simulation, and systems
health. He has supported flight control design on KC-135, Boeing Robotic Air
Vehicles, DARPA STOVL Aircraft, and Boeing 777 programs, and has served
as Principal Investigator on multiple government research contracts. He is a
licensed professional engineer, and has three patents and more than 25 technical
publications. He serves as an ABET electrical engineering program evaluator,
National Science Foundation panelist, and teaches at Henry Cogswell College
in Everett WA.

Donald Wunsch, II (SM’94) completed a Humani-
ties Honors Program at Seattle University in 1981. He
received the B.S. degree in applied mathematics from
the University of New Mexico in 1984, the M.S. de-
gree in applied mathematics from the University of
Washington in 1987, and the Ph.D. degree in elec-
trical engineering in 1991, respectively.

Since July 1999, he is the Mary K. Finley Missouri
Distinguished Professor of Computer Engineering
in the Department of Electrical and Computer
Engineering, University of Missouri-Rolla. He

heads the Applied Computational Intelligence Laboratory and also has a joint
appointment in Computer Science. Previously, he was Associate Professor of
Electrical and Computer Engineering, and Computer Science, at Texas Tech
University. Prior to joining Texas Tech in 1993, he was a Senior Principal
Scientist with Boeing, where he invented the first optical implementation of the
ART1 neural network, featured in the 1991 Boeing Annual Report, and other
optical neural networks and applied research contributions. He has also worked
for International Laser Systems and Rockwell International, and consulted for
Sandia Labs, White Sands Missile Range, Texas Tech, Boston University, and
Accurate Automation Corporation. Research activities include adaptive critic
designs; neural network pattern analysis, optimization, forecasting and control;
computer security; bioinformatics; financial engineering; fuzzy risk assessment
for high-consequence surety; intelligent agents; graph theory; quantum logic;
and Go. He is heavily involved in research collaborations with former Soviet
scientists. He is an Academician in the International Academy of Technological
Cybernetics, and in the International Informatization Academy.

Dr. Wunsch is the recipient of the Halliburton Award for excellence in
teaching and research at Texas Tech, and a National Science Foundation
CAREER Award. He is a member of the International Neural Network Society,
Association for Computing Machinery, Society of Photo Instrumentation
Engineering, Phi Kappa Phi, a life member of the American Association of
Artificial Intelligence, a life member of Sigma Xi, and previously served
as an Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS

and voting member of the IEEE Neural Network Council. He was elected to
the INNS Board of Governors for 2002—present, and served as Technical
Co-Chair for IJCNN 02 and General Chair for IJCNN 03.

	Query-Based Learning for Aerospace Applications
	Recommended Citation

	Query-based learning for aerospace applications

