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Query-Based Learning for Aerospace Applications

Emad W. Saad, Jai J. Choi, John L. Vian, and Donald C. Wunsch, Il

Abstract—Models of real-world applications often include a adaptively changes the sample size taken from each class.
large number of parameters with a wide dynamic range, which |n pedagogical pattern selection approach [10], the training
contributes to the difficulties of neural network training. Creating  atterns are presented when specific learning error conditions
the training data set for such applications becomes costly, if not . . .
impossible. In order to overcome the challenge, one can employ are met. Th_ese active 'eaf”'”Q, techniques are more complex
an active learning technique known as Query-Based Learning @nd expensive due to the additional data generation processes
(QBL) to add performance-critical data to the training set during  [5], [11]-[13].
the learning phase, thereby efficiently improving the overall Most of these methods are devoted to pattern classification
learning/generalization. The performance-critical data can be problems. When QBL is applied to a classification problem

obtained using an inverse mapping called network inversion 1 tvpical 0 is to trai NN US| I b
(discrete network inversion and continuous network inversion) [l @ typical scenario is to train a using a smafl numoer

followed by oracle query. This paper investigates the use of both Of training data. In order to assess the learning status, one
inversion techniques for QBL learning, and introduces an original can invert the network using the network inversion method

heuristic to select the inversion target values for continuous described below. Once created, each inversion vector is then
network inversion method. Efficiency and generalization was queried through an oracle to find the corresponding target.

further enhanced by employing node decoupled extended Kalman . . . . .
filter (NDEKF) training and a causality index (CI) as a means to Recall that, in supervised learning, the training data consists

reduce the input search dimensionality. The benefits of the overall Of input and target values. The newly created training data are
QBL approach are experimentally demonstrated in two aerospace then added to the existing data set in order to continue training.
applications: a classification problem with large input space and Because of the interaction by the query mechanism, the overall
a control distribution problem. learning is called QBL.
~ Index Terms—Active learning, aerospace application, causality ~ The QBL process hinges upon network inversion. The
index (Cl), control distribution, crew escape system, efficient nanyork inversion iteratively searches for vectors, in the input
training, emergency egress safety, mapping, network inversion, . . . T o
node decoupled extended Kalman filter (NDEKF), pattern recog- .S‘pace_’ called inversion vectors, Wh'ch give rise to a specific
nition, query-based learning (QBL). inversion target value.The network weight values need to be
fixed for the network inversion. We can categorize the inversion
into two types: discrete network inversion and continuous

|. INTRODUCTION network inversion. Each method depends on the types of

HE quality of the training data is a key ingredient fooutput values—the discrete value case, which is typical in

neural network (NN) application. In aerospace industrglassification problems, and the continuous case typical in
data generation sometimes can be very expensive, if not igentinuous mapping/prediction problems. Accordingly, we use
possible. This reality motivates us not only to seek economidie term discrete network inversion and continuous network
data generation techniques but also to investigate trainiiyersion to reflect the nature of the NN output.
methods that can utilize a limited amount of data. A supervisedThe selection of the inversion target value is relatively intu-
learning technique with a teacher (oracle) in the loop, knowitive in discrete network inversion. For example, in a binary clas-
as query-based learning (QBL) [1]-[4] has been proposed gification problem (two classes that use 0 and 1 as network target
address the practical needs by incrementally adding trainivglue), the inversion target of= 0.5 represents the classifica-
data as the learning progresses. QBL is an active learniiign boundary. The inversion vectors obtained above can be in-
technique [5], [6] where the learner actively selects its trainirigrpreted as the network version of the classification boundary.
data, as opposed to passive learning, where the learner U&lescan use these vectors to gauge the status of learning. Obvi-
a fixed set of training data repeatedly. For instance, optimauisly, the closer the inversion vectors to the true classification
experiment design, [7], [8] actively selects the new training patoundary, the better the network performance becomes. One can
tern in every learning cycle to minimize the learner’s variancelso invert the partially trained network for a range of target
Sample query [9] method is an incremental approach, whiwalues0.4 < ¢ < 0.6] for instance, instead of a single target in-

version strategy. For continuous network inversion, the choice

Manuscript received May 15, 2000; revised May 30, 2001 and March 3, ZOCPsI. the inversion target Valu? is not trivial. One r?eeds .to know
E. W. Saad is with Southern Methodist University, Richardson, TX 7508&hat range of target values is worthy of network inversion. One
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WA 98195 USA. the network produces a large error that is outside of a preset
_ J. L. Vian is with Boeing Phantom Works, Seattle, WA 98124 USA (e-maithreshold. In that case, the output value of the network can be
john.vian@boeing.com). directly used as the inversion target value.
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In order for an inversion vector to be useful for training, wand (4), a scaling factdr can be introduced for better learning
need to obtain the true target value of the vector by querying 5] such that (3) becomes
to an oracle. An oracle (teacher) exists in a variety of forms such 1
as mathematical equations, simulation models, human experts, f(z)
or experiments.

In this paper, for the sake of notations and completeness, @d (4) becomes
review a formulation of discrete network inversion followed by bt _ b 2w
QBL learning process in Section Il. A technique of generating f(w) = tanh(be) = o ——p = - ——0. (6)
continuous network inversion data is also presented. In Sec- e e te
tion Il and IV, applications of the QBL methods are detailed for The forward mapping from input to output is achieved by
two aerospace problems, ejection safety classification and ejB@ding a set of weights which minimizes the sum squared error

STy &

tion seat modeling, respectively. The former addresses decision N,
on the ejection safety level based on the initial state of ejection E = 1 Z (th — yk)z , (7)
parameters of a fighter jet ejection seat. This problem is char- 2 1

acterized by a huge search space due to the high dimensionali
and wide dynamic range of input parameters. The second ap ; .
cation is a continuous mapping problem that maps propulsi dk]‘VL IS the number of r}eurogs n thg outtput Itayer.th t vield

control moments to nozzle commands in a four-nozzle control- ' 1 [€VErSe Process of producing input vectors that yield a

lable ejection seat. In this application, it is desirable to redugéedetermmed_ targe_t outptit is referre_d to as network inver-
10N [14]. The inversion target output is usually chosen to rep-

the maximum absolute value of the network error. Based on th >
esent the output values which are hard for the network to learn.

simulation studies through these applications, we draw sorﬁ_? ' e

conclusions in Section V. or example, in case of a neural network used for classification

with binary output (0 and 1), the inversion target output value

Il QBL vv_ould_be 0.5 in order to represent the decisipn k_Joundary. For a
' given inversion target valug,, the corresponding input vectors

A. Discrete Network Inversion of lengthm, & = (29,29,---,29,..-,22)), can be obtained by

27

What the trained network perceives about the classificati@@Ck-Propagating the inversion errd, given in (8), through a
boundary may be totally different from the true boundarﬁa”'a”y trained network with it's weight values frozen.

fjveret; is the target outputy, is the actual network output,

This is bound to happen when we have inadequate training L
data or in the early stage of network learning. If there is a E=- Z(Zk — )% (8)
way to ask the trained network about what it does or does not 2=

und_erstand about t_he mpqt _data, that would mcrease_the cha?ﬁg inversion process is an iterative search method in the input
to improve on-going training. The network inversion [l4§)ace. Once an initial search point with componef®) is

precisely addresses this issue. In order to establish notatio ?fdomly assigned, the update rule for the activation potential

we first lay out the pqsm network structure. During the forwaru? in the input layer at thét + 1)t* iteration is given as
path of network training, the activation output of a neuron unit

is given as 0 0 )
. 1) =uf(t) — n—0—i—
p uf(t+1) =ul(0) = 150505
0
Ui =) wi;T; 1) —u0(t) — n 2F 97
2 U0 =529 dul(e)
0x(t
and — () - ) g ©
i = f(uj) @) The derivatives!(¢) for the neuron units in layéiis obtained by
. . . . achain rule [16] as follows:
wherep is the number of neurons in the previous layej is
the thresholdf(.) is an activation function, andrepresents the sl — oF
output of a unit. The most commonly used activation functions b Ol
are the sigmoid N 141
1 _y 0B O
RS l
f@) == 3) j= 0wy O
te Niya axlj—l
or the hyperbolic tangent =Y 65»“11}53{10 g (10)
=1 wj

eT — e~ " 1— 6—2.7:
e +e®  l4e 2

f(z) = tanh(z) = (4)  For the neurons in the output layer, the derivative becomes

L __ n L
The latter is asymmetric, and has the advantage of acceler- b = — (t’i T )
ating the learning process [15]. In the activation functions (3) = —(t; — yi). (1D
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45 {Inversion Convergence Error) The proposed continuous network inversion is as follows:
| Upon freezing the network weights, a test data set is fed to the
trained network. The test data is generated in a fashion sim-
Class B ilar to the training data using the oracle and is uniformly dis-
tributed over the input space. The cost of the test data gener-
ation is equal to the cost of the training data generation, but is
obviously generated only once and does not need inversion. The
corresponding network output is then compared with the desired
target value. Whenever the absolute efrer [target value —
actual output value|) is greater than a pre-set threshold (the
choice of which relies on personal discretion), the actual neural
network output value is used as the inversion target value. Once,
of course, having set the inversion target value, the inversion
_ o , algorithm is identical to the discrete network inversion case.
Fig. 1. Effect of adding jitters to query data. The points closer to the trlﬁ . he i . h Ki is initialized
boundary may move to the opposite class due to the added jitter, while the potrttd/ N9 the inversion process, t. e n?t\NOI’ .|nput is initialize
far away from the decision boundary remain unaffected. Points from class A &t8ing a random value as explained in Section II-A. Therefore
shown as o's, while points from class B are shown as x’s. The arrows indicgffe network output is no more equal to the target value. The
the direction in which a point was moved by jitter and crossed the boundary. . . . .
nonzero error gradient is used to change the input value until
another input point is found where the output error is close to
The inversion vector components at the input layer is obtaingdro. Iteratively, using different initial random input points, sev-
by eral input patterns are obtained, for each inversion target value.

Class A

True Boundary

Network Boundary

z, = f (uo) (12) C. Practical Techniques for Efficient Training: Causality
Index and Error Bias

which guarantees that the network input will be in the range of 1) Causality Index: The causality index (CI) as a means to

the activation funct!on. Thus, constrained iterative inversion tlﬁeasure the output sensitivity to the network input, is used to

used as explgmed in [14]. . improve the generalization capability [29], [30]. Based on the
The inversion vectors are then qyerled to an oradlg to dependency of an output on each input, we can eliminate certain

produce _th_e true targ/et values= () for a newly ge_nera_l_ted input parameters with low sensitivity. Obviously the larger the

iet of training data, ). \_NE_’ can also adE' ralmdom noise (J'tter)number of inputs eliminated based on Cl analysis, the faster the

ito p_roduce.anofher training vectQM.— i, 7). , network inversion becomes. Consequently, it speeds up the QBL
Wh'le adding jitter (nmse) to the input data without cor; rocess. Note that the network inversion is a search algorithm

recting the 'ta.rget _output might seem to adversely affect t the input space based on the error observation in the network

network training, it has been s_h(_)wn that the strategy h atput. The ClI value for a feed-forward network with a single

the effect of smoothing the decision boundary and actual dden layer havingV, hidden units is computed by

improving the generalization [17]-[26]. Depending on the

variance of the noise, jitter may have a greater impact on the M

data points closer to the decision boundary as illustrated in Cly = Zwkj T Wy (13)

Fig. 1. These points, when jittered, can move across the deci- j=1

sion boundary. On the other hand, the data points farther aWerewkj is the weight value between ttgh output unit and

from the decision boundary are not affected by adding jitterﬁ‘iejth unit in the hidden layers ; is the weight value between
Can this be the case for query based learning, especially er thh hidden unit and theth ingut unit
thi '

. ! 5 i _
the number O.f data points along the bppndary IS Sparse: In ¥n order to compare Cl values of different NN architectures,
case, we believe that when the decision boundary is smogth o malized causality index is defined as

y

and the classes are well separated, adding jitter may adverse
impact the learning. We will investigate this conjecture in our Z%"l Wi - Wi

A . . y j=1 Ykj Ji
experiments in a later section. ClL,; = (14)

2
1 Nr Ny Ny
. . \/NLNO Dome 2o (Zj:l W j '“’jl)
B. Continuous Network Inversion

As we mentioned in an earlier section, the choice of the iMthereNy and N, are the number of output and input neurons,
version target value for continuous network inversion is a chdespectively. The causality index provides the following prac-
lenging task. Very limited work has been devoted in this area (i#¢al insights into feed-forward NN applications.

[27] an active learning is applied to locally weighted regression). 1) The causality index defined in (13) and (14) measures the
In the control distribution application, we are mostinterested in  average sensitivity of the output nodewith respect to
minimizing the maximum error at the output, not just the rms the input node.

error. In order to reduce such errors, we pre-set an acceptabl®) A positive causality index means that an increase in the
error bound (threshold) and use it as a guide for the continuous input causes an increase in the output and vice versa. A
network inversion. negative causality index means that an increase in the
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"\ Escape trajectory

\
\

m Safe parachute

Recovery velocity

Eject altitude

Safe recovery altitude
v

—_— T T

Fig. 2. Safe escape scenario.

input value results in a decrease in the output value and TABLE |

vice versa. In the ejection safety model problem in Sec- FLIGHT PARAMETERS DETERMINING THE ESCAPESAFETY

tion III,. a positive causality index |mpI|es_ thatthe increas —p,—— Tower | Upper | Measurement | Number of

of the input parameter makes the ejection safer. Limit Limit resolution | measurements
3) While a large causality index value indicates that the cc  Pitch angle -90° +90 ° 30° 6

responding input has a greater impact on the output,  Roll angle -180° 180° 30° 12

small one does not necessarily mean irrelevancy of tl Flight Path Angle 90° 90° 20° 9

input parameter to the output. In addition, an input var p -180 %sec | 180 /sec 30 “/sec 12

able may have a small causality index if the relation be q -180%/sec | 180 %sec | 30 %sec 12

. . . o 0 0
tween the output and the input is symmetric, (e.g., tr r -180 Jsec | 180 Ysec | 30 /sec 12
Il angle at zero angular rates in our application in Se —aiitude 0 1300 ft S0 ft 30
ro 9 g pp Velocity 0 450 keas 50 keas 9

tion ). In this case, the causality index is positive in one
half space, and negative in the other half space. The net

average is zero, (or very close to zero since, practically, The penalty factor is equal to 1 if classification is exact, but
networks are never able to exactly model the true relgs equal to the constaritf for false negatives, and is equal to
tion). F for nuisance alarms. To restrict false positivis,is greater
2) Minimization of False-Negative ErrorAnother impor- thanF. This technique is used in Section Ill-B-4.
tant practical aspect in classification is to distinguish types of Another way to bias the network decision toward more con-
misclassification alarm. Not all alarms are treated equal in resdrvative safe decisions is to present more unsafe examples close
world. Forinstance, let’s consider the safe and unsafe classifigathe decision boundary in the training set. Applying this idea
tion cases. The first type of alarm, referred to as nuisance alagn,the query data has even a greater effect since the query data
is encountered when a trained network declares an input unsgé@erally lies closer to the decision boundary. This is demon-

although the correct classification should be safe. The secaithted by example in Section 11I-B-4, but is generally appli-
type, referred to as false negative, occurs if the trained neable.

work declares the incoming input vector the other way around.
Clearly, the false negative alarm is of greater concern. Mini- |,
mizing false negatives thus has a greater importance, even at
the expense of a reasonable increase in nuisance alarm rate atel this section we present the application of QBL in deter-
added computational costs. The approach to achieving thid§1ing the safe ejection envelope for a fighter jet [32], as illus-
to introduce a penalty factor [31] that can skew the cost fungated in Fig. 2. We are trying to model the safe escape enve-
tion emphasizing the danger of false negatives by using #f9e as a function of airplane velocity, attitude, and other pa-

. A EROSPACEAPPLICATION |: SAFE ESCAPESYSTEM

weighting factora rameters known as initial conditions of an escape, as shown in
Table I. It is a deterministic two-class decision problem. The
N, ideal system should inform the pilot of the ejection safety status
E = 1 Z a(ty — ye)? (15) beforehand. Ejection safety can be simulated off-line via high
2 ] fidelity ejection seat simulation, using EASY5 software [33].
One ejection simulation takes approximately 4 s on either a Sil-
where icon Graphics or a Pentium Pro 200 processor, which makes
it invalid for on-flight real-time application. The main justifi-
1 ifyr >0t >0 or yp <0,t <0 cation of using neural networks to replace the simulation soft-
a=R F ify,<0,t >0 (16) ware is the speed advantage needed in such life and death sit-

M ify>0,t <0 uation. Training data for NN simulations are supplied offline
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FPA and thealtitudecritical parameters in determining the safe
escape, we expect them to exhibit higher positive Cl values. In
the mean time, theelocityof the fighter should exhibit negative
Clvalues because the higher the velocity, the worse the safety of
query the escapee becomes. For the rest of the input parameters, the ClI
values may exhibit inconsistency due to either their negligible
impact on the safety decision and/or due to their nonmonotonic
relationship with the safety outcomes (see Section II-C-1).

training additional data added

data

network
training

network

testing network Based on the ClI calculations, we picked the three inputs with
—— tnversion | the largest Cl values for the purpose of visualization as shown in
A ' Fig. 4. The plot shows little overlapping between the two classes

(safe class and unsafe class). This means that with reduced di-
mensionality, the classification problem becomes well defined
in the sense that the classification decision boundary is well sep-
arated and smooth.

no

meet the
. performance 7"

B. Computer Experiment Results

For a feedforward multilayer network, the input components
Bre scaled in [-1,1]. The dynamic range of individual input pa-
rameters is given in Table |. The network has one bipolar output
indicating the safety of the ejection. The NDEKF method has
using EASYS5 simulations. The goal is to predict the ejectiofeen used for the training. As typical in NN application, we
safety based on the flight parameters. used three different data sets for training, validation, and testing.

The safety criteria is as follows: when the total recovery verhe validation set is presented to the network after each epoch
locity becomes 50 ft/s, if the recovery altitude is higher than @furing the training. The testing set is used after finishing the
equal to 50 ft, the ejection is declared as safe. There are eighiole training. The network architectures have been determined
flight parameters that affect the ejection safety. These param§g-trial and error. The best results have been obtained with a
ters are the airplane attitude: pitch and roll angle, the flight pagihgle hidden layer network with five hidden neurons. All neu-
angle (FPA), the angular rates p, g, and r, the ejection altitugens have a bipolar sigmoid activation function described in (6).
and airplane speed. 1) A Comparison Casein this section, we make a compar-

Due to the high dimensionality of the input space, samplingon between QBL and standard backpropagation (BP) learning.
with a reasonable resolution as shown in Table | would giwge fixed the angular rates to zero, and thus reduced the input
302330880 (= 6+ 12% 9% 12+ 12 12% 30 x 9) points. Gener- space to five dimensions (note that only half of the roll angle
ating this amount of data would take approximately 35 yeéarsange needs to be covered due to the output symmetry with re-
Training a neural network using an advanced training algorithgpect to the roll angle at zero angular rates). This reduced space
like the NDEKF [31], [34]-[36] takes about one hour per 10 008ould then be uniformly sampled with a reasonably high reso-
points using a Pentium Pro 200 processor. Thus, training tfagon without QBL. Two cases have been compared. In the first
whole data set approximately needs an additional 3.5 years. T¢dse (Table IV), a neural network has been trained on a sparse
simply means that it is impossible to uniformly sample the inpéfata set with QBL. In the second case (Table V), the network
space with areasonable resolution as suggested in Table I. Singg, been trained on a high-resolution data set with standard BP
practically, we can only generate a tiny fraction of the necessagarning.
number of data, QBL strategy is applied in an iterative mannergor the QBL case, we randomly generated 9,900 data
as depicted in Fig. 3 in order to efficiently generate and use thgints and created three data sets (each contains 3300 points)

Fig. 3. QBL is used in an iterative manner to improve classificatio
performance.

data. for training, validation, and testing. We ran five computer
o simulations each with 9900 points generated using different
A. Cl as Sensitivity Measure of Input Components random number generators. For the standard BP learning,

The CI (14) has been calculated to evaluate the sensitivity¥¢ used 73712 random data points for training. For each
each input parameters and use it as a guidance to further elththe validation and testing sets in this case, we generated
inate noncontributing parameters. The sample results showrput 86 000 points (the actual number is slightly different
Table Il are typical Cl values obtained under various netwofil€ to convergence failure of the EASY5 steady-state analysis
architectures, training strategy, and data selection. The resifffs some extreme initial ejection conditions) by uniformly
coincide with expert's assessment and demonstrate the valuépling the input space using the resolution of Table III.
using Cl for data preparation. Since human experts consider thé\nother on-going research issue in QBL learning is when to

start to introduce query data into the training set, i.e., when to

) stop the training and start network inversion. In this experiment,
2These processors are outdated. However, even using contemporary proces-

sors (in 2003) commonly available in the labs, data generation of 300 000 a0 used the following heuristics while evaluating the validation
points using EASY5 is impractical. error.
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TABLE I
THE NORMALIZED CIl VALUES ARE CONSISTENTLY HIGH FOR THEFLIGHT PATH ANGLE, ALTITUDE AND VELOCITY

Causality Index of Each of the 8 Inputs

No. training

No. hidden
patterns

nodes
No. training

epochs
Sampling
methods

Case no.

pitch | roll FPA p q r altitude |velocity
100 | random | 0.486 | -0.58 | 2.338 | -0.153 | -0.696 | -0.454 | 1.056 | -0.366
461 QBL | 0.099 | 0.239 | 2.501 | -0.074 | -0.058 | -0.143 | 1.148 | -0.575
100 | random | -0.087 | 0.033 | 2.373 | 0.109 | -0.044 | 0.288 | 1.385 | -0.585

w
(=)

S
(%)}

BlWIN| -
Wl wn|oo
S
(=)

415 | 1000 | random | 0.016 | 0.219 | 2.12 | -0.008 | -0.021 | 0.031 1.73 | -0.68
TABLE IV
TESTING RESULTS OF THES-INPUTS COMPARISON CASE
C Test Error Count
. ase .
velocity (keas) Number QI\II;L gl;tl}j Improvement
400 1 52 47 10%
2 49 43 12%
300
3 43 38 12%
200 4 61 42 31%
) 5 70 48 31%
100 -}
¢ " : TABLE V
50 - 1000 Altitude (ft.) TRAINING WITH A HIGH RESOLUTION DATA SET WITHOUT QBL
0 R
FPA (deg.) - ~ o0 Test Error Count
Case Hioh Low
Number 1g i i
Fig. 4. Input data projection in 3-D. The classes are highly separable. Dots Resolution Rzi"elr“;;“ Difference
represent the safe class, whiles indicate the unsafe class.
P s 1 1482 1579 %
TABLE Il 06
HIGH RESOLUTION SAMPLING WITH ZERO ANGULAR RATES 05 | [— Training Set — Validation Set
Parameter Lower Upper Measurement Number of 5 0.4 1 L‘\g .
Limit Limit resolution samples 5 03 o
Pitch angle -90° +90 ° 30° 6 g 7 Stopping point  —————
Roll angle 0° 180° 30° 6 E 0.2
Flight Path Angle -90° 90° 20° 9 ol
Altitude 0 1500 ft 50 ft 30 1] Rendom Random and query data
Velocity 0 450 keas 50 keas 9 0 —

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401
Epochs

1) We observed that in order to benefit from QBL, the nefig. 5. Typical rms error performance for QBL learning. Network inversion
as performed after 57 epochs. The training continued using the combined

work needs to be partially trained while it forms a crud S A
I . L ata set (original random data and queried data) for 261 more epochs where

classification boundary, i.e., we should stop training prene testing is conducted.

maturely. Therefore, we empirically chose to stop the

training before 100 epochs (in a training scenario of 41!

epochs total).

Using the epoch guideline set from heuristic 1 above, w

trained the network until the validation error (rms sense

reached its local minimum and the error starts to increas

The validation error may have more than one local min

imum within few epochs. In this case, we stop the learnin

after it reaches the last local minimum (see [37]). I

. Bas_ed on these heurlstlcs, as Shown Ir_] Flg 5 and Flg 6_’ t 1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401

inversion took place near the last local minimum of the valida Epochs

tion rms _error "f‘t or before 100§p0ChS. At that pomt, using t%. 6. Typical classification error count on both training and validation sets

network inversion target value ¢f= 0.0, corresponding to the for QBL.

250 1 L [—— Training Set — Validation St

2

~

Random and query data

Number of Classification Errors
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TABLE VI
RESULTS OF ATWO-STAGE QUERY-BASED LEARNING SCENARIO
Size of Training Set Number of Training Epochs
Case . . With | After | After Error
number U’“@"" Inversion Total | uniform | first | second | Total Rate
sampling data data query | query
1 100 0 100 40 0 0 40 11.75%
2 0 485 485 40 415 0 455 3.89%
3 0 461 461 40 415 415 870 3.32%
network decision boundary, we introduced inversion data into TABLE VI
the training. SAMPLING RATES FOR THEFULL DIMENSION PROBLEM
After adding the QBL data and continuing the network Parameter Lower | Upper | Measurement Nsl’m"l’f;i;:f
training, we also used heuristic 2 above for stopping (Heuristic Pitch angle 90° +90 ° 90° 2
1 was not used since we do not want a partially trained network __Rollangle -180° | 180° 180 ° 2
this t|me) Flight Path Angle -90° 90° 60° 3
P -180° | 180° 120° 3
There are many ways of how to combine the query data with Q 180° 130° 130° 3
the original data (e.g., use only query data to continue training R -180° 180° 120° 3
or add it to the original data) and whether to reset the network Altitude 0 1500 ft 500 ft 3
weights or not. We got the best result when the query data was ___Y¢lo°i% 0 [450keas| 150keas 3
added to the original random data. Then training was continued
from the last state of weights. TABLE IX
Table IV and Table V summarize the test results. Using QBL ITTER RESULTS ONMULTIPLE RUNS
improved the neural network performance by 19% in average. Test Error Count
Table V compares the test results of the standard BP learning Case QBL QBL
with 73 712 data points against the average of the five 3300 data Number | without | with | Improvement
points cases when trained without QBL (This time the 3300 data Jitter | Jitter
points cases are tested on the same high-resolution data set for 1 47 45 4%
the sake of a consistent comparison). With a much larger number § gg :(1) 550//"
of training data the improvement in testing data was only about 4 ) 3 2%‘:
6%. From this experiment, we can see that QBL produced a 3 43 49 2%
much higher error improvement even though the number of data 6 58 58 0%
points used in QBL is significantly lower. 7 73 75 -3%
2) The Full Dimension ProblemOnce we validated the use 8 83 85 -2%
of QBL in the comparison case, we now deal with the original 9 67 67 0%
problem, where all the 8 input parameters are used. Unlike the 10 60 57 5%

5-input case, where angular rates were ignored, we could not
assume output symmetry with respect to the roll angle. TABLE VIII
Since we were convinced that the QBL was found to DEESTINGRESULTS OF THEFULL DIMENSION (8 INPUT PARAMETERS) PROBLEM

most effective when we start with a small and sparse data Case Test Error Count

set in the previous section, we started the training with 100 Number | N With | 1 provement
. . . L QBL QBL

randomly distributed training points. This is an extremely - - P T

small amount compared to the total number of data needed 5 ol = 0%

to reasonably cover the entire search space (see Table I). We 3 9 = s

stopped training after 40 epochs where the validation error 7 - p o

reached its minimum. Query data has then been generated,

and training continued from the last state of weights. The > 7 % 7%

network has then been inverted a second time, and the network
underwent a second stage of QBL. At each stage the netwatlition, and test data. A training, validation, and testing set of
was tested on 1234 test data and the error rate was calculags®0 uniform random samples each have been generated using
The test data was generated in a fashion similar to the trainigrg dynamic ranges given in Table VII. We used the previously
data using an oracle, except that the test points were evegligcussed validation technique.
distributed in the input space, while the training points were Table VIl summarizes the test results of the full dimension
randomly distributed. Table VI shows that QBL lowered thgroblem with and without query. Using QBL improved the test
test error by 67% in the first stage and after the second stage14% in average.
the overall error reduction was 72%. 3) Impact of Jitter on QBL LearningHere we show the ex-

In order to demonstrate the benefit of QBL statistically, heqgerimental results using jitter added to the inversion data as ex-
again we ran five simulations each with different training, vaplained in Section II-A. We summarize the results in Table IX.
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;£ {Tversion Convergence Error) mapping function for real-time simulation or embedded con-
% troller applications [38]. In the control loop of the ejection seat,
it is desired to map desired moment components to achievable
Class B thrust commands to be applied to the four rocket nozzles. Con-
trol thrusts typically contain constraints that create a limited en-
Network Boundary velope of feasible moment combinations. This results in a map-
iﬁey"wmmer ping function that is not one to one, and therefore not directly
invertible. The functional relationship of the moment and the

thrust spaces is illustrated in Fig. 8.

The input for this problem is the set of desired moments to
be applied to the body, shown as the rarddeof a noninjec-
tive function f. The output is the set of physically achievable
thrusts satisfying the system constraints, represented by the in-
Fig. 7. Jitter can adversly affect training if we have only sparse data and tYSrse image of/ unde.'rf’ shown agT" .A. re;trlctlon Off toa
problem is well separable. The network overfits the decision boundary. ~ subsetof\/, labeledZ, is shown as the injective functidn The

mapping of interest i§" = g(M). This is obtained by mapping
o M to L, and then using’ = h~(L). The mapping of points

In the first five cases (case 1-case 5) the network had five {§-)/ 1o 1, requires using pseudoinverse, iterative linear search,
puts; the angular rates were removed. The last five cases usedallther optimization procedures.These methods produce dis-
mput parameters—eight inputs. Random noise used is Gausgiglle data that describe the inverse mapping funatidfig. 9
with 0.0 mean and 0.001 standard deviation. The results of the, iqes an illustration and block diagram description of the
ten runs with the infusion of jitter to the inversion data showegqy1em.
no improvement. This might be an indication that the decision 5 3.p moment envelope determined for a system with four
boundary is relatively smooth and the classification boundary§cyets is shown in Fig. 10. The size and shape of this feasible
separable (see Fig. 4). In addition, during the QBL process, Wgyelope is defined by the individual and total thrust constraints

started with sparse training data and even after adding the qU§REn in (17) and (18). This is the set of moments depicted as
data the data set is still sparse. We believe that along a smo@{h setr, in Fig. 8.

and separated decision boundary, adding jitters to the inversion
data may adversely impact the learning as shown in Fig. 7. This n
is due to the fact that the jitter unnecessarily forms a complex Z T; = 6000 (17)
decision boundary (zigzag form, for instance) and forces the net- =1
work to overfit, especially when the data is sparse. and

4) Minimizing False NegativesWe use the penalty factor
technique described in (15) and (16):= 1, while M is varied 0 < T; <3000 (18)
as shown in Table X. The first two cases shown in the table are - T
for a roughly trained network using 100 training samples. Intrzhere, is the number of nozzles and the thrust unit is Ib. In
duction of the penalty factor decreased the number of false n@gjition, one of the nozzles may fail. In this case
atives and also decreased the total error rate. The results are con-
sistent in the subsequent cases where larger training sets were Ty = 1500 (19)
used, up to the point where the total errors begin to increase in
the last case. In all cases, we used again a validation set, thifere; is the index of the failing nozzle. A linear optimization
time stopping at the minimum of the false-negative errors rathgichnique was used to generate desired moments to thrust data.
than the total errors.

In Table XI we demonstrate the idea of minimizing fals@a. Results
negatives by skewing the training data as described in Sec- . .
tion 1I-C-2. In case 2 of the table, we generated 595 inversion* tNree-input-four-output multilayer feedforward network

data points, and added only the unsafe instances (234 poirw% used to map the moment componeisi( My, Mz)
s ; . NIo four thrust commands which can produce these moments,
to the original data set of case 1. We noticed a considerable

? : or-the closest possible moments if the original ones are not
decrease in the number of false negative alarms, at the expelse

: X ible, according to the original data generated by the oracle.
of some increase in the total number of errors. The test setu . - . :
Wo hidden layers were used containing 10 neurons in the first
below had 2048 samples.

hidden layer and five in the second layer. QBL was used to
emphasize relearning of data sets with large errors. The process
goal is to keep the absolute testing error within the required
upper limit for all test patterns.

Difficult mapping problems occur routinely in engineering The multilayer feedforward network was trained using 1331
applications due to underspecification or control power liminitial learning data. The data were generated by dividing the
tations of physical systems. NNs have been shown to provimgut space into 10 divisions along each dimension, then adding
a compact and efficient means for implementing this type ebme noise to the step size. The training set had high noise level,

Class A

Network Boundary
before QBL

IV. AEROSPACEAPPLICATION II: CONTROL DISTRIBUTION
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TABLE X
TESTING RESULTS USING A PENALTY FACTOR
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Case M Size of False Nuisance Total Errors
Number Training Set Negatives Alarms
1 1 100 6.81% 7.2% 14.01%
2 1.5 100 4.86% 7.62% 12.48%
3 1 2012 1.12% 1.12% 2.24%
4 1.5 2012 0.93% 1.27% 2.2%
5 2.0 2012 1.32% 1.66% 2.98%
TABLE XI

REDUCING FALSE NEGATIVES BY USING ONLY UNSAFE SAMPLES IN THE QUERY DATA

Case Size of Training Set Number of | Number of Total
Number | Uniform | Inversion Total False Nuisance Number
Sampling Data Negatives Alarms of Errors
1 2012 0 2012 23 23 46
2 2012 234 2246 15 47 62

S 1: Thrust
Space

S2 : Moment
Space

Fig. 8. Mapping between thrust and moment spagéss the desired set of
moments.L is the achievable set of moments by the corresponding constrained
set of thrustsl.

M, — —> 7

M— @' [T

M, ——» — >
‘ > Tn

With 7: M=f{location of 7, direction cosines of 7),

M

x

where M e and T eR?,

Fig. 10. Achievable moment envelope for the control of a four-rocket ejection
seat, with all four nozzles working.

and 3T =T, T (0T
=l
Fig. 9. Nonlinear moments to thrusts mapping. The inverse transtortnis ~ geénerated 127 patterns were uniformly distributed in the orig-
nonlinear due to the total thrust and individual maximum thrust constraints. inal training data set. 127 original patterns were removed so
that the length of the data sets would stay fixed to 1331. This
the validation set (used during training) had medium noise levelpuld allow comparison of results based on the quality of data,
and the test set had no noise. Thus, the three data sets have aimd-eliminating the effect of data set length. The network was
ilar distribution. The NDEKF algorithm was used for traininghen retrained, restarting with initial random weights. After this
the network. first query cycle, re-testing the network showed a reduction in
Test results revealed that though the error of the first and thitte number of points of larger error to only 19 for b@#hand

outputs '} andT3) were maintained within the same range, th&},. A second inversion and query have been done using these
errors ofT; andTy exhibited several spikes where the error ext9 points resulting in 96 new training data points. These points
ceeded 500 Ib, as shown in Fig. 11(a). All these spikes happeneste added to the 127 points obtained from the first query cycle
during the first 500 points of the test s&f, had 26 points with and the total of 223 data points have been incorporated with the
error larger than 500 Ib, whil&, had 24 points, always occur-original data in the same fashion as in the first cycle. Using this
ring simultaneously with correspondifig points. Using the 26 third data set, the network has been retrained again restarting
points whereT’, error exceeded 500 Ib, as target values, quewith initial random weights. Test results showed further reduc-
data was generated a first time, using network inversion as dien in the number of error spikes to 18 and 17 pointgirand
scribed above, resulting in 127 new training data. Using the dfy, respectively. Fig. 12 shows the decrease in number of error
acle, corresponding real outputs have been found. The newpikes after the first and second application of QBL.
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Fig. 11. (a) Error offy before using QBL. (b) Error of; after first use of 02t
QBL. (c) Error of T, after second use of QBL. The number of error spikes is 0.1 +
decreaSEd. 0 1 1 Il 1 1 1 1 1 | ! I I
2 1 41 81 121 162 202 242 284 324 364 404 444 484
‘g. Epochs
5 an 4 A AA aa X Before QBL
51 ++ +H + ++ | [+QBLonce ©
=] .
81 XOOKK XK XXX xx | & QBL twice |
8§ 0.6
g,,r”,,hmuuuuuumymmmuuu.u,,rrmm 0.5 4 ——RMS Error
31 51101 151 201 251 301 351 401 451 — Max Error

0.4 7

g : j\‘\-\

Test pattern number

Taies

Fig. 12. Occurrence of error exceeding 500 Ib. The number of occurrences i 02t
decreased from 26 to 19 after first application of QBL and again to 17 after
second application of QBL.
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Fig. 11 shows the progress made in testing error. After the Epochs
first query, the testing error is significantly reduced. After the
second query, most of the positive error spikes have been elimi- @
nated, as shown in Fig. 11(c). Investigation of applying the QBtig. 13. Backpropagation RMS and maximum errors. (a) Learning curve of

technique to target reduction of the negative error values is dpfg training data set without query set. (b) Testing error conducted with the
validation set for every 10 epochs of training without query set. (c) Learning

going. _ _ _ curve of the training data set with query data. (d) Testing error conducted with
The backpropagation algorithm has also been applied to tréia validation set for every 10 epochs of training with query data.

the feed-forward network (with 10-5 hidden units). Overall re-

sults seem to agree with that of the ND.EKF algorithm. '.:ig'.]\%le have shown the effectiveness of QBL in two aerospace
shows typical _Iearnm_g curves for_tramm_g data and val|dat|_o plications. QBL was successfully applied to a classification
data sets. Various different Iearnlng gains, momentum gal(? oblem as well as to a continuous mapping problem. When
?hnd r?fomtiezd. ve?jluest_we”re .t”ed' Thc;e (_:r%nvergence SPeeq hvert the network and how to incorporate newly generated
e QBL method is drastically improved. The maximum erro(5uery data into training processes are on-going research topics.

in the figures is the maximum error among 4 outputs. In the classification problem, the neural network was inverted to
V. G find inputs along the network decision boundary. We validated
- CONCLUSION the use of QBL using a comparison case. QBL has improved

QBL facilitates maximum utilization of training data, whichthe network performance by 19% in the comparison case
is necessary for problems where data generation is expensamd by 14% in the full-dimension problem. We also showed
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that after querying the oracle, data obtained from only ong13]
class could be used to minimize false negatives. In continuous
mapping problems, choosing the inversion target value is morgy
complicated. In our control distribution problem, the goal was
to reduce the maximum error. This is also a primary objective i1l
many other engineering problems. Systems can have envelopﬁ
of operation that make certain input patterns occur more
frequently than others. If errors exist at these frequent input?]
patterns, performance may drastically degrade. The inversion
target values can be chosen for input data points that exhibjis]
such degradation. We used the corresponding network output
values of those input data points as the inversion targets. We
also have shown the possibility to reduce the maximum positiveLo]
error using QBL. In utilizing newly acquired query data, one
can use both the original and the query data and re-train thﬁO]
network. One can also retrain the network with the query data
only. Additionally, the network can be incrementally retrained[21]
(i.e., retraining the network from previous weights), or can be
reinitialized before retraining. [22]

In addition, we have analyzed the use of the ClI to evaluate
the sensitivity of the input variables and choosing the most in-
fluential ones. We have also experimentally shown the effegps)
of adding jitter to the query data. Although, the evidence may
not be extensive, we believe that adding jitters may adverseIW]
impact the training for the classification task when having a
well-separable and smooth boundary, especially, when only a
small number of data is available along the boundary. Added jit[25]
ters may create more complicated decision landscape and force
the network to overfit.

In combination, the techniques herein can allow significantly26]
enhanced performance, for these examples and a variety of sim-
ilar applications. [27]
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