87 research outputs found

    Deep Learning Techniques for Cervical Cancer Diagnosis based on Pathology and Colposcopy Images

    Full text link
    Cervical cancer is a prevalent disease affecting millions of women worldwide every year. It requires significant attention, as early detection during the precancerous stage provides an opportunity for a cure. The screening and diagnosis of cervical cancer rely on cytology and colposcopy methods. Deep learning, a promising technology in computer vision, has emerged as a potential solution to improve the accuracy and efficiency of cervical cancer screening compared to traditional clinical inspection methods that are prone to human error. This review article discusses cervical cancer and its screening processes, followed by the Deep Learning training process and the classification, segmentation, and detection tasks for cervical cancer diagnosis. Additionally, we explored the most common public datasets used in both cytology and colposcopy and highlighted the popular and most utilized architectures that researchers have applied to both cytology and colposcopy. We reviewed 24 selected practical papers in this study and summarized them. This article highlights the remarkable efficiency in enhancing the precision and speed of cervical cancer analysis by Deep Learning, bringing us closer to early diagnosis and saving lives

    Classification of squamous cell cervical cytology

    Get PDF
    Cervical cancer occurs significantly in women in developing countries every day and produces a high number of casualties, with a large economic and social cost. The World Health Organization, in the right against cervical cancer, promotes early detection screening programs by difeerent detection techniques such as conventional cytology (Pap), cytology liquid medium (CML), DNA test Human Papillomavirus (HPV), staining with dilute acetic acid and Lugol's iodine solution. Conventional cytology is the most used technique, being widely accepted, inexpensive, and with quality control mechanisms. The test has shown a sensitivity of 38% to 84% and a specificity of 90% in multiple studies and has been considered as the choice test for screening [14]. The cervical cancer is not a public health problems in developed countries since more than three decades, among others because of implementation of other tests such as the CML which has increased the sensitivity to a figures that vary between 76% and 99 %. This test in particular produces a thin monolayer of cells that are examined. In our countries this technique is really far from being applied because of its high cost. In consequence, the conventional cytology has remained in practice as the only possible examination of the cervix pathology. In this technique, a sample of cells from the transformation zone of the cervix is taken, using a brush or wooden spatula, spread onto a slide and fixed with a preservative solution. This sample is then sent to a laboratory for staining and microscopic examination to determine whether cells are normal or not. This task requires time and expertise for the diagnosis. Attempting to alleviate the work burden from the number of examinations in clinical routine scenario, some researchers have proposed the development of computational tools to detect and classify the cells of the transformation cervix zone. In the present work the transformation zone is firstly characterized using color and texture descriptors defined in the MPEG-7 standard, and the tissue descriptors are used as the input to a bank of binary classifiers, obtaining a precision of 90% and a sensitivity of 83 %. Unlike traditional approaches that extract cell features from previously segmented cells, the present strategy is completely independent of the particular shape. Yet most works in the domain report higher precision rates, the images used in these works for training and evaluation are really different from what is obtained in the cytology laboratories in Colombia. Overall, most of these methods are applied to monolayer techniques and therefore the recognition rates are better from what we found in the present investigation. However, the main aim of the present work was thus to develop a strategy applicable to our real conditions as a pre-screening method, case in which the method should be robust to many random factors that contaminate the image capture. A segmentation strategy is very easily misleaded by all these factor so that our method should use characteristics independently of the segmentation quality, while the reading time is minimized, as well as the intra-observer variability, facilitating thereby real application of such screening tools.Maestrí

    Combining machine learning and deep learning approaches to detect cervical cancer in cytology images

    Get PDF
    This dissertation is centred around the implementation and optimization of a hybrid pipeline for the identification and stratification of abnormal cell regions in cytology images, combining state of the art deep learning (DL) approaches and conventional machine learning (ML) models.Cervical cancer is the fourth most common cancer in women. When diagnosed early on, it is one of the most successfully treatable types of cancer. As such, screening tests are very effective as a prevention measure. These tests involve the analysis of microscopic fields of cytology samples which, when performed manually, is a very demanding task, requiring highly specialized laboratory technologists (cytotechs). Due to this, there has been a great interest in automating the overall screening process. Most of these computer-aided diagnosis systems subject the images from each sample to a set of steps, more notably focus and adequacy assessment, region of interest identification and respective classification. This work is focused on the last two stages, more specifically, the detection of abnormal regions and the classification of their abnormality level. The main approaches can be divided into two types: deep learning architectures and conventional machine learning models, both presenting their own set of advantages and disadvantages. This work explores the combination of both of these approaches in hybrid pipelines to minimize the problems of each one whilst taking advantage of the best they have to offer, ultimately contributing to a decision support system for cervical cancer diagnosis. More specifically, it is proposed a deep-learning approach for the detection of the regions of interest and respective bounding-box generation, followed by a simpler machine-learning model for their classification. Furthermore, a comparative analysis of different hybrid pipelines and algorithms will also be performed, aiming to support future research of similar solutions

    Image analysis for the study of chromatin distribution in cell nuclei with application to cervical cancer screening

    Get PDF

    An Efficient Cervical Whole Slide Image Analysis Framework Based on Multi-scale Semantic and Spatial Deep Features

    Full text link
    Digital gigapixel whole slide image (WSI) is widely used in clinical diagnosis, and automated WSI analysis is key for computer-aided diagnosis. Currently, analyzing the integrated descriptor of probabilities or feature maps from massive local patches encoded by ResNet classifier is the main manner for WSI-level prediction. Feature representations of the sparse and tiny lesion cells in cervical slides, however, are still challengeable for the under-promoted upstream encoders, while the unused spatial representations of cervical cells are the available features to supply the semantics analysis. As well as patches sampling with overlap and repetitive processing incur the inefficiency and the unpredictable side effect. This study designs a novel inline connection network (InCNet) by enriching the multi-scale connectivity to build the lightweight model named You Only Look Cytopathology Once (YOLCO) with the additional supervision of spatial information. The proposed model allows the input size enlarged to megapixel that can stitch the WSI without any overlap by the average repeats decreased from 103∼10410^3\sim10^4 to 101∼10210^1\sim10^2 for collecting features and predictions at two scales. Based on Transformer for classifying the integrated multi-scale multi-task features, the experimental results appear 0.8720.872 AUC score better and 2.51×2.51\times faster than the best conventional method in WSI classification on multicohort datasets of 2,019 slides from four scanning devices.Comment: 16 pages, 8 figures, already submitted to Medical Image Analysi

    An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells

    Get PDF
    In this paper, we present an improved algorithm for the segmentation of cytoplasm and nuclei from clumps of overlapping cervical cells. This problem is notoriously difficult because of the degree of overlap among cells, the poor contrast of cell cytoplasm and the presence of mucus, blood, and inflammatory cells. Our methodology addresses these issues by utilizing a joint optimization of multiple level set functions, where each function represents a cell within a clump, that have both unary (intracell) and pairwise (intercell) constraints. The unary constraints are based on contour length, edge strength, and cell shape, while the pairwise constraint is computed based on the area of the overlapping regions. In this way, our methodology enables the analysis of nuclei and cytoplasm from both free-lying and overlapping cells. We provide a systematic evaluation of our methodology using a database of over 900 images generated by synthetically overlapping images of free-lying cervical cells, where the number of cells within a clump is varied from 2 to 10 and the overlap coefficient between pairs of cells from 0.1 to 0.5. This quantitative assessment demonstrates that our methodology can successfully segment clumps of up to 10 cells, provided the overlap between pairs of cells is <0.2. Moreover, if the clump consists of three or fewer cells, then our methodology can successfully segment individual cells even when the overlap is ∼0.5. We also evaluate our approach quantitatively and qualitatively on a set of 16 extended depth of field images, where we are able to segment a total of 645 cells, of which only ∼10% are free-lying. Finally, we demonstrate that our method of cell nuclei segmentation is competitive when compared with the current state of the art.Zhi Lu, Gustavo Carneiro, and Andrew P. Bradle
    • …
    corecore