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Resumo

O cancro do cólo do útero é o quarto cancro mais frequente em mulheres, ocupando o oitavo
lugar, a nível global. Apesar dos avanços médicos e científicos, atualmente não existe um trata-
mento totalmente eficaz para esta doença, especialmente quando diagnosticada em estadios mais
avançados. Desta forma, é atribuída elevada importância a programas de prevenção e rastreio, no
combate a este cancro.

O processo de rastreio do cancro do cólo do útero é composto por várias fases respeitando
a seguinte ordem: teste do vírus do papiloma humano (VPH), exame citológico (ou teste de Pa-
panicolau), exame de colposcopia e biópsia. Várias ferramentas têm sido desenvolvidas para
apoiar este processo, tornando-o mais eficaz, prático e acessível. Neste contexto, surgiu o projecto
CLARE que visa desenvolver um sistema inovador de suporte à decisão para o rastreio do cancro
do cólo do útero. A presente dissertação integra o projecto CLARE e foca-se no desenvolvimento
de um sistema de apoio à decisão destinado ao exame de colposcopia, usando ferramentas de Deep
Learning. A colposcopia é, na prática, uma endoscopia vaginal realizada por um ginecologista que
avalia o grau de risco relativo ao desenvolvimento de cancro, sendo que os casos positivos seguem
para biópsia. Esta dissertação visa criar uma ferramenta que realiza o mesmo tipo de avaliação
baseando-se numa única imagem do cólo do útero e respectivos dados clínicos da paciente.

Para alcançar o modelo que melhor desempenha a tarefa suprarreferida, foram adoptados
vários métodos, sendo que o primeiro baseou-se na exploração de algumas opções de segmen-
tação, com o objectivo de analisar a relevância da segmentação da zona de interesse. Posteri-
ormente, foram desenvolvidas e testadas várias abordagens que integravam técnicas de Transfer
Learning e Multitask Learning. Usando os melhores modelos aí obtidos, foi testado um método
de regularização com características canônicas, onde o treino dos modelos é orientado de forma
a aprenderem as características que são usualmente extraídas de imagens do cólo do útero em
abordagens clássicas de Machine Learning. Mais tarde, foram desenvolvidos métodos para inte-
grar os dados clínicos nos modelos criados, transformando-os em modelos multimodais. Final-
mente, foram implementadas metodologias para superar a limitação do desiquilíbrio entre classes,
incluindo algoritmos como SMOTE, Cluster Centroids, SMOTEENN, over-sampling manual e
algorítmos de ranking.

Para seleccionar os melhores modelos, foram consideradas quatro categorias, tendo em conta
a inclusão ou não dos dados clínicos e a métrica de selecção. A métrica de selecção varia com
o objectivo do modelo. Quando se pretende o modelo com melhor desempenho a nível geral, as
métricas mais relevantes são accuracy e AUC, no entanto, em casos de rastreio, existe interesse em
encontrar um modelo que minimize o número de falsos negativos, sendo avaliado pelas métricas
sensitivity e NPV. Definidas as categorias, o modelo multimodal com o melhor desempenho global
atingiu uma AUC de 91.57% e accuracy de 88.37% enquanto o modelo unimodal atingiu uma
AUC de 73.86% e accuracy de 84.86%. Relativamente aos melhores modelos para rastreio, o
multimodal atingiu uma sensitivity de 95.42% e NPC de 98.62% enquanto o unimodal ficou pelos
49.85% de sensitivity e 89.20% de NPV.
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Abstract

Cervical cancer is the fourth most frequent cancer in women and the eighth most commonly occur-
ring cancer overall. Despite medical and scientific advances, there is no total effective treatment
for this disease, especially when diagnosed in an advanced state. For this reason, prevention and
screening programs play a very important role in the fight against cervical cancer.

Cervical cancer screening follows a standard workflow that includes the following steps: HPV
test, cytology test or Pap smear, colposcopy, and biopsy. Several tools have been developed to sup-
port this workflow, making it more efficient, more practical and more affordable. In this context,
the CLARE project emerged with the aim of creating a novel decision support system designed for
cervical cancer screening. This dissertation integrates the CLARE project and focuses on develop-
ing decision support tools for colposcopy examination, making use of Deep Learning techniques.
Colposcopy is a medical exam performed by gynecologists that consists of performing a vaginal
endoscopy to predict the risk of cervical cancer. In this dissertation, the decision support system
performs the same prediction based on a single cervix image and patient’s clinical data.

To find the classification model that better fits the mentioned task, several methods were ap-
plied. The first step explored some segmentation options to analyze the relevance of extracting
the region of interest in this problem. After concluding that segmentation adds no value for this
case, several approaches were tested integrating Transfer Learning and Multitask Learning tech-
niques. The best models were transformed to test the effect of canonical feature regularization,
where CNN’s training is oriented so the neural networks learn to extract features that are usually
extracted from images, in classical Machine Learning approaches. Later, clinical data was intro-
duced in the models, turning them into multimodal algorithms. Finally, to overcome the class
imbalance problem, several approaches were implemented, such as SMOTE, Cluster Centroids,
SMOTEENN, over-sampling during data augmentation, and ranking algorithms.

In the end, instead of selecting the best model, four models were selected, considering two
variables: availability of clinical data, and the preferred metric. When clinical data is available,
the best model is a multimodal algorithm, otherwise, is selected a unimodal model. Considering
the metric variable, to select the best overall model, AUC and accuracy are the preferred metrics.
However, for screening problems, it is interesting to find a model that minimizes the number
of false negatives, preferring sensitivity and NPV metrics. The best overall multimodal model
achieved 91.57% of AUC and 88.37% of accuracy, the best overall unimodal achieved 73.86%
of AUC and 84.86% of accuracy, the best screening multimodal model obtained a sensitivity of
95.42% and an NPV of 98.62%, and the best screening unimodal model achieved a sensitivity of
49.85% and an NPV of 89.20%.
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“Any sufficiently advanced technology is indistinguishable from magic.”

Arthur C. Clarke
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Chapter 1

Introduction

1.1 Motivation

Cervical cancer is one of the four most frequent cancer in women. For 2018, the estimations in-

dicated 570,000 [1] new cases worldwide and 311,365 deaths [2], representing 6.6% of all female

cancers. About 90% of the deaths caused by this cancer will have occurred in low and middle-

income countries, where cervical cancer is in the top two of the most common cancers in women

[3]. In Portugal, where the Human Papillomavirus (HPV) vaccine is integrated in the National

Vaccination Program, there are about one thousand new cases every year [4], killing more than

200 women annually [5].

Cervical cancer, as well as most cancers, has better chances to be treated in the early stages

but the absence of signs and symptoms in this phase hampers an early diagnosis of this disease.

Therefore, prevention programs play an important role to reduce cancer incidence and mortality.

Nowadays, there are vaccination and screening programs for cervical cancer prevention. The

vaccinations usually prevent Human Papillomavirus, once it can stimulate cervical intraepithelial

neoplasia (CIN) which in turn is the cervical cancer promoter. Screening programs may include

HPV tests as the first triage approach, followed by cytology test (or Pap smear) and colposcopy

examination.

Cytological screening requires manual smearing and staining performed by an expert, who can

choose between conventional or liquid-based cytology. The second one overcomes some problems

such as dense regions caused by uneven distribution of the cells and presence of blood or other

artifacts; however, the cost is about 5 to 10 times higher than conventional cytology [6]. After

cytological examination, patients with positive or inconclusive results must undergo colposcopy

examination.

Colposcopy is a procedure that consists of capturing images of the cervix (cervigrams) fol-

lowing a 4-step procedure. In each step, a filter (i.e. green light) or a solution (i.e. acetic acid) is

applied on the cervix to enhance one of the regions of interest. Nowadays, there are low-cost and

portable devices to perform colposcopy examinations which promotes greater access to cervical
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2 Introduction

cancer screening in low-income countries. Even so, this procedure should be performed by expe-

rienced professionals who can provide an accurate diagnosis, which is a limitation for low-income

countries due to their restricted resources, including medical professionals.

1.2 Objectives

To overcome the limitation related to medical resources, some methods have been proposed to

help medical staff during a colposcopy examination, avoiding the need for a specialist to perform

such an examination.

Some works provided tools to enhance colposcopy image, segment regions of interest, and

detect some abnormalities. These tools help professionals to make a decision about the diagnosis,

however, the professional should have enough knowledge and training to perform an accurate

diagnosis.

The main goal of this dissertation is to develop an automatic system to support cervical cancer

screening, providing a prediction about cervical cancer risk of each patient based on her cervigram

and clinical data, when available. When performed by specialist, the colposcopy examination has a

sensitivity about 61.1% and a specificity of 53.4% [7], therefore, a good automatic systems should

surpass this performance, otherwise, it is not useful to support specialists’ decision.

1.3 Expected contributions

This work is part of the CLARE (computer-aided cervical cancer screening) project, which emerged

from a partnership between INESC TEC (Institute for Systems and Computer Engineering, Tech-

nology and Science) and Fraunhofer Portugal. The goal of this project is to provide automatic

tools for cervical cancer screening based on cytology and colposcopy images.

It is expected, from this work, to develop an image-based Computer-aided Diagnosis (CAD)

system to assist medical professionals on cervical cancer diagnosis, using only colposcopy images

and patient’s data. The system would integrate deep learning tools and multimodal methodolo-

gies, and aims to exceed the results presented by other authors in previous works (more detailed

information in chapter 3).

1.4 Document structure

This document is divided into 6 chapters. The first one is the present introduction followed by

two chapters with contextual information. Chapter 2 contains an introduction of cervical cancer

including a brief description of female reproductive system anatomy, cervix cytology, signs and

symptoms of cervical cancer, prevention and treatment, pathophysiology, and screening methods.

In chapter 3, there is a review of the state of art, including a background on Machine Leaning and

Deep Learning, and an overview on published work related to CAD systems for cytology images.

Previous studies provide methodologies for different tasks such as image quality enhancement and
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assessment, segmentation of regions of interest, image registration, detection of abnormal regions

and patterns, among others, being the most relevant task the classification of cervical cancer risk.

Chapter 4 presents a description of the methodologies applied to find the best regularized CNN

to perform cervical cancer screening. The results from these methods are also presented in chapter

4 as well as the respective discussion. In chapter 5, it is introduced the concept of multimodality

to include clinical data into the models and several methods for imbalanced learning are explored

as well. At the end of the chapter, there is the final results and respective discussion. Finally, in

chapter 6, there is a conclusion and some remarks about future work.





Chapter 2

Cervical Cancer

Cervical cancer is the fourth most common cancer in women and the eighth most common overall.

According to statistics from the International Agency for Research on Cancer, there was 569 847

new cases and 311 365 deaths caused by Cervical Cancer, in 2018, worldwide [2]. To learn more

about this disease, in this chapter is presented an overview about cervical cancer concerning uterine

cervix anatomy and cytology, signs and symptoms, treatment and prevention, pathophysiology,

and screening methods.

2.1 Overview of Female Reproductive System Anatomy

Female reproductive system is located inside the pelvic cavity (figure 2.1) and its organs can be

split in two main categories: internal genitalia and external genitalia [8]. Internal genitalia includes

the organs located inside the pelvis such as the vagina, uterus, cervix, fallopian tubes (uterine tubes

or oviducts), and ovaries, while the external genitalia, that is located on the outer part of the pelvis,

includes the perineum, mons pubis, clitoris, labium minora, labium majora, urethral meatus, and

vestibule [8].

(a) Lateral view. (b) Anterior view.

Figure 2.1: Lateral and anterior views of human female reproductive system. Adapted from [9].

5
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The ovaries are paired organs responsible for maturing and releasing the female eggs during

menstrual cycle [8]. This small and almond-shape organs connect to the uterus via fallopian tubes

which are located bilaterally at the upper portion of the uterine cavity. Fallopian tubes, uterine

tubes or oviducts have three parts: infundibulum, closest to the ovary and responsible for catching

the egg, ampulla, where the fertilization occurs, and isthmus, closest to the uterus [8].

The uterus is an inverted pear-shaped organ located within the pelvis in a position anterior to

the rectum and posterior to the bladder [8]. It has two parts: the body of the uterus (or corpus uteri)

and the cervix. The body is globe-shaped and it can be anteverted (tilted forward) or retroverted

(tilted back). When the uterus is anteverted, the cervix is bent forward and the cervical external

orifice is directed to the posterior vaginal wall. When the uterus is retroverted, the cervix enters

the vaginal through an anterior approach, being more difficult to detect during a colposcopic ex-

amination [10]. The body of the uterus is responsible for holding the fetus during pregnancy and

its walls have the function to contract to help fetus to be expelled [8].

The cervix is the portion of the uterus that separates the body of the uterus from the vagina. It

has a cylindrical shape working as a canal that allows the entry of semen into the uterine cavity.

The cervix has two orifices, the internal os that opens into the endometrial cavity and the external

os that opens into the vagina [8]. The internal os is responsible for dilating during labor, allowing

fetus delivery. The cervix is divided into ectocervix, which is the portion of the cervix projected

into the vagina being visible during a colposcopic examination, and the endocervix that is the

canal between internal os and external os.

The vagina is the canal that extends from the cervix to the vulva, connecting internal genitalia

and external genitalia. It is located between the rectum and the urinary bladder and lies at an angle

of 90◦ to uterus [8]. Details from external genitalia were not considered in this brief explanation,

once it is not the study object.

2.2 Cervix Citology

As explained in the previous section, cervix is the lower portion of the uterus and can be divided

into endocervix and ectocervix. Besides the location, these two portions also differ in lining.

Endocervix is lined with columnar epithelium (or also referred as glandular epithelium, figure

2.2), while ectocervix is lined with squamous epithelium (figure 2.3) [10].

Columnar and squamous epitheliums meet at the squamocolumnar junction (SCJ), as shown

in figure 2.4. Before puberty, SCJ is located very close to the external os (original SCJ) but after

the first menstruation, and during the reproductive period, SCJ moves to the ectocervix (new SCJ),

staying away from the external os, due to the elongation of the endocervical canal [10]. This trans-

formation leads to the exposure of columnar epithelium to the acidic vaginal environment which

cause destruction of this epithelium. To repair the tissue, that portion of columnar epithelium is

replaced by newly formed metaplastic squamous epithelium [10]. The epithelium between the

original SCJ and the new SCJ is called as the transformation zone (TZ) which is also dynamic,
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Figure 2.2: Columnar epithelium of the endocervix. Adapted from [10].

Figure 2.3: Squamous epithelium of the ectocervix. Adapted from [10].

being located at the ectocervix during the reproductive period and moving to an endocervical

position after menopause [10].

The identification of the transformation zone is very important during colposcopic examina-

tion once squamous cervical cancer, which represents the majority of cervical cancers, begins in

the TZ. Glandular cervical cancer also can originate in the TZ or in the columnar epithelium above

this zone. Premenopausal women usually present a transformation zone located on the ectocervix.

After menopause, the cervix shrinks and, consequently, the TZ moves into the cervical canal, em-

barrassing TZ visibility. The different transformation zones locations allows to categorize cervix

into 3 types:

• type 1 - TZ completely ectocervical and fully visible;

• type 2 - TZ with endocervical component and fully visible;

• type 3 - TZ with endocervical component and not fully visible.

Different types of cervix or TZ lead to different treatment approaches, therefore, cervix type iden-

tification prevents ineffectual treatments.
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Figure 2.4: Squamocolumnar junction (SCJ). Adapted from [10].

2.3 Signs and Symptoms

Signs and symptoms manifested by the patients depend on the stage of the cancer, nevertheless

patients with cervical cancer usually are asymptomatic until an advanced stage. The first notice-

able symptom is abnormal vaginal bleeding that may occurs during or after intercourse, between

menstrual periods, or after menopause [11]. Other manifested symptoms may include vaginal dis-

comfort, malodorous discharge, dysuria (painful or difficult urination), and pain in lower back or

pelvis [11] [12]. In advanced stages, when the cancer spreads into surrounding tissues, the symp-

toms also include constipation, urinary incontinence, blood in the urine, and swelling of the legs

[12].

Cervical cancer is a silent disease, therefore, prevention and screening programs are very

important, specially in middle and low income countries, where the levels of mortality caused

by cervical cancer are very high [2].

2.4 Prevention and Treatment

Nowadays it is possible to reduce the risk of cervical cancer through vaccination. The 9-valent

HPV vaccine decreases the risk of some cancers and precancerous lesions both in men and women,

covering nine subtypes of HPV (6, 11, 16, 18, 31, 33, 45, 52, and 58) and preventing cervical

squamous intraepithelial lesions [11]. Gardasil is another vaccine used to prevent cervical cancer

protecting against 4 subtypes of HPV, including HPV 16 and HPV 18 which are the most carcino-

genic types [13]. These vaccines can significantly reduce the risk of cervical cancer, however the

immunization can not be guaranteed and every women should attend cervical screening tests, with

and without vaccination [13].

The treatment for cervical cancer depends on the stage of the lesion. For early stages, the

most common procedure is the removal of the cervix and a part or the entire uterus, radiotherapy,

or both. For advanced stages, surgery, radiotherapy and chemotherapy are the most common

procedures. The removal technique to be applied also depends on the stage [11]:
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• Stage 0: It is a carcinoma in situ and it can be removed with cryosurgery, laser ablation,

loop excision, or with normal surgery;

• Stage IA1: For this stage, the common procedures are total hysterectomy, radical hysterec-

tomy, and conization;

• Stage IA2, IB, or IIA: External beam radiation with brachytherapy and radical hysterec-

tomy with bilateral pelvic lymphadenectomy, or a combination of both is usually applied

for stages IB and IIA. In stage IB1, when the lesion is smaller than 2 cm it can be removed

by radical vaginal trachelectomy with pelvic lymph node dissection, being also appropriate

for women with lesions of stage IA2 who want to preserve their fertility:

• Stage IIB, III, or IVA: The most common procedure is cisplatin-based chemotherapy with

radiation;

• IVB and more advanced stages: Palliative care, radiation therapy for bleeding and pain

control, and systemic chemotherapy.

2.5 Pathophysiology

Cervical cancer only occurs after a woman is infected by human papilomavirus (HPV). When

infected, cytology reports may show squamous intraepithelial lesion, however, 90% of HPV in-

fections disappear completely in a few years leaving no sequels [11]. About 5% of HPV infections

lead to the development of cervical intraepithelial neoplasia (CIN) of grade 2 or 3. CIN grade 3 is

a cancer precursor that leads to invasive cervical cancer with a risk of progression of 20% within

5 years and 40% within 30 years [11].

There are other risk factors that should be considered, such as genetic susceptibility, poor

immunity (HIV infection and poor nutritional status), risk behaviors (for example, smoking or

imbalanced diet), high number of sexual partners, first intercourse in early age, and lack of access

to routine screening [11].

Genetic susceptibility is related with the activation of certain genes. Tumor necrosis factor

(TNF) is responsible to initiating cell apoptosis and it can be expressed in different genes [11].

TNFa-8, TNFa-572, TNFa-857, TNFa-863, and TNF G-308A genes increase the incidence of

cervical cancer. Also Tp53, a gene involved in apoptosis and gene repair, has been associated

with higher incidence of cervical cancer, being responsible for increasing progression rate from

HPV infection to cervical cancer. Other genes such as human eukocyte antigen (HLA), hemokine

receptor-2 (CCR2), and the Fas gene are also related with genetic susceptibility to cervical cancer.

On the other hand, CASP8 gene (also referred as FLICE or MCH5 gene) seems to decrease the

risk of this cancer [11].

Concerning HPV subtypes, the most carcinogenic belongs to alpha group 1 (table 2.1), with

more than 90% of cervical cancer caused by subtypes 16, 18, 31, 33, 35, 45, 52, and 58. In

opposition, subtypes of the alpha group 3 (subtypes 6 and 11) were never been associated to cases
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Table 2.1: Human Papillomavirus subtypes associated with cervical cancer. Adapted from [11]

HPV Alpha
Group

Subtypes Evidence for Cervical Cancer

1
16

Most carcinogenic HPV type, known
to cause cancer at several sites

18, 31, 33, 35, 39, 45, 51,
52, 56, 58, 59

Sufficient evidence

2A 68
Limited evidence in humans and

strong mechanistic evidence

2B
26, 53, 66, 67, 70, 73, 82 Limited evidence in humans

30, 34, 69, 85, 97
Classified by phylogenetic analogy to
HPV types with sufficient or limited

evidence in humans

3 6, 11
Inadequate epidemiological evidence
and absence of carcinogenic potential

in mechanistic studies

of invasive cancer. High-risk HPV integrates the human genome in genes E6 and E7 [11]. This

binding leads to resistance to apoptosis, affecting cell growth control which promotes the growing

of cells with damaged DNA that can result in malignancy.

The relation between HIV infection and cervical cancer pathogenesis is not completely ex-

plained by science, however, it is known that HIV infection suppress immune response, facilitat-

ing the infection by HPV which cause more damage than usual. Therefore, cervical cancer is five

times more frequent in seropositive women than in seronegative women [11].

2.6 Screening Methods

The screening procedures for cervical cancer follow a set of guidelines that differ according to

the country where the screening is performed and patient’s age. International Federation of Gy-

necology and Obstetrics (FIGO) guidelines considered as screening methods for cervical cancer

the Papanicolaou (Pap) test, colposcopy, biopsy, conization of cervix, cystoscopy, proctosigmoi-

doscopy and chest x-ray. Nevertheless, the most common procedures are Papanicolaou test and

colposcopic examination [11]. In Portugal, the screening process starts with a HPV test. When the

outcome is positive but not for subtypes 16 and 18, the guidelines demand cytology examination

(or Pap test). For subtypes 16 and 18, and for positive cytology exams, the next step is colposcopy

examination. Nevertheless, if the outcome from colposcopy is not clear, a biopsy and consecu-

tive histological examination are performed. Even when the results are negative, patients with

suspicious symptoms or inconclusive outcomes should be followed up, repeating the screening

test.



2.6 Screening Methods 11

2.6.1 Papanicolaou Test

Papanicolaou test, Pap smear or cervical cytology, is the oldest procedure used to screen cervi-

cal cancer and consists on exfoliating cells from the transformation zone to be observed on the

microscope. The traditional technique involves transferring the cells directly to the microscope

which may include blood and other debris, making the task more difficult [11]. Nowadays, the

most common technique is the liquid-base cytology which consists on releasing the cells into a

preservative liquid, in order to uniformize the sample and reduce the influence of external artifacts

(e.g. blood, debris) [11].

2.6.2 Colposcopy

Colposcopy is a technology that provides a direct observation of the cervix. Nowadays, there are

portable and low-cost devices such as EVA COLPO from MobileODT1, allowing the access of

this screening method in remote locations with vulnerable population.

Colposcopy examination should follow a protocol with 4 main steps. In the first step, a normal

saline solution should be applied on the cervix to highlight landmarks of the transformation zone.

These landmarks can be crypt openings and/or nabothian follicles that define the external boundary

of the TZ [14]. A normal crypt opening is represented as a black dot surrounded by a small

acetowhite area. If the crypt opening is large and the acetowhite area is denser than normal, it

is called a cuffed crypt opening [15]. Also, a cuffed crypt opening may indicate an extension of

the neoplasia into the crypt, which only occurs for high-grade lesions [15]. Both squamous and

columnar epithelium should be seen in this stage, the squamous epithelium has a pink tone while

the columnar epithelium has a dark red tone with grape-like patterns [14].

In the second stage, a green light filter is applied to enhance the blood vessels. Cancer cells

have a growth rate higher than usual, so, the tissue around this cells is more vascularized [14].

The third stage is known as Hinselmann test and involves the application of 5% acetic acid

solution. The solution enhance squamous and columnar epithelium, facilitating the segmentation

of this regions by a human expert [14]. The application of acetic acid solution also enables the

observation of precancerous lesions.

The fourth and final stage is the Schiller’s test, where Lugol’s iodine solution is applied on

the cervix. The normal squamous epithelium stain, showing a brown or black tone, while the

immature squamous metaplastic epithelium remains with the same color [14]. Iodine does not

stain some abnormal patterns such as cervical polyps, improving the discrimination by human eye

of normal and abnormal regions in the TZ. During this step, the specialist also pay attention to the

velocity of the staining, faster reactions indicate fragile tissues which may be related to neoplasias.

The presence of cervical cancer is manifested by abnormal patterns in the cervix, however,

abnormalities’ appearance depends on each woman and her age, therefore, cervical cancer is not

characterized by one specific appearance, being important to recognize each abnormal feature.

1https://www.mobileodt.com/
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2.7 Summary

Cervical cancer incidence have been decreasing, however there is still a considerable number of

cases and deaths associated to cervical cancer in middle and low-income countries. Therefore, it

is important to develop low-cost screening methods to enable the access of health care services

among the most vulnerable population. Digital low-cost devices for colposcopy have the potential

to overcome this limitation, once they are cheap and portable.



Chapter 3

Literature Review

Several works have adopted different techniques to extract information from digital colposcopy

images. The main goal of these studies is to provide tools to help health professionals during a col-

poscopy examination, regardless of their level of expertise. Previous works developed Computer-

Aided Diagnosis (CAD) systems for different tasks that include image quality enhancement and

assessment, segmentation of regions of interest, image registration, detection of abnormal regions

and/or patterns, classification of TZ type, and classification of the risk of cancer.

In this chapter, we present a background on Machine Learning and Deep Learning tools, the

datasets of colposcopy images currently available to support the development of CAD systems,

and an overview of the first four tasks aforementioned, including a brief explanation and some

methods used in literature. Finally, it is bestowed a state-of-art of CAD systems used as decision

support systems for cervical cancer diagnosis.

3.1 Background on Machine Learning and Deep Learning

ML is a category of algorithms that enable computers to learn from data and to improve their

performance without being explicitly programmed. This concept includes three types of learning:

Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Supervised Learning is used for tasks of classification (when the output variable is a category)

and regression (when the output variable is a real number). The algorithms of this ML type are

trained using labeled data with the aim of finding generalized patterns that enable them to predict

the correct output of new data. In reverse, Unsupervised Learning models are trained with un-

labeled data, therefore, the aim is to find similarities between the data points to solve problems

of clustering or association. The third type, Reinforcement Learning, corresponds to interactive

algorithms that learn with the feedback given by the environment, concerning their performance.

Each time the algorithm needs to chose a path, it receives a reward if it chooses the right path,

otherwise, it receives a penalty, after this, the algorithm is updated in order to avoid penalties in

similar situations.

13
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In this dissertation, the goal is to classify the risk of cervical cancer concerning the input data.

Once the data is labeled, the models used for this task will be supervised learning algorithms. In

this section, it will be presented some models of machine learning used by the authors in the liter-

ature and also included in the methodologies of this work. Posteriorly, there is a brief introduction

to convolutional Neural Networks and to some models already trained using the ImageNet dataset,

a database with more than 14 million images, available online 1.

3.1.1 Machine Learning Classifiers

For small data, it is recommended to use classical machine learning algorithms, yet, those algo-

rithms cannot receive images as input, therefore, it is necessary to extract features from the images

and then, use them as the input of the classifiers. Several models were used in literature but, in

this dissertation, the classifiers tested were K-Nearest Neighbors, Logistic Regression, Random

Forest, and Support Vector Machines, once their performances are usually better than other clas-

sifiers. Besides the classical Machine Learning models, it was also tested a Multilayer Perceptron

trained with the features extracted from the images. To understand further methodologies, this

subsection includes a succinct introduction to the classifiers previously mentioned.

3.1.1.1 K-Nearest Neighbors

kNN, as described in [16], is a method that predicts the classification of unknown samples based

on the known classification of its neighbors. This algorithm does not have a training process,

per se. Instead it organizes the training data in the feature space, and every time it receives an

unknown sample, computes the distance between the new sample and all samples in the training

set. Afterward, it selects the k nearest samples, where k is the number of neighbors considered in

the selection step. Finally, it classifies the sample according to the classification of their selected

neighbors. In figure 3.1 there is a practical example of this algorithm.

(a) k = 1 (b) k = 4

Figure 3.1: kNN example. The new sample is represented by the circle. When k=1, the point is
assigned to the square class; When the decision rule is k=4, the point is assigned to the triangle

class.

1http://www.image-net.org/
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As represented in figure 3.1, the k parameter is able to affect the decision, therefore it must

be selected properly. If k is too large, classes with the bigger population will overwhelm smaller

ones, however, when k is too small the overfitting increases.

3.1.1.2 Logistic Regression

Logistic regression is an algorithm also used in classification problems, that computes the prob-

ability of the sample n, characterized by a set of features Xn, to belong to the class yk. This

algorithm follows a Bernoulli distribution, represented in equation 3.1, where µ is a logistic func-

tion represented in equation 3.2, as described in [17].

p(yk|Xn) = µ (Xn)
yk (1−µ (Xn))

1−yk (3.1)

µ (x) =
1

1+ e−θ T x
(3.2)

In equation 3.2, θ represents the weight vector which is the parameter that should be optimized

during the training of a logistic regression model [17].

3.1.1.3 Random Forest

To understand the concept behind random forest classifiers, it is imperative to understand what is

a decision tree. Decision trees are Machine Learning models that classify data considering a net

with nodes, branches and leafs, which explain the name of the model. The nodes correspond to

questions related with one of the features and correspondent threshold. When there is no need to

split the data anymore, a leaf is found. The nodes can be followed by other nodes or by leafs, but

the end of each branch should consist of leafs only. In figure 3.2 there is an example of a decision

tree used to classify dogs and cats concerning their weight and height, based on a dataset with 5

samples (2 cats and 3 dogs).

Figure 3.2: Decision tree with two nodes and three leafs, used to classify animals as dogs or cats
considering weight and height. Figure adapted from 2.

2https://towardsdatascience.com/decision-tree-an-algorithm-that-works-like-the-human-brain-8bc0652f1fc6
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Decision trees are very flexible models that easily split and classify each sample of the training

data, perfectly, which implies a problem of overfitting. One way to overcome this problem is to use

a forest of trees instead of a single tree. In a nutshell, a random forest is a set of decision trees that

relies on two key concepts: random sampling of training and random subsets of features. The first

concept means that each tree learns from a random set of samples of the dataset and the second

means that for each node in each decision tree, only a random subset of features is considered.

The final decision is obtained by majority vote or by computing the average of the predictions of

each tree [18].

3.1.1.4 Support Vector Machines

The original concept of support vector machines relies on the finding of the optimal hyperplane,

in the feature space, that completely splits all samples from two different classes. The data points

from each class that are closer to the hyperplane are called the support vectors and those are the

only data points that are considered during the process of finding the optimal solution. For the

same dataset, there are a lot of candidates for hyperplane, as shown in figure 3.3. To optimize

the model, the chosen hyperplane should maximize the margin, i.e. the distance between the

hyperplane and the support vectors of each class.

Figure 3.3: On the left, a representation of a feature space with some candidates hyperplanes. On
the right, the same feature space with the optimal hyperplane and the support vector represented

by filled squares/circles. Figure adapted from 3.

This method requires linearly separable patterns, however, in real datasets, this condition is

rarely observed. A method used to overcome this problem is the Kernel trick, which is the appli-

cation of a Kernel function that map the data into a higher dimensional space [19]. A practical

example of the Kernel trick is represented in figure 3.4.

3.1.1.5 Multilayer Perceptron

Multilayer perceptrons (MLP) are one type of neural networks, being closer to the Deep Learning

category, depending on the number of layers of the MLP. To introduce the concept of multilayer

perceptron, it is important to understand what is a neuron. In a nutshell, a neuron is a linear

classifier that combines a weighted sum and an activation function [20], as shown in figure 3.5.

3https://towardsdatascience.com/support-vector-machine-vs-logistic-regression-94cc2975433f
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Figure 3.4: Feature space transformation. Adapted from [19].

There is a large set of functions that can be used as activation functions of the neurons, however,

the most common is the sigmoid function (equation 3.3), that maps the resulting values into the

range (0, 1), and ReLU (equation 3.4), that maps the values between 0 and + ∞. The activation

functions can be linear or non-linear, however, if a multilayer perceptron only includes linear

functions, the model will be also linear [20].

A multilayer perceptron consists of a network of artificial neurons organized by layers. It

starts with the input layer, which is the feature vector, followed by a set of hidden layers, ending

at the output layer. Each hidden layer consists of a set of neurons that receive the previous layer

as the input and outputs the resulting values from the neurons to the next layer. This concept is

represented in the diagram of figure 3.6.

Figure 3.5: Diagram of an artificial neuron. Adapted from 4.

σ (x) =
1

1+ e−x (3.3)

R(x) = max(0,x) (3.4)

Multilayer perceptrons learn in a supervised manner requiring a labeled dataset. During train-

ing, the MLP reads the input data and adjust the weights to get the desired output layer, repeating

this process several times. Each repetition is called an epoch and the number of epochs is a pa-

rameter set by the user. At the end of each epoch, it is computed a loss function and its magnitude

define the degree of adjustment that should be applied on the weights [20].

4https://skymind.ai/wiki/neural-network
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Figure 3.6: Diagram of a multilayer perceptron with two hidden layers. Adapted from [20]

3.1.2 Background on Convolutional Neural Networks

Convolutional neural networks (CNN) are Deep Learning algorithms that can take images as input,

avoiding the need for, previously, extracting features from the image. In this subsection, it is

presented an overview of CNN, a brief description of some types of layers that commonly integrate

these neural networks, and an introduction of CNN architectures already implemented and trained

with the ImageNet database.

3.1.2.1 Basics of Convolutional Neural Network

A CNN is a type of neural networks, as multilayer perceptrons, that is fed by input matrices instead

of input vectors. To keep the spatial relation of the data, the first layers consists of convolutional

operations, receiving matrices as input and returning transformed matrices as output. At the end

of the network, the matrices are concatenated in a single vector, so the following layers work as

traditional neural network layers. An example of CNN is represented in figure 3.7. For a better

understanding, there is a summary description for each type of layers, bellow.

Figure 3.7: Diagram of a convolutional neural network to classify different vehicles. Figure from
5.

Convolutional Layer In a standard neural network layer, the inputs are all connected to ev-

ery neuron of the following layer. Using this strategy, when the input is an image, would imply
5https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53
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thousands or even millions of weights and bias to be computed in each layer; besides, the spa-

tial relation would be lost. In a convolutional layer, it is assumed local connectivity and space

stationary, hence, instead of fully connected networks, there is a set of filters/kernels of optional

shape that are convolved with the image, i.e. each filter slides across the image computing the dot

product, resulting on activation maps. For each filter of shape W F×HF×D, there is WF*HF*D

weights and 1 bias to be computed, which means that for a layer with K filters the total number of

parameters to be learned is
(
WF*HF*D +1

)
*K. The number of activation maps computed in each

layer is the same as the filters, K, once a filter only detects a particular localized feature.

Pooling Layer This type of layer is responsible for reducing the size of the feature maps, de-

creasing the computational cost of the algorithm. There are two types of pooling: Max Pooling

and Average Pooling. Both use kernels that slide across the image, but instead of returning the

dot product, return the maximum value or the mean of all the values covered by the kernel in each

instance of the slide. Between the two pooling, Max Pooling has the best performance, once it can

also work as a noise suppressant. In any case, there are no parameters to be learned in this type of

layer.

Classification Layers The classification part of a CNN is very similar to a standard neural net-

work. The first step consists of transforming the output of the last convolutional or pooling layer

into a vector - flatten layer. Following the flattening step, some fully connected layers, where

each component of the previous layer is connected with every neuron, usually with ReLU activa-

tion, are added to the network. For a classification case, the last layer usually is fully connected

with soft-max activation, which matches each input with the most likely class.

3.1.2.2 Residual Network

Deep networks usually experience a degradation problem, i.e. when the network start converging,

the accuracy gets saturated for a while and then degrades abruptly [21]. Adding layers to the

network, as an attempt to solve the problem, only led to higher errors. To overcome the degradation

problem, He, K. et al [21] proposed the Residual Network architecture that incorporates shortcut

connections like the one represented in figure 3.8.

Figure 3.8: Diagram of a residual block. Figure from [21]
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Considering that, without shortcut connections, each few stacked layers fit a desired under-

lying mapping represented by H (x), with shortcuts, those layers fit a new mapping function:

H (x) = F (x) + x. The shortcut connections only performed identity mapping which does not

require extra parameters to be learned or any extra computational complexity [21].

The results in [21] show that ResNet algorithms successfully overcame the degradation prob-

lem, once accuracy did not get saturated, and the training error is smaller when compared to plain

networks with the same depth.

3.1.2.3 VGG

VGG net is a CNN architecture created by Simonyan and Zisserman [22] that won first and second

places in the localization and classification tasks in the ImageNet challenge. This architecture has

different configurations, the smaller one has 11 weight layers and the deepest has 19 weight layers.

All of them are composed by a stack of convolutional layers with filters of size 3×3 interpolated

with max pooling layers. The pooling layers follow some of the convolutional layers but not all of

them, being five in total. The pooling is performed with a kernel of 2×2 and a stride of 2.

The last max pooling layer is followed by three fully connected layers, two with 4096 neurons,

and another with 1000 neurons with a soft max activation, once the ImageNet database contains

1000 different classes [22].

3.1.2.4 Inception V3

Different distributions of the objects on the image require a different analysis. When the informa-

tion is globally distributed, a larger kernel performs better but a smaller kernel is preferred when

the information is locally distributed. Therefore, choosing the size of the kernel can limit the

performance of the algorithm. Inception architectures try to overcome this problem by applying

different convolutions to the same object and concatenating the results in one single output. The

simplest version of inception architectures use modules like the one in figure 3.9a.

(a) Inception module, naive version.
(b) Inception module with dimension

reductions.

Figure 3.9: Modules of inception v1. Figures from [23].

To decrease the computational cost, 1×1 convolutions are applied before the 3×3 and 5×5

convolutions, which may seem counterintuitive but 1×1 convolutions are cheaper operations that
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reduce the number of input channels, reducing the cost of 3×3 and 5×5 convolutions, which are

much more expensive. This update is represented in figure 3.9b.

The authors rethought the inception architecture and created two more versions [24]. In ver-

sion 2, the modules were updated replacing the 5× 5 filters by two consecutive 3× 3 filters, as

represented in figure 3.10a, to reduce the computational cost. Later, the module was expanded,

replacing 3×3 convolutions by two parallel convolutions with filters of shape 1×3 and 3×1, as

in figure 3.10b.

(a) Inception module with
replacement of each 5×5 filters by

3×3 kernels.
(b) Inception module with expansion

of the filter bank outputs.

Figure 3.10: Modules of inception v2. Figures from [24].

The third version of the inception architecture includes the modules of the version 2, and in

addition use a RMSProp optimizer and a label smoothing regularization [24].

3.2 Colposcopy Datasets

The decision provided by a CAD system depends on how the system is trained. To achieve a

good and complex algorithm, it should be trained with a representative dataset that may include

a diversity of abnormalities and acquisition settings, so the algorithm is prepared to evaluate new

colposcopy images. Currently, there are four available datasets regarding colposcopy images. The

utility of each dataset also depends on the annotations provided by the authors that collected the

data. In this section, each dataset will be introduced concerning the content, the propose of the

collection, and the annotations available.

3.2.1 Acosta-Mesa H. et al.

In 2009, Acosta-Mesa et al. published a dataset containing 10 videos of colposcopy examination

of 10 patients during Hinselmannn stage [25]. This database has no annotations. It can be used to

validate image registration methods or segmentation of acetowhite regions, previously segmented
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manually, yet it can not be used to train classifiers for cervical cancer diagnosis, once there is no

annotations regarding cancer risk.

3.2.2 Fernandes et al.

In a joint collaboration with Fernandes et al. and Hospital Universitario de Caracas, a dataset of

287 images was collected, gathering annotations from 6 experts and images from three modalities

(green filter, Hinselmann, and Schiller) [26]. The dataset contains 62 predictive attributes for each

image, including segmentation masks of cervix area, external orifice, vaginal walls, speculum,

and artifacts, and 7 target variables (one for each patient and a consensus). This database and its

notations can be used to train and validate algorithms for image quality assessment and for image

segmentation.

3.2.3 NCI/NIH dataset

The American National Cancer Institute (NCI) from National Institutes of Health (NIH) collected

a dataset composed by digital colposcopy images (cervigrams) from 10,000 women [27]. A subset

of this dataset containing 2,120 cervigrams is available for technical works. Besides the images,

the dataset includes information about the patient’s age, HPV test, and histology results. Some of

this data is missing, including the results from hystologic examination, which should be the ground

truth for cancer risk classification problems, resulting in a total of 913 labeled cervigrams. The

annotations for histology results correspond to the neoplasia progression level, being categorized

as normal, abnormal, CIN2, CIN3, and cancer. In colposcopy examination, each case is classified

as high risk or low risk, to convert the categories of the dataset to this two classes, normal and

abnormal cases are considered as low risk and CIN2, CIN3, and cancer cases are considered as

high risk.

This dataset can be used to train and validate decision support systems for cervical cancer and

cervical intraepithelial neoplasia diagnosis, being the dataset used in this dissertation.

3.2.4 Intel & MobileODT

Intel & MobileODT submitted a dataset with about 8000 images for a Kaggle competition. The

dataset covers the main colposcopy stages and has annotations about the cervix type regarding TZ

location. There are no annotation concerning neoplasia or risk of cancer, but it is considered that

every images corresponds to normal cases.

3.3 Computer-Aided Diagnosis systems for digital colposcopy images

3.3.1 Image quality assessment and enhancement

The concept of image quality is commonly related with image definition, focus, distortions, etc,

however, in a medical environment, image quality concept goes beyond technical specifications.
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When a medical image is recorded for further examination, some aspects should be taken into

account such as the visibility of the region of interest, patient’s position, the presence of medical

artifacts, the presence of blood or other body fluids, among others. Hence, some studies have

proposed tools to assess and improve colposcopy image quality.

For image quality assessment, Gu J. and Li W. [28] proposed a methodology to assess images

in real time, improving image acquisition. To do so, they implement a framework that includes

detection and assessment of the region of interest, contrast dynamic range assessment, blur detec-

tion, foreign objects identification, and detection of physical contaminants. The decision model

was based on threshold operators and there’s no information about the quality of the model. An-

other approach was proposed by Fernandes et al. [26]. The images were classified as good or bad,

concerning image quality. The considered features included area of each anatomical body part,

area occupied by artifacts or occluded by specular reflections, maximum area difference between

cervix quadrants (4 in total), level of fitness of the cervix to a specific geometric model (convex

hull, bounding box, circle and ellipse), distance between external os and the center of the image,

and mean and standard deviation for RGB and HSV channels. The decision model was based on

an Support Vector Machine (SVM) which is more complex than the previous one.

Regarding quality enhancement, several frameworks were proposed for this task, focusing on

specular reflections removal and image normalization. Specular reflection is very common in col-

poscopy images, however, it degrades pixel information, affecting image interpretation. Different

authors tried different approaches such as reflection removal applying the green channel to detect

and distinguish large saturated regions from small high contrast areas, the missing information of

these glares is filled using Laplace’s equation for interpolation and adjusting HSI color space [29].

A different approach suggested by Gordon et al. [30] consists in detecting high brightness regions

and low saturation areas and the pixels in the neighborhood with high gradients are considered as

candidates of specular reflection pixels. Next, a mixture of two Gaussians is fitted on the saturation

map for the HSV color space of the selected pixels, where one of the Gaussians represents a pixel

with color information and the other represents white pixels, which are considered as reflection

regions. Damaged regions are replaced by "artificial" pixels there are painted according to the

surrounding pixels.

For image normalization, some authors proposed simple normalization using equalization [31]

while others suggested a color calibration system to be implemented before image acquisition.

Despite the better results that normalization provides, normalized systems introduce constraints for

already acquired images, or images captured by inexperienced professionals, being an approach

with pros and cons.

3.3.2 Semantic image segmentation

Several works developed frameworks to segment cervix from colposcopy artifacts and from vagi-

nal walls. Some of them went further to segment acetowhite regions, squamous and columnar

epithelium, and the external os.



24 Literature Review

The common approach for this semantic segmentation include unsupervised methods such

as K-means, Gaussian Mixture of Models (GMM), and Mean shift, concerning a feature space

composed by raw color information of Lab and RGB color spaces, color ratios, texture, and spatial

information, for instance, the distance between the pixel and the center of the image [27].

The clustering methods aforementioned classify each image as an independent sample, ignor-

ing spatial relation between pixels, therefore, in some frameworks, post-processing is applied to

ensure spatial consistency. One of the methodologies, that was used by Gu and Li [28], applied

morphological operators to fill small holes. The spatial consistency limitation led some authors to

use supervised methods, extracting color and texture features and using SVM models.

The boundaries between the cervix and vaginal walls are very smooth resulting in over-

segmentation, especially when some artifacts (i.e. the speculum) were captured. To overcome

this limitation, some authors used active contours [32].

To distinguish squamous from columnar epithelium, Lange [29] proposed a framework with a

watershed algorithm that identifies the border around the cervix. An iterative watershed algorithm

is applied to on a feature space considering the product of green channel and saturation in the HSI

color space to split both epithelium. The same method is applied to the red channel feature space

to segment the external os.

Fernandes, K. also proposed a framework using deep neural networks and ordinal classification

to segment different areas/objects such as the colposcope, vaginal walls, cervix, transformation

zone, and external orifice [33]. This approach enabled the segmentation of the entire set of objects

achieving a Dice’s coefficient of 51,24% in Fernandes et al. dataset and 66,98% in Intel and

MobileODT dataset.

3.3.3 Image registration

Image registration is a process that consists in geometrically transforming images of the same

object but taken from different perspectives or with different distortions into the same coordinate

system. This process is not useful for databases that contain only one image of each patient but it

can be applied on the Acosta-Mesa dataset, which contain videos, and in Fernandes et al. dataset

to relate images of the three stages of each patient examination.

Medical image registration can be a tricky task. Despite the different viewpoints and modali-

ties (colposcopy stages), there is elastic deformation induced by respiratory motion. To overcome

this limitation, three main methodologies where concerned: either rigid or elastic registration,

landmark-based, and segmentation based.

Rigid registration combines translation and rotation transformation, considering a static object

and a dynamic capture device, while elastic registration considers dynamic objects that undergo

distortion. Acosta-Mesa [34] and Garcia-Arteaga [35] used rigid and elastic registration algo-

rithms for colposcopy images on a two-stage approach. First, the phase correlation is applied to

remove global translation difference, followed by locally normalized cross-correlation to remove

deformation [34].
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In more recent works, Acosta-Mesa et al. combined the cross-correlation technique and

landmark-based registration [36]. For that purpose, it was considered as landmark anatomical

features that show high contrast, such as the external os. In some cases, external os is not a good

reference and cervix surface is very smooth, being difficult to track key points on it. Therefore,

they propose, as a landmark, the stain introduced by Lugol solution. Other authors used Harris

corner detector and similar algorithms to track landmarks over time [37].

3.3.4 Detection of abnormal regions

The presence of abnormal regions may be an indicator of some neoplasia, therefore, the identifi-

cation of these lesions has high importance in colposcopy examination. These abnormal regions

include acetowhite regions, abnormal vascularization, mosaic regions, and punctations.

Several authors proposed frameworks to detect abnormal regions in traditional colposcopy im-

ages. In most of the works, when abnormal region segmentation is applied, the main steps include

specular reflection removal, cervix segmentation, acetowhite region segmentation, detection of

mosaic regions, vasculatures and punctations, and classification [38] [39] [40] [41] [42] [43].

For acetowhite segmentation, Das A. et al. developed a framework that considers cervigram as

a GMM and proposed a probabilistic segmentation algorithm based on Expectation-Maximization

algorithm [44]. Thereafter, they developed models for classification of abnormal regions as mo-

saics, vasculatures, and punctations, based on texture features. To segment mosaic regions, images

undergo morphological opening, using six structures, combining the six filtered images in a final

mask [38]. The same procedure was used for vessels segmentation. For punctations segmentation,

it was applied matched filtering using a Gaussian template to map variations of intensity. The

intensities distribution was modeled as a mixture of Gaussians, and a variant of the Expectation-

Maximization algorithm to assign each pixel to the respective class (background or object) [38].

The Dice metric for this approach was 0.79 for mosaicism, 0.77 for vessels and 0.81 for puncta-

tions.

The same approach was, previously, used by Srinivasan Y, using both rotation structuring

element (ROSE) and Gaussian modulation of rotation structuring element (GMROSE) for mor-

phological opening [42] and a few examples of the results for vascularization segmentation are

represented in figure 3.11. Srinivasan also used filter banks and textons instead of ROSE and

GMROSE [43] as a solution for abnormal regions segmentation. Li and Poirson [40] applied a

similar morphological transformation for mosaicism and vasculatures, using ROSE, and also for

punctation, using a disk as the structuring element, instead.

Gordon S. proposed a methodology for acetowhite segmentation based on watershed segmen-

tation to generate superpixels. After computation of region and edge similarity matrix, superpixels

are clustered following a graph-cut criteria [39]. In figure 3.12 there’s an example of an original

image, cervix segmentation, superpixels generation, and clustering results. Graph-based transduc-

tion on superpixels was also applied by Huang [45]. Huang used simple linear iterative clustering

(SLIC) as superpixel generator, instead of the watershed, and Graph-based Transduction (GT) for

superpixel labeling [45].
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Figure 3.11: Segmentation of vasculature from cervicographic image sections. (a) Original. (b)
After morphological opening. (c) Segmented using GMROSE. (d) Segmented using ROSE.

Adapted from [42]

3.3.5 Classification of cervical cancer risk

The main goal of colposcopy examination is the detection of cervical intraepithelial neoplasia

and the assessment of cervical cancer risk. The tasks previously presented help doctors and other

health professionals in the interpretation of colposcopy images, being the diagnosis decision up to

the doctor. Other works have proposed CAD systems to help doctors on cervical cancer diagnosis,

completing the digital support for this screening method.

Kim [46] developed a pipeline for feature extraction and representation, segmentation of the

region of interest, and CIN classification. To represent color and texture features, Kim used spatial

pyramids to preserve spatial correlation. To find the region of interest, he used a subset with

annotations of the bounding box for the cervix region and compute the similarity between the

test image and every image in the subset. The result is given by an optimized bounding box

algorithm proposed by Kim et al. [46]. Concerning classification, it was used 2 methods: Support

Vector Machine and Majority Vote. The dataset used in this work was the NCI database, where

images are labeled as normal, abnormal, CIN2, CIN3, and cancer. Kim considered 2 classes for the
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Figure 3.12: (a) Original image with expert markings imposed (yellow for cervix region, blue for
AW, and purple for CE); (b) Automatically detected cervix boundary imposed in white; (c)

Superpixels boundaries imposed in black on a preprocessed image. Rows (1)–(3) correspond to
50, 30, 10 segments, respectively; Columns (d)–(f) correspond to weighted-mean cut, MinMax
cut, normalized-mean cut, respectively. AW Dice/Sensitivity/FP values are listed above each

image. Adapted from [39]
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classification, one for normal and abnormal and other for CIN2, CIN3, and cancer. Both classifiers

used color and texture features previously extracted, concerning the bounding box found in step 2.

For Majority Vote, the method used was similar to the one for bounding box: computation of the

similarity of each image to every image of the dataset, and minimization of the cost function. The

performance of the classifiers was measured using sensitivity and specificity metrics, the results

for SVM was 75% and 76% and, for Majority Vote, 73% and 77%, respectively.

Song [47] proposed an approach similar to Kim’s, but using multimodal entity coreference.

The feature space for this work includes color and texture features extracted from the images

and patients data such as age, HPV test, cytology, and pH test. The framework included cervix

segmentation using bounding boxes, feature extraction and computation of similarity for patient’s

data and for cervigrams. The weights for each feature was computed using a gain-based learning

approach. Data similarity was computed as the weighted average of similarities of each clinical

feature (HPV, pH, cytology, age, and colposcopy). For classification, Song considered 2 classes:

negative if normal or abnormal, and positive if CIN2, CIN3, or cancer, and applied a K-means

clustering. The best results were achieved when every data type was considered, with an accuracy

of 87.43%, a sensitivity of 82.00%, and a specificity of 92.86%.

Liming Hu opted for a Deep Learning approach on the NCI database [48]. The pipeline in-

cludes automatic detection of the cervix and prediction of cancer probability. For cervix segmen-

tation, Lu trained an algorithm based on Faster R-CNN. The trained model for segmentation was

included in a Transfer Learning process to train other R-CNN for cancer classification. In this

work, it was applied data augmentation by performing minor distortions on the original images,

such as rotation, mirroring, sheering, and gamma transformation [48]. The model performed a

binary classification, clustering labels in the same way than previous authors. To evaluate the

performance of the model, Hu split the dataset according to patient’s age (younger than 25 years,

between 25 and 49, and older than 50 years) and computed the metrics for those 3 subsets. The

sensitivity and specificity for each subset was 82.1% and 77.2%, 97.7% and 84.0%, and 92.9%

and 83.2%, respectively.

Xu et al has been proposed different approaches to build an accurate model to diagnose cer-

vical cancer [49][50][51][52][53]. The dataset used by these authors was the one from NCI. All

the approaches considered two classes: positive for CIN2+ and negative for normal and abnor-

mal results. One of the first work consisted on extracting features from the images, balancing

the dataset, and testing different classifiers. In the feature extraction step, three types of features

from the images were considered: Pyramid histogram in L*a*b color space (PLAB), Pyramid His-

togram of Oriented Gradients (PHOG), and Pyramid histogram of Local Binary Patterns (PLBP).

To balance the database, Xu applied an under-sampling technique consisting of keeping the class

with fewer samples and randomly remove samples from the larger class until the sizes match [49].

Finally, they compared different classifiers (Random Forest (RF), Gradient Boosting Decision

Tree (GBDT), Adaboost, Multilayer Perceptron (MLP), Logistic Regression, SVM, and k-Nearest

Neighbors (kNN)) using area under the ROC curve (AUC), accuracy, sensitivity, and specificity

as performance metrics. The best classifier for this task was Random Forest, exhibiting the best
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results for both imbalanced and balanced datasets. Following the order of the metrics previously

mentioned, the performance of RF for the balanced dataset was 84.63%, 80.00%, 84.06%, and

75.94% and for original dataset was 84.83%, 78.24%, 67.54%, and 83,05%. The under-sampling

method improved the accuracy and specificity, however, decreased the AUC and the sensitivity.

In a different publication, Xu also considered patients’ clinical data [50]. From the previous

work to this one, the author kept the feature extraction procedure and the under sampling method

and, in addition, he applied isolation of the region of interest. Both text features and image fea-

tures fed an SVM classifier (one for each kind of features) and the final classification model is

a weighted average of text-SVM and image-SVM. The best performance was achieved when the

weight for text features was 0.9 and 0.1 for image features with an accuracy of 79.39%, a speci-

ficity of 83.03%, and a sensitivity of 76.36% [50].

In further works, Xu et al. used Deep Learning models to extract visual features and predict

the risk of CIN [52]. The proposed framework consisted of bounding the region of interest, using

ROI to feed a CNN with a structure of an AlexNet, and extracting the features from the last fully

connected layer. Image features were further combined with text features to feed a final CNN to

learn non-linear correlations across modalities (visual and patients’ data). The number of hidden

units in the last layer (visual features) is 4096. To avoid overwhelming of the text features, Xu

added another fully connected layer with 13 units [52] to compress the vector to 13 dimensions.

Finally, visual features (13D) and text features (13D) were concatenated and normalized, using

batch normalization [52]. This model achieved better results than the previous works getting an

AUC of 94.00%, an accuracy of 88.91%, and a sensitivity of 87.83%.

3.4 Summary

Several works have been developed to improve CAD models concerning colposcopy examination.

This chapter provided a background on Machine Learning and Deep Learning techniques, as well

as an overview of the published work focused on different tasks, such as image quality assess-

ment and enhancement, semantic image segmentation, medical image registration, detection of

abnormalities, and cervical cancer diagnosis.

Despite the differences between tasks, previous works share the same limitations, once they

are related with the available datasets. The number of images is relatively small, the annotations

are from different nature (cervical cancer risk, TZ type, and segmentation of specific regions), and

some images have no annotations at all. It could be a challenge to work with such datasets but also

an opportunity to develop and test new methodologies, such as Multitaks Learning.

For this dissertation, the main task is focused on the classification of cervical cancer. In this

field, Xu et al. [49][50][51][52][53] are the authors who presented the best results, although there’s

still space for improvement. Notwithstanding the foregoing, there are ideas and methods proposed

by these authors that can be used as a starting point for this dissertation, such as the segmentation

of the region of interest as a first step, extraction of canonical features, and implementation of

multimodal models.





Chapter 4

Regularization Methodologies For
Cervical Cancer Risk Assessment

This dissertation aims to research algorithms to correctly classify the risk of cervical cancer based

on colposcopy images. As opposed to previous works, that focused on the application of classical

Machine Learning classifiers, this dissertation explores Deep Learning methodologies making use

of CNN architectures described in the literature and designing new ones. The database used for

these experiments is the NCI/NIH database, previously described in chapter 3, that combines a

total of 913 labeled images. The small size of the dataset may cause overfitting, which can be

avoided using regularization methodologies. In this chapter, is presented the set of methodologies

used to regularize Deep Learning algorithms as well as the results of each methodology.

As shown in figure 4.1, the first step of the proposed framework is the preprocessing of the

data, including data augmentation methodologies that are common for every tested model. The

subsequent step assesses the benefit of including a segmentation step in the framework. Afterward,

Transfer Learning and Multitask Learning methodologies are proposed as well as a regularization

methodology making use of features extracted from the images. At the end of the chapter it

is presented a description of the training and testing processes followed by the results of each

methodology and respective discussion. Methodologies regarding clinical data and imbalanced

learning were described only in chapter 5.

4.1 Preprocessing

4.1.1 Database Preprocessing

As mentioned in chapter 3, the subset available from NCI/NIH database include 2,120 cervigrams

among other information as patient’s ID, patient’s age, HPV test, histology results, and time infor-

mation relating the colposcopy examinations and the histology results. Only 913 cervigrams were

labeled, this is, only these images had information about the result of the histology examination.

According to the guideline of cervical cancer screening, when the HPV test is negative, there is no

risk of cervical cancer and to further examination is performed. To increase the size of the labeled

31
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Figure 4.1: Pipeline of the implemented methodologies.

dataset, the cervigrams with a negative result for the HPV test were labeled as low-risk cases, ex-

tending the size to 1,886 labeled cervigrams. However, this step increased the imbalance between

classes, once the low-risk class has 1,487 samples, while the high-risk class has 399 samples.

4.1.2 Image Preprocessing

Image processing methodologies are commonly included in classification pipelines when the clas-

sifiers are classical machine learning models and the features of the image have to be extracted

to fed those models. Notwithstanding, deep learning algorithms are able to work with raw data,

turning image processing methodologies expendable. Therefore, the preprocessing applied in this

framework was image normalization, resize, and data augmentation transformations.

Normalization is a transformation that scales data to fit the range between 0 and 1, regardless

the initial range, hence, every input image was normalized. The CNN algorithms implemented

in this framework receive the RGB channels of the cervigrams, having an input size of [224×
224×3]. The cervigrams of the NCI/NIH database have different sizes, however, to fit the neural

networks, all of them were resized to 224×224.

Deep learning algorithms can achieve much higher performance compared to traditional ma-

chine learning models, being that the deeper the network, the higher the performance range. Yet,

the performance of neural networks is strictly dependent on the amount of data available to train

those algorithms, and the demand for larger datasets is even bigger for deeper models. This rela-

tion is graphically represented in figure 4.2. As previously mentioned, the NCI/NIH database only

has 1,886 labeled cervigrams, which is a small amount of data to train deep learning algorithms.

Data augmentation is a common approach to attenuate the effect of small databases, like the one

used in this dissertation.

To augment the dataset, every image was randomly transformed in each training epoch. The

transformations applied included image rotation with a range of 90◦, width and height shift, hori-

zontal flip, zoom (in or out), and color saturation. In figure 4.3 there is an example of three random

transformations applied to the same image.
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Figure 4.2: Impact of the amount of available data on performance of traditional machine
learning and deep learning algorithms. Adapted from [54].

(a) (b) (c) (d)

Figure 4.3: (a) Original cervigram from NCI/NIH database. (b)(c)(d) Three examples of random
transformations applied on the cervigram on the left.

4.2 Assessment of Segmentation Relevance

In literature, before feature extraction and image classification, authors commonly extract the

region of interest considering the cervix bounding box. The implementation of an automatic tool

to extract such a bounding box requires a lot of image processing that increase the computational

cost of the algorithm and sometimes leads to errors which compromise the classification task.

To decide if the region of interest extraction step would be included in our pipeline, the images

were manually cropped to feed a CNN model. Similar models were trained with three different

versions of the dataset - original images, cervix bounding box, and cervix bounding ellipse. The

performance of the models were analyzed and compared to assess the importance of the segmen-

tation step.

To extract the cervix bounding box, each image was manually cropped resulting in the rectan-

gle that circumscribes the cervix area (figure 4.4b). The cervix has an elliptical shape, therefore,

it was also extracted the cervix bounding ellipse in order to ignore the pixels that do not belong to

the cervix area but still appear in the bounding box area. For this purpose, an elliptical mask was
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applied to the images resulted from bounding box extraction.

(x−h)
2

a2 +
(y− k)

2

b2 ≤ 1 (4.1)

The equation 4.1 represents the generalized ellipse equation that was applied to each pixel of

the mask, where x and y are the coordinates of the pixel, h and k are the coordinates of ellipse’s

center, and a and b are the radius along each axis. An example of the application of the elliptical

mask is represented in figure 4.4c.

(a) (b) (c)

Figure 4.4: (a) Original cervigram from NCI/NIH database. (b) Result of bounding box
segmentation. (c) Result of bounding ellipse segmentation.

The architecture of the CNN models trained with each dataset was inspired in VGG archi-

tecture, i.e. it is composed by blocks of convolutional layers with kernels of size 3× 3 followed

by Max Pooling layers. The difference between the two architectures is that each convolutional

layer is followed by a pooling layer to rapidly decrease the size of the channels from 224×224 to

7×7. After flattening, there is a fully connected layer of size 30 and ReLU activation followed by

another fully connected layer of size 2 with softmax activation.

4.3 Transfer Learning

Transfer Learning is a technique used in Machine Learning field that uses knowledge from one

model to apply it in a different task. While traditional Machine Learning models are trained with a

dataset to accomplish a specific task, Transfer Learning methodologies take advantage of models

previously trained for a task, extracting their knowledge, and using it to train a new model for a

different task.

One Transfer Learning approach is the employment of pre-trained neural networks, training

them again with new data. A practical example is the application of a CNN trained to classify

dogs concerning the size of their ears, transferring this knowledge to a model that classifies dogs

concerning the length of their hair. In this case, both models are trained with images with similar

objects - dogs. In other applications, the pre-trained model and the ignorant model may not have

been trained with images of the same nature. However, the learned knowledge about filtering and
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extracting information of an image can be relevant for the new task. Hence, Transfer Learning

techniques allows the ignorant learner to achieving satisfactory results even when is trained with

a small amount of data. Therefore, in this dissertation, Transfer Learning techniques were used as

an attempt to overcome the limitation of the database’s size. Besides, augmenting the knowledge

from the ignorant learner using a source model usually improves the baseline performance and

take less time than training a model from scratch.

The process of retraining a pre-trained model is called fine tuning, and it can be applied to the

whole model or just to the last layers. When the datasets are similar, like in dog’s example, only

the last layers need to be retrained. However, when the dataset for the source model and for the

ignorant learner do not share images of the same nature, the fine tuning should be applied to a

large part of the whole model.

Some models available in Keras and PyTorch libraries were pre-trained with the ImageNet

database, which contains more than 14 million images assigned to over 20.000 categories. The

Transfer Learning approach included in this dissertation consisted on fine tuning such pre-trained

models available in Keras, in particular, the ResNet model with 50 layers, VGG with 16 layers, and

the Inception V3, which the architectures were briefly explained in chapter 3. Despite the large

extension of the ImageNet database, it does not include any cervigram or similar images. Then,

the pre-trained models were completely fine tuned, when trained with the NCI/NIH database.

4.4 Multitask Learning

Multitask Learning (MTL) is another subfield of Machine Learning where the same model is

trained to solve different tasks at the same time. In a nutshell, the structure of a Multitask Learn-

ing model can be described as a block of shared layers followed by multiple blocks of task-specific

layers, as shown in figure 4.5. This learning process generates more robust models that combine

shared features related to the several tasks via shared regularization, being this mechanism more

similar to the human brain learning process. MTL can also be considered as a Transfer Learning

approach, once the knowledge obtained from one task is transferred to the remaining tasks, how-

ever, in Transfer Learning, the knowledge from the source model can be lost to better adapt to

the new task, while in Multitask Learning the knowledge from each task is always being updated.

Using the dogs’ example from the previous subsection, a Multitask Learning model would receive

as input images of dogs, returning the type of the ears and the length of the hair at the same time.

To solve a multitask, the training dataset should include images with multiple labels (one for each

task) and/or multiple subsets of images labeled for one of the tasks.

The cervigrams from the NCI/NIH database are only labeled for the task of predicting the

risk of cervical cancer which is insufficient to train a Multitask Learning model. On the other

hand, there is the Intel & MobileODT database that contains more than 8,000 cervigrams labeled

considering the type of transformation zone of each cervix but does not have any annotation about

the risk of cervical cancer. Once the amount of available data for the goal task is considered small

for a deep learning approach, we took advantage of the Intel & MobileODT database and joined
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Figure 4.5: Diagram of a generalized multi-task learning model. From [55]

both databases to train Multitask Learning models that simultaneously predict the risk of cervical

cancer and the type of the transformation zone. However, since none of the cervigrams are labeled

for both tasks, each task needs to be trained, validated, and tested separately but in an alternately

way, to update both of them in each epoch.

Three different Multitask learning models were developed in this dissertation. The first and

simplest model is similar to the baseline model previously presented with the difference of per-

forming the two tasks aforementioned. The second model integrates the first one and adds a

segmentation block with an architecture similar to a U-Net. Finally, there is a third model that per-

forms three tasks: classification of cervical cancer risk, classification of the TZ type, and cervix

segmentation.

4.4.1 Model With Two Tasks

The first attempt to include a Multitask Learning approach in this dissertation culminated in the

model represented in figure 4.6. This model receives RGB images of size 224× 224 followed

by a Convolution Block that consists of a set of convolutional layers with Kernels of size 3× 3

alternated with Max Pooling Layers. The output of this block is an array of convolved images of

size 7×7. Afterward, the array is followed by flattening, which completes the shared part of the

model. After flattening, the model is split into two branches, one for each task, that are composed

by two fully connected layers. The first one has 30 units and a ReLU activation while the second

has the same units as the number of classes for each task (two for Cancer’s risk classification and

three for TZ type classification) and a softmax activation.

Figure 4.6: Diagram of the model trained for two tasks: classification of the risk of cancer and
classification of the transformation zone type.
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The loss function used to train this model has two components: one for the task of diagnosing

the risk of cervical cancer (LCC) and other for the task of classifying the type of transformation

zone (LTZ). Once the data used to train each task is different, the tasks can not be trained at

the same time, hence, the loss function, represented in equation 4.2, has a variable α ∈ {0,1}
that defines which component is activated during each epoch. Besides the activation factor, each

task is weighted by the variable ω ∈ [0,1]. The cervical cancer related task was trained with a

binary cross-entropy loss function (equation 4.3), once it only classifies as low risk or high risk.

For the TZ related task, the loss function used is the categorical cross-entropy function which is

a generalization of binary cross-entropy. This function is represented in equation 4.4, where M

represents the number of classes, y is a binary indicator (0 or 1) that takes the value 1 if class label

c is the correct classification for observation o, and p is the predicted probability of observation o

to belong to class c.

Lmodel = (α)(ω)LCC +(1−α)(1−ω)LTZ (4.2)

LCC (y, p) =−(ylog(p)+(1− y) log(1− p)) (4.3)

LTZ (y, p) =−
M

∑
c=1

yo,clog(po,c) (4.4)

4.4.2 Model With Two Tasks and Segmentation

The second MTL model built is represented in figure 4.7. The difference between the previous

model and the presented one is the addition of a segmentation block. The main goal of this

upgrade is to take advantage of the masks previous extracted to highlight the region of interest.

Figure 4.7: Diagram of the model trained for image segmentation, followed by an operation
between the original image and the predicted mask, finishing with the performance of two tasks:

classification of the risk of cancer and classification of the transformation zone type.

The segmentation block was inspired in the U-net architecture, which is commonly used to

segment biomedical images [56]. As shown in figure 4.8, this network has two main parts, an

encoder (or contracting path) and a decoder (or expensive path). The encoder component consists
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on four blocks of two convolution layers with kernels of size 3× 3 followed by Max Pooling

with kernels of size 2× 2 and the last block, also called as the bottleneck part, is composed by

two 3×3 convolutional layers. The decoder component expands the size of the channels to bring

them closer to the input size. Therefore, it has four sets composed by one 2×2 upsampling layer,

which is an operation that expands each pixel in a square of size 2× 2, followed by two 3× 3

convolutional layers. Finally, there is a 1×1 convolution that returns the segmentation mask. After

each upsampling, the output channels are concatenated with the channels from the correspondent

depth of the encoder component. The segmentation block designed for this model differs from

the U-net architecture in two aspects: the number of blocks of each component is three instead

of four, once the input size of the model is smaller than the U-net’s input, and each block only

has one convolutional layer instead of two, thus, the encoder structure keep the architecture of the

convolutional block from the previous model.

Figure 4.8: Diagram of U-net architecture. Figures from [56]

The segmentation block returns a mask that should mimic the best segmentation option (bound-

ing box or bounding ellipse). After this step, the mask and the original image are subjected to one

of the three mathematical operations: multiplication, addition, and concatenation. The result from

this operation follows to the second part of the model which has the same architecture of the model

with two tasks and no segmentation.

The training process for this model is not quite the same as the first one. At the beginning, the

segmentation block was trained individually, using the bounding box or ellipse box masks. Con-

sidering the output mask as a 2D array of binary elements, the loss function used to train this part

was also the binary cross-entropy (equation 4.3). Posteriorly, the whole model was trained, in-

cluding the segmentation part, using the alternate mode explained in the previous model (equation

4.2). This enables the algorithm to adapt the segmentation part in order to improve the classifica-

tion tasks.
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4.4.3 Model With Three Tasks

After introducing the segmentation in one of the MTL models, a third approach was designed. The

third and last MTL model also includes the segmentation part but, instead of using it to enhance

the region of interest, uses it as a third task to be predicted and optimized by the model. Once

the encoder structure of the segmentation block is similar to the convolutional block, in the third

model, the encoder is the shared component of this MTL model. However, the encoder consists

of three sets of one convolutional layer and one Max Polling, while the convolutional block has

five sets. Therefore, after splitting the branch for the segmentation task, the other two tasks share

a smaller block containing the remaining sets, as represented in figure 4.9.

Figure 4.9: Diagram of the model trained for three tasks: cervix segmentation, classification of
the risk of cancer, and classification of the transformation zone type.

The manual segmentation mentioned in section 4.2 was only applied to the NCI/NIH, discard-

ing the Intel & MobileODT database in the training of the segmentation task. In consequence,

when the loss for the cervical cancer task is activated, so it is the loss for the segmentation task

(LS). On the other hand, when the loss for the TZ task is on, the other two tasks are off, as

represented in equation 4.5.

Lmodel = (α)(LCC +LS)+(1−α)LTZ (4.5)

4.5 Regularization With Canonical Features

The approach used by other authors to solve classification problems related to the cervical cancer

risk included the extraction of features to feed classification models. Even though convolutional

neural networks extract features from the images by applying the convolution of optimized kernels,

in this dissertation, it was included a regularization method that forces the models to learn the

features that are usually extracted. The implementation of this method contains several steps
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Figure 4.10: Extraction of pyramid features. Figure from [53].

as feature extraction, performance assessment of classical Machine Learning models fed by the

extracted features, dimensionality reduction, and regularization of Deep Learning models, which

are described below.

4.5.1 Feature Extraction

As explained in the chapter 3, the abnormalities in the cervix that suggest the presence of cervical

intraepithelial neoplasia can have a different appearance, therefore, the whole image should be

analyzed, instead of focusing on specific characteristics. In [53], Xu T. et al. compares the per-

formance of several Machine Learning models using hand-crafted pyramid features and features

extracted from the fully connected layers of a CNN, achieving results that outperform the perfor-

mance of Pap tests and HPV tests. For that reason, the feature extraction method applied in this

dissertation was the pyramidal method described by Xu T. et al. in the aforementioned work and

represented in figure 4.10.

The first step performed by Xu et al. was the isolation of the region of interest using the cervix

bounding box. After segmentation, the image was transformed into three types of feature maps:

L*a*b color space channels, Local Binary Patterns (LBP) map, and Histogram of Oriented Gradi-

ents (HOG). Finally, the features were extracted but instead of collecting pixel-wise information,

it was extracted multi-scale pyramid histogram features.

The spatial pyramids were built by splitting the image of each level into rectangular sub-

regions of the same size. The number of sub-regions for a level l is given by 4l , i.e. level 0 has 1

region, level 1 has 4 sub-regions, level 2 has 16, and so on. In the end, the levels are concatenated,

resulting in a pyramid.

For the color features, the RGB channels were converted into the L*a*b color space, com-

bining that information on 3 3-level pyramids (one for each color channel). The histogram for

each sub-region had 16 bins, and each 3-level pyramid has 21 sub-regions, getting a total of 1008

dimensions for the pyramid LAB (PLAB). To extract the LPB maps, the authors considered a rota-

tion invariant version of the original LBP operator, setting it to analyze an 8 equally spaced pixels

in a circle of radius 1. To build the pyramid LBP (PLBP), it was considered a 4-level pyramid
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(85 sub-regions), represented by histograms of 10 bins, resulting in a pyramid histogram feature

of 850 dimensions. The cervigrams were also transformed in HOG maps to extract information

about shape and edges. As the PLBP, the pyramid Histogram of Oriented Gradients (PHOG) had 4

levels but the histograms were represented by 8 bins, instead, resulting in a 680 dimension feature.

Finally, the features were concatenated culminating in a multi-feature descriptor represented by a

vector of size 2538.

4.5.2 Performance of Machine Learning Models

Even though the main goal of this method is to regularize convolutional neural networks with

hand-crafted features, it is important to analyze how Machine Learning models behave when fed

with these features. To do so, five different classifiers, including an SVM, a kNN with k=5, an

MLP with two fully connected layers, a Random Forest with 15 trees, and a Logistic Regression,

were trained and tested using the feature vector described above. To overcome the problem of the

imbalance, the class weights were set to be inversely proportional to the size of each class. Each

classifier was trained and validated with 10-fold cross-validation and the results are represented in

table 4.1. Along with these results, in the last row, there are the results from the best model from

Xu et al. publication [53].

Table 4.1: Overall performance of Machine Learning classifiers using pyramid features. The
table lists the mean ± standard deviation for each metric.

Model AUC(%) Accuracy (%) Sensitivity (%) Specificity (%)

SVM 74.27 ± 4.49 78.02 ± 5.24 40.76 ± 9.66 85.78 ± 4.85
kNN 73.85 ± 5.49 82.51 ± 3.55 36.74 ± 11.60 92.17 ± 2.49
MLP 69.04 ± 9.69 83.78 ± 1.94 26.92 ± 20.59 95.90 ± 4.50
RF 80.59 ± 5.16 78.79 ± 6.04 62.39 ± 12.96 82.23 ± 5.41
LR 71.49 ± 5.75 76.28 ± 2.50 50.59 ± 10.76 81.74 ± 3.05

SVM[53] 80.71 ± 6.15 77.17 ± 6.62 78.55 ± 6.17 75.80 ± 8.39

Analyzing the table 4.1, it is possible to affirm that the replication of the methods proposed by

Xu et al. was well performed once the AUC and the accuracy values are similar. Considering the

other metrics, our replication has better specificity but worse sensitivity, which means that, despite

balancing the class weights, our models are biased towards the larger class. Between our models,

the Multilayer Perceptron and the Random Forest present the best results, however, analyzing

sensitivity and specificity values, MLP presents more biased results, therefore, the Random Forest

was chosen as the best model.

4.5.3 Dimensionality Reduction

A way to regularize a CNN with the canonical features is forcing one of the fully connected layers

to learn those features, i.e. forcing the layer to return output values similar to the feature vector.
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A limitation with this method is related with the size of the fully connected layers and the size of

the feature vector, once this vector has 2538 dimensions while the fully connected layer presented

in the previously built models only has 30 units. To overcome this problem, a dimensionality

reduction method was implemented, taking advantage of the best model found in the previous

step, i.e. the Random Forest classifier.

Random Forests are commonly used as feature selection and dimensionality reduction meth-

ods. Building a large forest, it is possible to extract statistical information about each attribute

and select the most informative features - feature selection. Another method consists of encod-

ing the information from the feature vector of a sample into the decision path defined by each

tree - dimensionality reduction. In a decision tree, the nodes always split one branch in two or

more ramifications, i.e there are no converging nodes which implies that each leaf is affiliated to

a unique decision path. Consequently, to encode the feature vector, we extracted the index of the

leaf where the decision path ends for each tree in the forest. Thus, it was possible to transform

a 2538 dimension vector into a 15 dimension array, once the Random Forest model tested before

had 15 decision trees.

To ensure that the transformed feature space had relevant information for the classification

task, models similar to the Machine Learning classifiers used in the previous subsection were

trained and tested with the encoded feature vector. The results of this test were compiled in table

4.2.

Table 4.2: Overall performance of Machine Learning classifiers using pyramid features after
dimensionality reduction. The table lists the mean ± standard deviation for each metric.

Model AUC(%) Accuracy (%) Sensitivity (%) Specificity (%)

SVM 70.64 ± 6.36 83.56 ± 4.17 17.60 ± 21.84 97.29 ± 4.91
kNN 67.49 ± 4.25 80.40 ± 2.46 28.40 ± 6.09 91.30 ± 2.27
MLP 69.94 ± 5.27 78.36 ± 2.51 41.70 ± 10.65 86.25 ± 2.30
RF 81.82 ± 6.14 82.29 ± 3.48 52.85 ± 16.97 88.55 ± 4.08
LR 78.61 ± 4.98 74.68 ± 4.94 65.47 ± 9.70 76.51 ± 6.14

It is not possible to conclude if the dimensionality reduction method improved or not the

classification task, based on table 4.2, once the RF and LR models show better results but the

SVM, the kNN and the MLP models reduced their performance. However, the overall results

after dimensionality reduction are similar to the original results which validates the implemented

method.

4.5.4 CNN Regularization

The regularization with the canonical features was applied to the best Transfer Learning and Mul-

titask Learning models previous presented, therefore, to implement this method, no extra CNN

architectures were built. The goal of this regularization is to guide the learning task, so CNN is
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able to extract information that is similar to the hand-crafted features. To implement it, the models

were retrained with a new loss function represented in equation 4.6.

Lmodel = LClassi f ication +λLRegularization (4.6)

The loss function of the model has two parts, one for the classification part, that corresponds

to the loss function of each previous model, and a second component related to the regularization.

During the training, the models return two outputs (or more in case of MTL). The first is the

prediction of the classification task, and the second is the output of the last fully connected layer

of each model, which is a 30 dimension vector. To implement the LRegularization, the last 15 values

of the output vector are disregard and the remaining values are compared to the normalized feature

vector, obtained after dimensionality reduction, applying the Mean Squared Error (MSE) function,

represented in equation 4.7. Only half of the output from the fully connected layer is considered for

regularization to allow the model to extract other information besides the canonical features. The

overall loss function also includes a regularization factor (λ ) to adjust the influence of this step.

For low values, the regularization has no impact, however, when λ is too high, the models neglect

the classification task. To better adjust this value, the models were tested for λ ∈ [0,0.01,0.1,1].

MSE =
1
N

N

∑
i=0

(yi− ŷi)
2 (4.7)

4.6 Training and Testing

Before training and testing, the dataset had to be split into three subsets: train, validation, and test.

The splitting step considered the patient identification number instead of the cervigrams, once

there are patients with multiple cervigrams that are very similar to each other. To avoid biased

results, all the cervigrams from a specific patient were kept in the same subset. The split ratio was

70-15-15, i.e. 70% for training, 15% for validation and 15% for test. However, this is not the real

proportion of the size of each subset, because the number of cervigrams per patient varies between

1 and 19.

4.6.1 Training

The goal of the work presented in this chapter was to find the best regularization method to over-

come the limitation related to the small size of the database. To perform a fair comparison, the

models were set with the same or similar parameters. Every model was built, trained and tested

using the TensorFlow’s implementation of Keras and the models used for Transfer Learning kept

the same structure and parameters set as default in this library. For the original models, previously

described, each convolutional layer was set with 32 kernels of size 3×3, the fully connected layers

that precede the classification layer all have 30 units, and, excluding the regularization with canon-

ical features, each model or task-related with the classification of the risk of cancer was trained
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with a binary cross-entropy loss function (equation 4.3). To avoid overfitting, drop out layers were

also added to each model.

Considering the training process per se, each model was compiled using the Adam algorithm

proposed in [57] for stochastic optimization. The learning rate, previously adjusted to each model,

was set to 0.0001 for transfer learning models, and to 0.001 for the remaining algorithms. The

batch size was set to 16 for every model, once it was the biggest size that did not raise memory er-

rors. The number of epochs was also previously adjusted to ensure that the model was stabilized,

avoiding overfitting, thus, each model or task was trained 150 times (150 epochs). The excep-

tion was the segmentation block from the model with two tasks and segmentation, this block was

trained with 50 epochs for segmentation but was fine tuned during the training of the two classifi-

cation tasks, which took 150 epochs, each. Some authors rather keep the best model, i.e. the model

from the epoch with the lowest validation loss, and then use it for testing. However, considering

that the dataset was split by patient’s ID, it was not possible to keep the ratio of classes in every

subset. In some cases, almost 90% of validation subset consisted in negative samples. Hence, in

the first epochs, the model was biased and every image was classified as negative but those models

were saved as the best once the validation loss was very low. To avoid this situation, the models

were saved after a given number of epochs.

4.6.2 Testing

Despite the small size of the dataset, there is a big variance between each class. Consequently, two

different partitions of the same dataset can lead to very different results. Therefore, to compare

the models and the regularization methods, the results are represented as the average and standard

deviation of the results from 10-fold cross-validation.

The metrics used to evaluate the models included the metrics on the literature, such as accu-

racy, the area under the curve (AUC), sensitivity, and specificity, and two more as precision and

negative predictive value (NPV). All metrics are described below.

Area Under the Curve: The Receiver Operating Characteristic (ROC) is a curve displayed on a

plot where the x-axis represents the false positive rate (FPR), with FPR = 1−Speci f icity, and the

y-axis represents the true positive rate (TPR), also known as sensitivity or recall. Each point of the

curve represents a threshold and the values FRP and TRP would have if the model was tested for

that threshold. The area under the ROC curve can be used to measure the capacity of the model to

separate class. The perfect model would have an AUC near to 1, and a random model or a model

that classifies all the samples with the same class would have an AUC of 0.5.

Accuracy: The accuracy is the ratio between the correct predictions and the total of samples

tested:

Accuracy =
T P+T N

T P+FP+T N +FN
(4.8)
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Sensitivity and Specificity: Sensitivity and specificity are represented in the equations below

and can be understood as the accuracy for the positive class and the negative class, respectively. In

this case, sensitivity represents the fraction of high-risk cases that were correctly predicted, while

specificity represents the same fraction for low-risk cases.

Sensitivity =
T P

T P+FN
(4.9)

Speci f icity =
T N

T N +FP
(4.10)

BalancedAccuracy =
1
2

(
T P

T P+FN
+

T N
T N +FP

)
(4.11)

Precision and NPV: This two metrics are similar to sensitivity and specificity but have a differ-

ent meaning for clinical environment. Precision is the fraction between the number of high-risk

cases correctly predicted and the total number of positive predicted cases. A low precision leads

to unnecessary treatments, which has a high monetary cost. On the other hand, NPV gives the

fraction between the true negative cases and all cases predicted as negative. A low NPV leads to

misdiagnosed cases, where high-risk patients are treated as low risk, endangering their health.

Precision =
T P

T P+FP
(4.12)

NPV =
T N

T N +FN
(4.13)

4.7 Results and Discussion

The work developed in this chapter aims to find the best model and regularization method that

better performs an automatic cervical cancer screening, overcoming the limitation of the amount

of data available, and that will follow for optimization. Thus, the discussion of this part is focused

on the proposed methods, ignoring the results achieved by other authors in the literature.

4.7.1 Results After Segmentation

The segmentation of the region of interest using the cervix bounding box was a common step

used in literature. However, before applying efforts in segmentation techniques, it was tested the

relevance of the cervix segmentation step for deep learning models. For that purpose, the cervix

area was extracted using bounding box and bounding ellipse segmentation, as previous described,

comparing the classification results with the original dataset. The table 4.3 compiles the results of

a baseline model for the three versions of the dataset: original, after bounding box segmentation,

and after bounding ellipse segmentation.
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Table 4.3: Mean and standard deviation of the baseline model’s performance when fed with the
original cervigrams, with bounding box segmented images, and with the bounding ellipse

segmented images.

AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

Original 68.25 ± 7.23 78.86 ± 4.20 38.35 ± 19.00 87.37 ± 6.83 39.23 ± 9.65 87.25 ± 4.49
B. Box 64.55 ± 4.56 78.91 ± 6.69 31.93 ± 12.88 88.73 ± 8.56 39.90 ± 7.85 86.07 ± 4.06
B. Ellipse 60.36 ± 4.84 76.25 ± 6.52 34.10 ± 14.15 84.77 ± 8.98 32.69 ± 7.89 86.10 ± 3.61

Between the three versions, the bounding ellipse segmented images have the worse perfor-

mance, being disregarded in the next models. Although the cervix has an elliptical shape, it is

not a perfect ellipse, so the mask might ignore cervix zones that would be relevant for the classi-

fication task, decreasing its performance. Comparing the original dataset with the bounding box

segmented images, the results are very similar and the best metrics’ values are divided between the

two cases. For the AUC, sensitivity, and NPV metrics, the best performance is achieved using the

original images, with a difference of 3.70%, 6.42%, and 1,18% from the bounding box metrics.

However, for the metrics which the best performance is achieved with the segmented images, the

difference values are almost insignificant, especially considering their high standard deviation.

There are some aspects to infer with these results. The first one is that segmentation method-

ologies can be disregarded from the framework, once the original images achieve the best results.

Also, the similarity between the results from the original images and the bounding box reveals

that, even without segmentation, the baseline model is activated to focus on the region of interest,

which means the images’ background does not affect the classification task.

4.7.2 Transfer Learning Results

Transfer Learning is an approach that helps to overcome dataset limitations, once it uses knowl-

edge learned from other models trained with different datasets. To make use of the advantages

of this methodology, three pre-trained models tested in this work: ResNet-50, Inception V3, and

VGG-16. During the training, it was applied fine tuning for the entire model, this way, the models

can better adjust to the cervix images, improving the feature extraction layers, as well. The results

from the pre-trained models are represented in table 4.4 along with the results from the baseline

model.

Table 4.4: Mean and standard deviation of the Transfer Learning model’s performance.

Model AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

Baseline 68.25 ± 7.23 78.86 ± 4.20 38.35 ± 19.00 87.37 ± 6.83 39.23 ± 9.65 87.25 ± 4.49
Resnet 74.63 ± 6.54 81.50 ± 4.63 30.64 ± 12.07 92.02 ± 6.02 48.77 ± 10.46 86.53 ± 3.45

Inception 75.37 ± 6.95 80.92 ± 4.29 38.12 ± 12.64 89.92 ± 4.14 43.58 ± 10.87 87.47 ± 4.02
VGG 73.67 ± 4.84 84.41 ± 4.82 37.66 ± 13.43 94.09 ± 4.18 59.57 ± 13.63 87.53 ± 3.65

All three pre-trained models achieved better performance than the baseline model, as expected.
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Between the three best algorithms, the VGG-16 was the model that achieve the best results, there-

fore, this model was chosen to integrate posterior optimization techniques.

4.7.3 Multitask Learning Results

The implementation of Multitask Learning techniques was a novel approach proposed in this dis-

sertation. As previous described, three models were implemented making use of the NCI/NIH

database as well as the Intel & MobileODT database. The first model performs two tasks: the

classification of cervical cancer’s risk and classification of the cervical transformation zone’s type.

The second model, besides predicting the two tasks aforementioned, includes a segmentation block

to enhance the region of interest. Four versions of this last model were implemented concerning

the four operations used to combine the predicted mask and the original image: addition, mul-

tiplication, concatenation, and average. Finally, it was implemented a third model that performs

3 tasks: the two aforementioned, and bounding box segmentation. The results of the Multitask

Learning models were compiled with the results of the baseline CNN and the VGG-16 algorithm

(the best Transfer Learning model tested) in table 4.5.

Table 4.5: Mean and standard deviation of the Multitask Learning models’ performance, along
with the results from the baseline model and the best Transfer Learning model.

Model AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

Baseline 68.25 ± 7.23 78.86 ± 4.20 38.35 ± 19.00 87.37 ± 6.83 39.23 ± 9.65 87.25 ± 4.49
VGG-16 73.67 ± 4.84 84.41 ± 4.82 37.66 ± 13.43 94.09 ± 4.18 59.57 ± 13.63 87.53 ± 3.65

2 Tasks 75.11 ± 5.24 84.34 ± 3.80 31.11 ± 13.98 95.67 ± 2.88 61.12 ± 14.40 86.75 ± 4.03
Add 73.86 ± 8.88 84.86 ± 3.09 31.71 ± 15.44 96.29 ± 2.27 63.80 ± 8.94 86.92 ± 4.36

Multiply 62.65 ± 13.01 84.42 ± 3.02 18.50 ± 21.05 98.20 ± 2.72 45.99 ± 41.70 85.32 ± 4.22
Concatenate 71.12 ± 11.63 84.74 ± 4.36 29.38 ± 16.90 96.61 ± 3.26 62.74 ± 28.47 86.74 ± 4.58

Average 70.14 ± 11.25 83.93 ± 3.66 30.04 ± 17.04 95.85 ± 3.80 65.80 ± 20.49 86.24 ± 3.72
3 Tasks 64.58 ± 13.74 79.19 ± 9.85 25.35 ± 14.45 90.07 ± 10.89 45.43 ± 23.25 85.14 ± 4.07

A careful analysis of table 4.5 allows to make some inferences regarding the quality of the

MTL models:

• Concerning the MTL models only, the multiplication version of the two tasks model with

segmentation shows one of the worst performance. The multiplication operation can be

risky when the model does not perform a perfect segmentation, because it might discard

pixels with relevant information, damaging the performance of the classification tasks.

• The 3 tasks model are also not satisfactory. However, it is reasonable that the filters required

for a segmentation task may be different from the filters applied on a classification task.

Therefore, it is tricky to train the shared part of the CNN, when the 3 tasks are performed.

• Except for the aforementioned models, MTL algorithms exceeded the performance of the

baseline model, being considered in further steps of the framework.
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• Among the MTL models, the addition version of the two tasks model with segmentation

(Add) was the algorithm with the best performance.

• Comparing the Add model with the 2 Tasks model, the metrics’ values seem to be quite

similar. Besides, both models achieve similar results to the VGG-16, therefore, these three

methods are used in further optimization methods.

4.7.4 Feature Regularization Results

Feature regularization applied to cervical images was the second novel approach proposed in this

dissertation. The aim of such a methodology is to lead the learning process to learn the fea-

tures usually extracted in similar problems. To implement this regularization in the previous CNN

tested, the models were retrained using a loss function with two components, one for the classifi-

cation task and other for the regularization part. The regularization influence was adjusted using

the factor λ . For λ = 0 the regularization is discarded from the model training, for λ = 1 the

regularization loss has the same importance as the classification task, and for higher values, the

regularization would overwhelm the classification. For this reason, the regularization implemen-

tation was tested for λ ∈ [0,0.01,0.1,1].

Table 4.6: Mean and standard deviation of the best models’ performance after feature
regularization for λ ∈ [0,0.01,0.1,1].

Model λ AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

2 Tasks
0

75.11 ± 5.24 84.34 ± 3.80 31.11± 13.98 95.67 ± 2.88 61.12 ± 14.40 86.75 ± 4.03
Add 73.86 ± 8.88 84.86 ± 3.09 31.71 ± 15.44 96.29 ± 2.27 63.80 ± 8.94 86.92 ± 4.36
VGG 73.67 ± 4.84 84.41 ± 4.37 37.66 ± 13.43 94.09 ± 4.18 59.57 ± 13.63 87.53 ± 3.65

2 Tasks
0.01

73.50 ± 6.32 85.15± 4.04 26.94± 12.94 97.74 ± 1.91 73.86 ± 15.22 86.18 ± 4.33
Add 70.14 ± 11.25 83.93 ± 3.66 30.04 ± 17.04 95.85 ± 3.80 65.80 ± 20.49 86.24 ± 3.72
VGG 76.61 ± 6.68 84.51 ± 4.54 36.40 ± 10.57 94.78 ± 3.11 60.33 ± 13.89 87.46 ± 3.75

2 Tasks
0.1

74.64 ± 7.17 84.90 ± 3.51 31.13± 13.23 96.27± 2.09 62.62 ± 14.31 86.89 ± 3.81
Add 68.83 ± 10.95 84.62 ± 4.13 22.50 ± 14.36 98.08 ± 1.50 72.88 ± 15.72 85.50 ± 4.55
VGG 75.18 ± 7.85 84.20 ± 4.29 36.56 ± 14.61 94.29 ± 3.59 59.91 ± 16.56 87.55 ± 4.00

2 Tasks
1

75.17 ± 7.26 85.67± 3.67 31.48 ± 12.77 97.12 ± 1.87 70.54 ± 14.99 87.04 ± 3.75
Add 71.80 ± 8.06 84.99 ± 3.60 23.51 ± 15.28 97.61 ± 2.05 71.93 ± 20.85 86.08 ± 3.51
VGG 74.19 ± 7.90 82.98 ± 4.37 35.30 ± 17.21 92.88 ± 5.70 54.24 ± 14.09 87.36 ± 3.84

The table 4.6 gather the results for the three best models, regarding the previous analysis, for

each λ value. It was expected to observe a direct relation between the regularization factor and

the model’s performance, however, analyzing the table 4.6, it is not possible to define which λ

better suits the problem or even conclude if the feature regularization has a beneficial impact. A

fine analysis of the results leads to the following remarks:

• Considering the AUC, the best model was the VGG with a regularization factor of 0.01.

However, for 2 Tasks and Add models the AUC decreased when the regularization with

λ = 0.01 was applied. For the 2 Tasks model, the best AUC was achieved for λ = 1, while

the Add better performed when no feature regularization was applied.
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• The accuracy of the models hardly changed. For λ = 0.01, the 2 Tasks and the VGG had a

slight gain, but the Add’s accuracy decreased. For λ = 0.1, the accuracy’s values were quite

similar to the control case (λ = 0). Finally, for λ = 1, the first two models improved their

performance while the VGG decreased it.

A similar analysis can be done for the Sensitivity, Specificity, Precision, and NPV, once there

are gains and losses for some of the models for each λ value. In conclusion, canonical feature reg-

ularization does not have a clear impact in the final results, neither positive nor negative, therefore,

it is excluded from the further optimization methodologies once its implementation increases the

computational cost of the algorithms.

4.8 Summary

The work proposed in this chapter focused on finding a regularized model to perform an automatic

cervical cancer screening. The methodologies included data augmentation, assessment of the

segmentation impact, Transfer Learning, Multitask Learning with and without segmentation, and

regularization with canonical features. The segmentation and the feature regularization did not

add value to the CNN models, thus, these methodologies were excluded from the final algorithm.

Among the tested models, two of the proposed MTL architectures and the pre-trained VGG-

16 model were the algorithms with the best results, with AUC values around 75%, and accuracy

higher than 84%. For this reason, these models will integrate the optimization methodologies

proposed in the next chapter.





Chapter 5

Models’ Optimization

The chapter 4 focused on the development of methods to regularize the learning process of con-

volutional neural networks with the aim of finding the best model to predict the risk of cervical

cancer development based on cervigrams. In this chapter, the best models previously selected,

i.e. the MTL model with two tasks and segmentation, the MTL model with two tasks, and the

VGG, are further upgraded employing two approaches: feeding the models with clinical data and

applying methodologies to overcome the imbalance data limitation.

5.1 Clinical Data

Clinical history, patient’s age, patient’s condition, risk behaviors, and test results are very relevant

information that should be considered during the screening process. Unfortunately, the NCI/NIH

database does not include all that data, nevertheless it contains the age of the patient in 5 years

strata, the time interval between the first image collection and the collection of the presented

image, the time interval between the present image collection and the worst subsequent histology

examination, and the HPV status concurrent with the image.

In the clinical environment, all this information is taken into account during diagnosing, there-

fore, a realistic algorithm should also consider these variables. In that sense, the models from

the previous chapter were transformed into multimodal models that receive simultaneously the

cervigrams and the clinical data as input to predict the risk of cervical cancer.

To transform the models into multimodal algorithms, CNN’s were set to receive two inputs: an

image and a vector. Once the clinical data vector only has 4 dimensions, it is directly concatenated

with the vector obtained after the first fully connected layer that precedes the convolutional block.

The figure 5.1 represents the implementation described before using the MTL model with 2 tasks

as an example. For the remaining models, the implementation was very similar, once the last part

of the model follows the same structure.

A problem that usually arises when working with clinical data is the absence of some values,

and the NCI/NIH database is no exception. There is a lot of methods to handle missing data that

can be split into two categories: deletion and imputation. Deletion includes deleting incomplete

51
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Figure 5.1: Multimodal version of the MTL model with two tasks and no segmentation.

samples or even incomplete rows while imputation replaces missing values using statistical in-

formation or more complex models that predict the missing data given the remaining information

of the object (in this case, the patient). However, the absence of data might be relevant, for ex-

ample, when there is no value for the time interval between the present image collection and the

worst subsequent histology examination, it is possible that no histology was performed due to the

absence of risk factors from the patient. Therefore, missing data was completed using negative

numbers to be distinguished from the samples with meaningful values.

Not all features contribute to the classification task, some of them even decrease the perfor-

mance of the classifiers. To understand the relevance of the clinical data available in the dataset,

the baseline CNN was tested for 9 different cases: all features included, only one feature included,

and only one feature excluded. In this way, it is possible to evaluate the contribution of each fea-

ture as well as the loss due to its absence. Finally, the clinical data was tested alone to check if

this data is sufficient to classify the cancer risk. The model used for this test was an MLP with 2

layers, with a structure similar to the last layers of the CNN models, for a fair comparison. Each

case was trained and tested applying 40-fold cross-validation to reduce the variance related with

the dataset partitions.

5.2 Imbalanced Learning

The imbalance between classes is a limitation present in the NCI/NIH database. As a result, the

performance of the models previous tested was biased towards the most represented class. Sev-

eral methodologies were tested to overcome this problem, including over-sampling and under-

sampling methods available in the imbalanced-learn API, a state-of-the-art method envolving

ranking strategies, and an over-sampling approach developed in this dissertation. The methods

are described below.
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5.2.1 Imbalanced-learn API

Imbalanced-learn library has several models to handle imbalanced datasets, however, the employ-

ment of these algorithms do not support image objects, requiring feature vectors. In this regard,

it was implemented a pipeline to extract the features using the CNN trained models, resampling

those features into a synthetic balanced dataset, afterward.

To extract the features, the trained models computed the predictions for each cervigram of

the dataset returning the output from the fully connected layer instead of the classification result.

The resampling step included 3 different methods: SMOTE, cluster centroids, and SMOTEENN.

Synthetic Minority Over-sampling Technique (SMOTE) is an algorithm that increases the number

of samples of the minority class, generating artificial samples located in the space between a

certain sample and its k closest neighbors [58]. Cluster Centroids is an under-sampling technique

that removes samples from both classes, equalizing their sizes. This algorithm includes a k-means

estimator that gather the samples from each class into k clusters, returning their centroids. For

this test, the k was set to 100, which means that the synthetic dataset only contains 200 samples,

in total. The third technique is a combination of an over-sampling algorithm (SMOTE) and an

under-sampling technique (Edited Nearest Neighbours). SMOTEENN is a method proposed by

Batista, G. et al. in [59] that yield synthetic samples for the minority class while removes samples

from both classes, every time they do not match their neighborhood.

After applying to resample techniques to the training data, a Logistic Regression classifier

was trained, once this function is similar to the soft-max activation used in the CNN models. The

dataset used for testing was not transformed, to achieve more realistic results.

These methods, as well as the following approaches, were tested for the best CNN models

found in chapter 4 and for their multimodal versions.

5.2.2 Ranking Model

Cruz, R. et al. proposed in [60] several ranking methodologies in tackling the class imbalance

problem. Pairwise ranking algorithms compare each observation against all others predicting each

one is "preferred". In this dissertation, it implemented a replication of the RankSVM algorithm

proposed in [60], exchanging the SVM classifier for a Logistic Regression.

The implementation requires three steps: pre-processing, training, and post processing. These

algorithms rank samples, by comparing them, therefore, the first step is the transformation of

dataset into a space of differences, converting the original dataset X into X ′, where x′i j = xi− x j,

with y′i j = yi, for all pairs that compare observations from different classes. With this transfor-

mation, the classes become balanced, once observations from the same class are not compared.

The training part uses a Logistic Regression classifier fitted for the space of differences, X ′. Con-

sidering the decision rule as w · (xi− x j) > 0, it can be transformed into a scoring function, once

w · (xi− x j)> 0≡ w · xi > w · x j ≡ s(xi)> s(x j) [60].

A pairwise scoring ranker computes a score for each observation and defines a threshold to

predict a class. To find the optimal threshold, the training data is transformed into a score vector,
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using the decision rule of the trained classifier. After ordering si, the midpoints are computed and

used as possible candidates for threshold. The chosen candidate is the one that maximizes the F1,

defined as:

F1 =
2T P

2T P+FN +FP
(5.1)

This method is also not prepared to handle image data, so the features were extracted using

the CNN models as described in the previous method.

5.2.3 Over-sampling In Data Augmentation

Unlike the previous methods that make use of the features extracted from the CNN models, this

method is applied during the neural networks training, allowing them to fine tune for imbalanced

data. This over-sampling technique consists on developing a generator that applies random trans-

formation to the images (data augmentation) and yields the same number of samples for each class,

e.g. for a batch size of 16, the generator selects 8 ordered images from the majority class and 8

random images from the minority class, applies random transformations to the images, and finally

sends them to model training. The number of steps per epoch is obtained by dividing the length

of the majority class by half of the batch size, which means that, during an epoch, each image of

the majority class is used only one time, while the images from the minority class are transformed

and send to train multiple times.

5.3 Results and Discussion

5.3.1 Clinical Data Analysis

Besides the cervigrams and the results from the worst histology test, the NCI/NIH database in-

cludes data about patient’s age, result of the HPV test, number of days after image collection

(DAIC) date that worst subsequent histology was identified, and the timepoint, i.e. the number

of days between the first image collection and the collection of the respective cervigram. This

data might be useful for the screening task, thus, the implementation of multimodal models that

receive cervigrams and clinical data as input was considered in this dissertation, but previously

that data was analyzed to understand which information is more relevant and if any of that could

be excluded.

For that analysis, the baseline model was transformed into a multimodal algorithm and was

tested for 11 input combinations: only image (baseline results), image and all clinical data, image

and clinical data excluding patient’s age, image and clinical data excluding patient’s HPV test,

image and clinical data excluding timepoint, image and clinical data excluding DAIC, image and

patient’s age only, image and patient’s HPV test only, image and timepoint only, image and DAIC

only, and only clinical data. The results were computed after a 40-fold cross-validation, being

presented in table 5.1.
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Table 5.1: Mean and standard deviation of model’s performance regarding the input data.

Data AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

Baseline 68.25 ± 7.23 78.86 ± 4.20 38.35 ± 19.00 87.37 ± 6.83 39.23 ± 9.65 87.25 ± 4.49
All Data 90.69 ± 3.25 85.73 ± 3.69 62.97 ± 13.13 91.86 ± 4.22 68.33± 11.22 90.29± 3.90

w/out age 90.65 ± 3.50 85.71 ± 3.96 62.09 ± 13.69 92.16 ± 4.05 68.63 ± 10.53 90.08 ± 4.26
w/out HPV 79.72 ± 5.91 81.92 ± 4.90 37.22 ± 13.78 93.89 ± 4.35 63.98 ± 14.91 84.87 ± 4.51

w/out timepoint 90.19 ± 3.63 85.31 ± 3.73 61.39 ± 14.63 91.82 ± 3.92 67.61 ± 10.87 89.93 ± 4.41
w/out DAIC 89.23 ± 4.07 84.77 ± 4.24 60.23 ± 13.28 91.37 ± 5.26 66.83 ± 13.00 89.66 ± 4.05

only age 76.63 ± 7.83 81.19 ± 5.49 34.36 ± 14.70 93.19 ± 5.53 60.51 ± 18.74 83.21 ± 8.34
only HPV 89.35 ± 4.52 84.95 ± 5.35 60.97 ± 13.32 90.94 ± 9.87 68.78 ± 12.15 88.77 ± 7.21

only timepoint 75.64 ± 13.49 82.31 ± 4.96 33.37 ± 13.49 95.46 ± 3.08 66.75 ± 16.63 84.27 ± 4.71
only DAIC 78.14 ± 7.10 82.21 ± 5.37 37.15 ± 12.55 94.15 ± 12.55 64.98 ± 16.92 84.85 ± 4.59

only Clinical 82.28 ± 4.91 80.03 ± 4.11 54.65 ± 12.37 86.81 ± 4.12 52.44 ± 10.27 87.79 ± 4.24

The analysis of the table above allows us to affirm that the inclusion of the clinical data boosts

the model’s performance once the results of the combination image + clinical data, exceeds the

baseline results for all metrics. Using only clinical data seems to be more accurate (AUC of

82.28% and accuracy of 80.03%) than predicting the risk of cancer based on cervigrams only

(AUC of 68.25% and accuracy of 78.86%). However, these two sources are not redundant, once

the model that combines both image and clinical data (AUC of 90.69% and accuracy of 85.73%)

exceeds the performance of the models that analyze them separately.

Focusing on the cases where only one of the clinical features were excluded, it is possible to

draw some conclusions:

• The results are very similar and almost achieve the performance of the model that includes

all data, except for the combination that excludes the HPV test, which presents the worst

performance. Hence, this feature is considered as the most relevant for the screening task,

which is very reasonable since this test represents the first step of the cervical cancer screen-

ing framework.

• The other three combinations display similar results, therefore, it is not possible to pick the

second most relevant feature based on that information.

• Even without the HPV test, the performance exceeds the baseline model, which means the

remaining clinical features are pertinent for the screening task.

The group of cases that combine the image with only one clinical feature also provide signifi-

cant information:

• The four combinations exceed the baseline model, therefore, all clinical should integrate the

multimodal model.

• The model trained only with cervigrams and HPV test results achieved the best performance,

which supports the aforementioned conclusion about the relevance of this feature.

• Second best performance is achieved when the image is combined with the DAIC feature.

DAIC is the number of days between image collection date and the worst histology test. For
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some images, the DAIC is higher than 365 days, therefore, it is possible that by the time

the image was collected, there were no visible abnormalities on the cervix. Including this

feature might help the algorithm to adjust the relevance of the abnormalities.

5.3.2 Multimodal Results

Regarding the previous results, the 4 clinical features were included in the best models found in

chapter 4. After transforming them into multimodal algorithms, the three models were trained and

tested using 10-fold cross-validation. The results from these tests are presented in the table 5.2.

Table 5.2: Mean and standard deviation of the multimodal model’s performance.

Model AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

2 Tasks 75.11 ± 5.24 84.34 ± 3.80 31.11± 13.98 95.67 ± 2.88 61.12 ± 14.40 86.75 ± 4.03
Add 73.86 ± 8.88 84.86 ± 3.09 31.71 ± 15.44 96.29 ± 2.27 63.80 ± 8.94 86.92 ± 4.36
VGG 73.67 ± 4.84 84.41 ± 4.37 37.66 ± 13.43 94.09 ± 4.18 59.57 ± 13.63 87.53 ± 3.65

MM-2Tasks 91.57 ± 1.28 88.37 ± 1.81 62.60 ± 9.76 93.91 ± 2.40 68.14 ± 11.55 92.24 ± 2.91
MM-Add 89.78 ± 1.57 86.26 ± 2.36 57.41 ± 13.18 92.27 ± 3.57 61.87 ± 10.99 91.26 ± 2.75
MM-VGG 89.61 ± 1.99 87.55 ± 3.85 43.57 ± 14.24 97.57 ± 0.89 74.15 ± 10.03 88.88 ± 3.91

The effect of the clinical data addition was coherent since all models improved their perfor-

mance when became multimodal. All metrics improved for the three models, except the specificity

for the 2 Tasks and the Add model. These unimodal models have a poor sensitivity, which means

they are biased to classify images as negative, therefore, a small decrease on the specificity is not

relevant when counterposed with a big improvement of the sensitivity metric.

After implementing multimodality, the architecture that achieves the best results was the 2

Tasks model, nevertheless, the three models were included in further methodologies.

5.3.3 Imbalanced Learning Results

Until this part, the methodologies proposed did not address the problem of the imbalanced classes,

in consequence, the models usually present a high specificity but a poor sensitivity, once the

positive class is the smaller. To overcome this problem, five methods were applied to the three

models previously used (2 Tasks, Add, and VGG), for their both unimodal and multimodal ver-

sions. The imbalanced learning methods are described in the present chapter and include the

following techniques: SMOTE, Cluster Centroids, SMOTEENN, a pairwise ranking algorithm,

and over-sampling in data augmentation. The results were split into three tables according to the

architecture of the model, being analyzed separately. Thus, the table 5.3 compiles the results for

the 2 Tasks model, the table 5.4 displays the performance of the Add model after applying the

mentioned methods, and, finally, table 5.5 presents the results for the VGG model.

The analysis of the table 5.3 shows that imbalanced learning methods accomplished that pur-

pose of balancing the classes, once the sensitivity of the model increased after applying the meth-

ods. However, the best overall performance is achieved by the models without imbalanced meth-

ods applied. For the unimodal model, there is no unanimity about the method that better suits the
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Table 5.3: Mean and Standard deviation of the 2 Tasks model’s performance before and after
applying each imbalanced learning method.

Method AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

w/out 75.11 ± 5.24 84.34 ± 3.80 31.11± 13.98 95.67 ± 2.88 61.12 ± 14.40 86.75 ± 4.03
SMOTE 66.40 ± 6.78 75.69 ± 12.28 45.44 ± 14.79 82.50 ± 16.05 46.21 ± 16.82 82.90 ± 16.56

Centroids 64.07 ± 6.39 74.80 ± 11.60 47.11 ± 8.77 81.03 ± 14.50 42.20 ± 18.34 87.75 ± 3.35
SMOTEEN 66.78 ± 6.76 76.14 ± 9.08 51.46 ± 14.20 82.10 ± 12.05 42.84 ± 17.76 88.61 ± 3.98

Ranking 74.26 ± 6.73 84.56 ± 3.21 36.16 ± 15.16 94.93 ± 2.38 62.91 ± 16.77 87.50 ± 3.98
DA 65.17 ± 12.20 51.65 ± 28.60 70.31 ± 27.25 48.94 ± 38.99 29.62 ± 14.98 88.95 ± 4.74

MM-w/out 91.57 ± 1.28 88.37 ± 1.81 62.60 ± 9.76 93.91 ± 2.40 68.14 ± 11.55 92.24 ± 2.91
MM-SMOTE 81.59 ± 2.77 82.47 ± 3.19 80.39 ± 7.50 82.79 ± 5.03 50.41 ± 11.61 95.37 ± 1.69

MM-Centroids 81.18 ± 2.47 81.92 ± 2.82 80.20 ± 6.57 82.17 ± 4.30 48.64 ± 10.36 95.34 ± 1.49
MM-SMOTEEN 81.90 ± 3.39 79.79 ± 2.59 87.03 ± 8.69 78.09 ± 3.33 46.23 ± 10.57 96.71 ± 1.68

MM-Ranking 91.13 ± 2.19 84.13 ± 3.90 68.74 ± 25.29 87.90 ± 7.87 58.58 ± 19.63 92.57 ± 5.01
MM-DA 90.43 ± 2.25 82.09 ± 3.32 79.45 ± 8.91 82.42 ± 5.80 49.15 ± 10.02 95.31 ± 1.80

problem. The results of the ranking are very similar to the control case (model without imbalanced

learning method), so there is no gain from this method. SMOTE, Cluster Centroids and SMO-

TEENN achieved identical performance, with a slight improvement for the SMOTEENN method.

Over-sampling in data augmentation (DA) was the model with the best sensitivity, 70.31%, how-

ever, there is a huge decrease of specificity and precision, therefore, it is considered as the worst

model.

Focusing on the multimodal model, the best overall performance is achieved when no im-

balanced learning method is concerned. Between the methods applied, the SMOTEENN had the

best performance. For this case, over-sampling in data augmentation achieved results similar to

SMOTE and Cluster Centroids, which contradicts the results from the unimodal model. As ob-

served before, the ranking method is closer to the control case than the remaining methods.

Table 5.4: Mean and Standard deviation of the Add model’s performance before and after
applying each imbalanced learning method.

Method AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

w/out 73.86 ± 8.88 84.86 ± 3.09 31.71 ± 15.44 96.29 ± 2.27 63.80 ± 8.94 86.92 ± 4.36
SMOTE 69.94 ± 9.59 83.08 ± 4.05 49.04 ± 21.01 90.83 ± 4.43 53.37 ± 12.12 89.04 ± 5.07

Centroids 69.40 ± 9.47 83.23 ± 4.32 47.40 ± 20.79 91.39 ± 4.87 55.17 ± 14.15 88.76 ± 5.05
SMOTEEN 70.20 ± 9.32 83.01 ± 4.01 49.85 ± 20.84 90.55 ± 4.96 53.49 ± 12.76 89.20 ± 4.98

Ranking 70.88 ± 12.01 82.24 ± 3.40 33.76 ± 23.91 93.17 ± 7.28 59.81 ± 23.60 86.82 ± 4.89
DA 72.65 ± 9.07 69.16 ± 19.28 59.99 ± 71.64 71.64 ± 24.47 37.64 ± 15.82 89.02 ± 4.60

MM-w/out 89.78 ± 1.57 86.26 ± 2.36 57.41 ± 13.18 92.27 ± 3.57 61.87 ± 10.99 91.26 ± 2.75
MM-SMOTE 80.11 ± 2.49 76.06 ± 13.83 79.18 ± 9.47 75.62 ± 15.57 42.75 ± 15.79 95.0 ± 2.34

MM-Centroids 80.01 ± 2.83 80.90 ± 2.85 78.89 ± 8.60 81.14 ± 5.07 47.06 ± 10.59 95.12 ± 1.88
MM-SMOTEEN 81.70 ± 2.78 79.55 ± 3.19 85.18 ± 8.96 78.22 ± 5.46 45.80 ± 9.88 96.34 ± 2.10

MM-Ranking 89.73 ± 1.96 79.68 ± 6.68 75.71 ± 20.30 81.37 ± 11.63 49.96 ± 18.48 94.33 ± 4.59
MM-DA 90.31 ± 1.70 81.09 ± 4.00 82.59 ± 9.28 80.60 ± 5.79 47.67 ± 8.71 95.83 ± 2.13

Concerning the Add model (table 5.4), the best overall performance is also achieved when

no imbalanced learning technique is applied. For the unimodal model, the results follow the same

trend observed in the 2 Tasks model: SMOTE, Cluster Centroids, and SMOTEENN present similar

results, the over-sampling in data augmentation has the worst accuracy, specificity and precision,

and the ranking method present results similar to the control case. For the multimodal model,
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SMOTEENN and DA present the best results among the five methods, boosting the sensitivity

metric. Concerning the ranking method, its behavior was more related to the remaining methods

than with the control case, contrasting with the previous results.

Table 5.5: Mean and Standard deviation of the VGG-16 model’s performance before and after
applying each imbalanced learning method.

Method AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

w/out 73.67 ± 4.84 84.41 ± 4.37 37.66 ± 13.43 94.09 ± 4.18 59.57 ± 13.63 87.53 ± 3.65
SMOTE 69.61 ± 7.45 82.67 ± 4.20 49.26 ± 14.87 89.95 ± 3.66 51.11 ± 14.56 89.12 ± 4.00

Centroids 68.43 ± 6.87 82.79 ± 5.03 44.09 ± 15.03 91.72 ± 3.78 53.99 ± 13.77 87.89 ± 5.42
SMOTEEN 69.86 ± 7.47 83.00 ± 4.56 49.44 ± 14.71 90.28 ± 3.80 52.12 ± 13.52 89.17 ± 4.00

Ranking 74.61 ± 9.86 82.70 ± 5.35 33.37 ± 19.87 93.01 ± 7.75 60.16 ± 21.94 87.02 ± 4.06
DA 75.87 ± 5.21 72.30 ± 5.30 61.57 ± 11.86 74.77 ± 7.66 35.14 ± 10.52 90.12 ± 3.66

MM-w/out 89.61 ± 1.99 87.55 ± 3.85 43.57 ± 14.24 97.57 ± 0.89 74.15 ± 10.03 88.88 ± 3.91
MM-SMOTE 82.57 ± 2.83 81.45 ± 3.73 84.57 ± 7.16 80.57 ± 5.59 48.60 ± 11.30 96.35 ± 1.41

MM-Centroids 82.22 ± 2.35 81.86 ± 3.59 83.02 ± 6.74 81.42 ± 5.51 48.74 ± 10.72 96.05 ± 1.36
MM-SMOTEEN 82.64 ± 3.15 79.42 ± 3.03 87.80 ± 8.89 77.48 ± 5.08 45.58 ± 9.51 96.97 ± 1.87

MM-Ranking 91.64 ± 2.06 70.29 ± 12.09 95.25 ± 4.26 65.08 ± 14.82 38.15 ± 10.85 98.65 ± 1.09
MM-DA 89.67 ± 2.39 83.34 ± 3.30 75.50 ± 11.18 84.60 ± 5.91 51.43 ± 8.06 94.66 ± 2.34

The last table to be analyzed is table 5.5 that shows the results for the VGG-16 model. Again,

the control cases reveal the best overall performance, both in unimodal and multimodal models.

The ranking method and the control case show similar performance for the unimodal model, how-

ever, for multimodality, the ranking algorithm is considered as the best imbalanced method once

it boosted the AUC, the sensitivity and the NPV. SMOTE, Cluster Centroids and SMOTEENN

achieved similar results, both in unimodal and multimodal models. Concerning unimodality, the

over-sampling in data augmentation presented the best results, but the method was overwhelmed

by the ranking method for the multimodal experience.

Choosing the best classifying model is not a simple task and several aspects should be con-

cerned. First of all, it is clear that including clinical data boost the model’s performance, however,

the dissertation aims to find the best image-based model for cervical cancer screening, so the final

remarks should consider the best image-based model and the best multimodal model.

The second aspect is the applicability of the algorithm. The model should support medical

decision during a colposcopy examination, which is a screening test, while the real diagnosis is

only performed by biopsy. For a screening model, it is more important to minimize the number

of false negatives than minimize the total of false positives. A false positive has a cost of an un-

necessary biopsy, while a false negative leads to a misdiagnosed patient that can develop cervical

intraepithelial neoplasia and, consequently, cervical cancer, which might cost a human life. Usu-

ally, the metric chosen to assess the capability of a model to better predict the negative cases is the

specificity, however, a perfect specificity implies that all negative cases were classified as negative

but it does not give information about the false negatives, which are related with human life cost.

Instead, in this dissertation, that capability is measured using the NPV metric that indicates the

percentage of true negatives among the predicted negative cases.

Taking these considerations, there are four categories for the best models: the best overall

image-based, the best overall multimodal, the best image-based screening model, and the best
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multimodal screening model. Hence, the models chosen for the four categories are the image-

based Add model without any imbalanced learning methodology, the multimodal 2 Tasks model

without imbalanced learning, the image-based Add model after SMOTEENN imbalanced learn-

ing, once it combines one of the best NPV (89.20%) with a high specificity (90.55%), and the

multimodal VGG after Ranking implementation (NPV of 98.65%), respectively.
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5.3.4 Final Remarks

Finding the best hyperparameters for a CNN model is a time consuming process. For that reason,

the hyperparameters were adjusted for the first models but the grid search process was only applied

to the best models, at the end of the experiments. The hyperparameters tuned were the learning

rate (LR ∈ [0.01,0.001,0.0001], the moments for the Adam optimizer (β1 ∈ [0.9,0.999] and β2 ∈
[0.9,0.999]), the number of epochs (NE ∈ [100,125,150,175,200]), and the task weight, ω ∈
[0.5,0.75,0.9] (only for the MTL models). For Add and 2Tasks models, the best parameters were

LR=0.001, β1=0.9, β2=0.999, NE=150, and ω=0.5. For the VGG model, the best parameters

were LR=0.0001, β1=0.9, β2=0.999, and NE=175. The results of the best models after grid

search are represented in table 5.6.

Table 5.6: Results of the best models after Grid Search.

Method AUC(%) Accu. (%) Sens. (%) Spec. (%) Prec. (%) NPV (%)

Img Add 73.86 ± 8.8 84.86 ± 3.09 31.71 ± 15.44 96.29 ± 2.27 63.80 ± 8.94 86.92 ± 4.36
Img Add+SMOTEEN 70.20 ± 9.32 83.01 ± 4.01 49.85 ± 20.84 90.55 ± 4.96 53.49 ± 12.76 89.20 ± 4.98

MM 2Task 91.57 ± 1.28 88.37 ± 1.81 62.60 ± 9.76 93.91 ± 2.40 68.14 ± 11.55 92.24 ± 2.91
MM VGG+Ranking 91.26 ± 2.28 72.06 ± 5.49 95.42 ± 4.12 67.11 ± 6.96 38.01 ± 7.90 98.62 ± 1.30

As presented in chapter 3, several authors proposed automatic systems for colposcopy support,

including classification algorithms to predict the risk of cervical cancer. To assess the relevance of

the contribution of the presented dissertation, the best models were compared with the proposed

systems found in the literature. The table 5.7 gathers the literature results for image-based models

while the 5.8 compiles the results for multimodal models.

Sato, M. et al. was the only author who used only deep learning models, achieving the worst

results. Song, Kim, and Xu focused on classical Machine Learning methodologies or combination

between those models and deep learning techniques. The table 5.7 shows two results for the

author Xu, T et al. once they presented results for the best model in normal conditions (A) and

results for a model constrained to achieving a specificity of 90% (B). Considering the accuracy

and specificity metrics, the best performance was achieved by our Add model, however, Xu’s

model presented the best AUC and sensibility. It is also clear that, despite efforts with imbalanced

learning methodologies, our models were not able to achieve the sensibility that other authors

present. Comparing the constrained Xu’s model with the Add+SMOTEENN results, the sensibility

and specificity values seem to be very similar, but the accuracy of our model exceeds the first by

more than 12%, achieving a better overall performance.

Regarding the addition of clinical data to the model, only Song and Xu implemented multi-

modal algorithms which performance is represented in table 5.8. The approach that achieved the

best results was Xu’s implementation, nonetheless, the clinical data available for Xu’s team in-

cluded HPV test, patient’s age, cervical pH, and cytology result, which is relevant information for

the cervical cancer screening that was not available for this dissertation. Considering the approach

proposed by Song, individual analysis of the metrics reveals that each metric has been overcome

by one of the 2 Tasks and VGG + Ranking models. However, Song’s model presents a better
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Table 5.7: Comparison between the proposed models’ performance and the best results found in
literature for automatic cervical cancer screening using image-based models.

Model AUC (%) Accu. (%) Sens. (%) Spec. (%)

Sato, Masaku et al. [61] - 50.00 - -
Song, Dezhao et al. [47] - 81.93 74.14 89.71
Kim, Edward et al. [46] - - 75.00 76.00
(A) Xu, Tao et al. [53] 82.31 78.41 80.87 75.94
(B) Xu, Tao et al. [53] - 70.50 51.00 90.00

Add 73.86 84.86 31.71 96.29
Add+SMOTEENN 70.20 83.01 49.85 90.55

balance between sensitivity specificity that was not achieved by our models. Even so, Song had

access to the whole NCI/NIH database that includes data from 10,000 patients [47], therefore, it is

not fair to compare our results with this model, once the amount of data available was one of the

biggest limitations of this work.

Table 5.8: Comparison between the proposed models’ performance and the best results found in
literature for automatic cervical cancer screening using multimodal models.

Model AUC (%) Accu. (%) Sens. (%) Spec. (%)
Song, Dezhao et al. [47] - 87.79 82.79 92.82

Xu, Tao et al. [52] 94.00 88.91 87.83 90.00
2 Tasks 91.57 88.37 62.60 93.91

VGG+Ranking 91.26 72.06 95.42 67.11

A closer analysis of the results presented in this dissertation and in literature makes us wonder

if there is a ceiling for the model’s performance considering this database. Machine Learning and

Deep Learning techniques have been refined during the previous decades which makes relatively

easy to achieve good classification results using simple techniques, e.g. fine tuning a pre-trained

network with new images. Notwithstanding, several authors concentrated efforts on the cervical

cancer screening task using the NCI/NIH database and none of them achieved an accuracy of 90%

or higher, being even lower for image-based models.

A look over the database’s cervigrams may answer the previous question. For that reason,

some images of the database were compiled in figure 5.2. The first row gathers five images from

the negative class while the second row combines five positive cervigrams. Observing each row

separately it is possible to identify a large intraclass variability, the problem is the similarity be-

tween images from different classes. Looking at figure 5.2, it is possible to pair the cervigrams of

the first row with the second row by their aspect, yet, they represent different patients and different

risk degree, regarding cervical cancer. Thus, it is very hard for a model to learn how to distinguish

these cases.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.2: (a),(b),(c),(d), and (e) are cervigrams from the NCI/NIH database classified as
normal. (f),(g),(g),(i), and (j) are cervigrams labeled for the positive class, i.e. diagnosed with

cervical neoplasia or cervical cancer.

5.4 Summary

This chapter focused on two purposes: including clinical data in the model and overcoming the

imbalanced classes problem. The clinical data have a clear influence on the screening decision,

which was confirmed by the performance boost that the models demonstrate after multimodal im-

plementation. Regarding the imbalanced learning techniques, every method tested accomplished

the task of increasing the sensibility, but, in some cases, that implicated a decrease on the model’s

specificity.

To select the best models, four categories were considered: the best overall image-based

model, the best overall multimodal model, the best image-based screening model, and the best

multimodal screening model. Among the multimodal models, the 2 Tasks architecture achieved

the best overall performance, with an AUC of 91.57% and an accuracy of 88.37%. The VGG-16

+ Ranking model achieved the best sensibility (95.42%) and NPV ( 98.62%), which means that if

a cervigram of a patient returns a negative result, there is 98.65% probability of being right.

When compared with other methodologies proposed in the literature, our models were able to

achieve similar overall performance but did not exceed their results, which raises the question of

how much it is possible to improve using the NCI/NIH database.
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Conclusion

Cervical cancer, as well as other cancers, is more invasive and deadly in advanced stages, having

a more efficient treatment when detected in the early stages. Cervical cancer screening programs

promote early diagnosis and assessment of cancer risk, providing early treatment and follow up

of patients with suspicious test results. Both cytology and colposcopy examinations are complex

tasks that depend on specialists opinion, which is a limitation for low-income countries where

there are few medical resources. To avoid this dependency and to simplify this task, some authors

have proposed automatic systems to support cervical cancer screening, especially in colposcopy

examination where the acquisition step is more simple (only requires the collection of cervical

images and medical data from patients) unlike cytology, where specialists have to collect cells

from the patient.

The main goal of this dissertation was to develop an accurate image-based algorithm to support

a medical decision for cervical cancer screening. A few authors proposed classification models

with the same aim, making use of conventional Machine Learning techniques. The number of

Machine Learning applications is ever-growing, encompassing the medical area. More recently,

conventional Machine Learning models have been replaced by Deep Learning techniques that are

very promising and tend to outperform older approaches. With that in mind, this dissertation

focused on Deep Learning applications to reach the proposed aim.

Deep Learning algorithms require a large amount of data to boost their performance, however,

the database available for this dissertation was relatively small, which raised a limitation. To

overcome this problem, several methods were developed and tested and the best results were

achieved when applied Transfer Learning and Multitask Learning techniques. The performance

growth was expected, once these techniques make use of data beyond the NCI/NIH database.

The models used for Transfer Learning were pre-trained with the ImageNet database and the

Multitask Learning algorithms combined the NCI/NIH and the Intel & MobileODT databases.

Other techniques as image segmentation and regularization using canonical features added no gain

to model’s performance, therefore, they were not considered in the second part of the dissertation.

Besides the cervigrams, NCI/NIH database gathers some clinical data such as patient’s age,

HPV test result, and temporal information. To take advantage of that information, the clinical
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data were analyzed to better understand the relevance of each feature regarding the screening

task. The HPV test was the feature that caused more impact on the model, although every feature

contributed to the performance gain. For that reason, all clinical data were used in the multimodal

models, which were designed to receive both cervigrams and clinical data as input. Despite the

small number of clinical features, the multimodal models achieved much better results than image-

based models, which makes us wonder how the models would perform if more data, such as DST

history, cytology results, and sexual history, was collected.

Besides the small amount of data, the dataset had a second limitation: imbalanced classes.

In chapter 5 several approaches were tested to overcome that problem including SMOTE, Cluster

Centroids, SMOTEENN, a pairwise ranking algorithm, and over-sampling in data augmentation.

Among those models, the SMOTEENN and the ranking method achieved the best results. How-

ever, every method decreased the overall performance of the models, being only considered for the

screening categories, where sensibility and NPV overwhelm the remaining metrics. Nonetheless,

the proposed methodologies were not able to outperform literature results. In the other hand, a

quick look over the database is enough to realize how similar images from different classes can

be, which hampers model’s training, so, it is possible that the proposed methods already achieved

the performance ceiling that is feasible for this database, however, it is not possible to be sure of

that.

6.1 Future Work

There is a lot to improve in this challenging task of finding the best automatic system for cervical

cancer screening, but the biggest limitation seems to be related to the database. As mentioned

before, the imbalance between classes and the small amount of data are limitations intrinsic to the

database, that can be fixed by implementing the adjustable methods or by collecting more data.

It is also important to rethink the image collection procees. Colposcopy is a dynamic exami-

nation that combines four steps. For that reason, gynecologists affirm that taking a decision based

on a single image is a tricky task that might lead to misdiagnosed cases. In consequence, some

questions were raised during this dissertation. Is it possible to correctly screen cervical cancer

based on a single image? Which clinical data should be added to the screening model? As a

dynamic examination with 4 steps, would it achieve better results getting a cervigram from each

phase? Which one is more promising, an image-based model or a video-based model?

Unfortunately, it is not possible to answer these questions based on the presented work, yet

they should be considered in further projects, especially in data collection protocols.
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