17 research outputs found

    Cardiotocography Signal Abnormality Detection based on Deep Unsupervised Models

    Full text link
    Cardiotocography (CTG) is a key element when it comes to monitoring fetal well-being. Obstetricians use it to observe the fetal heart rate (FHR) and the uterine contraction (UC). The goal is to determine how the fetus reacts to the contraction and whether it is receiving adequate oxygen. If a problem occurs, the physician can then respond with an intervention. Unfortunately, the interpretation of CTGs is highly subjective and there is a low inter- and intra-observer agreement rate among practitioners. This can lead to unnecessary medical intervention that represents a risk for both the mother and the fetus. Recently, computer-assisted diagnosis techniques, especially based on artificial intelligence models (mostly supervised), have been proposed in the literature. But, many of these models lack generalization to unseen/test data samples due to overfitting. Moreover, the unsupervised models were applied to a very small portion of the CTG samples where the normal and abnormal classes are highly separable. In this work, deep unsupervised learning approaches, trained in a semi-supervised manner, are proposed for anomaly detection in CTG signals. The GANomaly framework, modified to capture the underlying distribution of data samples, is used as our main model and is applied to the CTU-UHB dataset. Unlike the recent studies, all the CTG data samples, without any specific preferences, are used in our work. The experimental results show that our modified GANomaly model outperforms state-of-the-arts. This study admit the superiority of the deep unsupervised models over the supervised ones in CTG abnormality detection

    Fetal heart rate feature extraction from cardiotocographic recordings through autoregressive model's power spectral- and pole-based analysis

    Full text link

    Extraction of digital cardiotocographic signals from digital cardiotocographic images: Robustness of eCTG procedure

    Get PDF
    none6noA recently developed software application, eCTG, extracts cardiotocographic (CTG) signals from digital CTG images, possibly obtained by scanning paper CTG reports. The aim of this study was to evaluate eCTG robustness across varying image formats, resolution and screw. Using 552 digital CTG signals from the “CTU-UHB Intrapartum Cardiotocography Database” of Physionet, seven sets of digital CTG images were created, differing in format (.TIFF, .PNG and .JPEG), resolution(96 dpi, 300 dpi and 600 dpi) and screw (0.0◦, 0.5◦, and 1.0◦). All created images were submitted to eCTG for CTG signals extraction. Quality of extracted signals was statistically evaluated based 1) on signal morphology, by computation of the correlation coefficient (ρ) and of the mean signal error percent (MSE%), and 2) on signal clinical content, by assessment of 18 standard CTG variables.For all sets of images, ρ was high (ρ ≥ 0.81) and MSE% was small (MSE% ≤ 2%). However, significant changes occurred in median values of four, four and five standard CTG variables in image sets with 96 dpi resolution, 0.5◦ screw and 1.0◦ screw, respectively. In conclusion, for an optimal eCTG performance, digital images should be saved in lossless formats, have a resolution of at least 300 dpi and not be affected by screw.openSbrollini A.; Brini L.; Di Tillo M.; Marcantoni I.; Morettini M.; Burattini L.Sbrollini, A.; Brini, L.; Di Tillo, M.; Marcantoni, I.; Morettini, M.; Burattini, L

    Classification of Caesarean Section and Normal Vaginal Deliveries Using Foetal Heart Rate Signals and Advanced Machine Learning Algorithms

    Get PDF
    ABSTRACT – Background: Visual inspection of Cardiotocography traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the foetus during antenatal care. However, inter- and intra-observer variability is high with only a 30% positive predictive value for the classification of pathological outcomes. This has a significant negative impact on the perinatal foetus and often results in cardio-pulmonary arrest, brain and vital organ damage, cerebral palsy, hearing, visual and cognitive defects and in severe cases, death. This paper shows that using machine learning and foetal heart rate signals provides direct information about the foetal state and helps to filter the subjective opinions of medical practitioners when used as a decision support tool. The primary aim is to provide a proof-of-concept that demonstrates how machine learning can be used to objectively determine when medical intervention, such as caesarean section, is required and help avoid preventable perinatal deaths. Methodology: This is evidenced using an open dataset that comprises 506 controls (normal virginal deliveries) and 46 cases (caesarean due to pH ≤7.05 and pathological risk). Several machine-learning algorithms are trained, and validated, using binary classifier performance measures. Results: The findings show that deep learning classification achieves Sensitivity = 94%, Specificity = 91%, Area under the Curve = 99%, F-Score = 100%, and Mean Square Error = 1%. Conclusions: The results demonstrate that machine learning significantly improves the efficiency for the detection of caesarean section and normal vaginal deliveries using foetal heart rate signals compared with obstetrician and midwife predictions and systems reported in previous studies

    Machine learning Ensemble Modelling to classify caesarean section and vaginal delivery types using cardiotocography traces

    Get PDF
    Human visual inspection of Cardiotocography traces is used to monitor the foetus during labour and avoid neonatal mortality and morbidity. The problem, however, is that visual interpretation of Cardiotocography traces is subject to high inter and intra observer variability. Incorrect decisions, caused by miss-interpretation, can lead to adverse perinatal outcomes and in severe cases death. This study presents a review of human Cardiotocography trace interpretation and argues that machine learning, used as a decision support system by obstetricians and midwives, may provide an objective measure alongside normal practices. This will help to increase predictive capacity and reduce negative outcomes. A robust methodology is presented for feature set engineering using an open database comprising 552 intrapartum recordings. State-of-the-art in signal processing techniques is applied to raw Cardiotocography foetal heart rate traces to extract 13 features. Those with low discriminative capacity are removed using Recursive Feature Elimination. The dataset is imbalanced with significant differences between the prior probabilities of both normal deliveries and those delivered by caesarean section. This issue is addressed by oversampling the training instances using a synthetic minority oversampling technique to provide a balanced class distribution. Several simple, yet powerful, machine-learning algorithms are trained, using the feature set, and their performance is evaluated with real test data. The results are encouraging using an ensemble classifier comprising Fishers Linear Discriminant Analysis, Random Forest and Support Vector Machine classifiers, with 87% (95% Confidence Interval: 86%, 88%) for Sensitivity, 90% (95% CI: 89%, 91%) for Specificity, and 96% (95% CI: 96%, 97%) for the Area Under the Curve, with a 9% (95% CI: 9%, 10%) Mean Square Error

    Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot With Convolutional Neural Network

    Get PDF
    Background: Electronic fetal monitoring (EFM) is widely applied as a routine diagnostic tool by clinicians using fetal heart rate (FHR) signals to prevent fetal hypoxia. However, visual interpretation of the FHR usually leads to significant inter-observer and intra-observer variability, and false positives become the main cause of unnecessary cesarean sections.Goal: The main aim of this study was to ensure a novel, consistent, robust, and effective model for fetal hypoxia detection.Methods: In this work, we proposed a novel computer-aided diagnosis (CAD) system integrated with an advanced deep learning (DL) algorithm. For a 1-dimensional preprocessed FHR signal, the 2-dimensional image was transformed using recurrence plot (RP), which is considered to greatly capture the non-linear characteristics. The ultimate image dataset was enriched by changing several parameters of the RP and was then used to feed the convolutional neural network (CNN). Compared to conventional machine learning (ML) methods, a CNN can self-learn useful features from the input data and does not perform complex manual feature engineering (i.e., feature extraction and selection).Results: Finally, according to the optimization experiment, the CNN model obtained the average performance using optimal configuration across 10-fold: accuracy = 98.69%, sensitivity = 99.29%, specificity = 98.10%, and area under the curve = 98.70%.Conclusion: To the best of our knowledge, this approached achieved better classification performance in predicting fetal hypoxia using FHR signals compared to the other state-of-the-art works.Significance: In summary, the satisfied result proved the effectiveness of our proposed CAD system for assisting obstetricians making objective and accurate medical decisions based on RP and powerful CNN algorithm

    A Strategy for Classification of “Vaginal vs. Cesarean Section” Delivery: Bivariate Empirical Mode Decomposition of Cardiotocographic Recordings

    Get PDF
    We propose objective and robust measures for the purpose of classification of “vaginal vs. cesarean section” delivery by investigating temporal dynamics and complex interactions between fetal heart rate (FHR) and maternal uterine contraction (UC) recordings from cardiotocographic (CTG) traces. Multivariate extension of empirical mode decomposition (EMD) yields intrinsic scales embedded in UC-FHR recordings while also retaining inter-channel (UC-FHR) coupling at multiple scales. The mode alignment property of EMD results in the matched signal decomposition, in terms of frequency content, which paves the way for the selection of robust and objective time-frequency features for the problem at hand. Specifically, instantaneous amplitude and instantaneous frequency of multivariate intrinsic mode functions are utilized to construct a class of features which capture nonlinear and nonstationary interactions from UC-FHR recordings. The proposed features are fed to a variety of modern machine learning classifiers (decision tree, support vector machine, AdaBoost) to delineate vaginal and cesarean dynamics. We evaluate the performance of different classifiers on a real world dataset by investigating the following classifying measures: sensitivity, specificity, area under the ROC curve (AUC) and mean squared error (MSE). It is observed that under the application of all proposed 40 features AdaBoost classifier provides the best accuracy of 91.8% sensitivity, 95.5% specificity, 98% AUC, and 5% MSE. To conclude, the utilization of all proposed time-frequency features as input to machine learning classifiers can benefit clinical obstetric practitioners through a robust and automatic approach for the classification of fetus dynamics

    Machine Learning to Classify Cardiotocography for Fetal Hypoxia Detection

    Get PDF
    Fetal hypoxia can cause damaging consequences on babies' such as stillbirth and cerebral palsy. Cardiotocography (CTG) has been used to detect intrapartum fetal hypoxia during labor. It is a non-invasive machine that measures the fetal heart rate and uterine contractions. Visual CTG suffers inconsistencies in interpretations among clinicians that can delay interventions. Machine learning (ML) showed potential in classifying abnormal CTG, allowing automatic interpretation. In the absence of a gold standard, researchers used various surrogate biomarkers to classify CTG, where some were clinically irrelevant. We proposed using Apgar scores as the surrogate benchmark of babies' ability to recover from birth. Apgar scores measure newborns' ability to recover from active uterine contraction, which measures appearance, pulse, grimace, activity and respiration. The higher the Apgar score, the healthier the baby is.We employ signal processing methods to pre-process and extract validated features of 552 raw CTG. We also included CTG-specific characteristics as outlined in the NICE guidelines. We employed ML techniques using 22 features and measured performances between ML classifiers. While we found that ML can distinguish CTG with low Apgar scores, results for the lowest Apgar scores, which are rare in the dataset we used, would benefit from more CTG data for better performance. We need an external dataset to validate our model for generalizability to ensure that it does not overfit a specific population.Clinical Relevance- This study demonstrated the potential of using a clinically relevant benchmark for classifying CTG to allow automatic early detection of hypoxia to reduce decision-making time in maternity units.</p

    Challenges of developing robust AI for intrapartum fetal heart rate monitoring

    Get PDF
    Background: CTG remains the only non-invasive tool available to the maternity team for continuous monitoring of fetal well-being during labour. Despite widespread use and investment in staff training, difficulty with CTG interpretation continues to be identified as a problem in cases of fetal hypoxia, which often results in permanent brain injury. Given the recent advances in AI, it is hoped that its application to CTG will offer a better, less subjective and more reliable method of CTG interpretation. Objectives: This mini-review examines the literature and discusses the impediments to the success of AI application to CTG thus far. Prior randomised control trials (RCTs) of CTG decision support systems are reviewed from technical and clinical perspectives. A selection of novel engineering approaches, not yet validated in RCTs, are also reviewed. The review presents the key challenges that need to be addressed in order to develop a robust AI tool to identify fetal distress in a timely manner so that appropriate intervention can be made. Results: The decision support systems used in three RCTs were reviewed, summarising the algorithms, the outcomes of the trials and the limitations. Preliminary work suggests that the inclusion of clinical data can improve the performance of AI-assisted CTG. Combined with newer approaches to the classification of traces, this offers promise for rewarding future development
    corecore