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Abstract 

Regulation of physiological systems governing the functioning of the human body is based on 

a complex adjustment of various variables according to internal requirements and external 

influences. This regulation occurs across different temporal scales. Although any physiological 

control mechanism operates along well assigned temporal scales, different regulatory 

mechanisms tend to partially share time scales. In addition, control mechanisms might 

interact with each other according to nonlinear relationships and to causality schemes, thus 

producing information transfer from a signal to another one and cross-influences 

characterized by time scales different from those of the original interacting mechanisms. The 

study of this “complex physiology” needs mathematical approaches capable of dealing with 

concepts of complexity, scaling behavior, information transfer, and causality. 

A complex system behaves in a nonlinear fashion, i.e., small changes in the input may lead to 

great changes in the outcome. High levels of complexity have been associated with a low 

agreement and high uncertainty in the clinical practice and, in complex scenarios, uncritical 

adherence to clinical guidelines may do more harm than good. Other approaches to deal with 

uncertainty should be used, for instance, nonlinear models and mining of patterns. The 

agreement among clinicians in the diagnosis and decision is frequent and surprisingly poor. 

Cardiotocography used to assess fetal well-being, by the record of the fetal heart rate and the 

uterine contractions, is a good example of a procedure used in clinical practice but with a low 

agreement among clinicians and a poor prediction of neonatal state.  

This thesis aims to explore how complexity analysis relates to fetal heart rate variability and 

how it can be used to prevent bad neonatal outcomes, as pre-term birth and fetal asphyxia.  

It is an objective of this thesis to find ways to better predict bad neonatal outcome. 

In Chapter 1 the concepts and rationale inherent to the topic are introduced and the 

objectives of the dissertation are defined.  Also, the theoretical background for linear and 

nonlinear assessment of fetal heart rate (FHR) is reviewed and a brief introduction to heart 

rate analysis is presented, in particular for human fetuses. This chapter ends with the 

definitions of spectral analysis and nonlinear measures utilized in this dissertation. 
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The Chapter 2 comprises the outline of this thesis. 

The association between nonlinear indexes (entropy and compression) and physiological 

characteristics of FHR tracings using the FIGO international guidelines for fetal monitoring are 

presented in Chapter 3, as well as the evidence of complementary information captured by 

both entropy and compression. Here, multiscale analysis is as well used, in particular for fetal 

acidemia prediction during intrapartum. The results suggest complementarity of the 

nonlinear indexes studied, consistency of measures to changes in parameters, and changes 

in behavior at different scales, suggesting different dynamics in the interaction between the 

central and autonomic nervous systems with a FHR at different scales. 

Chapter 4 tackles a different issue in fetal assessment: labor prediction, and, therefore, 

prematurity.  Labor prediction is usually based on physiological characteristics. This chapter 

explores the possible contribution of entropy and complexity in this field. The results suggest 

an improvement in the ability to predict labour at both one and two weeks when the model 

included compression. 

Chapter 5 addresses a different perspective for the detection of fetal acidemia during labor, 

as it presents an algorithm based on spectral analysis. 

The dissertation ends in Chapter 6 with an overall discussion and main conclusions. 

In the signal analysis, and particularly in heart rate variability analysis, complexity measures 

are in focus by the scientific community, not only due to the existing requirements by the 

signal characteristics but mainly due to the data processing and analysis capabilities that 

current technologies provide and by the amount of existing data. 

The challenge presented is related to the difficult interpretation of nonlinear measures in a 

physiological context, making it challenging to integrate decision support systems in clinical 

practice. In an era where wearables are emerging, continuous monitoring will provide 

researchers with an enormous amount of information, enabling the development of 

multivariate models, such as "deep learning”.  
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Complexity Science is therefore of great importance in the prevention and prediction of 

abnormal labour outcome, aiding healthcare professionals in clinical decisions. This 

dissertation took a step to the current knowledge of how the science of complexity can be 

better understood in the clinical context used in the prevention of bad neonatal outcomes. 
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Resumo 

A regulação de sistemas fisiológicos encarregues do funcionamento do corpo humano é 

baseado num ajustamento complexo de diversas variáveis de acordo com necessidades 

internas e estímulos externos. Esta regulação ocorre em diversas escalas temporais. Embora 

qualquer mecanismo de controlo fisiológico opere em escalas temporais bem definidas, 

diferentes mecanismos de regulação tendem a partilhar, parcialmente, escalas de tempo. 

Mais ainda, mecanismos de controlo podem interagir de acordo com modelos não-lineares e 

esquemas de causalidade, produzindo assim, transferências de informação de um sinal para 

o outro e influências cruzadas caracterizadas por diferentes escalas de tempo dos 

mecanismos de interação originais. O estudo da “complexidade fisiológica” necessita de 

abordagens matemáticas capazes de lidar com conceitos de complexidade, comportamento 

de escala, transferência de informação e causalidade. 

Um sistema complexo comporta-se de uma forma não-linear, isto é, pequenas alterações 

podem levar a resultados completamente díspares. Níveis elevados de complexidade foram 

associados a baixos níveis de concordância e alta incerteza na prática clínica e, em cenários 

complexos, adesão não crítica a diretrizes poderá causar danos maiores. Outras abordagens 

deveriam ser usadas para lidar com a incerteza, tais como os modelos não-lineares e a 

descoberta de padrões. De facto, a concordância entre especialistas no diagnóstico e tomadas 

de decisão é surpreendentemente baixa. 

Cardiotocografia, usada para avaliar o bem-estar fetal, através do batimento cardíaco fetal e 

contrações uterinas, é um bom exemplo de um procedimento na prática clínica com baixa 

concordância na análise entre os especialistas e uma pobre predição do bem-estar neonatal. 

Esta dissertação tem como objetivos explorar em como a análise de complexidade se 

relaciona com a variabilidade de batimento cardíaco fetal e na forma como pode ser usada 

na prevenção de partos com desfechos não desejados, como partos prematuros ou asfixia 

fetal. Também é um objetivo desta tese encontrar formas de prever melhor maus desfechos 

neonatais. 
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No Capítulo 1 são introduzidos os conceitos inerentes ao tema e definidos os objetivos da 

dissertação. Além disso, a base teórica para a avaliação linear e não linear da Frequência 

Cardíaca Fetal (FCF) é revista e é apresentada uma breve introdução à análise da frequência 

cardíaca, em particular para fetos humanos. Este capítulo termina com as definições de 

análise espectral e das medidas não lineares utilizadas nesta dissertação. 

O Capítulo 2 apresenta a estrutura da dissertação  

A associação entre os índices não lineares entropia e compressão e as características 

fisiológicas dos traçados de FCF usando as recomendações internacionais da FIGO para 

monitorização fetal são apresentadas no Capítulo 3, bem como a evidência sobre a 

informação complementar capturada tanto pela entropia quanto pela compressão. Aqui, a 

análise multi-escala também é usada, em particular para a previsão da acidemia fetal durante 

o parto. Os resultados sugerem complementaridade dos índices não lineares estudados, 

consistência das medidas para mudanças nos parâmetros e mudanças no comportamento em 

diferentes escalas, sugerindo diferentes dinâmicas na interação entre os sistemas nervoso 

central e autónomo com uma FCF em diferentes escalas. 

O Capítulo 4 aborda uma questão diferente na avaliação fetal: a previsão do parto e, 

portanto, a prematuridade. Usualmente a previsão do parto é feita com base em 

características fisiológicas. Neste capítulo explora-se o contributo que a entropia e a 

complexidade podem dar para esta previsão do parto. Os resultados sugerem uma melhoria 

na capacidade de previsão do parto em uma e duas semanas quando o modelo incluiu 

compressão. 

O Capítulo 5 aborda uma perspetiva diferente para deteção de acidemia fetal durante o 

parto, pois apresenta um algoritmo baseado em análise espectral. 

A dissertação termina no Capítulo 6 com uma discussão geral e as principais conclusões. 

Na análise de sinal, e em particular em batimento cardíaco, as medidas de complexidade 

estão em foco pela comunidade científica, não só pela exigência existente nas características 

do sinal, mas principalmente pela capacidade de processamento e análise de dados que as 

tecnologias atuais providenciam e pela quantidade de dados existente. 
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O desafio que se apresenta prende-se na difícil interpretação das medidas não-lineares em 

contexto neurofisiológico, dificultando a integração de sistemas de apoio à decisão na prática 

clínica. Numa era em que os “wearables” começam a surgir, uma monitorização contínua irá 

proporcionar aos investigadores uma enorme quantidade de informação, proporcionando o 

desenvolvimento de modelos multivariados, como o “deep learning”.  

A Ciência da Complexidade tem uma grande importância na prevenção e previsão de 

desfechos de partos anormais, apoiando os profissionais de saúde nas suas decisões clínicas. 

Esta dissertação acrescentou um passo ao conhecimento atual de como a ciência da 

complexidade pode ser mais bem compreendida no contexto clínico e melhor utilizada na 

prevenção de maus desfechos neonatais. 
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1. Introduction 

Worldwide, it is estimated that the number of fetal deaths after week 20 of gestational age is 

around 2.6 million per year. Although the numbers have been decreasing in the past decades, 

the stillbirths’ rate still ranges from about 1/250 births in developed countries and 1/33 in 

South Asia and Sub-Saharan Africa (data from 2009) [1]. 

In developed countries, clinical decisions during labor are strongly based on fetal heart rate 

(FHR) monitoring [2, 3], being cardiotocography (CTG) [4] the most used tool to assess fetal 

well-being since the early ‘60s. CTG combines FHR measurement, obtained by means of a 

Doppler ultrasound probe and uterine contraction monitoring probe, recorded using an 

abdominal pressure transducer. The information provided by CTG is limited since a complete 

electrocardiogram (ECG) signal of the fetus is not available. Moreover, CTG is highly sensitive 

to both fetal and maternal movement. The use of an electrode placed on the fetus’s scalp is 

more reliable as it retrieves fetal ECG (fECG), containing not only FHR but also other relevant 

clinical parameters. On the other hand, fECG is only possible during labor after the beginning 

of cervical dilatation and rupture of the membranes, and therefore, carrying with it risks of 

infection [5, 6].  

Other methods for fetal monitoring, such as fetal phonocardiography [7-9], fetal 

echocardiography [10, 11], and fetal magnetocardiography [12, 13], are used, and each one 

has its advantages and disadvantages. For more detail on this matter, see [14, 15]. 

The introduction of electronic fetal monitoring came with high expectations since it offered 

continuous monitoring, compared to the intermittent auscultation done until then. However, 

a meta-analysis of large multicenter studies did not show any significant improvement. Also, 

electronic fetal monitoring became the main suspect for the increased caesarean sections 

[16]. These procedures result in a slight increase in poor outcomes in low-risk pregnancies. 

They also require a longer time to heal than vaginal birth, and the increased risks include baby 

breathing problems, amniotic fluid embolism, and postpartum bleeding for the mother [17]. 

Despite the importance of the fetus and mother’s well-being assessment, low concordance 

between physicians is still present, even among experienced obstetricians, resulting in a high 
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false-positive rate [2, 18, 19]. As in daily practice, FHR is visually interpreted by the clinician, 

even when following the guidelines provided by the International Federation of Obstetrics 

and Gynecology (FIGO) [20, 21], it is associated with high sensitivity but low specificity [22]. 

The low specificity might lead to a chance of more harmful than beneficial adherence to 

conventional guidelines as it creates unnecessary interventions [23]. This issue may be related 

to Plesk and Greenhalgh’s conjecture, which states that healthcare components belong to the 

simple, complex, or chaotic domains. In particular, the analysis of fetal heart rate variability 

(fHRV) is somewhat between the complex and chaotic domains, reflecting the low certainty 

and agreement present in the literature (as shown in the certainty-agreement diagram in 

Figure 1). 

 

Figure 1.1. Certainty-agreement diagram 

 

The autonomic nervous system (ANS) is involved in the control of almost every organ system, 

and the beat-to-beat variation of FHR reflects the influence of the fetus’ ANS and its 

components (sympathetic and parasympathetic) and therefore is an indicator of fetal well-

being [6]. A certain level of unpredictable fHRV reflects sufficient capabilities of the organism 

in search of optimal behavior. Reduced fHRV is linked with limited capabilities and mental 

disorders [24]. Some linear modeling approaches quantify sympathetic and parasympathetic 

control mechanisms and their balance through spectral low and high-frequency components. 

However, it has been shown that not all information carried by beat-to-beat variability can be 

explained by these components [25]. For this matter, in the past couple of decades, and with 
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the fast development of computation, new signal processing, and pattern recognition 

methodologies have been developed and applied to many different fields, including the 

analysis of fHRV using nonlinear parameters [26, 27]. This approach can reveal relevant 

clinical information not exposed by temporal or frequency analysis [28]. 

The FHR variability analysis and the spectral analysis and nonlinear methods used in this 

dissertation will be described in detail in the following sections. 

 

Fetal Heart Rate Variability Analysis 

The purpose of fetal monitoring resides in assuring normal fetal development and the timely 

identification of fetal and maternal well-being compromise. It is crucial to prevent 

intrapartum fetal hypoxia, an oxygen deficiency due to a pathological change in either fetal 

or maternal components of the placenta when there is an exchange of carbon dioxide and 

oxygen by the fetus during labor time. This situation leads to an accumulation of carbon 

dioxide leading to fetal acidemia, resulting in a lower pH in the fetal blood vessels. The early 

detection of babies at risk of acidemia might decrease the chance of a post-diagnosis of 

cerebral palsy, neonatal encephalopathy, or even death [29]. As state before, conventional 

analysis of CTG provides information about cortical and ANS activity [6]. However, CTG has 

poor specificity, leading to a high rate of false positives. This leads to unnecessary operative 

interventions, increased caesarean section rate, without any clear benefit to the perinatal 

outcome, disrupting natural procedures that imply certain risks for both mother and baby. 

Under this spectrum, additional tests such as fetal scalp blood sampling, fetal pulse oximetry, 

and fetal electrocardiograph (fECG, also called STAN or ST-analyzer) can be performed [30]. 

In particular, the fECG is a graphic record of the myocardial cells' electrical activity, reflecting 

the myocardium's oxygenation level.  

STAN assesses changes in the fECG complex, particularly in the ST segment and T wave (Figure 

2.2). They are related to electrical changes that occur when the next myocardium contraction 

is being prepared. Besides, the T/QRS ratio is also analyzed, reflecting the duration of the 

hypoxic insult in the cells [31]. These inputs give information to calculate physiological 
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features such as the baseline, which, in return, defines accelerations and decelerations. 

Systems such as Omniview SisPorto [32], OxSys [33], and CAFE [34] automatically deal with 

CTG assessment.  

 

 

Figure 1.2. Fetal Electrocardiogram Complex [31] 

 

Linear features usually analyzed comprise: FHR baseline, that is the mean FHR in the absence 

of uterine contractions and fetal movement, and it retrieves information mainly on the 

intrinsic activity of the heart [35]; the interaction between sympathetic and parasympathetic 

systems, which express the influence of external and internal stimuli, are captured by short 

(STV) and long term variability (LTV) [6], respectively, and they are defined as the beat-to-

beat changes over one minute, and the variation in interval length over a certain number of 

RR intervals (time difference between two consecutive R peaks of the fECG complex); 

accelerations are the increase in the fetal heart rate over the fetal baseline heart rate and 

reflect the sympathetic activity, while decelerations are  the decrease in the fetal heart rate 

below the fetal baseline heart rate and are conveyed by the parasympathetic system [6]; the 

standard deviation of normal-to-normal beat intervals (SDNN) reflects sympathetic and vagal 

heart rate modulations [36]; skewness, quantifying the symmetry of a series; kurtosis, an 

outlier quantification measure; root mean square of successive differences (RMSSD) reflects 

vagal control [37]; the ratio SDNN/RMSSD, is a temporal alternative for the frequency LF/HF 
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measure (ration between Low Frequency and High Frequency)  as a marker of the sympatho-

vagal balance [38]. Other features in the time domain are also widely used, such as the long-

term irregularity (LTI), the Interval index, and the delta value of the FHR signal [39, 40]. 

 

Spectral Analysis 

At the beginning of the 80s, Akselrod et al. [41] introduced the power spectral density (PSD) 

analysis to assess beat-to-beat cardiovascular control quantitatively. Frequency domain 

analysis was relevant for understanding the autonomic background of RR interval fluctuations 

[42, 43]. PSD methods are usually classified as parametric or nonparametric. Although both 

strategies achieve similar results in most cases, nonparametric methods (Fast Fourier 

Transform (FFT) for the majority of the cases) have the advantage of simplicity and higher 

processing speed. On the other hand, parametric methods achieve a better estimation of PSD, 

even for a small number of samples. The concern with parametric methods is the need to 

guarantee the signal's stationarity, which does not happen in the case of fHR [36].  

The spectral analysis started with the work of the mathematician Fourier (1807), who 

suggested that any periodic function could be estimated using combinations of sinus and co-

sinus functions.  

For a given function f(x) (for instance, hear rate series over time x), its Fourier series is:  

𝑎0 + ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥
∞

𝑘=1
), 

where the coefficients are calculated as followed: 

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0

 

𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑘𝑥  𝑑𝑥

2𝜋

0

 

𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑘𝑥  𝑑𝑥

2𝜋

0
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This notion was the first step for a time series analysis in the frequency spectrum. In the case 

of fHR, where data is discrete and equally spaced (as is for time intervals), the Discrete Fourier 

Transform (DFT) takes place. A given equally spaced sequence 𝑥0 … 𝑥𝑛−1, of size n is 

transformed, from a time domain to a frequency domain, in a sequence of complex numbers: 

𝑋𝑘 = ∑ 𝑥𝑗𝑒−
2𝜋𝑖𝑘𝑗

𝑛𝑛−1
𝑗=0 , 

with 𝑖 = √−1. 

Applying DFT comes with a cost of 𝑛2 operations, the procedure becomes costly as the sample 

size rises. The FFT achieves better results as the cost decreases to 𝑛 log 𝑛 operations [44]. The 

most used algorithm to apply FFT is the Cooley-Tukey algorithm [45], a divide and conquer 

algorithm that recursively decomposes a DFT into smaller ones, along with linear 

multiplications of 𝑖. 

The usual spectral analysis considers the power of the signal over the spectrum of 

frequencies. Power spread over all frequencies means high irregularity, while distinct peaks 

over specific frequencies indicate predominant rhythms and regular patterns [46]. Frequently 

it consists of gathering data from three main components: Very Low Frequency (VLF, ≤

0.04𝐻𝑧), Low Frequency (LF, 0.04 − 0.15𝐻𝑧), and High Frequency (HF, 0.15 − 0.4𝐻𝑧). The 

high-frequency component is mainly indicating parasympathetic nervous system activity. The 

sympathetic nervous system activity is reflected by the lower frequency components 

(however, traces of parasympathetic activity can also be found at lower frequency levels). 

Therefore, the ratio of energies 
𝐿𝐹

𝐻𝐹
 is also widely used. It expresses the balance of behavior of 

sympathetic and parasympathetic branches of the ANS in adults for short-term recordings 

[36]. 

An alternative branching was proposed by Signorini [47], where the new bin Movement 

Frequency (MF, 0.15 − 0.5𝐻𝑧), related to fetal movement and maternal breathing, was 

defined. From this approach, VLF (≤ 0.03𝐻𝑧) was related to long periods of nonlinear 

contributions, LF (0.03 − 0.15𝐻𝑧) was associated with the neural sympathetic activity, and 
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HF (0.5– 1 𝐻𝑧) correlated with fetal breathing.  Here, the ratio of energies was defined as 

𝐿𝐹

𝑀𝐹+𝐻𝐹
.  

Reinhard [48] studied the HRV changes during hypnosis and noted increased LF power and a 

decreased HF power, meaning a sympathovagal shift towards increased sympathetic 

modulation, compared to pregnant women at rest.  

Spectral analysis has also been important in the study of maturation. 
𝐿𝐹

𝐻𝐹
 was significantly 

reduced in intrauterine growth restriction (IUGR) fetuses compared with a control group [49]. 

 

Nonlinear Methods 

Nonlinear phenomena are intrinsic to HRV by the complex interactions of 

electrophysiological, hemodynamic, and humoral agents, particularly the autonomic and 

central nervous system regulations.  

Variability and complexity are distinct terms. While a complex system requires variability, the 

other way around is not guaranteed. For example, a set of random notes in a piece of music 

can be interpreted as having high complexity, for its non-predictability. In contrast, a set of 

consecutive notes is highly predictable, and both have high variability. Thus, complexity 

signals, such as those produced by self-regulatory physiological systems, present temporal 

and/or spatial structures over a varied range of scales. [50]. In the end, complexity is a 

property of any system that quantifies the amount of structured information. 

From this perspective, numerous approaches have been suggested in the past decades. 

Although this work's focus is only on entropy and compression, other nonlinear methods such 

as fractal analysis and wavelets have been the object of studies when applied to fHR. 
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Entropy 

According to Shannon [51], the information within a signal can be quantified with absolute 

precision as the amount of unexpected data in the message (defined as entropy). 

Entropy, a probabilistic complexity measure used to quantify a series's irregularity, has been 

widely used in physiological signal analysis.  

The focus will be on Shannon Entropy (ShEn), since it is the root of all others, and Approximate 

Entropy (ApEn), Sample Entropy (SampEn), and Multiscale Entropy (MSE), as they were used 

in the papers.  

 

Shannon entropy (ShEn) 

Though ShEn was introduced in 1948, some authors still applied it to analyze FHRV [52, 53]. 

Considering a time series 𝑋 = {𝑥𝑖}, of N points, ShEn 𝐻(𝑋) is a functional of its joint 

probability density function 𝑝(𝑋) defined as [51]:  

𝐻(𝑋) = − ∑ 𝑝(𝑥(𝑖)) ln(𝑝(𝑥(𝑖)))

𝑛

𝑖

 

Where 𝑝(𝑥(𝑖)) is the probability of 𝑋 = 𝑥(𝑖). Shannon entropy measures the total 

information contained in the process 𝑋.  

 

Approximate entropy (ApEn) 

In 1991, Pincus developed a regularity statistic tool to quantify a system’s complexity, based 

on entropy [54, 55]. The measure is based on the theory that healthy dynamic stability comes 

from specific mechanisms and properties of interconnected networks. When a weak 

connection arises between systems or within one, it is the disease mechanism, which is 

characterized by an increase of regularity of the series [56]. 
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ApEn is defined as the logarithmic likelihood that the series's patterns closer to each other 

will remain close when the next comparison with a longer pattern is made. It measures the 

irregularity of a time series robustly with short segments [57] as follows:  

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 𝜙𝑚(𝑟) − 𝜙𝑚+1(𝑟) 

=  
1

𝑁−𝑚+1
∑ ln(𝐶𝑟

𝑚(𝑖)) −
1

𝑁−𝑚
∑ ln (𝐶𝑟

𝑚+1(𝑖))𝑁−𝑚
𝑖=1

𝑁−𝑚+1
𝑖=1 , 

𝐶𝑟
𝑚 =

𝑛𝑖
𝑚(𝑟)

𝑁 − 𝑚
 

where 𝑛𝑖
𝑚(𝑟) is the number of patterns in 𝑝𝑚 (all patterns of length 𝑚) that are similar to 

𝑝𝑚(𝑖) (subsequence of 𝑚 consecutive signal values, beginning in instance 𝑖). 𝐶𝑟
𝑚represents 

the correlation integral, 𝑚 is the embedding dimension and tolerance r working as a 

threshold, for N signal points. 

Two patterns are considered similar if the difference between any pair of corresponding 

measurements is less than or equal to 𝑟. Values of 0.1, 0.15, or 0.2 standard deviations are 

usually used for parameter 𝑟, while m is mostly considered as 2 [58]. 

 

Sample entropy (SampEn) 

SampEn was proposed by Richman and Moorman (2000) [59, 60] in a similar manner as ApEn, 

but with some major differences, reducing bias, especially in short data sets as it is dependent 

on the record length. Besides, SampEn eliminates self-matches, and the conditional 

probabilities are not estimated in a template manner. 

This probability measure is computed directly as the logarithm of conditional probability and 

not from the logarithmic sums ratio. Considering the same 𝑚 and 𝑟 parameters from ApEn, A 

as the number of pairs of vectors 𝑋 with length 𝑚 + 1, with 𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] ≤ 𝑟, 𝑖 ≠ 𝑗, and 

B as the number of template matches of the size 𝑚, SampEn is defined as: 

𝑆𝑎𝑚𝑝𝐸𝑛 = −𝑙𝑛
𝐴

𝐵
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Multiscale entropy (MSE) 

ApEn and SampEn have the disadvantage of outputting a single index concerning the series’s 

general behavior, thus not revealing its underlying dynamics. MSE is able to provide this 

information since several indices are given, one for each scale in the time series. 

Considering a time series {𝑥𝑖} of N points, it constructs consecutive coarse-grained time series 

{𝑦(𝜏)}, as a function of the factor 𝜏, 

    𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖

𝑗𝜏
𝑖=(𝑗−1)𝜏+1 , 1 ≤ 𝑗 ≤

𝑁

𝜏
. 

𝑦(1) is the original time series, and 
𝑁

𝜏
 the length of each coarse-grained series [61]. 

Some authors support using a tolerance r obtained from the original series and keep it 

constant for all scales [62]. Other authors favor choosing an individual tolerance level r for 

each scale [63, 64]. For example, the quadratic sample entropy permits a personalized 

estimation of r for each scale in short data [65]. 

MSE has been widely employed in biomedical signal analysis as it allows measuring signal 

properties at different time scales [66]. 

The physiological interpretation of multiscale complexity is not very clear because, in a 

complex dynamic system, all scales might be affected by regulating influences [67]. Low 

complexity scales indicate regular patterns with periodicity, but isolated ones would indicate 

the periodicity of one single frequency oscillation and that usually is not present in complex 

systems. However, it is typical of the appearance of correlated neighboring scales [62, 68]. 

Other entropies 

The literature also contains usage of different entropies and some are still emerging. 

Examples include entropy of first order Markov model [52], transfer entropy [69], Kullback-

Leibler entropy [70], mutual information (MI) [67, 71-73], Rényi entropy [53, 74-76], Kernel-

based entropy [75] Bubble entropy [76], S/k ratio of entropy [77], δ-entropy [78] and 

permutation entropy [38, 68, 79, 80]. 
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Compression 

Dynamic systems theory was firstly linked with information theory by Kolmogorov [81] in 

1958. Years later, “algorithm information theory” was then independently proposed by three 

different authors (Solomonoff [82], Kolmogorov [83] and Chaitin [84]). 

The Kolmogorov Complexity (KC) K is defined as the function mapping a string 𝑥 in an integer, 

bounded to a Turing Machine 𝜙: 

𝐾𝜙(𝑥) = {
𝑚𝑖𝑛{|𝑝|: 𝜙(𝑝) = 𝑥},   𝑖𝑓 𝜙(𝑝) = 𝑥 
∞                          𝑖𝑓 𝑝 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑡

 

The KC reflects the increase of new patterns along a given sequence. In this case, the word 

complexity refers to the algorithmic complexity, defined according to Information Theory, as 

the shortest program’s length p able to print the string 𝑥. In different words, KC quantifies 

how “random” an individual object is in terms of the number of bits necessary to describe it. 

For a random string, the output of K function will be the original string’s length as any sort of 

compression effort will end in information loss. The more reoccurring patterns, the less 

complex the signal is.  

Although this concept is objective, its applicability is limited to the fact that it is not 

computable. Compressors are a close upper-bounded approximation of the K function. For 

over 30 years, data compression software has been developed for data storage and 

transmission efficiency purposes, and more recently, compression has been utilized in health 

research. 

Compressors could be divided into two big groups: lossless or lossy. The former group is 

composed of compressors, in which every bit of data after decompressed is restored. For the 

lossy group, this is not guaranteed, particularly for redundant information.  

Innumerous compressors are found in the literature. Lempel-Ziv (LZ) [85] was introduced by 

Lempel and Ziv in 1976 and is the starting point for different compressors, such as the LZ77, 

LZ78, and gzip. bzip2 was developed by Julian Seward and uses the block sort algorithm giving 

very fast results; PPM stands for Prediction by Partial Matching and belongs to a set of more 

recent compressors using statistic models. However, it is slow and computationally 
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demanding. Compressors PAQ also falls short for these characteristics, achieving very high 

compressibility levels using neural networks. 

In order to estimate the complexity of a physiological signal using compression, different 

approaches have been used, such as the heartbeat series [86], an increase/decrease coding 

system using a binary [28, 87, 88], or ternary [89, 90] alphabet.  

The applications of compression in health research range from event detection (such as 

epileptic seizure [91], the onset of ventricular tachycardia or fibrillation [92] and changes from 

sleep to waking state in-depth anesthesia [93]), characterizing neural spike trains [94] or in 

DNA sequences studies [95].  

 

Objectives 

The primary purpose of this thesis is to explore how complexity analysis relates to FHRV and 

how it can be used to prevent bad neonatal outcomes, as pre-term birth and fetal asphyxia. 

For this matter, more specific goals were defined: 

 How do complexity measures relate to standard physiological characteristics 

of FRH tracings and how correlated are they with each other? 

 How well can complexity measures predict labor?  

 How well can complexity measures predict fetal acidemia? 

 Is it possible to develop new methods for labor and fetal acidemia prediction? 
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2. Outline 

After the Introduction (Chapter 1) presented above, and the Outline presented here 

(Chapter 2), the rest of the thesis is organized in four chapters that describe the work 

performed, three of which presenting the three studies already published in the scientific 

literature and a last chapter presents a general discussion and conclusions. A description of 

these chapters follows.  

 

Chapter 3 aims to evaluate the association between nonlinear measures, entropy and 

compression, and the linear measures used by the Omniview-SisPorto program, an 

automatic fetal heart rate analysis software. This chapter also analyses parameter changes 

and how they behave at different scales (multi-scale analysis). It is also evaluated how these 

measures distinguish fetuses that at birth were considered acidemic or not, based on the pH 

of the blood collected from the umbilical cord.  

 

In Chapter 4, intends to assess how nonlinear measures can predict whether or not the 

fetus is close to the time of delivery (with forecasts at one and two weeks). The issue is 

relevant because of the clinical importance of identifying cases where the risk of 

prematurity.  

 

In order to explore other ways of predicting fetal asphyxia and following the participation of 

the working group in Signal Processing and Monitoring (SPaM) 2017, which consisted of the 

development of an algorithm for the prediction of acidemia using fetal heartbeat obtained 

during childbirth, a model based on spectral analysis was developed and subsequently 

validated in two different data sets (Chapter 5). 

The dissertation ends in Chapter 6 with an overall discussion and main conclusions. 
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3. Entropy and compression capture different complexity features: 

the case of fetal heart rate 

 

Abstract 

Entropy and compression have been used to distinguish fetuses at risk of hypoxia from their 

healthy counterparts through the analysis of Fetal Heart Rate (FHR). Low correlation that was 

observed between these two approaches suggests that they capture different complexity 

features. This study aims at characterizing the complexity of FHR features captured by 

entropy and compression, using as reference international guidelines. Single and multi-scale 

approaches were considered in the computation of entropy and compression. The following 

physiologic-based features were considered: FHR baseline; percentage of abnormal long 

(%abLTV) and short (%abSTV) term variability; average short-term variability; and, number of 

acceleration and decelerations. All of the features were computed on a set of 68 intrapartum 

FHR tracings, divided as normal, mildly, and moderately-severely acidemic born fetuses. The 

correlation between entropy/compression features and the physiologic-based features was 

assessed. There were correlations between compressions and accelerations and 

decelerations, but neither accelerations nor decelerations were significantly correlated with 

entropies. The %abSTV was significantly correlated with entropies (ranging between −0.54 

and −0.62), and to a higher extent with compression (ranging between −0.80 and −0.94). 

Distinction between groups was clearer in the lower scales using entropy and in the higher 

scales using compression. Entropy and compression are complementary complexity 

measures. 

 

Introduction 

In developed countries, clinical decisions during labor are strongly based on Fetal Heart  

Rate (FHR) monitoring [1,2], and cardiotocography is the tool that is routinely used for FHR 

and uterine contractions recordings. FHR is generally assessed in beats per minute to evaluate 
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fetal well-being allowing for an obstetrician to intervene and prevent potentially irreversible 

fetal brain damage or death. Despite the importance of FHR monitoring, poor reproducibility 

of visual analysis of cardiotocograms have been reported [1,3], and consequently 

computerized FHR analysis and new signal processing and pattern recognition techniques 

have been developed [4–6]. In this setting, complexity analysis of FHR recordings remains one 

of the most challenging tasks. Actually, FHR during labor seems to be part of a complex 

system, where, most of the times, individual agents behave in unpredictable ways, and whose 

actions are connected, inducing changes to one another [7]. In cases like this, a high degree 

of uncertainty is known to be present, leading to a poor interrater agreement. As a result, 

uncritical adherence to conventional guidelines might become more harmful than beneficial 

[7] and other approaches may be more appropriate, such as nonlinear models and scan of 

patterns [8]. 

Complexity is a property of systems that quantifies the amount of structured information and 

may be assessed using both entropy and compression. Approximate entropy (ApEn) is a 

measure of complexity, introduced by Pincus, used to quantify the amount of regularity and 

the unpredictability of fluctuations over time-series [9]. Later, Sample Entropy (SampEn) was 

presented by Richman and Moorman with the same goal as ApEn to assess biological time 

series [10]. In the particular case of FHR analysis, ApEn and SampEn are the most used 

measures of complexity, and are known to be used in the detection of different pathologies. 

On the other hand, the Kolmogorov complexity of an object is the length of the shortest 

computer program that can output it. Although Kolmogorov complexity is a non-computable 

measure, compressors do a very good job approximating it. This approach has led to positive 

results in very different subjects, as in literature [11], music [12], and computer virus and 

Internet traffic analysis [13]. Despite the successful application of compressors  

to FHR tracings in pathology detection, they have been used only to a limited extent in the 

analysis of biological signals to date [6,14]. 

Although both entropy and compression were able to distinguish fetuses at risk of hypoxia 

from their healthy counterparts through the analysis of the FHR signal, their low correlation 

suggests that these measures capture different features [15]. Henrique’s work also suggested 
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further research in order to study how physiological features are captured by entropy and 

compression. 

The small computational time that is associated with both measures, namely with 

compressors, is particularly convenient if their inclusion in existing FHR monitoring systems is 

justified. Hopefully, the information on the fetus complexity obtained from the FHR signal 

may provide important auxiliary information to clinicians in fetal assessment, supporting 

clinical decisions. However, as entropy and compression seem to capture different features, 

it is important to study which features are captured by these measures. Following previous 

work’s suggestion [15], this study aims at characterizing the complexity FHR features that are 

captured by entropy and by compression having as reference international clinical guidelines, 

and exploring the multiscale approach for entropy and compression. 

 

Methods 

Sixty eight FHR intrapartum tracings consecutively selected from a pre-existing database of 

term singleton gestations, with at most 60 min of tracing, were analyzed according to FIGO 

(The International Federation of Gynecology and Obstetrics) guidelines [16] using Omniview-

SisPorto, version 4.0.9 [17] and the following FHR features, from the last 60 min of tracings, 

were registered: FHR baseline, which is the mean level of the most horizontal and less 

oscillatory FHR segments; percentage of abnormal short-term variability (%abSTV), 

subsequent FHR signals differing < 1 bpm; percentage of abnormal long term variability 

(%abLTV), FHR signals with difference between minimum and maximum values in surrounding 

1-min window < 5 bpm; mean short-term variability (mean STV); number of acceleration 

(Acc), i.e., abrupt increases in FHR above the baseline, of more than 15 bpm in amplitude, and 

lasting more than 15 s, but less than 10 min per minute; number of decelerations (Dec), i.e., 

decreases in the FHR below the baseline, of more than 15 bpm in amplitude, and lasting more 

than 15 s per minute. 

Newborn umbilical artery blood (UAB) pH was used as measure of fetal oxygenation, as it 

represents an active measure of fetal oxygenation. A low UAB pH indicates the presence of 
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acidemia occurring during labor and delivery, presenting a higher risk of perinatal death or 

neurological injuries from hypoxia. 

Of the 68 cases, 48 delivered fetuses with pH in the normal range, pH ≥ 7.20 (N), 10 delivered 

with UAB pH between 7.10 and 7.20, mildly acidemic fetuses (MA), and 10 moderate-to-

severe acidemic fetuses with UAB pH ≤ 7.10 (MSA). 

All of the tracings were resampled at a frequency of 2Hz after pre-processing, based on an 

algorithm described in previous studies [18]. A more detailed description of the data is 

presented elsewhere [5]. 

Spearman Correlation Coefficients were used to compare each complexity measure with 

different parameters. For entropy, two measures were used: Approximate Entropy (ApEn) 

and Sample Entropy (SampEn), and for each, 3 different tolerances were used (0.10, 0.15 and 

0.2). For compression, six different compressors were used, namely brotli, bzip2, gzip, paq8l, 

ppmd, and lzma. For the first five, the lowest and highest levels of compression were tested. 

The latter, lzma, only one level of compression was possible. Compression was measured as 

compression rate, the compressed size of the trace divided by the original size of the same 

trace. 

Regarding the physiological features that were captured by SisPorto, Spearman Correlation 

Coefficients between the percentage of abnormal short-term variability (%abSTV), mean 

value of the STV, baseline, percentage of abnormal long term variability (%abLTV), number of 

Accelerations (Acc) per 10 min, and Decelerations (Dec) per 10 min were computed. 

Spearman Correlation Coefficients between the physiological features and Compressors and 

between the physiological features and entropies were computed. 

Multiscale analysis was also performed to study the effect of entropy and compression, up to 

scale 20, in the three different groups (N, MA, and MSA). For entropy, tolerance 0.2 was used 

in both Approximate Entropy and Sample Entropy, while in compression paq8l, brotli, and 

gzip, with maximum level of compression were used. 
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Results 

The 68 tracings were acquired in singleton pregnancies and were over 32 to 60 min long 

(mean = 55, standard deviation = 7) with gestational age, for groups MSA (mean = 39.8, 

standard deviation = 1.3), MA (39.4, 1.6), and N (39.3, 2). Median time between the end of 

the tracings and the delivery was 0.0 min for all of the groups. The mean (standard deviation) 

Apgar score at the first minute was 6.2 (2.7) in MSA group, 8.5 (0.7) in MA group, and 8.8 (0.7) 

in N group. 

Correlations between Approximate and Sample entropies with different tolerances were 

almost perfect, as the lowest Spearman Correlation Coefficient was 0.918. All were significant 

at the 0.01 level (2-tailed). 

As for compression, six different compressors were applied, with five of them having two 

versions, one as the lowest level of compression (faster) and another with highest level of 

compression (slower). All of the Spearman Correlation Coefficients are over 0.819. All 

correlations are significant at the 0.01 level (2-tailed). 

Table 3.1 shows the correlations between different compressors (for distinct levels of 

compression) with entropies (with distinct tolerances). Paq8l_8 has the highest correlation 

with entropies with Spearman’s Coefficient over 0.549 (p < 0.01). The lowest correlation 

coefficients were found between Bzip2 and entropies, as values were under 0.143, with no 

statistically significant difference found.  
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Table 3.1. Spearman Correlation Coefficients between different entropies and compressors using different values 

for tolerance and levels of compression. (ApEn: Approximate entropy; SampEn: Sample Entropy). 

 ApEn (0.1) ApEn (0.15) SampEn (0.2) SampEn (0.1) SampEn 
(0.15) 

SampEn (0.2) 

Brotli_1 0.285* 0.267* 0.298* 0.341** 0.294* 0.331** 
Brotli_11 0.506** 0.486** 0.508** 0.543** 0.496** 0.531** 

Gzip1 0.407** 0.393** 0.424** 0.452** 0.406** 0.448** 
Gzip_9 0.242* 0.227 0.258* 0.285* 0.24* 0.281* 
Bzip2_1 0.093 0.072 0.105 0.143 0.09 0.132 
Bzip2_9 0.093 0.072 0.105 0.143 0.09 0.132 
Ppmd_2 0.256* 0.247* 0.28* 0.293* 0.247* 0.288* 

Ppmd_16 0.172 0.152 0.182 0.221 0.17 0.21 
Paq8l_1 0.531** 0.511** 0.538** 0.57** 0.52** 0.559** 
Paq8l_8 0.573** 0.549** 0.573** 0.606** 0.556** 0.592** 
Lzma_6 0.355** 0.356** 0.382** 0.366** 0.331** 0.36** 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

Table 3.2 describes the correlation between physiological features captured by SisPorto, 

using  

the FIGO guidelines. The highest correlations were found between %abSTV and Mean STV (r 

= −0.796), and also between %abSTV and %abLTV (r = 0.706). Note that %abSTV was the only 

variable significantly correlated with all others. 

Table 3.2. Spearman Correlation Coefficients between physiological features captured by SisPorto, using the The 

International Federation of Gynecology and Obstetrics (FIGO) guidelines [1]. (%abSTV: percentage of abnormal; 

mean STV: mean short-term variability; %abLTV: percentage of abnormal long; Acc: number of acceleration; Dec: 

number of decelerations). 

 %abSTV Mean STV %abLTV Baseline Acc Dec 

%abSTV 1      
Mean STV −0.796** 1     
%abLTV 0.706** −0.444** 1    
baseline 0.324** −0.201 0.27* 1   

Acc −0.480** 0.357** −0.651** −0.138 1  
Dec −0.375** 0.539** −0.101 −0.015 −0.035 1 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Both entropy and compression captured complexity in the tracings, as seen in Tables 3.3 and 

3.4, but compression was correlated with more physiologic features. Actually, there were 

significant correlations between compressors and number of accelerations and decelerations 

per minute, but neither were correlated with entropies. Despite that there was a significant 

fair correlation between entropies and %abSTV, its magnitude was rather median, when 

compared with compression (Tables 3.3 and 3.4). 
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Table 3.3. Spearman Correlation Coefficients between physiological features and Entropies. 

 ApEn 
(0.1) 

ApEn 
(0.15) 

ApEn 
(0.2) 

SampEn 
(0.1) 

SampEn 
(0.15) 

SampEn 
(0.2) 

%abSTV −0.557** −0.541** −0.561** −0.617** −0.586** −0.624** 
Mean 
STV 

0.34** 0.331** 0.353** 0.339** 0.302* 0.338** 

%abLTV −0.319** −0.321** −0.328* −0.451** −0.441** −0.459** 
baseline −0.268* −0.29* −0.284* −0.312** −0.309* −0.313** 

Acc 0.093 0.077 0.080 0.199 0.178 0.206 
Dec −0.024 −0.020 0.029 −0.058 −0.103 −0.072 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

Table 3.4. Spearman Correlation Coefficients between physiological features and Compressors. 

 Brotli_1 Brotli_11 Gzip_1 Gzip_9 Bzip2_1 Bzip2_9 Ppmd_2 Ppmd_16 Paq8l_1 Paq8l_8 Lzma_6 

%abSTV −0.886** −0.934** −0.908** −0.851** −0.796** −0.796** −0.838** −0.808** −0.935** −0.931** −0.882** 
Mean STV 0.783** 0.829** 0.794** 0.774** 0.729** 0.729** 0.774** 0.733** 0.8** 0.783** 0.839** 

%abLTV −0.622** −0.6** −0.625** −0.575** −0.532** −0.532** −0.591** −0.539** −0.646 −0.606 −0.556** 
baseline −0.236 −0.295* −0.249* −0.193 −0.168 −0.168 −0.288* −0.175 −0.3* −0.296* −0.359* 

Acc 0.564** 0.472** 0.542** 0.562** 0.574** 0.574** 0.548** 0.570** 0.527** 0.485** 0.432** 
Dec 0.410** 0.387** 0.397** 0.424** 0.441** 0.441** 0.487** 0.423** 0.366** 0.339** 0.544** 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 

A multiscale analysis of the tracings using either entropy or compression was also performed. 

Using Approximate Entropy with tolerance of 0.2, it was possible to distinguish MSA tracings 

from the other two groups up to scale 7. With Sample Entropy (0.2) the distinction was shown 

up to scale 4 (Figures 3.1 and 3.2). 

 

 

Figure 3.1. Multiscale analysis of tracings using Approximate entropy (ApEn) with tolerance 0.2. Plotted 95% 

Confidence Intervals of the mean for each group in each scale. (MA: mildly acidemic fetuses; MSA: moderate-to-

severe acidemic fetuses; N: the normal range). 
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Figure 3.2. Multiscale analysis of tracings using Sample entropy (SampEn) with tolerance 0.2. Plotted 95% 

Confidence Intervals of the mean for each group in each scale. 

 

Regarding compression, the opposite happens. Using all of the compressors, it was possible 

to distinguish groups N and MA in lower scales. Actually, paq8l distinguished them in all scales 

used. In all compressors, as scale increases, group N starts to diverge from group MSA, with 

bzip2 and gzip getting statistically significant results for scale higher than 2 and 7, respectively 

(Figures 3.3–3.6). 

 

 

Figure 3.3. Multiscale analysis of tracings using compressor Brotli with maximum level of compression. Plotted 

95% Confidence Intervals of the mean for each group in each scale. 
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Figure 3.4. Multiscale analysis of tracings using compressor Gzip with maximum level of compression. Plotted 

95% Confidence Intervals of the mean for each group in each scale. 

 

 

Figure 3.5. Multiscale analysis of tracings using compressor Paq8l with maximum level of compression. Plotted 

95% Confidence Intervals of the mean for each group in each scale. 

 

Figure 3.6. Multiscale analysis of tracings using compressor Bzip2 with maximum level of compression. Plotted 

95% Confidence Intervals of the mean for each group in each scale. 
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Discussion 

In this study, the different entropies and tolerances used in FHR analysis were highly 

correlated as were the different used compressors. This suggests that different entropy and 

compressor estimators are internally valid, i.e., despite some discrepancies in results, they 

seem to absorb similar information from the tracings. 

Despite the high correlation within similar complexity measures, the use of different values 

for certain parameters, such as the threshold r when using ApEn, might lead to different 

performances in the characterization of different fetal behavioral patterns or acute and 

chronic conditions [20]. Besides, different complexity measures seem to capture different 

information since correlation between entropies and compressors is low, with bzip2 being 

perfectly uncorrelated, while ppmd and gzip having some non-significant correlations with 

entropies. On the other hand, paq8l is moderately correlated. It is still not totally clear why 

this happens, but maybe some characteristics of each compressor algorithm may provide us 

some answers. For example, in order to optimize the compression process, bzip2 performs a 

block sort (reversible), and, consequently, does not take advantage from the initial structure 

(related with entropy). 

As to the main objective of this study of comparing the two different complexity measures, 

entropy and compression, with the FIGO international guidelines for fetal monitoring, we have 

observed a good correlation between percentage of abnormal short-term variability and 

entropy. However, compression has seemed to be the measure that has captured most of the 

information out of abnormal short-term variability. Higher values of entropy and compression 

mean that the presence of more complex structures and these structures were characteristic 

from healthier status. Tracings with lower percentage of abnormal STV were typical from 

healthy babies, which explains the negative correlation between the variables 

(compression/entropy and abnormal short-term variability). 

There is no uniform definition of STV. The one that is used in this work was defined in SisPorto 

as subsequent FHR signals differing < 1 bpm, closely following the FIGO guidelines, but other 

definitions exist in the literature, with no concrete agreement on which one should be used 

[21]. It would be interesting to see how compression behaves with these other variants of 
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STV. In an affirmative case, compression could be used as a universal measure to capture STV. 

Moreover, compression seems to capture more features from tracings since numbers of 

accelerations and decelerations per minute were correlated with compression but not with 

entropies. 

Actually, it is interesting to notice that the accelerations and decelerations did not correlate 

with any entropy but correlated with all complexities. As in Baumert’s study [22], our results 

suggest that acceleration and decelerations are not purely random but follow some 

deterministic structures that can be explored by compression algorithms. The use of different 

parameters in the entropies, considering for instance variants of the threshold such as fuzzy 

functions, might allow for capturing accelerations and decelerations. 

With multiscale analysis, it was observed that entropy and compression captured distinct 

clinical information from the tracings. Entropy distinguishes MSA tracings from the other two 

groups based on some features that compression cannot capture, and, on the other hand, 

compression distinguishes groups N and MA possibly by using all SisPorto features. Probably, 

entropy is correlated with some other features (such as the dynamics) of the physiological 

data that is not captured by SisPorto. As in Voss study [23] these results show that several 

nonlinear indices should be combined in order to improve the performance of FHR analysis. 

Moreover, lower scales in entropy and higher scales in compression can distinguish groups 

(MSA, MA and N). Compression is better correlated with physiological features that are 

captured by SisPorto system, and, in fact, these physiological features also do not distinguish 

groups at scale one. On the other hand, entropy is able to distinguish groups in lower scales, 

probably because entropy is correlated with some other features, such as the dynamics of 

the physiological data that are not captured by SisPorto. Notice that, in higher scales, the 

averaging of the points can justify the absence of these dynamics, lowering the ability to 

distinguish the classes. 

One limitation of this work is the low number of cases, particularly in acidemic groups. This is 

particularly due to the low prevalence of these cases, which limits the obtention of datasets 

with higher sample size. It would be interesting, as a future work, and with a bigger dataset, 

to try to build a predictive model and evaluate how much better would entropy/compression 

plus SisPorto features perform compared to SisPorto features alone. 
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Our results enhance the idea that entropy and compression are complementary complexity 

measures. More research in this area should be done, regarding higher scale values (with long 

duration tracings), and the possibility of building a model combining both measures. 

 

Acknowledgments:  

João Monteiro-Santos acknowledges the support of the Digi-NewB project funded from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 689260.  
Luís Antunes, Mohammad Nozari and Cristina Costa-Santos acknowledge the support of Project “NanoSTIMA: Macro-to-Nano Human 
Sensing: Towards Integrated Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-000016” is financed by the North 
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European 
Regional Development Fund (ERDF).  
Hernâni Gonçalves acknowledges the support by ERDF through the operation POCI-01-0145-FEDER-007746 funded by the Programa 
Operacional Competitividade e Internacionalização – COMPETE2020 and by National Funds through FCT - Fundação para a Ciência e a 
Tecnologia within CINTESIS, R&D Unit (reference UID/IC/4255/2013).  

 

Author Contributions:  

João Monteiro-Santos and Cristina Costa-Santos substantial contribution to conception and design; João Monteiro-Santos, Cristina Costa-

Santos, João Bernardes and Hernâni Gonçalves for interpretation of data; Mohammad Nozari analyzed data; João Bernardes, Hernâni 

Gonçalves, Luís Antunes, Cristina Costa-Santos revise critically for important intellectual content; João Monteiro-Santos and Cristina Costa-

Santos wrote the paper. 

Conflicts of Interest:  

João Bernardes has been involved in the development of the commercially available SisPorto system for FHR monitoring. 

 

 

References 

[1]. Ayres-de-Campos, D.; Bernardes, J.; Costa-Pereira, A.; Pereira-Leite, L. Inconsistencies in classification by experts 

of cardiotocograms and subsequent clinical decision. Br. J. Obstet. Gynaecol. 1999, 106, 1307–1310. 

[2]. Bernardes, J.; Ayres-de-Campos, D. The persistent challenge of fetal heart rate monitoring. Curr. Opin. Obstet. 

Gynecol. 2010, 22, 104–109. 

[3]. Bernardes, J.; Costa-Pereira, A.; Ayres-de-Campos, D.; van Geijn, H.P.; Pereira-Leite, L. Evaluation of interobserver 

agreement of cardiotocograms. Int. J. Gynaecol. Obstet. 1997, 57, 33–37. 

[4]. Nunes, I.; Ayres-de-Campos, D.; Figueiredo, C.; Bernardes, J. An overview of central fetal monitoring systems in 

labor. J. Perinat. Med. 2013, 41, 93–99. 

[5]. Goncalves, H.; Rocha, A.P.; Ayres-de-Campos, D.; Bernardes, J. Linear and nonlinear fetal heart rate analysis of 

normal and acidemic fetuses in the minutes preceding delivery. Med. Biol. Eng. Comput. 2006, 44, 847–855. 



 

 
39 

[6]. Ferrario, M.; Signorini, M.G.; Magenes, G. Complexity analysis of the fetal heart rate variability: Early identification 

of severe intrauterine growth-restricted fetuses. Med. Biol. Eng. Comput. 2009, 47, 911–919. 

[7]. Plsek, P.E.; Greenhalgh, T. Complexity science: The challenge of complexity in health care. BMJ 2001, 323, 625–

628. 

[8]. Wilson, T.; Holt, T.; Greenhalgh, T. Complexity science: Complexity and clinical care. BMJ 2001, 323,  

685–688. 

[9]. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–

2301. 

[10]. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. 

Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. 

[11]. Cilibrasi, R.; Vitanyi, P.M.B. Clustering by compression. IEEE Trans. Inf. Theory 2005, 51, 1523–1545. 

[12]. Cilibrasi, R.; Vitányi, P.; Wolf, R.D. Algorithmic clustering of music based on string compression. Comput. Music J. 

2004, 28, 49–67. 

[13]. Wehner, S. Analyzing worms and network traffic using compression. J. Comput. Secur. 2007, 15, 303–320. 

[14]. Santos, C.C.; Bernardes, J.; Vitanyi, P.M.B.; Antunes, L. Clustering fetal heart rate tracings by compression. In 

Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems, Salt Lake City, UT, USA, 22–23 

June 2006; IEEE Computer Society: Washington, DC, USA, 2006; pp. 685–690. 

[15]. Henriques, T.; Goncalves, H.; Antunes, L.; Matias, M.; Bernardes, J.; Costa-Santos, C. Entropy and compression: 

Two measures of complexity. J. Eval. Clin. Pract. 2013, 19, 1101–1106. 

[16]. Ayres-de-Campos, D.; Spong, C.Y.; Chandraharan, E.; Panel, F.I.F.M.E.C. Figo consensus guidelines on intrapartum 

fetal monitoring: Cardiotocography. Int. J. Gynaecol. Obstet. 2015, 131, 13–24. 

[17]. Ayres-de-Campos, D.; Sousa, P.; Costa, A.; Bernardes, J. Omniview-sisporto® 3.5—A central fetal monitoring 

station with online alerts based on computerized cardiotocogram+ST event analysis. J. Perinat. Med. 2008, 36, 

260–264. 

[18]. Goncalves, H.; Rocha, A.P.; Ayres-de-Campos, D.; Bernardes, J. Internal versus external intrapartum fetal heart rate 

monitoring: The effect on linear and nonlinear parameters. Physiol. Meas. 2006, 27, 307–319. 

[19]. Ayres-de-Campos, D.; Rei, M.; Nunes, I.; Sousa, P.; Bernardes, J. Sisporto 4.0—Computer analysis following the 

2015 figo guidelines for intrapartum fetal monitoring. J. Matern. Fetal Neonatal Med. 2017, 30, 62–67. 

[20]. Goncalves, H.; Rocha, A.P.; Ayres-de-Campos, D.; Bernardes, J. Frequency domain and entropy analysis of fetal 

heart rate: Appealing tools for fetal surveillance and pharmacodynamic assessment of drugs. Cardiovasc. Hematol. 

Disord. Drug Targets 2008, 8, 91–98. 

[21]. Cesarelli, M.; Romano, M.; Bifulco, P. Comparison of short-term variability indexes in cardiotocographic fetal 

monitoring. Comput. Biol. Med. 2009, 39, 106–118. 

[22]. Baumert, M.; Baier, V.; Voss, A.; Brechtel, L.; Haueisen, J. Estimating the complexity of heart rate fluctuations—

An approach based on compression entropy. Fluct. Noise Lett. 2005, 5, L557–L563. 

[23]. Voss, A.; Schulz, S.; Schroeder, R.; Baumert, M.; Caminal, P. Methods derived from nonlinear dynamics for 

analysing heart rate variability. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 277–296. 



 

 
40 

 

  



 

 
41 

COMPLEXITY OF 

CARDIOTOCOGRAPHIC 

SIGNALS AS A 

PREDICTOR OF LABOR 

 

JOÃO SANTOS, CRISTINA SANTOS, TERESA HENRIQUES, 

JOÃO BERNARDES, INÊS NUNES, CÉLIA COSTA 

ENTROPY 

SPECIAL ISSUE “ASSESSING COMPLEXITY IN PHYSIOLOGICAL 

SYSTEMS THROUGH BIOMEDICAL SIGNAL ANALYSIS 

JANUARY 2020 

  



 

 
42 

  



 

 
43 

4. Complexity of Cardiotocographic Signals as A Predictor of Labor 

 

Abstract 

Prediction of labor is of extreme importance in obstetric care to allow for preventive 

measures, assuring that both baby and mother have the best possible care. In this work, the 

authors studied how important nonlinear parameters (entropy and compression) can be as 

labor predictors. Linear features retrieved from the SisPorto system for cardiotocogram 

analysis and nonlinear measures were used to predict labor in a dataset of 1072 antepartum 

tracings, at between 30 and 35 weeks of gestation. Two groups were defined: Group A—

fetuses whose traces date was less than one or two weeks before labor, and Group B—fetuses 

whose traces date was at least one or two weeks before labor. Results suggest that, compared 

with linear features such as decelerations and variability indices, compression improves labor 

prediction both within one (C-Statistics of 0.728) and two weeks (C-Statistics of 0.704). 

Moreover, the correlation between compression and long-term variability was significantly 

different in groups A and B, denoting that compression and heart rate variability look at 

different information associated with whether the fetus is closer to or further from labor 

onset. Nonlinear measures, compression in particular, may be useful in improving labor 

prediction as a complement to other fetal heart rate features. 

 

Introduction 

Worldwide, approximately 15 million infants are born preterm (after less than 37 completed 

weeks of gestation) each year [1]. Over one-third of the world’s estimated 3 million annual 

neonatal deaths are related to preterm birth [2–4]. Even after surviving the neonatal period, 

infants born preterm are at increased risk of delayed childhood development and low 

economic productivity [5]. Therefore, interventions to reduce the preterm birth rate are of 

utmost importance. 
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Clinical decisions during labor and delivery in developed countries are strongly based on 

cardiotocography (CTG) [6–8], which has been one of the most used tools in assessing fetal 

well-being since the early ’60s. CTG combines fetal heart rate (FHR), obtained using a Doppler 

ultrasound probe or electrocardiogram electrodes, with uterine contractions (UC) 

measurements, obtained using an abdominal or intra-uterine pressure transducer. Both 

provide relevant information about the fetal condition and early detection of preterm labor 

and abnormal labor progress [7,9,10]. 

Despite the importance of assessing the well-being of the fetus and mother, poor agreement 

among physicians in the analysis and classification of CTGs is still a problem, even among 

experienced obstetricians, resulting in a high false positive rate [6,11,12]. In daily practice, 

FHR and UC are displayed on a printout or monitor to be visually interpreted by a clinician. 

Even when following specific, well-accepted guidelines (for example, the International 

Federation of Obstetrics and Gynecology (FIGO), associated with high sensitivity and low 

specificity [13]), interpretation of CTG relies on the clinician’s opinion and daily practice. This 

leads to a chance that adherence to conventional guidelines could be more harmful than 

beneficial [14]. 

The beat-to-beat variation of FHR reflects the influence of the fetus’ autonomic nervous 

system (ANS) and its components (sympathetic and parasympathetic) in the heart. Therefore, 

it is an indicator of the fetal pathophysiological status, which can be used in the assessment 

of fetal well-being [15] and its well-known influence on labor onset and progression [16]. A 

certain level of unpredictable fetal heart rate variability (fHRV) reflects sufficient capabilities 

of the organism in search of optimal behavior. Reduced fHRV is linked with limited capabilities 

and mental disorders [17]. The linear modeling approach is used to quantify sympathetic and 

parasympathetic control mechanisms and their balance through the measurement of spectral 

low- and high-frequency components. However, it has been shown that not all information 

carried by beat-to-beat variability can be explained by these components [18]. For this 

matter, in the past couple of decades, and with the fast development of computation, new 

signal processing and pattern recognition methodologies (namely entropy and compression) 

have been developed and applied to many different fields, including the analysis of fHRV 
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[19,20]. These approaches can reveal relevant clinical information not exposed by temporal 

or frequency analysis [21]. 

Systems, such as Omniview SisPorto [22–24] and NST-Expert, which later became CAFE [25], 

can automatically deal with CTG assessment and then overcome the limitations of the visual 

assessment of CTGs mentioned above, but clinical judgment remains highly dependent on 

CTG analysis [26]. Since all FHR processing and analysis in these systems is based on 

morphological features provided by FIGO guidelines, they lack the integration of nonlinear 

indices that would allow them to be optimized. 

The ability to predict preterm labor can improve the well-being of both fetus and mother. The 

successful prediction of preterm labor is an essential part of a decision support system for 

physicians to implement measures that adequately reduce related fetal morbidity and 

mortality (like the administration of corticosteroids to the mother in order to accelerate lung 

maturation and therefore decrease the risk of respiratory distress in the newborn). 

The main objective of this work is to evaluate how useful nonlinear parameters, namely 

entropy and compression, can be as labor predictors by using antepartum FHR and UC traces 

one or two weeks before labor. 

 

Methods 

Nonlinear Methods 

Compression 

The Kolmogorov Complexity (KC) [27] is defined as the function mapping a string 𝑥 in an 

integer, bounded to a Turing Machine 𝜙. The KC reflects the increase in new patterns along a 

given sequence. In this case, the word complexity refers to the algorithmic complexity, 

defined according to information theory, as the length of the shortest program p able to print 

the string 𝑥. 
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𝐾𝐶𝜙(𝑥) = {
𝑚𝑖𝑛{|𝑝|: 𝜙(𝑝) = 𝑥},   𝑖𝑓 𝜙(𝑝) = 𝑥 
∞                          𝑖𝑓 𝑝 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑡,

 (1) 

 

For a random string, the output of the KC function will be the length of the original string, as 

any compression effort will end in information loss. On the other hand, the more reoccurring 

patterns, the less complex the string is. 

Although this concept is objective, its applicability is limited by the fact that KC is not 

computable. Compressors are a close upper-bounded approximation of the KC function. For 

over 30 years, data compression software has been developed for data storage and 

transmission efficiency purposes. More recently, compression has been utilized in research 

fields like music, literature, internet traffic, and health [28–30]. 

In this work, we will assess the algorithmic complexity of FHR and UC signals by applying the 

Gzip compressor. Gzip [31] combines two classical algorithms—Lempel–Ziv (LZ77) [32], a 

dictionary-based algorithm, and Huffman scheme [33]—by encoding sequences of high 

probability using shorter bits in comparison with lower probability strings, where longer bits 

are used. The amount of compression obtained depends on the input file size and the 

distribution of common substrings. 

The idea is that for a given time series, the compression ratio (CR), i.e., the compressed size 

of the file divided by its original size, can be used to assess the complexity. A random series 

will have CR close to 1, whereas a series full of patterns will be highly compressible and, 

therefore, the CR will be close to 0. The Gzip with maximum compression levels and values 

presented represents the percentage of CR. 

 

Entropy 

In 1991, Pincus developed the Approximate Entropy (ApEn), a regularity statistic tool used to 

quantify a system’s complexity based on the notion of entropy [34]. The ApEn measures the 
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irregularity of time series and is defined as the logarithmic likelihood that the patterns of a 

time series that are close to each other will remain close when longer patterns are compared. 

Later, in 2000, Richman and Moorman [35] proposed Sample Entropy (SampEn). Similar to 

ApEn, the SampEn measures time series irregularity. However, it does so with some major 

advantages: 1) self-matches are not counted, reducing bias; 2) it agrees much better than 

ApEn statistics with the theory for random numbers with known probabilistic character over 

a broad range of operating conditions; 3) the conditional probabilities are not estimated in a 

template manner. Instead, they are computed directly as the logarithm of conditional 

probability rather than from the ratio of the logarithmic sums, showing relative consistency 

in cases where ApEn does not [36]. 

To use either ApEn or SampEn, decisions on two different parameters, 𝑚, and 𝑟, have to be 

made. The 𝑚 parameter is the embedding dimension, i.e., the length of sequences to be 

compared, while the tolerance parameter 𝑟 works as a similarity threshold. Two patterns are 

considered similar if the difference between any pair of corresponding measurements is less 

than or equal to 𝑟. Values of 0.1, 0.15, or 0.2 standard deviations (SD) are usually used for 

parameter 𝑟, while m is mostly considered as 2 [37]. In this work, tolerance of 0.1 SD and an 

embedding dimension of 2 were used. 

 

Data 

The FHR data used for this study were from a retrospective cross-sectional study [38]. Each 

FHR trace corresponds to distinct fetuses from a singleton pregnancy. The selected traces 

were acquired between July 2005 and November 2010 during hospitalization in a tertiary care 

university hospital. All traces were acquired at least 48 h before delivery to guarantee they 

included no labor time. Furthermore, the traces included were at least 20 min long, during 

which the signal quality was over 80%, and the signal loss was less than 33%. 

The cardiotocographic signals were acquired using an external ultrasound sensor applied to 

the maternal abdomen. The ultrasound signal is filtered, envelope rectified and digitized at a 

sampling rate of 800 Hz with a 12-bit precision [39]. Then, an autocorrelation function is used 
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to calculate the heart period and the similarity between pulses of two consecutive heartbeats, 

as described in [40]. Via the digital outputs of the fetal monitors, resulting traces were 

analyzed using the Omniview SisPorto® 3.7 system [23] at a sampling rate of 4 Hz (Figure 4.1). 

 

 

Figure 4.1. Example of a fetal heart rate (FHR) time series. 

 

SisPorto features used in this paper are summarily described in Table 4.1. Note that the 

SisPorto system does not perform any average or reduction in FHR/UC signals. 

The 1072 traces selected ranged from 30 to 35 gestational weeks. Two groups were defined: 

Group A—fetuses whose traces date was less than two weeks before labor, and Group B—

fetuses whose traces date was at least two weeks before labor. Physiological fetal and 

maternal features, such as maternal age (mAge) and baby gender, as well as some tracing 

characteristics such as trace duration and signal quality, were compared in both groups. 

Linear indices for uterine contraction analysis comprised of mean_UC (median of UC mean 

from 10min nonoverlapping blocks), sd_UC (median of UC standard deviation from 10min 

nonoverlapping blocks) and cv_UC (coefficient of variability of UC). 

Two complexity measures, Gzip and SampEn, were considered in this work. Because the value 

of these measures depends on the trace size, each tracing was split into non-overlapping 

blocks of 10 min. Both Gzip and SampEn were computed for each block. Then, the median 

value of CR and SampEn for each fetus was used. Both complexity measures were calculated 

for FHR (Gzip_FHR and SampEn_FHR) and UC signals (Gzip_UC and SampEn_UC). 
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Table 4.1. Description of SisPorto features [22,24]. 

SisPorto Variable Description 

Basal line FHR 
mean level of the most horizontal and less oscillatory FHR segments, in the absence of fetal movements 

and uterine contraction (UC), associated with periods of fetal rest, estimated via a complex algorithm 

baseline approximation of basal FHR to long-term FHR fluctuations using running averaging 

number of accelerations 
(nAccel) 

number of increases in FHR over the baseline lasting 15–120 s and reaching a peak of at least 15 bpm in 
60 min 

number of contractions 
(nContr) 

number of periods in 60 min, lasting a maximum of 254 s, where an upward slope exceeding 17 s was 
detected reaching a peak lasting more than 90 s, followed by a downward slope exceeding 17 s 

number of mild 
decelerations (mDec) 

number of decreases in FHR under the baseline lasting 15–120 s, with a minimum amplitude of 15 bpm 
in 60 min 

number of intermediate 
decelerations (iDec) 

number of decreases in FHR under the baseline lasting 120–300 s, with a minimum amplitude of 15 
bpm in 60 min 

number of prolonged 
decelerations (pDec) 

number of decelerations lasting more than 300 s in 60 min 

average short-term 
variability (avSTV) 

mean difference between adjacent FHR signals at 4 Hz on the fetal monitor, after removal of adjacent 
signals that differ >15 bpm 

abnormal short-term 
variability (abSTV) 

percentage of subsequent FHR signals differing <1 bpm 

average long-term 
variability (avLTV) 

mean difference between max and min FHR in a 1 min sliding window, in segments free of accelerations 
or deceleration 

abnormal long-term 
variability (abLTV) 

percentage of FHR signals with a difference between minimum 
and maximum values in a surrounding 1 min window <5 bpm 

 

Statistical Analysis 

Normality for continuous variables was evaluated by visual inspection of the frequency 

distribution (histogram). For normally distributed variables, the values for each group are 

presented as mean ± SD, and an independent samples t-test was performed. On the other 

hand, for skewed continuous variables, the values are presented as median (minimum-

maximum), and the Mann–Whitney test was used to compare the two groups. The categorical 

variables were compared in the two groups applying the Chi-Square test or Fisher’s exact test 

as applicable. 

Logistic regression, using Hosmer–Lemeshow to test the goodness of fit, was used to predict 

which fetuses will be born preterm in the next two weeks. Variables were selected using 

Wald’s backwards method. The concordance statistic (C-statistic), measured by the area 

under the receiver operating characteristic curve, was computed to assess the model’s 

discrimination. 

Akaike Information Criterion (AIC), 𝐴𝐼𝐶 = 2𝑘 − 2log (𝐿), where k is the number of 

parameters and L the maximum value of the likelihood function, was used for model 

comparison, where a lower result suggests a better model. 
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Statistical analysis was performed with IBM SPSS Statistics for Windows, version 24 (IBM, 

Armonk, NY, USA). 

 

Results 

A total of 1072 antepartum tracings were used, 96 of which were born in the following two 

weeks (Group A). The main clinical characteristics of the group in which fetuses were born in 

the next two weeks (Group A) and the group in which they were not (Group B) are presented 

and compared in Table 4.2. Note that no differences were found between the groups for 

these variables. 

Table 4.2. Fetal and maternal features from Group A–fetuses whose traces date was less than two weeks before 

labor, and Group B–fetuses whose traces date was at least two weeks before labor. 

 
Group A (n = 96) 

Median (min-max), 
Mean ± SD or N (%) 

Group B (n = 976) 
Median (min-max), 
Mean ± SD or N (%) 

P-Value 

Trace duration (min) 25.56 (14.82–67.07) 25.18 (11.28–96.31) 0.905 

Gestational age at delivery (weeks) 36.58 ± 1.12 38.92 ± 1.20  

Maternal age (years) 31 (16–43)  31 (15–52) 0.291  

Cesarean section 31 (32.3) 321 (32.9) 0.067  

Baby presentation  
(cephalic) 

90 (93.8) 918 (94.1) 0.524  

Gender (male) 49 (51) 506 (51.8) 0.881  

Signal quality (%) 97 (80–100) 96 (80–100) 0.105  

Signal loss (%) 3 (0–20) 4 (0–21) 0.106  

 

SisPorto features were also compared between the two groups (Table 4.3). Statistical 

significance was found with variables iDec (p < 0.001), which was lower in fetuses who would 

be born in the next two weeks, and average long-term variability (abLTV), which was higher 

in fetuses who would be born in the next two weeks (p = 0.038). 

Furthermore, while SampEn was not able to find differences between the traces from babies 

in the two groups with FHR and UC signals, Gzip was (p = 0.024 for FHR, p = 0.013 for UC), 

being lower in fetuses who would be born in the next two weeks (Group A) for FHR signals, 

while the opposite happened for UC signals. The standard deviation of UC was also 

significantly higher for Group A (p = 0.020). 
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Table 4.3. SisPorto and nonlinear features from Group A–fetuses whose traces date were less than two weeks 

before labor, and Group B –fetuses whose traces date were at least two weeks before labor. 

 
Group A (n = 96) 

Median (min-max), 
Mean ± SD or N (%) 

Group B (n = 976) 
Median (min-max), 
Mean ± SD or N (%) 

P-Value 

Basal line 133 (108–154) 134 (105–168) 0.137 

Baseline 135.5 (114–160) 137 (105–169) 0.237 

nAccel 5 (0–13) 5 (0–31) 0.188 

nContr 1 (0–15) 1 (0–15) 0.200 

mDec 0 (0–5) 0 (0–13) 0.787 

iDec (% of no iDec) 89 (92.71) 962 (98.57) <0.001 

pDec (% of no pDec) 96 (100) 973 (99.69) 1.000 

abSTV 50.49 ± 8.83 50.27 ± 8.42 0.805 

avSTV 14.48 ± 3.48 14.55 ± 3.45 0.839 

abLTV 1 (0–35) 0 (0–38) 0.038 

avLTV 15.85 (8–33) 16.8 (0–40) 0.229 

mean_UC 172.504 ± 103.426 166.663 ± 101.650 0.592 

sd_UC 56.350 ± 42.403 45.768 ± 35.096 0.020 

cv_UC 0.424 ± 0.347 0.369 ± 0.328 0.121 

Gzip_UC 6.089 ± 1.769 5.664 ± 1.568 0.013 

SampEn_UC 0.547 ± 0.306 0.595 ± 0.287 0.117 

Gzip_FHR 11.559 ± 0.995 11.758 ± 0.878 0.024 

SampEn_FHR 0.670 ± 0.159 0.693 ± 0.195 0.265 

 

Logistic regression, including all relevant variables (p < 0.05)—Gzip_FHR, Gzip_UC, sd_UC, 

iDec, a week of CTG (wCTG), and abLTV—was then performed using a backward selection 

model. The model obtained included the variables Gzip, iDec and a week of CTG (wCTG). Also, 

interactions between Gzip and wCTG were considered but found to be non-significant. Results 

from the logistic regression can be found in Table 4.4. 

 

Table 4.4. Logistic regression for labor prediction in two weeks or less. 

 B P-value Exp(B) 95% CI 

Constant −20.639 <0.001   

wCTG 0.674 <0.001 1.962 1.489–2.584 

Gzip_FHR −0.341 0.005 0.711 0.560–0.902 

iDeca 1.782 <0.001 5.950 2.217–15.918 
a No iDec was set as reference instance. 

 

From this logistic regression model, abLTV and UC variables were removed from the initial set 

of predictors made by the model, and a C-statistic of 0.704 was obtained, with a 95% 

confidence interval range of 0.651–0.758. Also, the AIC obtained for this model was 603.763. 

The process was repeated considering all relevant physiological and linear features but 
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without Gzip. This model, now without Gzip but with abLTV, achieved an AIC of 605.5 and a 

C-statistic of 0.691 (0.639–0.742). 

The groups were also redefined and tested again. The same analysis as before was performed, 

except Group A consisted of fetuses who were born less than one week (instead of two weeks) 

from trace acquisition (n = 27, all preterm) and Group B consisted of all other fetuses (n = 

1045, term and preterm babies), which were born as term and preterm babies. SisPorto and 

nonlinear features were compared between the groups, as carried out in our previous 

analysis (results in Appendix). 

The logistic regression results are shown in Table 4.5. Note that the same variables were 

included in the logistic regression. 

Table 4.5. Logistic regression for labor prediction in one week or less. 

 B P-value Exp(B) 95% CI 

Constant −6.679 0.330   

wCTG 0.317 0.097 1.373 0.944–1.997 

Gzip_FHR −0.573 0.010 0.564 0.364–0.873 

iDec 2.780 <0.001 16.112 5.205–49.874 

 

This model achieved an AIC of 235.3 and a C-statistic of 0.728 (0.619–0.836), which is a small 

improvement compared with the first one described in this paper. 

In Table 4.6, Spearman’s correlation coefficient between Gzip and different physiological 

measures of variability was calculated. Moreover, the same coefficient was calculated for 

each group. Statistically significant results were found for abLTV and avLTV for two weeks 

labor prediction. 

Table 4.6. Spearman’s correlation coefficient and respective 95% confidence interval (CI) between Gzip_FHR and 

short- and long-term variabilities given by SisPorto. Confidence intervals were calculated using bootstrapping. 

Bold means significant differences between groups. 

  Two Weeks Prediction One Week Prediction 

 Total Group A Group B Group A Group B 

abSTV 
−0.524 (-0.564; -

0.481) 
−0.636 (−0.733; 

−0.501) 
−0.512 (−0.565; 

−0.463) 
−0.694 (−0.867; 

−0.370) 
−0.515 (−0.560; 

−0.468) 

avSTV 0.500 (0.452; 0.541) 0.596 (0.442; 0.720) 0.489 (0.437; 0.539) 0.698 (0.410; 0.864) 0.492 (0.444; 0.539) 

abLTV 
−0.562 (−0.602; 

−0.520) 
−0.722 (−0.807; 

−0.601) 
−0.541 (−0.589; 

−0.495) 
−0.760 (−0.893; 

−0.489) 
−0.551 (−0.596; 

−0.509) 

avLTV 0.765 (0.737; 0.792) 0.885 (0.818; 0.924) 0.751 (0.718; 0.780) 0.874 (0.663; 0.970) 0.760 (0.730; 0.789) 
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Discussion 

This study enhances the importance of the inclusion of nonlinear indices in clinical practice. 

In particular, the results suggest that the Gzip compression ratio, a measure of the time series 

complexity, may improve the predictability of labor onset when applied to FHR and UC signals. 

The main objective of this work was to predict labor within two weeks. Both groups included 

preterm and term babies. In Group A, 46 of 90 were term babies, born between 36 and 37 

weeks of gestational age; while in Group B, 44 of 976 fetuses were preterm. No statistical 

significance was found between term and preterm cases in Group A or Group B. 

The information captured by compression relates to the information comprised of other 

physiological features, such as short and long-term variabilities [41]. In our study, Gzip_FHR 

has a Spearman’s correlation coefficient of −0.524 and 0.5 with abSTV and avSTV’s 

variabilities, respectively. These results contrast with a previous study [41] where correlation 

values were much higher in absolute value (−0.851 and 0.774). Some different characteristics 

of the datasets used in each study can explain these differences. On the one hand, the dataset 

of our study was acquired in an antepartum setting, while the data from the previous study 

were recorded during the intrapartum. In line with this, the difference observed in the two 

studies suggests that compression looks at physiological regulatory mechanisms that differ 

between both settings. On the other hand, another possible explanation is the different 

sampling rates used in the two studies (4 Hz here, versus 2 Hz in the other study). This may 

indicate that some information is lost when using 2 Hz. This inkling is supported by the results 

of Gonçalves et al. [42], who found nonlinear differences between both sampling rates. 

However, the study of Gonçalves et al. [42] is an intrapartum study, and the tolerance 

parameter for entropy was computed using an automatic threshold proposed by Lu [43]. A 

multiscale analysis of scale two would be affected by the latter hypothesis (as it mimics a 2 

Hz sampling rate), but in our study, no difference was found. Govindan et al. [44] suggested 

a different approach, modifying the definition of sample entropy using a time delay. Future 

studies should compare several methods to study the oversampling question. 

When factoring by group, we found significant differences in correlations between Gzip and 

abLTV and avLTV (Table 4.6). Different studies [45–48] found HRV changes, such as variability 
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increase and pattern formation throughout fetal maturation, captured by nonlinear indices. 

Here, different patterns arise in the two groups presented, meaning that compression attains 

different information from HRV when compared with usual metrics. However, no statistical 

significance was found in one-week labor prediction analysis. We believe this might be due to 

low statistical power, as the number of individuals in Group A was 27, making confidence 

intervals too wide. 

Some papers [49,50] indicate different gender development throughout gestation and 

suggest taking this into account in model creation. Though it was taken into consideration, no 

significant results were found. 

The mean compression ratio (instead of median) of the tracings’ block was also considered, 

and the results obtained were similar. These results suggest robustness of compression 

regarding skewness and outliers, as well as low intra-tracing variability. Furthermore, 

multiscale analysis [51] was also performed both for SampEn and Gzip up to five scales, since 

we were using intervals of 10 min (~1440 data points), but no improvement was found. 

Two different definitions for the groups were tested. The same analysis as before was 

performed, considering Group A as babies who were born preterm less than two weeks, and 

then less than one week, from trace acquisition (n = 27). As shown in Tables 4 and 5, the 

logistic regression included the same variables. A small improvement was verified when 

considering one week, compared with two weeks, from labor. These results reinforce the 

stability of compression when predicting labor time. 

Nonlinear FHR features recognition is a problem in the clinical community because clinicians 

do not always know how to interpret it. Although entropy has been associated with the 

activity of central nervous system regulation [52,53], there are still no direct associations 

between compression and the fetus’ physiology. Compression looks for patterns in the series, 

and a healthy fetus is linked with a high compression ratio (a more chaotic signal leads to 

fewer patterns that are able to be compressed). In contrast, an unhealthy fetus, under the 

response of its regulatory system, creates a heart rate signal with more patterns, leading to a 

lower compression ratio. There is evidence that sympatho-vagal activity, and probably also 

central nervous system activity, are associated with the onset and progression of labor, 
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namely via sympathetic activation and vagal inhibition mechanisms [16]. A continuous 

decrease in the sympathetic stress response during the last weeks before labor was also 

reported [54], contrary to a stable baseline sympathetic level. Being able to find links between 

these events and nonlinear indices is key for medical acceptance of these tools in daily 

practice. Therefore, it is imperative that a more thorough analysis of the FHR changes 

captured by compression is carried out in particular. 

These results are relevant since an early prediction of labor as a decision support system for 

physicians can improve both fetus and mother assessment and care. In particular, being 

capable of predicting preterm labor is of extreme importance, as major risks to fetus and 

mother are associated with it. 

This work has some limitations. The number of preterm cases is small, considering the week 

of the CTG variable is included. Because of this, only fetuses between weeks 30 and 35 of 

gestational age were selected, limiting the interpretability of the results. Although all the 

cases were hospitalized, no knowledge of the hospitalization cause is known. 

Future studies should validate these models in larger datasets and, if possible, test them in 

different settings, such as during hospitalization and regular appointments. 

 

Conclusions 

Prediction of labor is of extreme importance since physicians will be able to take preventive 

measures to ensure that both baby and mother will be as prepared as possible. In this work, 

it was shown that nonlinear measures, compression in particular, can improve labor 

prediction. 
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Appendix 

Table 4.A1. SisPorto and nonlinear features. from Group A—fetuses whose traces date were less than one week 

before labor, and Group B—fetuses whose traces date were at least one week before labor. 

 
Group A (n = 27) 

Median (min-max), 
Mean ± SD or N (%) 

Group B (n = 1045) 
Median (min-max), 
Mean ± SD or N (%) 

P-Value 

Baseline 134 (123–160) 137 (105–169) 0.507 

Basal line 130 (122–146) 134 (105–168) 0.234 

nAccel 5 (0–11) 5 (0–31) 0.714 

nContr 1 (0–11) 1 (0–15) 0.246 

mDec 0 (0–2) 0 (0–13) 0.175 

iDec (% of no iDec) 22 (81.48) 1029 (98.47) <0.001 

pDec (% of no pDec) 27 (100) 1042 (99.71) 1.000 

abSTV 52.89 ± 8.95 50.22 ± 8.44 0.105 

avSTV 13.78 ± 3.65 14.57 ± 3.44 0.240 

abLTV 3 (0–31) 0 (0–38) 0.012 

avLTV 14.7 (8–33) 16.8 (0–40) 0.126 

mean_UC 161.167 ± 138.37 167.342 ± 100.739 0.756 

sd_UC 55.844 ± 44.593 46.480 ± 35.659 0.181 

cv_UC 0.463 ± 0.329 0.372 ± 0.329 0.155 

Gzip_UC 6.132 ± 1.981 5.691 ± 1.579 0.261 

SampEn_UC 0.537 ± 0.269 0.592 ± 0.290 0.325 

Gzip_FHR 11.356 ± 1.089 11.750 ± 0.883 0.023 

SampEn_FHR 0.655 ± 0.149 0.692 ± 0.193 0.320 
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5. On the prediction of fetal acidemia: A spectral analysis-based 

approach 

 

Abstract 

A computational analysis of physiological systems has been used to support the 

understanding of how these systems work, and in the case of fetal heart rate, many different 

approaches have been developed in the last decades. 

Our objective was to apply a new method of classification, which is based on spectral analysis, 

in fetal heart rate (FHR) traces to predict fetal acidosis diagnosed with umbilical arterial blood 

pH ≤ 7.05. Fast Fourier transform was applied to a real database for the classification 

approach. To evaluate the models, sensitivity, specificity, and area under the receiver 

operating characteristic (ROC) curve were used.  

Sensitivity equal to 1, specificity equal to 0.85 and an area under the ROC curve of 0.94 were 

found. In addition, when the definition of metabolic acidosis of umbilical arterial blood pH ≤ 

7.05 and base excess ≤ −10 mmol/L was used, the proposed methodology obtained sensitivity 

= 1, specificity = 0.97 and area under the ROC curve = 0.98. The proposed methodology relies 

exclusively on the spectral frequency decomposition of the FHR signal. After further 

successful validation in more datasets, this approach can be incorporated easily in clinical 

practice due to its simple implementation. Likewise, the incorporation of this novel technique 

in an intrapartum monitoring station should be straightforward, thus enabling the assistance 

of labor professionals in the anticipated detection of acidaemia. 

 

Introduction 

Fetal heart rate (FHR) monitoring has been used for decades for the fetal well-being 

assessment before and during labor. Fetal acidaemia typically occurs when the fetus is 

deprived of oxygen during birth. Intrapartum fetal hypoxia can lead to serious consequences 
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for the newborn, specifically death and brain damage.  Precocious obstetrical intervention 

depends on earlier diagnosis, and it is the cornerstone for fetal damage prevention. Umbilical 

arterial blood pH and base excess deficit in the extracellular fluid objectively reflect the fetal-

newborn acid-base status and, consequently, its cellular oxygen supply. Cardiotocography 

(CTG), with its simultaneous evaluation of FHR and uterine contractions, is the most-used 

method for fetal well-being assessment, but its visual analysis has limitations with 

compromised reproducibility [1–3]. This is due to the highly complex nature of FHR traces. 

Plsek and Greenhalgh [4] conjectured that health components may be interpreted as simple 

(associated with high agreement and certainty), complex (associated with dynamic behaviors 

and interactions, thereby causing intermediate levels of agreement and certainty) or chaotic 

(no apparent visual information is retrieved leading to low levels of agreement and certainty). 

For this, FHR in labor is believed to vacillate between the complex and chaotic domains.  To 

solve this, a computerized FHR analysis that uses signal processing and pattern recognition 

tools has been developed, which is supported by the idea that the analysis of FHR variability 

(FHRV) can provide additional information that is mainly related to the fetal autonomous 

nervous system (ANS) control of the heart [5]. Tools such as fractal [6,7], entropy [8,9] and 

wavelet [10,11] analyses have been used for FHR analysis in research since the early ‘90s but 

never in clinical practice. However, to date, no FHR analysis method has been capable of 

finding what exactly distinguishes the fetus in normal conditions from those with acidaemia. 

Another approach that is widely used is the analysis of traces in the frequency spectrum, using 

Fourier transforms [12]. Here, Siira et al. pointed out that spectral analysis provides a tool to 

quantify rather small changes in FHRV that may remain undetected if only the visual 

interpretation of FHR tracings is used [13]. In particular, it was mentioned [14] that Fourier 

analysis could yield new information about the fetal central nervous system and cardiac 

function. Spectral analysis is a method that can be used to objectively detect and quantify 

these changes in heart rate [15,16]. 

A wide variety of approaches have been considered using Fourier transformations to quantify 

the FHR variability by detecting QRS complexes [17] and to build methods that separate the 

fetal from maternal heart rate [18,19]. 
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Chung et al. [20] stated that the use of real-time power spectral analysis could be a useful 

tool in diagnosing fetal well-being. They used Fourier transformation to investigate the power 

distributions among very low frequency (VLF), low frequency (LF), and high frequency bands 

to perform a linear analysis of the fetal heart rate. This study comprised 76 pregnant women, 

with the aim to predict fetal distress (abnormal FHR tracing and UAB pH < 7.15) and metabolic 

acidaemia (UAB pH < 7.15 and extracellular base excess deficit (BE) < -8 mmol/L). The results 

provide evidence that LF and VLF are good predictors of fetal distress (sensitivity 0.975, 0.75 

and specificity 0.861, 0.944), while LF is a good predictor for fetal acidaemia (sensitivity 0.975 

and specificity 0.861) [20]. In 2005, Maeda and Nagasawa [21] successfully applied fast 

Fourier transform to separate pathologic fetal sinusoidal heart rate traces from healthy ones, 

thus supporting the idea of the possibility for an automated real-time diagnostic tool. 

Rantonen et al. [22] found that fetuses with a UAB base deficit between 8 and 12 mmol/L 

showed decreased FHRV when assessed by spectral analysis. 

In 2009, a study for neonatal acidaemia prediction (N = 148 FHR intrapartum tracings) was 

conducted using Omniview-SisPorto 3.5, which is a central fetal monitoring station with 

online alerts [23], based on combined computerized CTG and ST event linear analysis [24]. 

The prediction of cases with UAB pH ≤ 7.05 relying on red alerts from Omniview SisPorto using 

CTG and ST event analysis resulted in a sensitivity of 1 (95% CI, 0.560–1.00) and a specificity 

of 0.94 (95% CI, 0.89–0.97). However, when exclusively evaluating FHR signal (without ST 

data), the obtained sensitivity was 0.57 (95% CI, 0.20–0.88), and the specificity was 0.97 (95% 

CI, 0.92–0.99) [24]. 

Recently, in a comparison study of two classification systems based on linear indices, 

observers who were blind to clinical and outcome data classified tracings for severe metabolic 

acidaemia (UAB pH < 7.0 and BE < −12 mmol/L). Classification according to FIGO 3-tier system 

guidelines for pathological cases resulted in a sensitivity and specificity of 0.714 and 0.74, 

respectively, while the 5-tier system proposed by Parer and Ikeda, considering orange and 

red alerts, resulted in values of 0.619 and 0.801, respectively [25]. A hybrid approach 

combining linear and nonlinear methods achieved a sensitivity of 0.8 and a specificity of 0.71 

with a dataset comprising 48 normal, 10 mildly acidemic and 10 moderate-to-severely 
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acidemic fetuses. This classification strategy used the approximate entropy combined with 

FHR's interval index [26]. 

Recently, the authors of this paper participated in a Challenge at the 2nd Signal Processing 

and Monitoring in Labor Workshop (SPaM) [27] using a novel classification methodology of 

fetal heart rate traces for acidemic prediction (pH < 7.05) using spectral analysis. The SPaM 

dataset comprises 300 intrapartum CTG tracings referring to three hospitals (Lyon, Oxford, 

Brno), which were provided by the CTG Challenge. All participants of the CTG Challenge were 

informed that 60 tracings referred to acidemic cases and had no other information regarding 

the outcome of newborns. Each team had five attempts to submit classification results, and 

the authors of this paper used the last three to tune the approach presented herein. 

The CTG Challenge organizers provided the performance results of the approach presented 

by the authors for this paper, which achieved one of the best results among the classification 

methodologies in the contest. According to the CTG Challenge organization, this team 

obtained a score = sensitivity x specificity of 0.73, with a sensitivity and specificity of 0.67 and 

0.80, respectively, which were known a posteriori. 

In this work, we aimed to present our novel classification methodology of FHR traces for 

acidemic prediction using spectral analysis and applied it to another real dataset and tested 

it in an independent open-source dataset. 

 

Methods 

Data 

The pre-existing database contains 148 FHR traces that were obtained for research purposes 

in a tertiary-care university hospital [24], together with biometric variables from the newborn 

and the mother, including information on the intrapartum fetal acid-base status (UAB pH and 

BE). 
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All FHR traces refer to singleton pregnancies that had more than 36 completed weeks were 

more than 60 min long and were sampled at 4 Hz. The interval between the tracing end and 

delivery was less than 5 and 20 min for vaginal and caesarean births, respectively. 

Additionally, to test our approach in an independent dataset and to compare the results with 

those of other models, we used an open-access database with 552 traces from the Czech 

Technical University (CTU) in Prague and the University Hospital in Brno (UHB), CTU-UHB, as 

described in [28]. 

 

Signal Processing 

Preprocessing of the signal was required to remove signal loss due to artefacts that are 

commonly present in the final minutes of FHR recordings immediately preceding the delivery. 

The preprocessing algorithm, which is described in detail in [29], detects samples lower than 

60 bpm, samples above 200 bpm and consecutive differences higher than 25 bpm. The 

detected segments were then replaced by linear interpolation if referring to less than 2 s. For 

longer periods, segments were substituted by the previous segment of the same length. All 

samples were rounded to units. After discarding the last 5 min of each recording, the final 50 

min were selected for the following analyses. 

Additionally, and only for the classic power spectral analysis indices computation, FHR signals 

were normalized, and the periodogram method was applied. 

All these preprocessing computations were performed using MATLAB (R2018a, MathWorks, 

Natick, MA, USA). 

 

Parameters and classification approach 

A signal can be decomposed into its frequency components by using fast Fourier transform 

(FFT), which is an efficient algorithm that rapidly computes the discrete Fourier 

transformation [30]. For the 50 min of monitoring of each FHR in our datasets, an FFT was 
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computed by using R language [31], and the magnitude of each complex number (peak) was 

calculated. For the decision feature, two arguments were defined: an amplitude cut-off (c) 

and the number of peaks above that cut-off (p-number). 

For the FFT of each FHR signal, the minimum and maximum frequency amplitude values were 

obtained, and the global minimum and maximum were computed across all signals. Then, for 

each p-number from 1 to 10 and through the Newton method of successive approximations 

[32], the minimum amplitude cut-off, which classifies all signals as abnormal, is set as minc. 

Likewise, the maximum amplitude that classifies all signals as normal is set as maxc. For each 

signal and for each p-number, we let the amplitude cut-off slide between minc and max c by 

the steps of (maxc-minc)/50, thus predicting the classification for each (p-number, c) pair. 

For an FHR signal, if its FFT has at least p-number peaks with an amplitude above threshold c, 

then the FHR recording is classified as abnormal; otherwise, it is labelled as normal (see Fig. 

5.1 for an example of each). For each p-number between 1 and 10, the performance metrics 

are computed for the set of 50 amplitude cut-offs. 

To compare the approach presented in this paper with the classic indices that were derived 

from power spectral analysis (PSA), we also performed the integration of the spectrum over 

specific frequency bands. The appropriate bandwidths for the FHR signals analysis [5] were 

used: very low frequency (VLF: 0–0.03 Hz), low frequency (LF: 0.03–0.15 Hz), high frequency 

(HF: 0.5–1 Hz) and movement frequency (MF: 0.15–0.5 Hz). 

  



 

 
69 

 

Figure 5.1. Fetal heart rate sampled at 4 Hz (50 min) for an example of a non-acidemic fetus (top left) and an 

acidemic one (top right). The corresponding spectra with frequency amplitudes are presented below for non-

acidemic (left) and for the acidemic (right). 

 

 

Evaluation metrics and outcome 

The classifications of the 148 FHR traces, using an FFT approach, were evaluated by comparing 

the classification results with the following fetal acidaemia definition: UAB pH ≤ 7.05 for 

abnormal traces (fetal acidaemia). The same approach was also evaluated considering the 

base excess in the definition of acidemic fetuses (UAB pH ≤ 7.05 and BE ≤ −10 mmol/L for 

abnormal traces). 

The classification performance was assessed by the means of sensitivity, specificity and an 

area under the ROC curve. Sensitivity measures the ability of the classifier to correctly identify 

acidemic fetuses, while the specificity evaluates the ability of the classifier to identify non-

acidemic fetuses. For each pnumber, the ROC curve was obtained relating the specificity and 

sensitivity of the classifier for each cut-off. 
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Results 

As in the CTG challenge, in our dataset, the objective is to classify the 148 FHR recordings as 

acidemic according to the same pH cut-off of 7.05. From the 148 cases, only 7 referred to 

newborns’ arterial umbilical blood with pH ≤ 7.05. 

For each p-number value, the area under the ROC curve was obtained (Table 5.1), having 

achieved maximum values of 0.938 and 0.939 for p-numbers in the range of 3–4 peaks above 

the threshold (Fig. 5.2 and Table 5.1). The highest score, sensitivity x specificity, was 0.922 

(Table 2) and pertained to the case of 4 peaks above the 27th step in the cut-off parameter 

and corresponded to a sensitivity of 1 (95% CI 0.561–1.000) and a specificity of 0.851 (95% CI 

0.779–0.903). 

Table 5.1. Area under ROC curve computed for each value of parameter p-number and 50 steps for the cut-off 

parameter, for the prediction of pH≤7.05. 

p-number 
 

1 2 3 4 5 6 7 8 9 10 

AUC 0.831 0.907 0.938 0.939 0.860 0.887 0.895 0.879 0.895 0.893 
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Table 5.2. Performance metrics with selected parameters for the prediction of pH≤7.05. Sensitivity, specificity 

and score values with respective confidence interval (CI) for p-number between 3 and 4 and steps with the 

highest score values (>0,8) for some p-numbers. 

amplitude cut-
off 

p-number = 3 p-number = 4 

c sensitivity [95% CI] specificity [95% CI] score sensitivity [95% CI] specificity [95% CI] score 

20 0.714 [0.303, 0.949] 0.957 [0.906, 0.983] 0.827 0.429 [0.118, 0.798] 0.957 [0.906, 0.983] 0.641 

21 0.714 [0.303, 0.949] 0.915 [0.853, 0.953] 0.808 0.571 [0.202, 0.882] 0.957 [0.906, 0.983] 0.739 

22 0.714 [0.303, 0.949] 0.901 [0.836, 0.943] 0.802 0.571 [0.202, 0.882] 0.943 [0.888, 0.973] 0.734 

23 0.714 [0.303, 0.949] 0.887 [0.819, 0.932] 0.796 0.714 [0.303, 0.949] 0.929 [0.870, 0.964] 0.814 

24 0.714 [0.303, 0.949] 0.887 [0.819, 0.932] 0.796 0.714 [0.303, 0.949] 0.915 [0.853, 0.953] 0.808 

25 0.857 [0.420, 0.992] 0.879 [0.811, 0.926] 0.868 0.714 [0.303, 0.949] 0.879 [0.811, 0.926] 0.792 

26 0.857 [0.420, 0.992] 0.844 [0.771, 0.898] 0.850 0.857 [0.420, 0.992] 0.865 [0.795, 0.915] 0.861 

27 0.857 [0.420, 0.992] 0.823 [0.747, 0.880] 0.840 1.000 [0.561, 1.000] 0.851 [0.779, 0.903] 0.922 

28 0.857 [0.420, 0.992] 0.809 [0.732, 0.868] 0.833 1.000 [0.561, 1.000] 0.801 [0.724, 0.862] 0.895 

29 1.000 [0.561, 1.000] 0.787 [0.709, 0.850] 0.887 1.000 [0.561, 1.000] 0.752 [0.671, 0.819] 0.867 

30 1.000 [0.561, 1.000] 0.766 [0.686, 0.831] 0.875 1.000 [0.561, 1.000] 0.738 [0.656, 0.806] 0.859 

31 1.000 [0.561, 1.000] 0.709 [0.626, 0.781] 0.842 1.000 [0.561, 1.000] 0.688 [0.604, 0.762] 0.829 

32 1.000 [0.561, 1.000] 0.695 [0.611, 0.768] 0.834 1.000 [0.561, 1.000] 0.652 [0.567, 0.729] 0.807 

 

 

Figure 5.2. ROC curves corresponding to the two highest areas for the prediction of newborns with pH≤7.05: 

0.938 for p-number=3 (left) and 0.939 for p-number=4 (right). 
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Some of the state-of-the-art methodologies also include the umbilical arterial blood (UAB) 

base excess to define neonate metabolic acidaemia, even though its utility has been 

questioned [33]. Hence, and for comparison purposes, we also performed the classification 

of the dataset according to this outcome, defining the acidemic group as FHR traces 

corresponding to newborns with pH ≤ 7.05 and a base excess (BE)≤-10 mmol/L. From the 148 

cases, only 6 referred to newborns with UAB pH ≤ 7.05 and BE ≤ −10 mmol/L. The p-numbers 

resulting in a higher area under the ROC curve were in the range of 6–7 peaks above the cut-

off, with 0.975 and 0.980 (Table 5.3). The highest score for the dataset, in the prediction of 

UAB pH ≤ 7.05 and BE ≤ −10 mmol/L, was 0.986 (Table 5.4), referring to the case of 7 peaks 

above the 21st step in the cut-off parameter, corresponding to a sensitivity of 1 (95% CI 0.517–

1.000) and a specificity of 0.972 (95% CI 0.925–0.991). 

Table 5.3. Area under the curve (AUC) computed for each value of parameter p-number and 50 steps for the cut-

off parameter for the prediction of newborns with UAB pH≤7.05 and BE≤-10 mmol/L. 

p-number 1 2 3 4 5 6 7 8 9 10 

AUC 0.802 0.889 0.923 0.939 0.954 0.975 0.980 0.960 0.967 0.961 

 

For comparison reasons, the integration of the FFT spectrum over the specific frequency 

bands commonly used in FHR signals [5] was also assessed. Indices from the classic HRV 

spectral analysis did not achieve the performance metrics from the simple and original 

approach that was presented in this paper (Table 5.5). 
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Table 5.4. Performance metrics with selected parameters for the prediction of newborns with UAB pH≤7.05 and 

BE≤-10 mmol/L. Sensitivity, specificity and score values for p-number between 6 and 7 and steps with the highest 

score values (>0,8) for some p-numbers. 

amplitude 
cut-off 

p-number = 6  p-number = 7 

c sensitivity [95% CI] specificity [95% CI] score  sensitivity [95% CI] specificity [95% CI] score 

19 0.500 [0.188, 0.812] 0.993 [0.956, 1.000] 0.705  0.667 [0.241, 0.940] 0.979 [0.935, 0.995] 0.808 

20 0.500 [0.188, 0.812] 0.979 [0.935, 0.995] 0.700  0.667 [0.241, 0.940] 0.972 [0.925, 0.991] 0.805 

21 0.500 [0.188, 0.812] 0.972 [0.925, 0.991] 0.697  1.000 [0.517, 1.000] 0.972 [0.925, 0.991] 0.986 

22 0.833 [0.365, 0.991] 0.965 [0.916, 0.987] 0.897  1.000 [0.517, 1.000] 0.958 [0.906, 0.983] 0.979 

23 0.833 [0.365, 0.991] 0.965 [0.916, 0.987] 0.897  1.000 [0.517, 1.000] 0.930 [0.871, 0.964] 0.964 

24 1.000 [0.517, 1.000] 0.944 [0.888, 0.974] 0.972  1.000 [0.517, 1.000] 0.901 [0.837, 0.943] 0.949 

25 1.000 [0.517, 1.000] 0.915 [0.854, 0.954] 0.957  1.000 [0.517, 1.000] 0.880 [0.813, 0.927] 0.938 

26 1.000 [0.517, 1.000] 0.894 [0.829, 0.938] 0.946  1.000 [0.517, 1.000] 0.852 [0.781, 0.904] 0.923 

27 1.000 [0.517, 1.000] 0.859 [0.788, 0.910] 0.927  1.000 [0.517, 1.000] 0.845 [0.773, 0.898] 0.919 

28 1.000 [0.517, 1.000] 0.831 [0.757, 0.887] 0.912  1.000 [0.517, 1.000] 0.810 [0.734, 0.869] 0.900 

29 1.000 [0.517, 1.000] 0.782 [0.703, 0.845] 0.884  1.000 [0.517, 1.000] 0.775 [0.695, 0.839] 0.880 

30 1.000 [0.517, 1.000] 0.754 [0.673, 0.820] 0.868  1.000 [0.517, 1.000] 0.725 [0.643, 0.795] 0.851 

31 1.000 [0.517, 1.000] 0.718 [0.636, 0.789] 0.847  1.000 [0.517, 1.000] 0.697 [0.614, 0.770] 0.835 

32 1.000 [0.517, 1.000] 0.676 [0.592, 0.751] 0.822  1.000 [0.517, 1.000] 0.676 [0.592, 0.751] 0.822 

33 1.000 [0.517, 1.000] 0.641 [0.556, 0.718] 0.801  1.000 [0.517, 1.000] 0.641 [0.556, 0.718] 0.801 

 

Table 5.5. Area under the curve (AUC) (and respective confidence intervals) computed for each spectral band for 

(a) the prediction of pH≤7.05 and (b) for the prediction of pH≤7.05 and BE≤-10 mmol/L. 

Spectral Bands 
 

VLF LF HF MF 

AUC (a) [95% CI] 
0.804* 

[0.687, 0.922] 
0.819* 

[0.706, 0.931] 
0.687 

[0.480, 0.894] 
0.710 

[0.534, 886] 

AUC (b) [95% CI] 
0.772* 

[0.648, 0.896] 
0.788* 

[0.669, 0.906] 
0.657 

[0.425, 0.890] 
0.678 

[0.484, 0.873] 

           *p<0.05 
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To test the proposed approach in an independent set, the CTU-UHB open-access CTG 

intrapartum database was used [28]. After the pre-processing step, all 533 traces with 

respective UAB pH information were used for testing. 

The amplitude range of the traces in the CTU-UHB differs substantially between the dataset 

in the CTG challenge and the dataset used for training our method. Since our methodology 

relies on the maximum amplitude of the traces, we selected the cut-off of 0.0185 of the 

maximum amplitude for the Physionet dataset, which corresponds to the mean of the ratio 

between the cut-off and the maximum amplitude used in the CTG challenge dataset, 0.0175, 

and in this paper's dataset, 0.0195. Thus, for the CTU-UHB, traces with more than 4 peaks 

above the cut-off of 0.0185 of the maximum amplitude were classified as acidemic. With this 

approach, we obtained results of 0.636 for sensitivity and 0.801 for specificity. 

 

Discussion 

In this work, a new classification methodology based on fast Fourier transformation of FHR 

signals is proposed. In this framework, an amplitude threshold and the number of frequencies 

(p-number) above that threshold are the only parameters to adjust. This approach was first 

applied in the context of the SPaM Challenge [27], which resulted in one of the best scores 

within the participant classifications. As such, another dataset was submitted to the 

methodology proposed herein, which aims for the replication of results. For both datasets, 

high scores were obtained. Moreover, the optimized score using only the pH feature resulted 

in a similar parameter p-number for both datasets, which suggested no data dependency. 

Several studies have evaluated the accuracy of linear, nonlinear and hybrid approaches in the 

prediction of neonatal outcomes. The results that were obtained with this methodology from 

two real intrapartum FHR datasets compare with the performance metrics of state-of-the-art 

approaches. In the present study, for a p-number equal to 4 and cut-off in the 27th step, 

sensitivity and specificity were 1 (95% CI 0.561–1.000) and 0.851 (95% CI 0.779–0.903), 

respectively. This means that, in comparison with the previous study on the same dataset, 
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the proposed approach has an increased capacity of correctly identifying acidemic fetuses, 

which thus reduces the false negatives that were detected [24] (Table 5.6). 

             Table 5.6. Comparison of results of the present approach with the literature results. 

Study Dataset (size) Outcome (acidemic) Sensitivity Specificity 

Chung et al. [20]  Private (76) pH < 7.15 and BE < -8 0.975 0.861 

Costa, A et al. [24]    Private (148) pH ≤ 7.05 0.570 0.970 

Martí  Gamboa et al. [25]    Private (202) 
pH ≤ 7.0 and BE < -12 Method 

1 
0.714 0.740 

Martí Gamboa et al. [25]     Private (202) 
pH ≤ 7.0 and BE < -12 Method 

2 
0.619 0.801 

Gonçalves, H. et al. [26] Private (68) pH ≤ 7.10 0.800 0.710 

Authors’ approach Training Dataset (148)              pH ≤ 7.05 1.000 0.851 

Rotariu et al. [34] CTU-UHB pH < 7.20 and BDef > 8 0.960 0.876 

Rotariu et al. [35] CTU-UHB    pH < 7.20 0.732 0.882 

Cömert [36] CTU-UHB    pH < 7.20 0.778 0.768 

Pasarica [37] CTU-UHB    pH < 7.15 0.938 0.831 

Authors’ approach CTU-UHB    pH ≤ 7.05 0.636 0.801 

 

More generally, the results that were obtained in this paper outperform the reported 

performance metrics from other published methodologies for newborn acidemic prediction. 

The large confidence interval that was obtained for sensitivity is due to a short set of acidemic 

fetuses. However, the small confidence interval for specificity supports the evidence that this 

approach represents a promising strategy, although it needs validation in other datasets. 

The results that were obtained in the test phase, with the independent open source database 

CTU-UHB, are promising and suggest further research to refine the cut-off selection strategy 

and to validate it in independent and larger databases. 
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These results might seem shy compared to those of other classification studies [34–37] that 

used the same test dataset, CTU-UHB (see Table 5.6). However, three have used a pH 

threshold of 7.20 [34–36] or 7.15 [37], while one also reports the testing performance of a 

small proportion of the original dataset [34]. In [38], the same 7.05 pH threshold was defined, 

and although a deep learning technique was applied in the training set of more than 30000 

CTGs, only a small improvement was accomplished when it was applied to CTU-UHB, 

compared to using our simple approach. 

Our results for two datasets of 300 and 148 cases and for the 552 cases of the testing set CTU-

UHB (Table 5.7) support the evidence that our FFT approach to a frequency analysis of FHR 

signals is a promising strategy for the prediction of acidemic newborns that can outperform 

previous power spectral analysis (PSA) [39]. In PSA, we explore the analysis of FHR frequency 

bandwidths validated in animal and human studies, which were adapted to human fetuses. 

The total power reflects the overall activity of the physiological systems underlying the FHR 

control, specifically the sympathetic and parasympathetic (vagal) systems, which are 

associated with low frequency (LF) and high (HF) frequency bands, respectively, as well as the 

thermoregulatory and renin-angiotensin control systems that are associated with the VLF 

band [39]. In our FFT-based frequency analysis, we found an association between newborn 

acidaemia and four to seven FHR frequency peaks above a certain threshold of amplitude, 

which were determined by an algorithm that was specially developed by us (see Fig. 1). Peaks 

of FHR spectral frequencies, above a certain threshold, were consistent with the overall 

activation of the physiological FHR control systems, which were associated with the 

installation of fetal acidaemia during labor, were observed in PSA and comprised the 

activation of several physiological control components, such as the sympathetic and 

parasympathetic (vagal) systems, as well as the thermoregulatory and renin-angiotensin 

systems [39]. However, further studies are necessary to better elucidate the 

pathophysiological background of our findings and to confirm or refute it, as well as explain 

why our FFT-based analysis of FHR recordings performs better or worse than PSA, in the 

prediction of newborn acidaemia. 
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Table 5.7. Sensitivity and specificity obtained for the parameter selection with the highest score (of the two 

training datasets) and respective confidence intervals for the datasets that were analysed in this paper. 

Dataset Acidemic class rule Sensitivity [95% CI] Specificity [95% CI] 

CTG Challenge pH<7.05 0.67* 0.80* 

dataset analysed pH≤7.05 1.000 [0.561, 1.000] 0.851 [0.779, 0.903] 

dataset analysed pH≤7.05 and BE≤-10 1.000 [0.517, 1.000] 0.972 [0.925, 0.991] 

 CTU-UHB 
(test dataset) 

pH≤7.05 0.636 [0.477, 0.772] 0.801 [0.763, 0.834] 

 * results provided by SPaM organizers 

 

Focusing on the amplitude peaks of lower frequencies, our approach could represent an 

alternative methodology that supports previous studies, which refer to LF and VLF as good 

predictors for fetal acidaemia and distress classification [20]. The proposed methodology 

relies exclusively on the spectral frequency decomposition of the FHR signal being easily 

incorporated in an intrapartum monitoring station, thereby assisting labor professionals in 

the anticipated detection of acidaemia. 

One limitation of this approach is that for large datasets, the parameter tuning is time-

consuming. However, it would only be a one-time computation. 

In future work, the use of smaller steps around the cut-off to find the global maximum for the 

score will be investigated. Different datasets will also be analyzed to validate, refine the cut-

off selection strategy and better understand the data independency that was suggested by 

the current results. 

 

Summary Points 

What was already known about the topic: 
• Precocious obstetrical intervention depends on earlier diagnosis, and it is the cornerstone of fetal damage prevention; 
• Several linear and/or nonlinear methods for fetal heart rate analysis have been proposed for the prediction of fetal acidaemia with 
reasonable results, which involves a wide range of data analysis experts; 
• In the literature, there is evidence that a traditional power 
spectral analysis of fetal heart rate achieves high-performance results, thereby electing LF and VLF bands as good predictors of fetal 
acidaemia. 
 
What this study added to our knowledge: 



 

 
78 

• The new spectral analysis approach described in this study provides further support that the power spectral analysis of FHR signals is a 
promising strategy for the prediction of acidemic newborns; 
• The new approach to power spectral analysis that is presented here has promising classification performance in three real databases, 
which provides evidence that our model is data independent. 
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6. General Discussion and Conclusions 

An efficient assessment of fetus and mother well-being during pregnancy and labor has 

required different generations of researchers much effort. Although the fetus's heart rate is 

its main welfare indicator, a lot is still unknown due to its complexity. The challenges include 

appropriate clinical decision support for CTG and satisfactory signal processing techniques 

[2]. 

Soon after the first steps of HRV analysis, it was shown that linear indexes were not capturing 

all the information contained in the signal. Therefore, more robust approaches started to 

emerge. The purpose of this thesis was to provide one more input to the researching 

community on how complexity analysis is a key factor in understanding the mechanisms 

underlying fHRV better. 

There is no doubt of the importance of nonlinear measures in fetal monitoring, as they enrich 

the signal description by providing new indicators for classification and diagnostic purposes. 

In 2012, Fucher et al. [3] studied over 9000 time-series analysis features, and among those 

most correlated with umbilical cord pH were nonlinear measures. In a study by Choi et al. [4], 

nonlinear dynamic indices were able to differentiate normal pregnancies from ones with 

partial placental abruption with high accuracy, while linear indices were not.  Hence, the 

integration of advanced signal processing approaches, linear and frequency domain indexes 

as a multiparametric approach, provide an improvement in the statistical analysis of biological 

signals, as shown by Spilka [5], Magenes [6], and Tetschke [7].  

In daily clinical practice, the application of procedures relies heavily on the clinician’s 

understanding of the underlying methodologies. Therefore, a physiological interpretation of 

complexity indexes and their association is of great importance. Consequently, this 

dissertation aims to study how do complexity measures relate to standard physiological 

characteristics of FRH tracings. In Chapter 3, we concluded that different information from 

fHRV is captured by the two nonlinear measures used, which shows their complementarity. 

It was also shown that complexity through different scales (multiscale) provides a clearer 

difference between groups of acidemic and non-acidemic babies [8]. In fact, another objective 

of this dissertation is to assess how can complexity measures or other different and new 



 

 
84 

approaches can predict fetal acidemia. On this matter, we created a spectral based algorithm 

for acidemia prediction during intrapartum, described in Chapter 5. The results of this new 

algorithm were compared with other approaches [9]. However, our methodology primes for 

its simplicity, which is a major advantage as the interpretability need in clinical practice is one 

of the constraints in implementing new approaches.  

On a different topic, but also related to acidemia, is the question of when labor will take place. 

Another objective of this dissertation is to assess how well complexity measures can predict 

labor. In particular, acknowledging that a particular fetus is at risk of becoming premature, 

born before 37 weeks of gestation, would provide health care professionals information, and 

most important, time to redirect resources to this particular case [10]. In Chapter 4, we 

presented results suggesting that complexity analysis of FHRV, particularly using 

compression, can help predict how close to labor the fetus is. 

 

Strengths and weaknesses 

This dissertation has some weaknesses, like the ones related to the quality of recordings and 

the intrinsic subject variability and complexity of pathologies, complicating their prediction 

and control. Even with the definition of acidosis, there is some controversy, as different 

authors consider different pH cutoffs, and some include base excess or base deficit [11]. Some 

defined as “at risk of acidemia” when 𝑝𝐻 < 7.20 [8, 12] or 𝑝𝐻 < 7.15 [13-15]; others define 

when 𝑝𝐻 < 7.1 [16-19] or even when 𝑝𝐻 < 7.05 [5, 20-24]. Another challenge is to collect 

enough data for a proper acidemia analysis since the prevalence of an acidemic fetus ranges 

from 0.6% to 3.5% [25, 26]. The effect of an antepartum vs. intrapartum analysis on the 

complexity indices and the differences the signal acquisition methods produce are also 

important variables to take into account to correctly evaluate and assess fetus well-being [27, 

28]. Much effort has been put into the signal acquisition and processing models because the 

extracted features highly rely on the quality of the preprocessing steps, such as artifacts 

removal, interpolation method, segmentation, and detrending of the signal [29]. FHRV 

analysis depends on its non-stationarity (properties like mean, variance, and correlation 

structure vary in time through events like uterine contractions). One way to counter this is to 
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select small temporal windows where this property holds. It is considered an interval of 10-

20 min for the minimum time windows to perform the analysis for tracing classification and 

clinical decision [30, 31].  

FHR monitors acquire the beat-to-beat intervals in milliseconds either from Doppler or 

electrocardiographic signals and then converts them to provide a sequence of instantaneous 

heart rates, in beats per minute (bpm). However, when data is exported, it has to be sampled, 

meaning an interpolation of signals [32]. The sampling rate does not seem to affect many 

linear parameters, but when nonlinear ones are considered, differences were found [28]. This 

is a crucial issue when defining reference values for irregularity indices, such as Entropy, as 

they depend on the sampling frequency, as shown in [28], where 2Hz vs. 4Hz sampling was 

compared. Thus, it is essential not to compare computerized fHR analysis systems that use 

different sampling rates [30, 33]. 

This dissertation has the strength of relating linear and nonlinear indexes. Understanding the 

relation between linear and nonlinear indexes makes it easier to interpret nonlinear indices 

and develop new methods for predicting poor neonatal outcomes. 

 

Future work 

Nonlinear methodologies must continue to be studied and applied to retrieve signal with the 

best quality possible, dismissing as much noise as possible. This is important when adopting 

low-cost systems for signal extraction, as is the case of the fetal phonocardiography, which 

has a low signal-to-noise ratio [34]. 

Usage of continuous noninvasive evaluation, such as the usage of wearables, has been 

discussed [35, 36] and will contribute to the patient care improvement since it will improve 

data gathering, reducing costs of fetal monitoring. Insurgent approaches are opening new 

windows on the continuous monitoring of fetal development. A single index cannot retrieve 

all the information from pathophysiological processes in the fetus’ development, so 

approaches taking into consideration both linear and nonlinear measures, through 

multivariate analysis, can improve the assessment of fetal well-being, and consequently, 
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maternal well-being. The association between fetal heart rate and uterine contractions, and 

their relationship regarding fetal response to the rigid environment it is subject to during 

labor (mainly), is still an overlooked research area. Future studies should be focused since the 

fetus has to constantly adapt to its environment. The same can be said regarding the relation 

of fHR with the maternal heart rate. Different analysis methods take into account the 

maternal heart rate but mainly as a noise reduction factor to better extract fetal heart rate. 

Instead, it should be seen as a crucial variable as it might reflect both organisms’ interaction 

[37, 38].  

 

Conclusion 

This work highlights the complexity of this field of study. The scientific community needs to 

keep making steps so that fetal mortality and morbidity be lowered as much as possible 

during pregnancy and, in particular, in labor. Since the fetal heart rate was in the field of 

complex systems, non-linear methods are at the center of future research for good prediction 

of poor neonatal outcomes. However, the non-linear indexes must be understood in the light 

of the well-known linear measurements of fetal heart rate analysis commonly used in clinical 

practice. This thesis relates different parameters and supports a multiparameter approach in 

the interpretation of the fetal heart rate signal for acidemia detection and labor prediction.  
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