6 research outputs found

    Peanut leaf spot disease identification using pre-trained deep convolutional neural network

    Get PDF
    Reduction of quality and quantity of agricultural products, particularly peanut or groundnut, is usually associated with disease. This could be solved through automatic identification and diagnoses using deep learning. However, this technology is not yet explored and examined in the case of peanut leaf spot disease due to some aspects, such as the availability of sufficient data to be used for training and testing the model. This study is intended to explore the use of pre-trained visual geometry group–16 (VGG16), visual geometry group–19 (VGG19), InceptionV3, MobileNet, DenseNet, Xception, InceptionResNetV2, and ResNet50 architectures and deep learning optimizers such as stochastic gradient descent (SGD) with Momentum, adaptive moment estimation (Adam), root mean square propagation (RMSProp), and adaptive gradient algorithm (Adagrad) in creating a model that can identify leaf spot disease by using a total of 1,000 images of leaves captured using a mobile camera. Confusion matrix was used to assess the accuracy and precision of the results. The result of the study shows that DenseNet-169 trained using SGD with momentum, Adam, and RMSProp attained the highest accuracy of 98%, while DenseNet-169 trained using RMSProp achieved the highest precision of 98% among pre-trained deep convolutional neural network architectures. Furthermore, this result could be beneficial in agricultural automation and disease identification systems for peanut or groundnut plants

    Development an edge-computing sensing unit for continuous measurement of canopy cover percentage of dry edible beans

    Get PDF
    Canopy cover (CC) is an important indicator for crop development. Currently, CC can be estimated indirectly by measuring leaf area index (LAI), using commercially available hand-held meters. However, it does not capture the dynamics of CC. Continuous CC monitoring is essential for dry edible beans production since it can affect crop water use, weed, and disease control. It also helps growers to closely monitor “yellowness”, or senescence of dry beans to decide proper irrigation cutoff to allow the crop to dry down for harvest. The goal of this study was to develop a device – CanopyCAM, containing software and hardware that can monitor dry bean CC continuously. CanopyCAM utilized an in-house developed image-based algorithm, edge-computing, and Internet of Things (IoT) telemetry to transmit and report CC in real-time. In the 2021 growing season, six CanopyCAMs were developed with three installed in fully irrigated dry edible beans research plots and three installed at commercial farms. CC measurements were recorded at 15 min interval from 7:00 am to 7:00 pm each day. Initially, the overall trend of CC development increased over time but there were many fluctuations in daily readings due to lighting conditions which caused some overexposed images. A simple filtering algorithm was developed to remove the “noisy images”. CanopyCAM measured CC (CCCanopyCAM) were compared with CC obtained from a Li-COR Plant Canopy Analyzer (CCLAI). The average error between CCCanopyCAM and CCLAI was 2.3%, and RMSE and R2 were 2.95% and 0.99, respectively. In addition, maximum CC (CCmax) and duration of the maximum CC (tmax_canopy) were identified at each installation location using the generalized reduced gradient (CRG) algorithm with nonlinear optimization. An improvement of correlation was found between dry bean yield and combination of CCmax and tmax_canopy (R2 = 0.77, Adjusted R2 = 0.62) as compared to yield vs. CCmax (R2 = 0.58) or yield vs. tmax_canopy (R2 = 0.45). This edge-computing, IoT enabled capability of CanopyCAM, provided accurate CC readings which could be used by growers and researchers for different purpose

    CanopyCAM – an edge-computing sensing unit for continuous measurement of canopy cover percentage of dry edible beans

    Get PDF
    Canopy cover (CC) is an important indicator for crop development. Currently, CC can be estimated indirectly by measuring leaf area index (LAI) using commercially available hand-held meters. However, it does not capture the dynamics of CC. Continuous CC monitoring is essential for dry edible beans production since it can affect crop water use, weed, and disease control. It also helps growers to closely monitor “yellowness”, or senescence of dry beans to decide proper irrigation cutoff timing to allow the crop to dry down for harvest. Therefore, the goal of this study was to develop a device – CanopyCAM, containing software and hardware that can monitor dry bean CC continuously. CanopyCAM utilized an in-house developed image-based algorithm, edge-computing, and Internet of Things (IoT) telemetry to process and transmit CC in real-time. In the 2021 growing season, six CanopyCAMs were developed with three installed in fully irrigated dry edible beans research plots and three installed at commercial farm fields, respectively. CC measurements were recorded at 15 min interval from 7:00 am to 7:00 pm in each day. Initially, the overall trend of CC development increased over time but fluctuations in daily readings were noticed due to changing lighting conditions which caused some overexposed images. A simple filtering algorithm was developed to remove the “noisy images”. CanopyCAM measured CC (CCCanopyCAM) were compared with CC obtained from a LI-COR Plant Canopy Analyzer (CCLAI). The average error between CCCanopyCAM and CCLAI was 2.3 %, and RMSE and R2 were 2.95 % and 0.99, respectively. In addition, maximum CC (CCmax) and duration of the maximum CC (tmax_canopy) were identified at each installation location using the generalized reduced gradient (CRG) algorithm with nonlinear optimization. An improvement of correlation was found between dry bean yield and combination of CCmax and tmax_canopy (R2 = 0.77, Adjusted R2 = 0.62) as compared to yield versus CCmax (R2 = 0.58) or yield versus tmax_canopy (R2 = 0.45) only. This edge-computing, IoT enabled CanopyCAM, provided accurate and continuous CC readings for dry edible beans which could be used by growers and researchers for different purposes

    Diagnóstico automático de Roya Amarilla en hojas de cafeto aplicando técnicas de procesamiento de imágenes y aprendizaje de máquina

    Get PDF
    Actualmente, el café es uno de los recursos naturales más consumidos tanto en el mundo como en el Perú, Por ello, es menester garantizar la calidad en los granos de café, pues esto afectará considerablemente en el precio y posicionamiento en mercados altamente competentes; asimismo, el cultivo de este representa el principal ingreso para algunas familias, el cual se ve amenazado entre otras plagas, por la más perniciosa: La Roya Amarilla. La Roya Amarilla se propaga fácilmente a través del aire, una vez que cae en un cultivo de café, ataca directamente en las hojas, almacenándose en forma de esporas en el envés de estas, y al paso de días consume las hojas hasta defoliar completamente la planta infectada. Debido a ello, la planta no puede adquirir los nutrientes necesarios del sol, pues necesita las hojas como receptores; en consecuencia, el fruto del café (granos) no se desarrollan con normalidad, y por ende su calidad y cantidad de cosecha es baja. Aun cuando no existe una solución absoluta para la erradicación de esta plaga, se la puede controlar; es decir, a través de un proceso manual y exhaustivo los caficultores pueden aplicar una solución bioquímica en la planta que detenga el desarrollo del hongo en las hojas, pero no acaba con ellas, solo se puede prolongar el tiempo de vida de la planta de café. Esto es posible, solo si se detecta en sus inicios la presencia de las esporas en las hojas, pues de haber germinado el hongo sería en vano cualquier intento de recuperar la planta, con lo que solo quedaría el exterminio de la planta. Frente a este panorama, se propone una solución a través del aprendizaje máquina y procesamiento de imágenes, con el fin de automatizar el proceso de detección de la Roya en las hojas y calcular de manera más precisa la severidad del hongo. El proceso comienza en tomar fotografías a las hojas en un espacio semi controlado (con fondo blanco), luego se guardan todas las imágenes de las que se quiera conocer el porcentaje de severidad y ejecutar el programa propuesto, al término de ello el software muestra un reporte estadístico con el grado de incidencia por hoja según la clasificación de severidad que corresponda. Finalmente, destacar que, de manera funcional, el aprendizaje máquina será vital para descartar si hay presencia de roya en la hoja analizada, y luego si la hoja está infectada, con el método de procesamiento de imágenes se calculará de manera más precisa el porcentaje de severidad considerando el área de la hoja examinada.Tesi

    AUTOMATIC ESTIMATION OF LIVE COFFEE LEAF INFECTION BASED ON IMAGE PROCESSING TECHNIQUES

    No full text
    Image segmentation is the most challenging issue in computer vision applications. And most difficulties for crops management in agriculture are the lack of appropriate methods for detecting the leaf damage for pests ’ treatment. In this paper we proposed an automatic method for leaf damage detection and severity estimation of coffee leaf by avoiding defoliation. After enhancing the contrast of the original image using LUT based gamma correction, the image is processed to remove the background, and the output leaf is clustered using Fuzzy c-means segmentation in V channel of YUV color space to maximize all leaf damage detection, and finally, the severity of leaf is estimated in terms of ratio for leaf pixel distribution between the normal and the detected leaf damage. The results in each proposed method was compared to the current researches and the accuracy is obvious either in the background removal or damage detection
    corecore