478 research outputs found

    Automatic Estimation of Excavator’s Actual Productivity in Trenching and Grading Operations Using Building Information Modeling (BIM)

    Get PDF
    This paper discusses the excavator’s actual productivity in trenching and grading operations. In these tasks, the quantity of material moved is not significant; precision within specified tolerances is the key focus. The manual methods for productivity estimation and progress monitoring of these operations are highly time-consuming, costly, error-prone, and labor-intensive. An automatic method is required to estimate the excavator’s productivity in the operations. Automatic productivity tracking aids in lowering time, fuel, and operational expenses. It also enhances planning, detects project problems, and boosts management and financial performance. The productivity definitions for trenching and grading operations are the trench’s length per unit of time and graded area per unit of time, respectively. In the proposed techniques, a grid-based height map (2.5D map) from working areas is obtained using a Livox Horizon® light detection and ranging (LiDAR) sensor and localization data from the Global Navigation Satellite System (GNSS) and inertial measurement units (IMUs). Additionally, building information modeling (BIM) is utilized to acquire information regarding the target model and required accuracy. The productivity is estimated using the map comparison between the working areas and the desired model. The proposed method is implemented on a medium-rated excavator operated by an experienced operator in a private worksite. The results show that the method can effectively estimate productivity and monitor the development of operations. The obtained information can guide managers to track the productivity of each individual machine and modify planning and time scheduling

    A novel framework for the estimation of excavator’s actual productivity in the grading operation using building information modeling (BIM)

    Get PDF
    This paper discusses the productivity of an excavator in the grading operation. Although the grading operation is one of the most important tasks in various worksites, there is no automated algorithm to calculate the excavator’s productivity during the grading operation. Manual methods for measuring the height of ground are highly time-consuming, labor-intensive, and error-prone. In the presented method, a height map from surrounding areas is provided using a light detection and ranging (LiDAR) sensor every few seconds. The proposed approach utilizes building information modeling (BIM) to retrieve information about the desired shape of the surface and the required accuracy. The results of the presented method are shown by implementation on a collected dataset using an excavator

    Pavement Surface Evaluation Using Mobile Terrestrial LiDAR Scanning Systems

    Get PDF
    Periodic measurement of pavement surfaces for pavement management system (PMS) data collection is vital for state transportation agencies. Vehicle-based mobile light detection and ranging (LiDAR) systems can be used as a versatile tool to collect point data throughout a roadway corridor. The overall goal of this research is to investigate if mobile terrestrial LiDAR Scanning (MTLS) systems can be used as an efficient and effective method to create accurate digital pavement surfaces for. LiDAR data were collected by five MTLS vendors. In particular, the research is interested in three things: 1) how accurate MTLS is for collecting roadway cross slopes; 2) what is the potential for using MTLS digital pavement surfaces to do materials calculations for pavement rehabilitation projects; and 3) examine the benefit of using MTLS to identify pavement rutting locations. Cross slopes were measured at 23 test stations using traditional surveying methods (conventional leveling served as ground-truth) and compared with adjusted and unadjusted MTLS extracted cross slopes. The results indicate that both adjusted and unadjusted MTLS derived cross slopes meet suggested cross slope accuracies (±0.2%). Application of unadjusted MTLS instead of post-processed MTLS point clouds may decrease/eliminate the cost of a control surveys. The study also used a novel approach to process the MTLS data in a geographic information system (GIS) environment to create a 3-dimension raster representation of a roadway surface. MTLS data from each vendor was evaluated in terms of the accuracy and precision of their raster surface. The resultant surfaces were compared between vendors and with a raster surface created from a centerline profile and 100-ft. cross-section data obtained using traditional surveying methods. When comparing LiDAR data between compliant MTLS vendors, average raster cell height differences averaged 0.21 inches, indicating LiDAR data has considerable potential for creating accurate pavement material volume estimates. The application of MTLS data was also evaluated in terms of the accuracy of collected transverse profiles. Transverse profiles captured from MTLS systems have been compared to 2-inch interval field data collection using partial curve mapping (PCM), Frechet distance, area, curve length, and Dynamic Time Warping (DTW) techniques. The results indicated that there is potential for MTLS systems for use in creating an accurate transverse profile for potential identification of pavement rut areas. This research also identified a novel approach for determining pavement rut areas based on the shape of grid cells. This rather simplistic approach is easily implementable on a network wide basis depending on MTLS point cloud availability. The method does not require the calculation/estimation of an ideal surface to determine rut depths/locations

    Estimating Damaged Volume of Historic Pagodas in Bagan after Earthquake using 3D Hough Transform

    Get PDF
    On 24th August 2016, the magnitude of a 6.8 earthquake struck in Bagan from the depth of 52 miles. This earthquake caused much damage in historic pagodas in Bagan, one of the archeological houses in Asia. Analyzing the affected areas is an essential task for the restoration and reconstruction of historic buildings after a disaster. Traditional methods of detecting damage to buildings focus on detecting 2D changes (i.e., only the appearance of the image), but the 2D information provided by the image is not sufficient when it involves detecting damage to buildings is often not precise. For finding out the solution, a method of 3D change detection is needed for estimating the volumes of damaged pagodas after the earthquake. The proposed system aims at producing a quick assessment of the damaged pagodas accurately and correctly. This system estimates the damaged volume of the pagoda based on the nature of the 3D point clouds. Post-earthquake photos are taken using an anonymous aircraft (UAV) and point cloud data is generated using VisualSFM software. The 3D Hough transform is used to find the intersection of the tower vertex and the 3D vertex at the line boundary. Besides, the proposed system can detect the reformed structure of the entire pagoda. The results show that the proposed approach facilitates the automated 3D detection of damaged pagodas and is a time-saving method for estimating the volume of damage caused to precious historic pagodas after a disaster

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Across Space and Time. Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    This volume presents a selection of the best papers presented at the forty-first annual Conference on Computer Applications and Quantitative Methods in Archaeology. The theme for the conference was "Across Space and Time", and the papers explore a multitude of topics related to that concept, including databases, the semantic Web, geographical information systems, data collection and management, and more

    New Global Perspectives on Archaeological Prospection

    Get PDF
    This volume is a product of the 13th International Conference on Archaeological Prospection 2019, which was hosted by the Department of Environmental Science in the Faculty of Science at the Institute of Technology Sligo. The conference is held every two years under the banner of the International Society for Archaeological Prospection and this was the first time that the conference was held in Ireland. New Global Perspectives on Archaeological Prospection draws together over 90 papers addressing archaeological prospection techniques, methodologies and case studies from 33 countries across Africa, Asia, Australasia, Europe and North America, reflecting current and global trends in archaeological prospection. At this particular ICAP meeting, specific consideration was given to the development and use of archaeological prospection in Ireland, archaeological feedback for the prospector, applications of prospection technology in the urban environment and the use of legacy data. Papers include novel research areas such as magnetometry near the equator, drone-mounted radar, microgravity assessment of tombs, marine electrical resistivity tomography, convolutional neural networks, data processing, automated interpretive workflows and modelling as well as recent improvements in remote sensing, multispectral imaging and visualisation

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of “volunteer mappers”. Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protection

    Across Space and Time Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    The present volume includes 50 selected peer-reviewed papers presented at the 41st Computer Applications and Quantitative Methods in Archaeology Across Space and Time (CAA2013) conference held in Perth (Western Australia) in March 2013 at the University Club of Western Australia and hosted by the recently established CAA Australia National Chapter. It also hosts a paper presented at the 40th Computer Applications and Quantitative Methods in Archaeology (CAA2012) conference held in Southampton
    corecore