44 research outputs found

    An ongoing review of speech emotion recognition

    Get PDF
    User emotional status recognition is becoming a key feature in advanced Human Computer Interfaces (HCI). A key source of emotional information is the spoken expression, which may be part of the interaction between the human and the machine. Speech emotion recognition (SER) is a very active area of research that involves the application of current machine learning and neural networks tools. This ongoing review covers recent and classical approaches to SER reported in the literature.This work has been carried out with the support of project PID2020-116346GB-I00 funded by the Spanish MICIN

    Emotion-aware cross-modal domain adaptation in video sequences

    Get PDF

    IberSPEECH 2020: XI Jornadas en TecnologĂ­a del Habla and VII Iberian SLTech

    Get PDF
    IberSPEECH2020 is a two-day event, bringing together the best researchers and practitioners in speech and language technologies in Iberian languages to promote interaction and discussion. The organizing committee has planned a wide variety of scientific and social activities, including technical paper presentations, keynote lectures, presentation of projects, laboratories activities, recent PhD thesis, discussion panels, a round table, and awards to the best thesis and papers. The program of IberSPEECH2020 includes a total of 32 contributions that will be presented distributed among 5 oral sessions, a PhD session, and a projects session. To ensure the quality of all the contributions, each submitted paper was reviewed by three members of the scientific review committee. All the papers in the conference will be accessible through the International Speech Communication Association (ISCA) Online Archive. Paper selection was based on the scores and comments provided by the scientific review committee, which includes 73 researchers from different institutions (mainly from Spain and Portugal, but also from France, Germany, Brazil, Iran, Greece, Hungary, Czech Republic, Ucrania, Slovenia). Furthermore, it is confirmed to publish an extension of selected papers as a special issue of the Journal of Applied Sciences, “IberSPEECH 2020: Speech and Language Technologies for Iberian Languages”, published by MDPI with fully open access. In addition to regular paper sessions, the IberSPEECH2020 scientific program features the following activities: the ALBAYZIN evaluation challenge session.Red Española de TecnologĂ­as del Habla. Universidad de Valladoli

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Signal classification at discrete frequencies using machine learning

    Get PDF
    Incidents such as the 2018 shut down of Gatwick Airport due to a small Unmanned Aerial System (UAS) airfield incursion, have shown that we don’t have routine and consistent detection and classification methods in place to recognise unwanted signals in an airspace. Today, incidents of this nature are taking place around the world regularly. The first stage in mitigating a threat is to know whether a threat is present. This thesis focuses on the detection and classification of Global Navigation Satellite Systems (GNSS) jamming radio frequency (RF) signal types and small commercially available UAS RF signals using machine learning for early warning systems. RF signals can be computationally heavy and sometimes sensitive to collect. With neural networks requiring a lot of information to train from scratch, the thesis explores the use of transfer learning from the object detection field to lessen this burden by using graphical representations of the signal in the frequency and time domain. The thesis shows that utilising the benefits of transfer learning with both supervised and unsupervised learning and graphical signal representations, can provide high accuracy detection and classification, down to the fidelity of whether a small UAS is flying or stationary. By treating the classification of RF signals as an image classification problem, this thesis has shown that transfer learning through CNN feature extraction reduces the need for large datasets while still providing high accuracy results. CNN feature extraction and transfer learning was also shown to improve accuracy as a precursor to unsupervised learning but at a cost of time, while raw images provided a good overall solution for timely clustering. Lastly the thesis has shown that the implementation of machine learning models using a raspberry pi and software defined radio (SDR) provides a viable option for low cost early warning systems

    Transparent Authentication Utilising Gait Recognition

    Get PDF
    Securing smartphones has increasingly become inevitable due to their massive popularity and significant storage and access to sensitive information. The gatekeeper of securing the device is authenticating the user. Amongst the many solutions proposed, gait recognition has been suggested to provide a reliable yet non-intrusive authentication approach – enabling both security and usability. While several studies exploring mobile-based gait recognition have taken place, studies have been mainly preliminary, with various methodological restrictions that have limited the number of participants, samples, and type of features; in addition, prior studies have depended on limited datasets, actual controlled experimental environments, and many activities. They suffered from the absence of real-world datasets, which lead to verify individuals incorrectly. This thesis has sought to overcome these weaknesses and provide, a comprehensive evaluation, including an analysis of smartphone-based motion sensors (accelerometer and gyroscope), understanding the variability of feature vectors during differing activities across a multi-day collection involving 60 participants. This framed into two experiments involving five types of activities: standard, fast, with a bag, downstairs, and upstairs walking. The first experiment explores the classification performance in order to understand whether a single classifier or multi-algorithmic approach would provide a better level of performance. The second experiment investigated the feature vector (comprising of a possible 304 unique features) to understand how its composition affects performance and for a comparison a more particular set of the minimal features are involved. The controlled dataset achieved performance exceeded the prior work using same and cross day methodologies (e.g., for the regular walk activity, the best results EER of 0.70% and EER of 6.30% for the same and cross day scenarios respectively). Moreover, multi-algorithmic approach achieved significant improvement over the single classifier approach and thus a more practical approach to managing the problem of feature vector variability. An Activity recognition model was applied to the real-life gait dataset containing a more significant number of gait samples employed from 44 users (7-10 days for each user). A human physical motion activity identification modelling was built to classify a given individual's activity signal into a predefined class belongs to. As such, the thesis implemented a novel real-world gait recognition system that recognises the subject utilising smartphone-based real-world dataset. It also investigates whether these authentication technologies can recognise the genuine user and rejecting an imposter. Real dataset experiment results are offered a promising level of security particularly when the majority voting techniques were applied. As well as, the proposed multi-algorithmic approach seems to be more reliable and tends to perform relatively well in practice on real live user data, an improved model employing multi-activity regarding the security and transparency of the system within a smartphone. Overall, results from the experimentation have shown an EER of 7.45% for a single classifier (All activities dataset). The multi-algorithmic approach achieved EERs of 5.31%, 6.43% and 5.87% for normal, fast and normal and fast walk respectively using both accelerometer and gyroscope-based features – showing a significant improvement over the single classifier approach. Ultimately, the evaluation of the smartphone-based, gait authentication system over a long period of time under realistic scenarios has revealed that it could provide a secured and appropriate activities identification and user authentication system

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore