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SUMMARY

In his “Treatise of Human Nature”, David Hume argued that: “ Reason is, and
ought only to be the slave of the passions!!”.

Emotion detection and recognition play a fundamental role in humans, especially in
our everyday social engagement, when we are experiencing social behaviors (for exam-
ple, in relationship maintenance). Moreover, they can prove really useful when address-
ing people in public (for instance, during a political debate or discussion). Not only do
emotions play an important role in everyday life and social interactions of each person,
but also they are crucial in human perception and cognition. Therefore, developing an
automatic interface to rationalize about human emotions could prove to be very help-
ful, especially to those people that lack the ability to properly recognizing other people’s
emotions.

At the same time, developing intelligent systems that are capable of recognizing emo-
tions is an important, but a rather challenging task. Humans experience a wide range of
emotions when interacting with an interface. Previous research has provided firm ev-
idence that emotions vigorously affect motivation and hence play a crucial role when
users interact with interfaces (such as learning or video games, for instance). However,
it was not until recently that modern technology started to embody users’ affect analy-
sis and not only use their conventional interaction methodology with systems (such as
button clicks, feedback, etc.).

In this dissertation, a study of emotion recognition by employing sensorial modali-
ties (such as auditory signals) with an insufficient amount of data is performed. Domain
adaptation approaches are applied to leverage emotion-related information with great
availability (such as facial expressions) and transfer this knowledge to emotion cues with
less available information to increase their emotion recognition performance. In partic-
ular, we shed light on the audio-visual cross-modal relationship. Having a system per-
forming emotion recognition from modalities such as audio (with limited access in au-
dio features), the task is to leverage availability in face datasets (where there are more
available data) with the purpose of enhancing the classification efficiency.

The main pillars of this research concern the implementation of metric learning and
generative models to facilitate the task of cross-modal domain adaptation between au-
dio and face within the affect context. Furthermore, an extensive study in the ways
that temporal dynamics between audio and face modalities could contribute to domain
adaptation is employed. Finally, we facilitate also the inverse task that is to perform face-
based emotion recognition by eliciting auditory source information.

xix





1
INTRODUCTION TO

EMOTION-AWARE DOMAIN

ADAPTATION

In the current thesis, research in domain adaptation for cross-modal emotion recogni-
tion is performed. The applied modalities represent input information such as facial ex-
pressions, audio utterances, body posture, textual, and health-related signals. Emotion-
related information can be extracted by humans or automatically from machines when
examining these channels. In this dissertation, our primary focus is to investigate audio-
visual cross-modal relationships within emotion context and explore multiple ways of
mapping and projecting face-related to audio-related features and vice versa. To mea-
sure the performance of our task, we tried to leverage source data from one modality
with the purpose of improving the emotion recognition efficacy in the second modality.
In Figure 1.1, a visualized instance of the modalities under study is presented.

The core inspiration for the dissertation originated from academic studies on cross-
modal relationships within the cognitive psychology field and the analysis regarding the
way that audio and video are connected in the human brain. Furthermore, we were also
inspired by literature findings in [1] that show that the emotion recognition performance
among different modalities varies significantly. There are dominant modalities such as
facial cues, for example, while there are modalities such as auditory signals where the
human, as well as the computer capacity to recognize emotions, is inferior, according to
conducted research in cognitive psychology [1].

Scientists in the domain of cognitive psychology have long studied the relationship
between facial and vocal cues in humans [1] [2]. In particular, researchers suggested
that infants, during the development of their auditory and visual perception, fuse facial
cues together with audio information to better discriminate and recognize emotions.
Along the same line, authors in [3] cited an extremely interesting phenomenon (called
“The McGurk Effect”) regarding how human visual perception functions to calibrate the
way that the brain perceives auditory signals. This study states that there is a difference

1
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(a) Audio modality.

(b) Face modality.

Figure 1.1: Example of the under study modalities.

in the way that the auditory input signal is interpreted when the subject has open or
closed eyes. For example, the sentenceMy dad pop me poo brive is interpreted by the
human brain as My dad taught me to drive when the subject has open eyes. Authors
suggest that both audio and visual perceptual systems function together and calibrate
these mistakes.

In the same spirit, authors in [4] performed a study on how people with hearing prob-
lems perceive the sounds of phonemes by triggering their visual perceptual system with
the purpose of performing lipreading (or speech-reading). In a similar manner, concern-
ing emotional cross-modal relationships, prosodic speech information (linguistic vari-
ation in speech like pitch tempo, loudness, etc.) and its correlation with facial features
have been intensively studied [5] [6] [7]. The cardinal outcome of these works was that
speech prosodic information is associated with other social cues such as facial expres-
sion, body language or tone tempo. In particular, authors in [7] suggested that speech
prosodic information could be extracted merely using facial cues. Hence, a worthwhile
research question that is inspired by the theoretical conducted research is whether the
connection between the audio-visual information could be examined from the emo-
tional point of view. In this regard, we re-frame the question as: Does the emotional
state content of a persons’ voice correlate with their facial expression?

In the light of the aforementioned cognitive research, we intend to transform the
same questions posed by cognitive psychologists into the domain of emotion recogni-
tion and Domain Adaptation (DA) from the computer science perspective and pose the
following question: Is it possible to transfer knowledge between facial expressions and
audio-features (which are derived from the same videos and are governed by the same ex-
pressions)? The importance of this question lies in the fact that, while emotion recogni-
tion through facial expressions has been studied extensively [8] [9] [10], emotion recog-
nition through other modalities such as audio has produced fewer advancements con-
cerning classification results [11]. An important reason behind this is the fact that there
are not a lot of publicly available datasets for audio-based emotion recognition com-
pared to the abundance of data that exists regarding facial expressivity. Therefore, gen-
erating training models for emotion recognition through this modality can be a rather
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Figure 1.2: Transfer of knowledge between humans.

challenging task and requires the generation of new robust datasets. Meanwhile, the en-
gineering of such big and complex corpora is not always a straightforward and feasible
task.

To overcome these limitations, domain adaptation (defined also as transfer learn-
ing) algorithms are fostered by researchers with the objective of developing classifica-
tion methods for specific modalities by exploiting data from other similar ones that come
from rich available datasets [12]. Therefore, by eliminating the source and target domain
distributions, inherent differences, we can transfer knowledge across modalities with
different distributions by projecting both into a new latent domain [13], or by learning a
transformation that projects the one domain onto the other. The essential objective is to
efficiently perform classification tasks by leveraging data from the modalities with rich
available datasets and transferring that knowledge into different modalities with differ-
ent distributions (with sparsely available datasets), performing the same in-hand task
[12][13]. These techniques were inspired by human behavior and the way that the learn-
ing process is materialized in the human brain by “re-using” previous knowledge to han-
dle new situations or the way in which knowledge is transferred through socializing and
learning from one human to another (Figure 1.2).

In the current dissertation, two domain adaptation strategies were employed which
are metric learning based techniques and domain adaptation based on generative
models. Both strategies are introduced in subsections 1.3 and 1.4 and further analyzed
in Chapters 1, 2 and 3.

The remainder of this chapter is structured as follows. First, Section 1.1 gives an in-
troduction to domain adaptation as well as the terminology adopted through the whole
dissertation. Section 1.2 introduces emotion recognition, as well as state-of-the-art tech-
niques for the modalities that we will focus on in the current thesis. Subsequently, in Sec-
tions 1.3 and 1.4, the techniques applied in domain adaptation are discussed, as well as
state-of-the-art techniques that inspired our work. In section 1.5, the datasets utilized in
all the techniques that are established throughout the dissertation are described. Next,
in Section 1.6, the problem statement of this dissertation is analyzed and the five re-
search questions of this thesis are formulated. Finally, Section 1.7 gives an overview of
the whole dissertation.
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1.1. DOMAIN ADAPTATION
During the last years, very significant progress has been made regarding supervised and
unsupervised learning techniques that led to astonishing advances in the field of ma-
chine learning. Nowadays, we experience AI innovations that include autonomous ve-
hicles, intelligent agents and healthcare detection and prediction systems with human-
level or even super-human efficiency.

Yet, the great majority of these sophisticated learning models are in need of data
sources and their performance depends heavily on the quality and the amount of data
available for training. However, in practise, these large amounts of labeled data are not
always available or are costly to obtain, which in turn leads to poor classification perfor-
mances in the learning models. On top of this, when training on a specific type of data,
the extracted model very often lacks the ability to generalize to any new situation beyond
these experiences that are described by training data distributions, and therefore, there
is a limitation of what they can achieve.

Inspired by all previously mentioned examples and in general by the way that the
human brain is capable of performing knowledge transfer, researchers in the Artificial
Intelligence community have shifted their attention to the area of domain adaptation to
overcome these issues. In comparison with the traditional machine learning approaches
where the learning process occurs in distinctively, without taking into account knowl-
edge from any other domain, domain adaptation uses knowledge from other existing
domains during the learning process.

The field of domain adaptation has been inspired by human behavior and the way
that the learning process occurs. We humans find it easy to transfer gained knowledge
from one domain or task to another. An analogous paradigm for the performed “domain
adaptation” in humans is the following: Let us consider the case of two people who want
to learn the programming language of Python. One person has no previous experience
in programming languages, while the second one has knowledge of Java and C++ and
is already familiar with concepts like loops, recursion, objects, inheritance, abstraction,
functions, etc. It will be much easier for the second person to study and learn Python by
using and transferring the knowledge that has been already gained from Java and C++.
Furthermore, it will be much easier for the first person to learn Python by getting help
from the Java and C++ expert.

A more concrete example deriving from the machine learning domain (which is
closely related to the work conducted in the current dissertation) is as follows: Let us
assume the task of guessing emotions using sound clips of people speaking. If there ex-
ists an abundance of available labeled data for that task, traditional machine learning
algorithms can be implemented to create a robust emotion recognition system through
those sound clips. However, assume the case of sparse datasets available from the audio
modality and dense datasets available from the face modality. In both cases, the data
are linked since they are referring to the same emotions and, thus, to the same classifi-
cation task of emotion recognition. A strategy that could elicit data from closely related
domains with audio like face modality (for instance, in the case of audio-visual video
symbiosis) to improve the emotion recognition performance should be applied. This
methodology is coined with the term “transfer learning” or “domain adaptation”. An
alternative way to conceptualize the two different domains of the example (face and au-
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Figure 1.3: In the top left figure, we can see a binary classification task for the source domain (source task). In
the top right figure, we can a binary classification task in the target domain (target task). Finally, in the bottom
figure, we can see a binary classifier that binds the two domains into a common augmented classification task.

dio) is that both domains can be represented in a higher common sub-space where the
same classifier can be employed for both source and target tasks. Figure 1.3 visualizes
this concept. In particular, it is displayed how a binary classifier for source and target
domains (with a common task, for example, emotion recognition from audio and face)
can be fused together into a common augmented domain and perform classification for
both domains simultaneously.

1.1.1. DOMAIN ADAPTATION DEFINITIONS

For readability purposes, this sub-section introduces a domain adaptation terminology
dictionary which will help readers understand the concepts and methodologies used
in the remainder of this thesis. Primarily, the term domain D is defined by using the
following two notions. Firstly, the feature space X , which contains all possible instances
while X = {x1, x2, ..., xn} ∈ X ⊂ D is a subset of the feature space and contains the in-
hand available learning sample vectors. Secondly, the feature probability distribution of
the learning sample features is defined as P (X ). Then, the classification task denoted
as T , is introduced. Two new terms should be defined in that case. Firstly, the label
space Y and, secondly, the classification function f (X ), which can be used to map a new
unknown input feature vector x

′ ∈X to the label space Y . In particular, if the machine
learning problem under study is the classification task of emotion recognition through
facial expressions using the six basic emotional states (happiness, sadness, fear, disgust,
anger and neutral) [66], then the feature space X is represented by all possible values
(e.g. between 0-255) that the pixels of the images from the facial domain can take, while
the labels yi ∈ Y are represented by the aforementioned six basic emotions. It should
be also stressed that, for two different classification tasks, the feature domains and the
feature probability distribution can be vastly different.

In addition, the terms source and target domain are introduced [12]. The source do-
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main is considered a space which contains data that will be used to perform the trans-
fer of knowledge. In the current work, the facial expression modality is defined as the
source domain. Formally, the source domain can be defined as DS = (XS ,YS ,P (XS ))
(with XS ⊂ XS , the feature set which is subset of the feature space that represents the
source data). On the other hand, the target domain is the sub-domain that needs to
be enhanced through transferred knowledge stemming from the source domain. This
domain is defined as: DT = (XT ,YT ,P (XT )) (with XT ⊂ XT , the feature set that is sub-
set of the feature space that represents the target data). In the same spirit, a definition
for source and target classification tasks can be defined as follows: Insofar as the first
is concerned, the source task TS is the classification task that can be trained using the
data from the source domain DS . Similarly, the classification task TT is the one that can
be applied using the target domain data DT . The classification task for each domain
consists in calculating the predictive classification function for each case: fS (XS ) and
fT (XT ). This is done by incorporating the feature vectors into the training set and learn-
ing the relation between the feature vectors and the corresponding labels. By definition,
the scope of domain adaptation is to extract the knowledge from the source task and to
apply this knowledge to the target task. This transfer of knowledge is implemented with
the purpose of improving the performance of the classification task in the target domain
by incorporating knowledge from the source domain, thus improving the performance
of the predictive classification function fT (XT ).

Having defined basic terms associated with Domain Adaptation (DA), several emerg-
ing scenarios arise regarding the nature of the available data and the way that DA
can be utilized [12][13]. For the source and target domains DS = (XS ,YS ,P (XS ) and
DT = (XT ,YT ,P (XT )), the emerging cases for DA are very often subject to the follow-
ing conditions: XS 6= XT and P (XS ) 6= P (XS ). In the case that the source and target
domains are not the same (XS 6= XT ), the approaches are defined as Heterogeneous
Domain Adaptation. While if XS = XT and P (XS ) 6= P (XS ) the approaches are de-
fined as Homogeneous Domain Adaptation. These categories are illustrated in Figure
1.4. As an example of Homogeneous Domain Adaptation can be mentioned the knowl-
edge transfer between two different datasets of images that contain for instance people’s
faces, however, with different subjects, illumination conditions and poses. On the other
spectrum, in the case of Heterogeneous Domain Adaptation, as an example, we can have
two datasets with completely different types of information like images and audio.

To perform knowledge transfer, for both Homogeneous and for Heterogeneous Do-
main Adaptation, there are two main strategies: symmetric and asymmetric approaches.
Insofar as the first is concerned, both the source and target domains are transformed
into a common latent subspace, while in the latter case, only the source domain is trans-
formed into the target domain. In the current work, we employ both strategies since
in the case of metric learning we performed symmetric domain adaptation while in the
case of generative networks we performed asymmetric domain adaptation.

When trying to shed light on the literature on domain adaptation, it is becoming ev-
ident that the terminology and definitions are often inconsistent [16]. A prime example
of this discrepancy can be the use of the terms domain adaptation and transfer learn-
ing, commonly but not always used to refer to the same concept [13]. Another com-
mon inconsistency is how domain adaptation problems are grouped. Traditionally, do-
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Figure 1.4: Homogeneous and heterogeneous domain adaptation.

Figure 1.5: Symmetric and asymmetric domain adaptation.

main adaptation problems are categorized based on the similarity between domains,
from whether deep learning is implemented or not and also based on the availabil-
ity of labeled and unlabeled data [16]. Another categorization can lead to three main
groups: “Inductive”, “transductive”, and “unsupervised domain adaptation” (the review
work done in [12] analyzed these categories in detail). More specifically:

• As far as the first is concerned, both source and target domains contain dense
datasets with fully available label information. Hence, the cross-domain projec-
tion is taking into account the tuples of annotated samples from all the involved
domains [12].

• In the second case, there exists some small amount of label information or there is
no label information regarding the target domain but there is an auxiliary way to
infer them (for instance with the usage of a classifier). This category can be noted
alternatively as “unsupervised domain adaptation” [12].

• Finally, in the last case (“unsupervised domain adaptation”), there is a lack of in-
formation concerning labels in the target domain and any auxiliary classifier. DA is
performed by explicitly using the distributions of the different modalities without
any annotation information [12].

The employed techniques of this dissertation lie in the first two cases.
Another important term related to domain adaptation is the so-called negative

knowledge transfer [16]. This term expresses the case where the applied domain adapta-
tion contributes negatively to the performance of the target task. For instance, by lever-
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aging information from the source domain (for instance face modality) and trying to
transfer it to the target domain (audio modality) for applying the target task classifica-
tion (emotion recognition), the classification performance is deteriorating.

1.1.2. RECENT ADVANCES IN DOMAIN ADAPTATION
In this subsection, the State-Of-The-Art (SOTA) approaches regarding domain adapta-
tion are introduced. The related overview papers discussed in [12][13] are considered
among the most popular surveys in the fields of transfer learning and domain adap-
tation. These works introduced a widely accepted terminology and some comparison
between the performance of the approached involved. Moreover, the works in [15][16]
are recent surveys that introduce SOTA approaches for visual domain adaptation in par-
ticular. In the following subsections, we describe in detail the approaches that provided
fertile inspiration for the current work. Most of these approaches can be categorized
into two groups depending on whether they are deep-learning-based or not. For clarity
purposes, we will define the second category as classical machine learning for domain
adaptation. In this case, the feature extraction process from all the involved domains is
occurring in an extra step using a dedicated feature extraction algorithm. Therefore, this
approach can be coined also as classic domain adaptation approach. In contrast, the in-
put for the deep learning approaches are raw data and the feature extraction is occurring
in an end-to-end fashion.

DEEP LEARNING DOMAIN ADAPTATION APPROACHES

Deep-learning-based approaches can be grouped into the following categories: fine-
tuning deep architectures, adversarial approaches, data reconstruction based methods,
and discrepancy based methods [15][16].

Fine-tuning deep architectures. One of the most common deep learning domain
adaptation approaches, is to fine-tune the deep network model using data from source
domain DS and then update several added last layers (or one last layer) using data only
from the target domain DT . Fine-tuning requires normally, a large amount of data from
DS and the limited amount of data from the target domain DT . Hence, the model is in
general augmented with, when available, the few labeled target instances - which allows
adjusting the deep model to the new domain. In this case, we can also work even if the
targeted classes do not belong to the classes used to pre-train the deep model. How-
ever, if the domain divergence between the DS and DT is large, the fine-tuning process
could lead to over-fitting the deep model. In this case, the performance of the fine-tuned
model can lead to negative transfer learning.

A prominent example of this category is the work done in [31], where an analysis in
the so-called parameter-based domain adaptation field is performed. In that case, the
scope of domain adaptation is to transfer the knowledge of the calculated parameters
between the source and target task. More specifically, the core idea of this work is to
train Convolutional Neural Networks (CNNs) in two steps. Firstly, the intermediate layer
and their parameters of the CNNs algorithm are tuned using the source domain dataset.
Secondly, the last layers of the CNN architecture are tuned by using solely the informa-
tion from the target domain.

Adversarial approaches. The target of these techniques is to provoke domain confu-
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sion by utilizing an adversarial objective with respect to a domain “discriminator”. These
approaches are normally implemented by using two-stream approaches. In this sense,
one neural network will try to perform the domain confusion, while a second neural
network called the “discriminator” will be judging whether the domain confusion is ef-
ficient or not. These approaches can be further divided in two categories depending on
whether they encompass a generative strategy (as in the case of GANs) or not. In this
case, the target is not only to minimize the source and target divergence but also to gen-
erate samples from the target domain.

For example, authors in the work titled “Domain-Adversarial Training of Neural Net-
works” (DANN) [17] facilitated domain adaptation from the learning representation per-
spective. They attempted to jointly learn representations for both source and target do-
main samples by introducing a neural network that is having as loss function a domain
divergence loss (H -divergence) that calculates the distance between the two domains.
This loss is coupled together with classification loss that uses the supervised information
exclusively from the source domain. Inspired by this work, authors in [18] proposed the
so-called Variational Recurrent Adversarial Deep Domain Adaptation (VRADA) model,
which employs variational recurrent adversarial networks. This is done in order to cap-
ture and transfer temporal latent dependencies across domains using domain-invariant
representations for real-world health-care time-series data. On this ground, they tested
their approach using the MIMIC-III [19] and a Pediatric ICU (PIC) [20] dataset.

Authors in [33] proposed a covariant multimodal attention method based on multi-
modal domain adaptation neural networks (MDANN). In this work, the authors inves-
tigate whether it is possible to perform domain adaptation that can transfer knowledge
from one multimodal dataset to another one. This is done by trying to learn a common
feature representation for multiple modalities and mitigate inter-domain divergence by
applying jointly adversarial loss among the different modalities.

The work done in [32] facilitates the implicit discourse classification problem in a
principled adversarial manner. The term implicit discourse in the linguistic domain con-
notes sequential sentences that are connected semantically but without the use of any
explicit grammatical connectivity. A deep learning architecture is established which is
composed of a network called implicit relation (i-CNN) that extracts embeddings related
to implicit input and a network called connective-augmented relation (a-CNN) that ex-
tracts embeddings for the same implicit input enhanced with explicit connectors. Fur-
thermore, an adversarial network (discriminator) judges whether the inputs come from
i-CNN or a-CNN. Finally, on top of the previous networks, a CNN network performed
the discourse classification.

Discrepancy based methods. These methods employ a discrepancy loss which is
normally applied for measuring the distance between two distributions [16] (for instance
Maximum-Mean-Discrepancy MMD [138]). A prominent example of this category is the
Siamese architecture [21] where the loss is computed between the corresponding acti-
vation layers of two neural networks (streams). The first stream-network represents the
source domain while the second one is the target domain. Both are unified together in
a common loss which is calculated based on their domain discrepancies. These types of
models are analyzed further in Section 1.3.

In the same spirit, the authors in [22] proposed the Deep Adaptation Network (DAN)



1

10 1. INTRODUCTION TO EMOTION-AWARE DOMAIN ADAPTATION

that regards the sum of MMDs loss defined between several layers for two stream net-
works (similarly to work done in [21]). Furthermore, the authors investigated several ker-
nels for adapting the extracted deep representations from the two streams, which sub-
stantially enhances adaptation effectiveness compared to a single kernel method used
in [23]. This is even improved by the study called Joint Adaptation Networks [24], which
instead of the sum MMDs defined between different layers use the joint distribution dis-
crepancies of these representations. In the same spirit, CORAL methodology [26] aims at
minimizing domain shift by aligning the second-order statistics of source and target dis-
tributions (covariance). The employed loss which is expressed by the distance between
the covariance matrices of the source and target domain distributions (CS and CT ) is
used to minimize the discrepancy between the domains. These covariance matrices ex-
press the variation of the multi-dimensional distributions for each domain. The CORAL
loss can be summarised with the following Equation:

λCOR AL ||CS −CT ||2 (1.1)

The Deep CORAL [25] is an extension of the CORAL using deep learning. In partic-
ular, the core idea is to calculate a nonlinear transformation that aligns correlations of
activation layers between the two streams networks (likewise to Siamese networks). This
idea is similar to DAN approach with the exception that instead of MMD loss, the CORAL
loss is applied.

Authors in [27] introduced a technique called Hybrid Heterogeneous Transfer Learn-
ing (HHTL) through deep learning to perform heterogeneous transfer learning between
multilingual documents. The target is to perform knowledge transfer and to create a text
sentiment classifier for documents in a specific language by using only an annotated set
of documents in another language. To tackle that issue, the authors implemented a tech-
nique called Marginalized Stacked Denoised Autoencoders (mSDA) [28] to transform
both source and target domains into common representations. Denoised autoencoders
are one-layer neural networks trained to reconstruct input data from partial and random
corruption. These “autoencoders” can be “stacked” into a big deep learning architecture
(therefore called “stacked”). The term marginalised in the name of the approach refers
to the adopted greedy layer-by-layer training process. Finally, a deep learning architec-
ture is applied in order to bridge these different common representations of the source
and target domains by making use of the “document-correspondences” information that
links the source and the target domain (which are generated using “Google Translate”).

Data reconstruction (encoder-decoder) based methods. These approaches, in con-
trast with the previous ones, combine a convolutional neural network that normally
performs predictions for the source domain XS (denoted as “encoder”) with a second
deconvolutional neural network for target data reconstruction (“decoder”). In this case,
encoder extracts a latent space representation of the XS while decoder network recon-
structs the target domain XT . The loss of the whole process can be still the normal pre-
diction or classification loss (cross-entropy for instance) bound together with a recon-
struction loss.

The Domain Separation Networks (DSN) topology [34] introduces the notion of a
private subspace for the source XS and target domain XT and we can capture domain
specific properties, such as background and low level image statistics (for a dataset con-
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sists of images). Then, a shared feature space between the domains, enforced by using
autoencoders and explicit loss functions, extracts the shared features between the do-
mains. The model involves a reconstruction loss using a shared decoder, that aims at
reconstructing the input sample by using both private (domain specific) and source rep-
resentations. The evaluation of the proposed approach is performed in several domain
adaptation benchmarks for image-to-image domain adaptation.

All methods in this category are in need of a big data corpus to properly tune the
employed deep neural networks that are consisted of [47]. Moreover, these approaches
comes with a high computational cost and therefore are in need of more hardware re-
sources than the classic machine learning approaches. However, state-of-the-art results
are observed also in several cases using these approaches [16] in domains where these
big corpora are available. Unfortunately, this is not always the case and there are sev-
eral domains in which it is not possible to apply these techniques. However, in the field
of audio-visual domain adaptation, which is the focus of the current dissertation, there
are various big corpora that can be leveraged to apply deep learning. Therefore, these
techniques can be employed to study the relations between these two modalities.

CLASSICAL MACHINE LEARNING FOR DOMAIN ADAPTATION

In the following paragraphs, the classical DA methods are reviewed. These approaches
can be categorized into the following groups: graph-based methods, parameter adap-
tation methods, feature augmentation, feature space alignment, and metric learning
based feature transformation.

Graph based methods. In this category, XS and XT are treated as graphs, and simi-
larities between the instances of both domains are calculated. These instances are rep-
resenting the nodes of these graphs. The variations between the several methodologies
are lying in the way that the similarities between the graphs are computed.

Authors in [35] tackled the homogeneous domain adaptation task in an unsupervised
manner by trying to spot correspondences between samples in the source and target do-
mains. The correspondences are obtained by treating the source and target domains as
graphs and using a convex criterion to match them. The criteria which are used are first
and second-order similarities between the graphs as well as a class-based regulariza-
tion. Experiments are performed on several image classification datasets as well as on
toy datasets. Similarly, as an extension of the same work, authors in [36] accommodated
the same task by considering also higher-order similarities. In the work presented in
[37], titled Optimal Transport for domain adaptation, authors accommodated the un-
supervised and semi-supervised domain adaptation problem as in the graph-matching
problem described in [35], by trying to bring close to each other the source and the tar-
get modalities, by using the Monge-Kantorovich (alternatively called as Wasserstein) dis-
tance that is coupled together with several regularizers and by using a generalized con-
ditional gradient (GCG).

In [38], a hybrid version of deep neural networks and graph matching approaches is
developed. Neural networks are employed to extract domain invariant representations
that used a graph matching loss as the domain discrepancy metric.

Authors in [41] proposed a symmetric approach for domain adaptation called Het-
erogeneous Spectral Mapping (HeMAP). This approach handles the cases where the tar-
get and a source domain are not linked with a common class-label set. This approach
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employs a spectral mapping algorithm to learn transformation projections. For each
domain, a transformation matrix BS is introduced for the source and BT for the target
domain. The inferred objective function consists of two components: the first one tests
whether the structure of the target and source data is retained after the transformation
using matrices BS and BT while the second one calculates the difference between the
target and source data in the projected space. By minimizing the objective functions,
the algorithm learns target and source transformation mappings which retain their data
structure and at the same time minimizes their differences in the common sub-space.
In the end, a dedicated HeMAP algorithm classification approach is employed for the
target classification task.

Feature augmentation. One of the simplest approaches to tackle domain adaptation
which called frustratingly easy domain adaptation is proposed in [29]. The original rep-
resentation of source domain xS ⊂ XS is fused with itself and a vector of the same size is
filled with zeros (zero padding). Each feature from each domain, for instance for source
domain, (with dimension xS ∈ RD ) is mapped onto an augmented space of dimension
x
′
S ∈ R3D simply by duplicating the feature vectors. Thus, the features from the source

domain are mapped into [xS ,xS ,0]T while the features from the target domain are rep-
resented by [xT ,0,xT ]T with xT ∈ RD . Finally, an SVM classifier is trained using a fused
dataset which contains both augmented domains. While this approach is seemingly re-
ally straight-forward and not a particularly sophisticated one, surprisingly it is proven to
work in many cases.

From a similar perspective, the authors in [39] proposed an algorithm that is titled
Heterogeneous Feature Augmentation (HFA) to handle the case of knowledge transfer
for domains of heterogeneous nature. In their approach, features which belonged to
two different domains (either images or text with different representations and distri-
butions) are represented by features with different dimensionalities. Thus, the very first
thing that the approach needed to cater for is the transformation of the source and tar-
get domain features to the same dimensionality. To perform so, authors propose two
transformation matrices (P and Q) and by fusing the transformed data with the initial
features and vectors of zeros. This can be seen in Equation 1.2:

φS (xS ) =
PxS

xS

0

 and φS (xT ) =
PxT

xT

0

 (1.2)

The φ transformation represents this new sub-space for both the source and target
domains. P and Q are learned by using Support Vector Machines (SVM) [40] (and are
part of the Karush–Kuhn–Tucker constraints [40]). With the purpose of simplifying the
optimization equation in HFA, the authors propose, instead of calculating both transfor-
mation matrices P and Q, to calculate an intermediate metric H = [P,Q]T [P,Q]. In this
way, it is more trivial to optimize and solve for H instead for both variables P and Q, and
thus, we have less constraints in the optimization scheme. Moreover, the authors proved
that it is not necessary to calculate P and Q separately. When learning the intermediate
metric H the system is able to transform both source and target domains into the same
subspace and perform traditional classification. This transformation matrix H can be
applied directly in a new test sample.
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Feature space alignment. In this category, the task is to perform a transformation
and align features from both domains.

Authors in [44] proposed a heterogeneous domain adaptation technique based on
manifold alignment. The core idea of this approach is to construct mappings to bridge
different feature spaces in order to perform knowledge transfer across different domains.
This approach can reuse supervised information from multiple source domains in a tar-
get domain even when the input source domains do not share any common features or
instances. The key idea is to transform different source domains into a sub-latent space
using manifold alignment by making use of the available supervised input information.
The method minimizes the divergence between the domains by using second-order
statistics of the source and target domain distributions (P (XS ) and P (XT )). The main
idea is a whitening of the source data using its covariance followed by a “re-coloring” by
using the target covariance matrix.

Metric learning approaches for domain adaptation. These approaches require at
least a limited number of labeled data in the target domain and they implement a metric
learning technique to bridge the source and target domains. The core part of these ap-
proaches is based on the implementation of metric techniques for bridging the source
DS with the target DT domains.

Authors in [42] proposed a method called Asymmetric Regularized Cross-Domain
Transformation (ARC-t). This approach considers the case that both the source and the
target domain (different visual databases) have the same class-label set and the target
objective is to perform object recognition. The purpose of this approach is to calculate a
transformation matrix W that maps the source domain to the target domain. This matrix
W is learned by the implementation of a non-linear RBF kernel. A minimization task is
introduced which aims to minimize matrix W by making use of constraints imposed by
pairs of source and target features that share common information (derived from the
same class). This is achieved after considering this matrix W as a similarity function and
therefore metric learning approaches are employed.

Authors in [43] proposed a method called Sparse Heterogeneous Feature Represen-
tation (SFHR), which is an asymmetric heterogeneous domain adaptation technique,
assuming that both the source and the target domains have the same class-label set.
This approach is relevant to ARC-t [42]. However, the difference is that the source and
target datasets are first represented in a code space based on some class decomposition
schema and then the transformation matrix W is learned. In SFHR, this is done through
the implementation of non-negative “Lasso optimization”.

In this spirit, the metric learning for Domain Specific Class Means (DSCM) [45] is in-
troduced. This approach is an extension to Nearest Class Means (NCM) [134] which is
an approach dedicated to a specific domain for calculating a new distance and improv-
ing the image classification task. Given an image xi , this approach similarly to k-means
assigns this image to the class c∗ ∈ yc = {1,2, ...,c} whose mean is the closest:

c∗ = argmin
c∈Yc

dw(xi ,µc ), with µc =
1

c

∑
i :yi=c

xi (1.3)

where dw(xi ,µc ) = ||W(xi −µc )||2 is the squared distance between an instance xi and
the class mean µc in a projected feature space given by the transformation matrix W. If
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W = I where I is the identity matrix, the above equation corresponds to the Euclidean
distance in the original feature space. This definition can be interpreted as the posterior
probability of a sample x to belong to class c. Authors have shown that the equation 1.3
can be analyzed as a softmax function:

p(c|xi ) = exp(− 1
2 dw(xi ,µc ))∑Nc

c=1 exp(− 1
2 dw(xi ,µc ))

(1.4)

Finally, the class assignment occurs using the c∗ = argmaxc∈Yc
p(c|xi ). More details

about this can be found in [45]. DSCM, is an extension of NCM for domain adaptation.
It calculates the means of each class by taking into account the data of both source and
target domains. It realizes a transformation of the feature space which minimizes the
weighted softmax distances (which likewise NCM represents the posterior probability
of a sample x to belong to class c) from the corresponding domain-specific class means
(average instances) using data from both domains. In this way, the approach manages
to decrease the intraclass and to increase the interclass distances.

The work described above has been extended with the use of an active learning com-
ponent by the Self-adaptive Metric Learning Domain Adaptation (SaML-DA) [45] frame-
work. In this method, the training set for the target domain is iteratively increased with
the labels extracted by using with DSCM and used to fine-tune the under study metric.

SaML-DA is motivated by the Naive Bayes Nearest Neighbor based Domain Adapta-
tion (NBNN-DA) [46] approach that blends a distance metric learning technique with
a Naive Bayes Nearest Neighbor classifier to model the sample-to-class distances by
slightly making the metric more suitable for the target domain. The core idea for
SaMLDA and NBNN-DA methods, is to substitute at each iteration the source sample
which the classifier is less confident for each class by the target sample, where the clas-
sifier (DSCM respectively NNBA) is the most confident for the given class.

Distance metric learning approaches are analyzed further in Section 1.3.
Parameter based approaches. Another set of early DA methods investigates a dif-

ferent strategy for adapting a classifier trained using datasets from the source domain
DS (for instance an SVM classifier) in order to perform better on the DT domain. It is
important to note that, at least some small annotated information is requited from both
domains in these approaches, hence they can only be applied in the semi-supervised
DA scenario. These approaches are trying to take into account the training parameters
extracted from the source domain task and apply them to the target domain task.

A prominent work in this category is the adaptive SVM (A-SVM) [48]. This approach
aims at adjusting the decision boundaries optimized for the source domain classifiers
with the help of a set of delta functions that are added in the primal optimization of the
SVM by exploiting predictions on the available labeled target examples.

The work done in [50], referred as Domain Selection Machine (DSM), regards the task
of event recognition in online available videos. In this approach, the target domain con-
sists of unlabeled videos while the source information is obtained from annotated im-
ages found via Flickr platform. The DSM methodology is realized as follows: SVM clas-
sifiers are created using multiple source domain datasets by extracting Scale-invariant
feature transform SIFT [84] image features. These datasets are related to different se-
mantic classes and are obtained through Flickr. The target classifier (SVM) consists of
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two parts. The first part is a weighted sum of the predictions of the source classifiers
using key frames from the input video. The second part is a learning function which
input consists of spatio-temporal features [51] from the input video and is trained from
target domain data. This part selects the most relevant source domains by using a data-
dependent regularizer.

Classical machine learning methods in comparison with the deep learning ap-
proaches, require less computational cost and there is not a need for big datasets [16].
Moreover, due to their low complexity, they are considered an easily explainable frame-
work than the deep learning architectures [47]. In this sense, it is easier to track how
specific decisions are performed from the algorithm in contrast with the state-of-the-art
deep learning algorithms where the increasing depth of the networks makes the net-
work explainability a challenging task [16]. All the above renders these approaches an
attractive candidate for starting our research in domain adaptation. Hence, we decided
to begin our research with a classical machine learning domain adaptation approach.
Then, as a built-up step to proceed with a more sophisticated deep learning approach.

1.2. EMOTION RECOGNITION
The target of the current dissertation is to study domain adaptation techniques to un-
cover hidden relations between audio and face modalities from videos that contain emo-
tional responses. Further to this, to evaluate the performance of the introduced ap-
proaches, emotion recognition (ER) was introduced as our main evaluation measure-
ment tool. We would like to answer the question of whether domain adaptation im-
proves the ER performance in the target modality XT by making use of datasets dis-
tributed in the source domain XS . However, in order to proceed with the development
of our whole approach, it seems imperative to proceed first with an explanation of how
emotion is determining and measured by humans. In this way, it will be much easier to
analyze and understand the state-of-the-art ER strategies from a machine learning per-
spective. In Figure 1.6, instances of facial expressions and the corresponding emotion
are illustrated (these instances were extracted from CREMA-D dataset).

Humans have the ability to rationalize about emotions which are crucial when ex-
periencing social behaviors, which can help in relationship maintenance and could be
beneficial in artistic endeavors, for political power scheming [52]. What is more, emo-
tions are crucial in human perception and cognition.

Cognitive psychology researchers are studying the beneficial functions within the
human brain that show the obvious role that emotions play during the process of de-
cision making [59]. The collection of all cognitive processes for reasoning about others’
emotions can be summarized by the term affective cognition.

People’s emotion recognition mechanism is significantly varied in their efficiency
at judging the affects of other people [52]. This aforesaid uncertainty that humans en-
counter when trying to identify emotions, especially from non-facial cues such as audio,
gestures, or sentiments from the text is mitigated using modern technology. Additionally,
this ambiguity is evident from the difficulty that the community of cognitive psychology
is facing when trying to rigorously define and measure what exactly constitutes emotions
[53]. Therefore, the question whether emotional states can be empirically measured, re-
mains a controversial issue.
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Figure 1.6: Examples of emotion recognition extracted from CREMA-D.

Firstly, regarding the definition ambiguity, an important obstacle is that emotional
processes and states are complicated and can be studied from several points of view,
therefore, a complete definition is virtually impossible. A safe way to approach this term
is to include several well-known accepted definitions for the term “emotions”. A major
work towards this end is the work done in [54], where authors gathered 92 different state-
ments for the term “emotions” and provide an analysis for these definitions. From our
perspective the most interesting definitions that we found in the bibliography are the
following ones:

• Emotions are expressions of the human internal states of mind, thinking, and feel-
ings. They are linked to decision making, mood, motivation, and many aspects of
cognition and intelligence [57].

• Authors in [58] suggested that affective states are enclosed body expressions, neu-
rological and physiological responses, and cognitive and meta-cognitive states.

• A subjective feeling state involves physiological arousal, accompanied by charac-
teristic behaviors [54].

• Scottish philosopher David Hume argued that: “Reason is, and ought only to be
the slave of the passions ...” By “passions”, Hume meant what we now call emo-
tions [55].

• Darwin view of “emotions” as a way to convey information which helps organisms
adapt and evolve [56].

1.2.1. EMOTION CATEGORIZATION
Regarding the ambiguity in measuring emotions, during the past decades, many studies
have been performed to describe the way humans measure and attain an accurate un-
derstanding of others’ emotional states [53]. Furthermore, a plethora of divergent mod-
els has been introduced that are trying to grasp the fundamental categorization in which
emotions can be grouped. These theories can be grouped into two distinct categories
namely, manifestation and structure (see Figure 1.7). The first is related to how emotions
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Figure 1.7: The fundamental categorization in which emotions theories can be grouped [52].

are experienced or perceived, hence, they are related more about the definition and the
subjective understanding of emotions. The second category mainly relates to how dif-
ferent emotion responses can be measured. Each group can be better described by its
sub-categories.

MANIFESTATION

In the first group, there are two sub-categories, namely, cognitive and somatic factors.
The emotion theories based on cognitive factors consider cognition as a necessary el-
ement of emotion that takes a form of a thought or judgment. Under this category,
emotions are experienced and perceived from the subjective manifestation perspective
(a term that was analyzed by Karl Jaspers, and more details can be found in [60]). In
this case, emotions are not directly measurable and can be only processed by humans
through empathetic understanding. Furthermore, from the subjective manifestation
perspective, emotions can be intentional or unintentional, conscious or subconscious,
and can be formed as a judgment or a thought. In the same spirit, the authors in [61] an-
alyzed and coined the term “cognitive appraisal” which they associated with a particular
subject and the way that this person is perceiving its surrounding environment. A major
advocate of this theory can be found in [62], where the importance of cognitive evalu-
ations in reasoning about specific stimuli was stressed. Another example of a cognitive
approach is the work done in [63], where authors tried to define emotions as a reaction
to an affect-related event that consists of awareness of emotional stimuli and further, as
being aroused and ready to act due to that stimulus.

The other pillar of emotion manifestations, namely, somatic theories, argues that
somatic responses are more important than cognitive factors, and regard somatic re-
actions as the reason of emotional responses. The author in [64] considers the affect
system of humans as the primary motivation system that can trigger and arouse other
physical and bodily functions. Moreover, the work done in [69] analyzes the connection
between evolutionary theories and emotions during the study of the primal behaviour of
animals. Ekman in [66], who shares a similar perspective, regards emotions as psycho-
somatic conditions that have developed over time in a Darwinian manner due to their
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Figure 1.8: The emotion wheel introduced in [69].

adaptive value when tackling novel unseen life tasks. He proposed that the role which
emotions play is to prepare a subject in a manner to handle new challenging situations
by retrieving information of how similar events were encountered in the past.

STRUCTURE

From the measurement or the so-called structured manifestations point of view, we en-
counter the division between discrete or continuous approaches [52]. Discrete emo-
tion approaches regard the existence of several distinct and universally recognized basic
emotions. A prominent example of this type of categorization can be found in the work
done by Ekman and al. in [67], as well as in the work done in [68], where authors pro-
posed six basic emotions (namely fear, anger, disgust, happiness, sadness, and surprise).
In these studies, it was stated that all people worldwide express and recognize basic emo-
tions in a similar manner. Furthermore, by combining these six emotions, some more
sophisticated emotions are derived. As an example, the emotion of agony is conceived
as a variation of the basic emotion of fear and surprise. In the same spirit, the research
held by Plutchik et al. in [69] claimed that there are eight basic emotions: joy, trust,
fear, surprise, sadness, anticipation, anger, and disgust. In particular, an emotion wheel
schema was proposed (this can be seen in Figure 1.8) and illustrates these eight basic
emotions and the relations among them, such as intensity, combination and the con-
verse relation. In particular, the different colors represent the intensity of the emotion.
Moreover, it can be seen from the figure that we can perform mathematical operations
to emotions such as addition. For instance when joy and trust (sequential emotions)
are combined they produce as a result the emotion of love. Finally, joy and sadness are
considered to be opposite emotions (they lie anti-symmetrical in the diagram).

However, there are some disadvantages that the models of discrete emotions are fac-
ing too. Firstly, there is not a consensus in the scientific community about the number
and type of the basic emotions [59]. Furthermore, some wide criticism on the discrete
models concerns their incapability to capture some other human emotions. However,
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discrete emotion models are widely used because of their simplicity and high plausibil-
ity.

The second sub-category of the structured theory models concerns emotion theo-
ries based on continuous approaches with the occurrence of two or more dimensions
instead of strict emotion categorization. Russell in [70], instead of a small number
of discrete emotions, introduced independent dipolar dimensions of emotion such as
pleasure–displeasure. Another continuous affect model is the so called Theory of Flow
[71][72][73]. This model is used to describe the emotion states and the engaging expe-
riences of individuals during the execution of a specific task. The term “flow” can be
defined as the cognitive state in which an individual experiences motivation, immersion
and happiness. This model is mainly introduced to describe the emotion flow during
the learning process and has been proven critical when designing games [74][75] as well
as computer-based education tools [76]. The learning experience from the Theory of
Flow perspective model can be represented by two dimensions, the skill of the learn-
ers and the challenge presented to them. Attaining a balance between these two pa-
rameters, a positive effect on the interaction process can emerge, which will potentially
enhance the knowledge acquisition process. Another prevalent example is the bipolar
valence-arousal [77] model. Emotions in this case are measured by using two questions.
The first one concerns the degree of arousal (feelings of stimulation, excitation, arousal).
The second one regards the degree of pleasure versus displeasure. Finally, the Pleasure,
Arousal, and Dominance or PAD [78] emotional state model, is a psychological model
to describe and measure emotional states. PAD employs three numerical dimensions,
Pleasure, Arousal, and Dominance to represent all emotions.

All the above categories (see Figure 1.7) in the field of cognitive psychology is lever-
aged from the modern technology point of view to perform automatic emotion recog-
nition. Terms like affective computing [59] and emotional design are related to the re-
alization of emotions when designing computer systems in an attempt to make them
more natural for humans to understand and use [79]. Picard in [80] coined and defined
affective computing as computing that relates to, arises from, or deliberately influences
emotions. Towards this end, recent progress has been made in developing affective sys-
tems which are able to detect and befittingly respond to human emotions and drive hu-
man–computer interaction towards a more enjoyable and efficient fashion.

1.2.2. AUTOMATIC EMOTION RECOGNITION

Utilizing machines to perform emotion recognition is a relatively recent research area
that is becoming widely popular, especially during the last couple of decades in con-
junction with the proliferation of deep learning techniques. Generally, as in the case of
humans, technology works best when it leverages multiple modalities in a context [81].
Currently, research is mostly focusing on performing emotion recognition through facial
expressions, audio segments, sentiments from written text, and health signals as mea-
sured by wearables. The goal is to predict high level cognitive content from the aforesaid
low-level human-oriented emotion-related raw signals [82][100][83].

One way of classifying existing automatic Emotion Recognition (ER) approaches
in the recent literature is based on the way that emotion information (or technically-
speaking emotion features, which are information patterns that are associated with a
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specific emotion) are extracted from the input source. Hence, we have the following two
main categories: handcrafted feature-based techniques and end-to-end learning meth-
ods.

Firstly, handcrafted feature-based techniques (or as they alternatively are called con-
ventional approaches [88]) are based on manual feature extraction strategies and can
be categorised into domain knowledge feature extraction and image description-based
techniques.

• Regarding the first category, domain knowledge from the cognitive psychology
perspective is employed to extract features for each different modality (which
leads to the detection of certain emotion patterns). For each modality, different
features can be extracted and applied in an attempt to retrieve information from
the input sources of information such as video, image, audio, wearable sensors, or
text. That extracted information is directly leveraged using rule-based models for
retrieving emotions from the input modalities or using supervised learning meth-
ods. For instance, regarding facial features, Facial Action Coding System (FACS)
[90] or Action Units (AUs) [91] are used in an attempt to extract features that are
associated with emotions. Both FACS and AUs are concerned with facial move-
ments and facial anatomy. The FACS system classifies, for example many human
expressions in real life, and is the definitive reference standard for muscle move-
ments in facial expressions today. One of the advantages of handcrafted feature-
based strategies is the simplicity in planning and developing regarding the fea-
ture extraction process. Furthermore, these approaches do not require a normally
high computational cost to be utilized. A limitation of this category of techniques
is their inability to handle sophisticated patterns and complex features from the
available datasets which cannot be extracted using just conventional approaches.

• Regarding the second category, the target of these approaches is to extract de-
scriptors (from the whole image) that describe the image, in a way that emotion
patterns can be accurately deduced. These descriptors correspond normally to
low level image characteristics such as colors, image-texture, edges, and corners.
In this category, techniques such as Scale-invariant feature transform (SIFT) [85],
Speeded Up Robust Features (SURF) [86] and Local binary patterns (LBP) [87] are
some dominant strategies. These approaches, while computationally more ex-
pensive than the domain knowledge feature extraction, still they require relatively
lower computational cost than the deep learning approaches [92].

Secondly, end-to-end learning methods is a topic that receives increasing attention
in the Machine Learning community with the proliferation of Deep Neural Network’s
(DNNs) [92]. In this case, a large set of labeled data is supplied to the system with the
purpose of learning and predicting the appropriate emotion type feature patterns. While
learning approaches provide normally reasonable classification performance, they nor-
mally need to be fed large training datasets. Some of the most commonly used machine
learning algorithms originated from the proliferation of deep learning. Some widespread
applied paradigms are the following: Convolutional Neural Networks (CNN) [93], Long
Short-term Memory networks (LSTM) [94], Generative Adversarial Networks(GANs) [95],
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Figure 1.9: Handcrafted feature-based schema. The image samples are extracted from CREMA-D dataset.

autoencoders [96], Restricted Boltzmann machines [97] and Extreme Learning Machines
(ELM) [98], as well as variations of those.

1.2.3. STATE-OF-THE-ART EMOTION RECOGNITION APPROACHES

Given that, in the current dissertation, we are analyzing audio and face emotion recog-
nition (AER and FER), we will introduce the state-of-the-art for both modalities. In the
following paragraphs, the most stimulating works that inspired the current dissertation
are presented in detail.

FACE-BASED EMOTION RECOGNITION

Regarding the automatic FER systems, various types of approaches which lie within the
categories of handcrafted feature-based techniques or end-to-end learning techniques
have been studied.

As far as the first type is concerned, the common ground for all these approaches
regards some pre-processing steps. These are the following: Firstly, the detection of the
face region is performed to remove possible noise and superfluous background from
the video. Secondly, alignment is applied to establish common coordinate references
across all data samples (in case that the extracted faces from the previous step are not
aligned). Subsequently, the extraction of geometric features, appearance features, or
the combination of them is implemented. Finally, a classifier is implemented, where a
learning scheme or some rational extracted rules are employed. This is done with the
purpose of categorizing the extracted features into some basic emotions. These steps
are better reflected in Figure 1.9.

Handcrafted feature-based techniques: In this paragraph, an introduction to state-
of-the-art approaches concerning the handcrafted feature-based techniques is given.
Authors in [101] studied FER in videos. They use two types of geometric features based
on the position and angle of 52 standard facial landmark points. Firstly, for each frame,
facial landmark detection is performed. Then, the angle and Euclidean distance be-
tween the detected and the standard landmarks within a specific frame are calculated.
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Figure 1.10: End-to-end learning. The face is extracted from the RAVDESS dataset [171].

Secondly, the subtraction between these calculated distances and angles and the corre-
sponding distances and angles from the first frame of the video sequence is performed.
Having extracted the aforementioned features, then, during the classification process,
two different approaches are tested, namely multi-class AdaBoost and SVM.

For feature extraction, authors in [102] employed a local binary pattern (LBP) his-
togram of various block sizes from a global face region to extract feature representations.
In addition to that, principal component analysis PCA-based classifier is utilized for each
emotion. Although this method can be implemented in real time, the recognition ac-
curacy tends to be decreased because it does not take into account local variations of
the facial components in the extracted feature vector, and therefore, is an important to
be taken into account in the extracted representation. Towards this end, the authors in
[103] computed region-specific features by dividing the face region into domain-specific
local regions. Local regions with high significance are extracted by employing an incre-
mental search approach. In this way, the approach results in a decreasing number of
feature dimensions and an increasing emotion recognition performance.

An approach for analysing and representing facial dynamics is introduced in [104].
This approach calculates optical flow caused by facial expressions in an attempt to cap-
ture the direction of motion. In [105], an optical flow-based approach is employed to
uncover emotional expression by automatically recognising subtle changes in facial ex-
pressions.

Authors in [106] conducted a study by analyzing multi-view facial expressions. Three
local patch descriptors (histogram of gradients, local binary patterns, and SIFT) are ap-
plied to capture facial features representations, which constitute the inputs to a nearest-
neighbor indexing method that identifies facial expressions. Authors performed a study
on the influence of dimensionality reduction on features when using principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA). These approaches are eval-
uated on multi-view data generated from BU-3DFE 3d facial expression database that
includes 100 subjects with 6 emotions and 4 intensity levels.

In [88], a survey on conventional and deep learning face emotion recognition ap-
proaches, as well results from these approaches can be found. The main employed
datasets are the following: Acted Facial Expressions in the Wild Dataset (AFEW) [169]
containing the six basic emotions (fear, anger, joy, sadness, disgust, and surprise), Ex-
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tended Cohn–Kanade Dataset (CK+) containing the basic emotions plus contempt [107],
the Japanese Female Facial Expressions (JAFFE) containing the six basic emotions plus
the neutral [108], NVIE Dataset [109] (it is labelled with six facial emotions, expression
intensity, and Arousal–Valence label) and CMU Multi-PIE Database (Multi-PIE) [110]. As
can be seen in Table 3 from [88]), with the recent proliferation of the deep learning ap-
proaches, it is possible to obtain better results by employing modern architectures and
create more robust emotion recognition systems. That is mainly contributed to the end-
to-end nature of deep learning approaches. These approaches provide an automatic
way for extracting features which are task-related (for instance, emotion recognition)
since these features are learned using task-related datasets. On the other hand, the con-
ventional approaches employ strategies for feature extraction that are not task-related,
and therefore, there is a divergence in the performances. Furthermore, deep learning
approaches reduce the reliance on pre-processing steps, and hence, can be considered
a more elegant alternative.

End-to-end learning approaches: A typical example of these approaches can be
seen in Figure 1.10. In this example a Convolutional Neural Network (CNN) 3.1 clas-
sifier is employed to an input image in an effort to classify the image. The performed
operations of this model include convolution with learnable parameters) and max pool-
ing which are typical operators of the CNN (Appendix 3.1). By employing this model, we
can extract features that capture better the input image distributions from our datasets.
That can be done by using the last fully connected layer of the architecture.

In the same category, authors in [114] introduce CNN visualization methodology to
comprehend the learned model using various FER datasets, and illustrated the efficiency
of the trained models on emotion recognition. Authors in [115] are using two different
CNN schemes: the first one is implemented to extract temporal features from videos,
while the second one is applied to extract temporal geometry features from temporal
facial landmark points. These two models are fused using an integration schema to im-
prove the performance of FER. The work that is done in [116] is proposing a deep learn-
ing methodology called deep region and multi-label learning (coined as DRML). This
approach is based on a region layer that used feed-forward functions to extract essential
facial regions and enforces the trained weights to capture structural features from the
face.

A CNN-based facial emotion recognition method is proposed in [117]. This work em-
ploys FACS and AUs feature representation, which showed a good generalisation capabil-
ity for the networks for both cross-data and cross-task related to FER. A well-performed
recognition rate is obtained when utilising Extended Cohn-Kanade (CK+), NovaEmo-
tions and FER2013 datasets.

The work is done in [88], contains a review on conventional as well as end-to-end ap-
proaches. Furthermore, the standard FER approaches and their results from these stud-
ies are analyzed as well. As we have discussed before, these approaches provide multi-
ple advantages over the conventional methods, however, there are several noteworthy
disadvantages. Firstly, these approaches in order to avoid overfitting require a massive
amount of data [88], which are not always available. Secondly, these approaches require
an enormous computational power which can become an obstacle when designing such
a system. Finally, while end-to-end approaches outperform the conventional methods,
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due to their black-box nature [111], sometimes it is a rather challenging task to explain
their behaviour. Naturally, this raises several ethical questions [112], especially when
these algorithms are employed in real-world applications [112]. There are applications
where it is more crucial to explain the behavior of the algorithm and how it makes de-
cision than its performance [111]. For instance, in self-driving cars, the decision can be
made by algorithms that can harm pedestrians or drivers. In this case, it is really crucial
for developers to be able to explain the behavior of the algorithms.

AUDIO-BASED EMOTION RECOGNITION

In this Subsection, the most influential works regarding audio-based emotion recogni-
tion (AER) are presented. AER is the task of automatically recognizing emotions from
input audio clips that contain human audio or speech segments. From our literature
review, it is obvious that the most prominent recent approaches are using spectrograms
as for representing the audio clips, which, as a next step, are given as an input to a deep
learning model. In [89] an analysis of the most prominent works in AER is performed.
This paper contains the performance of state-of-the-art approaches in datasets such as
eNTERFACE [125] and CREMA-D [170] (see Section 1.5).

Authors in [119] transformed speech input channel information into spectrograms,
this is a visual representation of the spectrum of frequencies of a signal as it fluctuates
over time. The implemented spectrograms were used as input to a Convolutional Neu-
ral Network. The proposed architecture is composed of three convolutional layers and
three fully connected layers, which were utilized in order to extract distinct features from
spectrograms and predictions for seven basic emotions. While in [121], a speech emo-
tion recognition strategy based on phoneme sequences is introduced. In a similar way,
in [119], authors converted the input speech signals into spectrograms. Furthermore,
they performed various experiments with different kinds of deep neural networks with
phoneme and spectrograms as inputs. Finally, an evaluation of all proposed network
architectures is conducted.

Results from state-of-the-art AER approaches, as well as the employed datasets can
be found in [88], [113] and [89]. A noteworthy observation from these studies (especially
from [113]) is that recent approaches which employ deep learning models mainly make
use of RAVDESS [171] and CREMA-D [170] datasets. Hence, this is a reason that we de-
cided to use these datasets as well in our study. Another extracted observation is that in
recent years there is the widely used implementation of attention mechanisms for AER,
which are mainly employed for the feature extraction process. This provided our inspi-
ration for performing a similar study which can be found in Section 4.

MUTLI-MODAL EMOTION RECOGNITION

Research in the cognitive psychology domain renders that the human brain employs a
multimodal strategy for emotion recognition [1]. Therefore, multimodal approaches are
proven useful for the field of affective computing as well. Moreover, it is found that mul-
timodal emotion recognition outperforms single modal emotion recognition [123][124].
On the other end, a generic drawback of the multi-modal analysis is the lack of datasets
in comparison with the single modality case. However, in the case of emotion recog-
nition there are several available multimodal datasets. Some typical datasets for multi-
modal emotion recognition are AFEW [169], CREMA-D [170], RAVDESS [171] and eN-
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TERFACE [125]. The surveys in [131][88] contain state-of-the-art research for multi-
modal emotion recognition for swallow and deep learning approaches.

Bengio et al. in [127] employ a dataset called Acted Facial Expressions In The Wild
[132]. This work participated in the “EmotiW 2016 challenge” which is described in
[169]. Their approach combined different deep neural network architectures from differ-
ent data modalities, including: 1) a CNN that performs emotion recognition using facial
expressions within video frames 2) a deep belief net to extract features from the audio 3)
a deep autoencoder to model the spatio-temporal relations of the human actions in the
entire scene and 4) a shallow network architecture focused on extracting features from
the mouth region from the first human subjects in the scene.

The work done in [128] presented a methodology built for facilitating the Emotion
Recognition in the Wild 2017 video-based sub-challenge. The goal of this sub-challenge
is to classify the basic emotions, namely, anger, sadness, happiness, surprise, fear, dis-
gust, and neutral. In the proposed solution, the authors applied three state-of-the-art
techniques to tackle the emotion recognition task. Deep network transfer learning is
used for feature extraction. Spatio-temporal model fusion is applied to augment the dif-
ferent networks. Finally, semi-auto reinforcement learning is applied for the optimiza-
tion of the fusion strategy.

The work done in [129] was motivated by the recent proliferation of deep learning
in bridging the semantic gap between audio and video. Authors proposed a multimodal
CNN which fuses the audio and visual cues in a deep model. This multimodal deep
model was trained in two phases: Firstly, two deep CNN models, which are pre-trained
on large-scale image data, are fine-tuned to perform audio and visual emotion recogni-
tion tasks, respectively, on the corresponding labeled speech and face data. Secondly,
the output of these two networks was embodied in a final augmentation network which
was developed using fully-connected layers. This augmented network was trained with
the purpose of obtaining a joint audio-visual feature representation for emotion recog-
nition.

Authors in [130] accommodated the following research questions: Firstly, how to
robustly combine information from different modalities, such as audio and face, and
secondly, how to deal with incremental emotion relations on these modalities. On this
ground, a data-driven unified multimodal incremental deep learning approach was in-
troduced in order to explore the variation of emotion expression over time. Their pro-
posed method was evaluated on two datasets, CREMA-D and RAVDESS.

1.3. DISTANCE METRIC LEARNING
In the current dissertation, Distance Metric Learning (DML) [133][135] is employed as
the first strategy to facilitate the task of domain adaptation within the emotion context.
By using DML techniques, we are able to project face and audio-related features into
a common hyperspace where the domain distribution divergence is minimized. The
main reason that DML is chosen as a candidate approach is due to the essence of the
approach. In particular, it regards the calculation of a new distance metric that binds
together similar objects while conversely, increases the distance of dissimilar objects as
much as possible [133]. In our research, we employ this approach to bind together sim-
ilar instances from XS and XT and push away conversely dissimilar instances. In this
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Figure 1.11: DML projection learning.

way, the divergence between two different domains is minimized when using this new
distance metric.

A more rigorous definition of DML [133] is concerned with learning a distance func-
tion designed for a specific task by making use of some supervised information. A possi-
ble intuitive formulation for the distance metric learning task is the following: Firstly, we
have an initial distance function d(x, y) between samples x and y (this could be, as an
example, the simple Euclidean distance), coupled together with some supervised infor-
mation that demonstrates which data pairs are indeed semantically close and which are
not considered close [135]. DML’s target is to frame a new distance function d̂(x, y) that
is more “efficient” than the initial distance function d(x, y) [135]. All the metric learning
methods that we study in our work and which are a major inspiration for our work, as-
sume that there is some supervised information available in hand. In the current disser-
tation, the hypothesis that the annotations from both domains can work as supervised
input information for computing and optimizing the new distance function d̂ is placed.
The data samples from both domains are derived from the same events (as an example
could be that the face and audio are extracted from the same video sequence). As an
example of the aforesaid procedure, let us hypothesize that there are available data from
the face domain XF ⊂ DF with yi , i ∈ 1, ...,6 the samples’ annotation (the six basic emo-
tions) and data from audio domain X A ⊂ D A with similar annotation yi , i ∈ 1, ...,6. One
possible strategy for domain adaptation is to learn a new more sophisticated distance
d̂() to bring closer samples from XF and X A domains that are considered semantically
similar (having the same annotation). At the same time, to increase the distance between
samples from both domains with dissimilar annotation.

The whole procedure is explained in more detail in Chapter 2. Furthermore, the con-
ducted process is better visualized in Figure 1.11 where, in the left part of the figure, it
can be observed that the similar and dissimilar data points could not be easily separated
but after the implementation of the DML new distance d̂(XF , X A) (displayed in the right
part of the Figure), it is much easier to find a separation between these two categories.
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The utilization of the aforesaid proposed strategy is introduced in order to drive both
domains closer. Having calculated the new distance function, we can apply this distance
and project the input datasets into a common hyperspace. There, both modalities are
fused into a new augmented dataset, and emotion recognition is implemented. As we
already mentioned, our task is to figure out whether we can improve the performance of
emotion recognition by using that fused dataset.

1.3.1. OVERVIEW OF DISTANCE-METRIC LEARNING TECHNIQUES

In this subsection, a revision of the state-of-the-art techniques for Distance Metric
Learning that provide fruitful inspiration for our work is presented. Firstly, the surveys
in [133][135] introduced the state-of-the-art approaches of distance metric learning. In
the same manner with Section 1.2 this approach can be divided into classical distance
metric learning and deep distance metric learning techniques.

Classical distance metric learning: Authors in [136] proposed a supervised Ma-
halanobis distance metric by incorporating pairwise constraints. These pairwise con-
straints are represented with feature vectors [(a,b), (c,d)] where (a,b) pairs are consid-
ered to be similar (for instance belongs to the same class) while (c,d) are not considered
similar. Thus, the distance within the first pair is significantly smaller than the distance
within the second pair of vectors: d(a,b) < d(c,d). A convex objective function is pro-
posed to minimize the sum of squared residuals of the constraints. By learning and then
employing the Mahalanobis distance, it is assumed that the distance is more accurate
between the pairwise feature vectors.

Authors in [137] introduced a technique called Domain Adaptation Metric Learning
(DAML). The proposed approach established an input data dependent regularization for
the conventional distance metric learning and its representation in the kernel Hilbert
space (RKHS). Data-dependent regularization is introduced with the purpose of mini-
mizing the distribution difference by employing the empirical maximum mean discrep-
ancy [138] between source and target domain data in RKHS. The optimization method
that is introduced for calculating the Mahalanobis distance and consequently the repro-
duced RKHS is similar to the straight-forward Distance Metric Learning. However, the
distance between the distributions of datasets in the RKHS space is also incorporated in
the optimization formula. Authors performed extensive experiments using four differ-
ent popular face recognition datasets and a large scale Web image annotation dataset
for cross-domain face recognition and image annotation tasks under several settings.
Finally, from the experimental results, the effectiveness of the DAML technique against
state-of-the-art Distance Metric Learning techniques is grounded.

Deep distance metric learning: Recent advancements in machine learning led
academia to foster deep learning networks for DML as well. These approaches normally
introduce a deep learning architecture with which the input data can be transformed
into a feature space where the distance of similar objects will be as small as possible
while the distance of dissimilar objects will be maximized. In [139], an extensive analysis
on the deep distance metric learning field is introduced, as well as the state-of-the-art
approach for this domain is analyzed. In this work, authors group the state-of-the-art
in two categories, namely, in Siamese networks and secondly, in triplet loss-based ap-
proaches.
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In the first category, a pair of similar (xi ,x j ) or dissimilar samples (based on some
“supervised” or “unsupervised” information) is processed from a two-stream neural net-
work where each sample processed from a different network, and then, the constructive
loss is employed to optimize the network and learning a projection which will bring sim-
ilar samples closer and push dissimilar samples further away.

In the second category, again, a two-stream network is also trained, however this
time, by minimizing a triplet loss objective. This loss exploits the training annotation to
create triplets. More concretely, given a triplet (xi ,x+i ,x−i ), where xi is similar with x+i and
dissimilar to x−i . The target is this case is to minimize the following hinge loss:

L =∑
i

h(τ+d f (xi ,x+)−d f (xi ,x−)) (1.5)

where h(x) = max(0,x) is the hinge loss function, and τ > 0 is a margin between
d f (xi ,x+) and d f (xi ,x−). The triplet network pulls similar samples closer to the reference
and pushes dissimilar samples further away.

Regarding related work for the first category and siamese networks, Hu et al. [140],
implemented a deep distance metric learning for the task of face verification. In particu-
lar, they project face pairs into the same dimensionality subspace, in which the distance
between a pair of face pair samples is less than a threshold. In the same way, the distance
of the negative pair should be higher than a second larger threshold. In this way, the
discriminative information can be exploited by a deep network. The proposed method
achieved high face verification performance when implemented with the LFW [142] and
YouTube Faces (YTF) [143] datasets.

Taigman et al. [141] introduced an end-to-end metric learning method called Deep-
Face, which employs a siamese network for face recognition. In contrast to the previous
work, the loss is calculated using several parts of the networks, using the convolutional,
pooling, and fully connected layers. Finally, the parameters of the siamese network are
trained by the standard cross-entropy loss and back-propagation method.

Regarding the triplet loss-based methods, Hoffer et al. [144] employed a triplet net-
work architecture for DML, where the target is to extract meaningful representations by
distance comparison. The “real-world application” of this methods is a deep ranking
similarity function for image retrieval. They also performed an extensive study of the
triplet architecture, and indicated that the triplet loss-based methodology is an efficient
alternative to the siamese methodology.

Authors in [145] developed the “FaceNet deep model” which learns a mapping from
the input feature space to a projected Euclidean space (represented by CNN embeddings
of the deep model) by using a triplet loss. Once this space is developed, face recognition
and clustering which are the main tasks of this work can be applied more efficiently. Fur-
thermore, triplets of aligned matching and non-matching faces are deployed for training
the model by optimizing the triplet loss. The target is the squared distance between all
faces, independent of imaging conditions, of the same identity to be small, whereas the
squared distance between a pair of face images from different identities to be large.
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1.4. GENERATIVE ADVERSARIAL NETWORKS
By performing our first strategy to facilitate the posed domain adaptation problem using
a preliminary non-deep learning approach, we extracted several worthwhile deductions
about how we can further proceed. Firstly, the technique was critically dependant on
the initial feature selection, as well as the clustering schema. Furthermore, while the
method led to some initially promising results, after experimentation with novel deep
learning approaches, it was evident that the amount of knowledge transfer can be im-
proved further. That is in the same spirit with the research found in [131][88].

Hence, a more sophisticated approach is adopted to tackle the challenging task of
domain adaptation within emotion context and is based on the implementation of Gen-
erative Adversarial Networks (GANs) techniques. A variety of innovative GANs topologies
were deployed as in the case of DML, to study these cross-modal relationships between
the symbiotic modalities of video (shown in Figure 1.1) and perform domain adaptation.

Over the recent years, an explosive popularity has emerged in the domain of GANs
[146], which became one of the most promising developments in Deep Learning. The
preliminary idea of GANs can be framed as follows: Given a vector of random noise z,
the whole process endeavors to accomplish a good approximation of the data distribu-
tion in hand by learning a mapping between the noise distribution and that domain.
GANs usually consist of two different neural networks which compete in a min-max
manner. These networks are called Generator G and Discriminator D . An example of
this methodology is depicted in Figure 1.12. An illustrative example of how GANs func-
tions is introduced in [146], where the basic idea of the GANs technique is rendered. In
this work, the target is to train a network G that, given a noise vector z, will be able to
generate new samples derived from the MNIST dataset domain (target domain) by try-
ing to approximate the desired distribution. In the meantime, D tries to decide whether
the generated samples are genuine or not.

Starting from the above-mentioned architecture (the so-called vanilla architecture),
the scope of the proposed research is to modify it and adapt it to the needs of our goals.
The desired objective is to develop a framework that will be able to not only generate
data in the target domain but also to convert source samples into target domain ones.
Thereby, several modifications are needed in the classical version of GANs for the sake
of formalizing a system that will be able to perform as such. In Chapter 3 a detailed
analysis of the way that these modifications from the initial vanilla architecture to the
more sophisticated architecture that is used to study these cross-modal relationships is
provided.

1.4.1. STATE-OF-THE-ART GENERATIVE ADVERSARIAL NETWORKS TECH-
NIQUES

In this sub-section, state-of-the-art techniques for Generative Adversarial Networks
which influence our work are presented. These works help us to shape our understand-
ing of the generative models and work as a compass since they provide a direction for
the current dissertation.

In conditional GANs that are introduced in [148], networks G and D are conditioned
to some variables c that represent the label information of the class. The model not only
managed to generate data that robustly represent the distributions associated with their
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Figure 1.12: Vanilla architecture of the Generative Adversarial Networks.

labels, but also improved the quality of the generated data. Similarly, in [147], a mod-
ified version of the initial GANs which makes use of Deep Convolutional Neural Net-
works for the G and D networks is proposed. Authors in [153] presented an approach
to learn how to translate an image from a source domain XS to a target domain XT ,
without having any available paired information among these two domains. The main
objective of the approach is to learn a mapping G : XS → XT such that the distribution
of images from G(XS ) domain is equivalent with the distribution XT using an adversar-
ial loss. Since that mapping is highly under-constrained, the authors banded it together
with an inverse mapping F : XT → XS and introduced a cycle consistency loss to force
F (G(XS )) ≈ XS (and vice versa). Qualitative and quantitative results were delivered on
several tasks where paired training data were not available. Furthermore, in [149], a con-
ditional deep Generative Adversarial Network is proposed with the aim of performing
image-to-image translation.

In DiscoGAN [154], authors performed a study of cross-domain relations given un-
paired data (representing two different image domains). Their aim is to map character-
istics from the source domain and transfer them to the target domain. For instance, in
the case of face conversion, they keep some characteristics (accessories, color of hair)
from the input image and transfer them to the target image. They propose a method
based on GANs whose target is to expose connections between different domains. Using
these relations, the proposed network effectively transfers “style” from one domain to
another while maintaining important image features such as orientation and face iden-
tity. The term “style” is used to denote some semantics that are related to the imple-
mented dataset from the input source domain XS . For instance, in the case of face con-
version, the set XM ⊂ DM represents male celebrities while set XF ⊂ DF female celebri-
ties. The task is by keeping some characteristics from XS (for instance the color of hair,
the facial pose or whether the image contains glasses) to generated samples from the
target domain XM by using this semantic information. In [149], authors proposed an
image-to-image translation schema that is based on a CNN architecture that is called
U-Net [150]. The architecture is based on an encoder and a decoder module that have
linked layers, thus, early information from the convolution layers of the encoder is still
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preserved, since that information is merged with the layers of the decoder module.

The work titled Cycle-Consistent Adversarial Domain Adaptation, or CyCADA [155],
introduced a novel discriminatively-trained technique. Authors suggested that GANs,
combined with cycle-consistency loss, are surprisingly effective at mapping images
between domains, even without the use of aligned image pairs. The idea of cycle-
consistency is that an image output by the first generator is used as input to the sec-
ond generator and the output of the second generator should match the original image.
CyCADA transforms image domains at both pixel and feature levels and enforces cycle-
consistency constraints while leveraging a task loss. To validate this approach, the au-
thors applied their model in the task of facial expression recognition by using the CK+
facial expression database.

In [156], authors focused on establishing a bridge between the definitions of GANs
and Variational Autoencoders (VAE) by reformulating the definition of GANs. They per-
ceived the generation of samples as performing posterior inference (similar to the way
that VAE is formulated). That is done by adding a regularization loss into the latent space
of the generator, using KL-divergence (in a similar fashion to VAEs). In that way, several
state-of-the-art strategies already used for VAE can be implemented for GANs as well,
and vice versa. For instance, the adversarial learning can be established for the VAE ap-
proach, while the importance weighting method in VAE can be implemented for GANs.

The state-of-the-art audio-visual studies that mainly influence our study are also
presented in this paragraph. An captivating study of cross-modal relationships of au-
dio and visual cues is introduced in [157], where conditional GANs are employed with
the purpose of generating data from one modality while another modality is given as
an input. For this purpose, authors use two separate networks (image-to-sound and
sound-to-image) in order to perform cross-modal generations in both ways. They ex-
plored different encoding methods for audio (by making use of spectrograms derived
from Mel-Frequency Cepstral Coefficients (MFCC) [164] or Short-Time Fourier Trans-
form (STFT) [165]) and visual signals. To test the proposed approach, authors developed
two separate novel datasets with pairs of images and sounds of musical performances of
different instruments. Inspired by this work, authors in [163], built a model called Cross-
Modal Cycle Generative Adversarial Model to perform cross-modal mappings between
image and audio. This approach is composed of four kinds of subnetworks: audio-to-
visual, visual-to-audio, audio-to-audio, and visual-to-visual subnetworks respectively,
which are organized in a cycle architecture, and the training approach took place simul-
taneously. The tested datasets were the ones introduced in [157].

Another slightly different study is performed in [158], which aims in tackling speech-
driven facial animation. In this problem, given an image and an audio clip, the aim is
to generate a video clip of facial animation representing the input face and the infor-
mation extracted from the audio clip. In an attempt to do so, authors made use of tem-
poral GANs. In particular, the proposed architecture contains three different discrimi-
nators focused on achieving detailed frames, audio-visual synchronization, and realistic
expressions.

In terms of the whole training stability of the GANs architecture, authors in [159] pro-
posed a modified version of GANs (called Wasserstein Generative Adversarial Networks
wGANs) with the aim of defining a more stabilized version concerning the optimization
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convergence of GANs by using Wasserstein distance as the loss function. An extension of
that work is established in [160] where some improvements are introduced for wGANs.
In the work that is done in [161] called Loss-Sensitive Generative Adversarial Networks
on Lipschitz Densities introduced a novel loss based on Lipschitz regularization.

In a nutshell, GANs are a novel and powerful tool for generating samples and approx-
imating distributions, or, as in the case of the current work, for reducing the discrepancy
between two different distributions. It is the most efficient approach in terms of gen-
erating distributions, it is easy and intuitive to understand and has led to an enormous
number of interesting applications such as generating images of human faces, objects,
artistic images, high resolution pictures and many more [162].

However, this approach came with some notorious drawbacks [95]. The training pro-
cess of the approach is focusing on solving the minimax game between G and D . As it
is evident from several studies, the existence of the minimax converging point (the Nash
equilibrium [95]) of the GANs game is challenging to be discovered, and the training of
GANs is highly unstable and difficult to converge [95]. Furthermore, another important
challenge for GANs is the mode collapse issue. This issue is very common when training
a GANs model. In particular, a mode collapse restricts GANs ability of diversity. The G is
only forced to deceive the D , by generating samples with limited variety without being
able to reproduce the versatile distributions of the real data [146].

1.5. BENCHMARK DATASETS FOR MULTIMODAL EMOTION

ANALYSIS
The previous sections introduced several approaches that were implemented in the cur-
rent dissertation namely Metric Learning and Generative Adversarial Networks. These
approaches were needed to be evaluated in the task of emotion recognition. Therefore,
in order to perform so, we decided to make use of four state-of-the-art datasets, namely
AFEW [169], CREMA-D [170], RAVDESS [171] and VoxCeleb [172], which were published
in the academic field of affective computing. All datasets contain, as annotations, a dis-
crete number of emotions (except for VoxCeleb which does not contain any annotation),
and therefore, our study lies in discrete emotion modeling approaches. We did so, since
this type of annotation (discrete emotion categorization) is widely used and accepted,
and furthermore, we were able to make use of large amounts of annotated data that were
necessary to properly train our methods.

1.5.1. ACTED FACIAL EXPRESSIONS IN THE WILD

The firstly described dataset is the popular Acted Facial Expressions In The Wild (AFEW)
dataset. Samples from AFEW can be seen in Figure 1.13. AFEW 1 is a challenging dataset
for emotion recognition since the data gathering procedure occurred in uncontrolled
environments (from popular movies) and not within a controlled lab environment. Fur-
thermore, it consists of data with occlusions, varying illumination, and head poses that
normally can be met in real world conditions. The dataset consists of 1127 videos (of
varying duration) annotated with the six basic emotions, namely anger, disgust, fear,

1https://cs.anu.edu.au/few/AFEW.html

https://cs.anu.edu.au/few/AFEW.html
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Figure 1.13: Examples that are extracted from the AFEW dataset [169].

happiness, sadness and surprise plus neutral. The videos were extracted from profes-
sional actors in movies mimicking spontaneous human expressions. Moreover, the au-
thors covered the evolution of the user emotions of the same actors in different ages
(e.g. the emotion evolution of actors in Harry Potter movies). The range of ages of the
actors varies from 1 to 70 years old. In total, 37 different movies were used to extract
video clips from a great variety of different movie-genres and, furthermore, a great vari-
ety of expressions. Finally, information about movies and actors is contained in an XML
schema. More specifically, the dataset contains the actor’s expressions, the start time,
the clip length, actor’s name, the current facial pose of the actor, age of the character, age
of the actor and their gender.

1.5.2. CREMA-D
The second introduced dataset is CREMA-D. It is an audio-visual emotion expression
database which is publicly available2. It encompasses 7442 videos (which have an av-
erage length of 2.63±0.53 seconds) from 91 actors (43 females and 48 males). Their age
ranged from 20 to 74 years old and they stem from a diversity of races and ethnicities
(African, American, Asian, Caucasian and Hispanic). Actors were requested to pose 12
sentences that are associated with six different emotions (anger, disgust, fear, happy,
neutral, and sad) with four different levels of intensity (“low”, “medium”, “high” and “un-
specified”). The dataset is a result of an effort to generate standard emotional stimuli
for neuro-imaging studies, which require a wide range of intensities and separation for
visual and auditory modalities presentation. The dataset’s annotation is based on the
presented videos that were shown to the actors.

1.5.3. RAVDESS
The next described dataset is the so-called Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS). This corpus is a large-scale multimodal emotion expres-
sion dataset derived from speech and song segments3. The database is gender-balanced
consisting of 24 actors posing the following expressions: neutral, calm, happy, sad, angry,

2github.com/CheyneyComputerScience/CREMA-D
3https://zenodo.org/record/1188976$#$.XHPO8-hKi70

github.com/CheyneyComputerScience/CREMA-D
https://zenodo.org/record/1188976$#$.XHPO8-hKi70
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(a) Audio modality.

(b) Face modality.

Figure 1.14: Examples from CREMA-D dataset [170].

fear, surprise, and disgust. Each expression is produced at two intensity levels. All cases
are available in face-and-voice, face-only, and voice-only formats. In our experiments,
we use the speech segments. The 7356 recordings (videos have an average duration of
3.82±0.34) were rated 10 times on emotional validity, intensity, and genuineness. Ratings
were provided by 247 individuals. Finally, we decided to keep the clips from the dataset
with the emotional expressions that overlap with the ones which can be also found in
CREMA-D (thus, skipping Surprise and Calm).

1.5.4. VOXCELEB

Finally, the VoxCeleb [172] dataset was selected4. The recording videos in the VoxCeleb
dataset are videos based on interviews of 1,251 celebrities uploaded to YouTube with
over 100,000 audio-visual clips (7.8±0.65). The speakers cover a wide diversity of differ-
ent ages, nationalities, professions and accents. The dataset is roughly gender-balanced.
The clips also contain audio in different languages. While the identities of the speakers
are available, the dataset has no emotion-related labels. Alongside the data, the authors
implemented and provided a classification model for emotion recognition through the
facial modality, which is described in [172].

1.6. PROBLEM STATEMENT AND RESEARCH QUESTIONS
The previous sections discussed the main pillars of the current doctoral dissertation
that are domain adaptation, emotion recognition, distance metric learning, generative
adversarial networks, and the datasets which are used to evaluate the performance of

4http://www.robots.ox.ac.uk/~vgg/research/cross-modal-emotions/

http://www.robots.ox.ac.uk/~vgg/research/cross-modal-emotions/
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(a) Audio modality.

(b) Face modality.

Figure 1.15: Examples that were extracted from RAVDESS dataset [171].

(a) Audio modality.

(b) Face modality.

Figure 1.16: Examples that were extracted from the VoxCeleb dataset.
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the introduced approaches. As it was already mentioned, the undertaking quest which
summarizes the core research of the current dissertation could be formulated using the
following problem statement:

Problem statement: Is it possible to transfer knowledge between the face
and the audio modalities from the machine perspective when the emotion
context is taken into account?

The core inspiration of the current study lies in the cognitive psychology domain
and the conducted research in the domain of knowledge transfer between the face and
audio modalities from the computer science perspective. Furthermore, the deduction
that was inferred during the literature review that the emotion recognition from face
modality performs better that modalities like audio [11]. To answer the posed problem
statement, five research questions have been formulated. They deal with the steps in
which we could face and decompose the posed problem and also with the steps that we
followed and presented in the following chapters. The first posed question is framed as:

Research question 1: How could domain adaptation approaches be em-
ployed to improve emotion recognition in one modality and perform knowl-
edge transfer from the other modality?

Having stated the fundamental question of the conducted research, we should pro-
ceed to answer it by introducing more detailed questions about the nature of our ap-
proaches. Therefore, the next research question concerns the implementation of metric
learning strategies (which are analyzed in Chapter 2) for our audio-visual domain adap-
tation task. This question can be framed as follows:

Research question 2: How could a metric learning framework be deployed
to model audio-visual cross modal relationships?

Subsequently, a more sophisticated deep-learning based approach is introduced to
model the more complex patterns that govern this cross-modal relationship. That ap-
proach used a deep learning architecture which is based on Generative Adversarial Net-
works (GANs) and the posed research question is the following:

Research question 3: How could Generative Adversarial Networks be de-
ployed to uncover static audio-visual cross modal relationships?

The answer to the aforesaid question can be found in Chapter 3. Regarding the tech-
nical aspect of the posed question and the way that the training process of GANs archi-
tecture is conducted, we can pose another more sophisticated question. This question is
associated with the way that the optimization process of the whole network is held. On
this ground, by unfolding the previously posed question, we could state the following
question:

Research question 4: How could we learn and train the proposed Generative
Neural Networks in a progressive manner? Or in simple terms, how can we
initialize the weights of the network in such a way that we will optimize the
training process?
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Furthermore, inspired by several proposed works that can be found in the literature,
it is evident that an investigation of the temporal cross-modal relationships between the
face and audio modalities is imperative in our study. Therefore, on top of the previously
posed tasks, we decided to proceed with the study of the time dynamics between both
domains. While that is partially done and described in Chapter 2, during the implemen-
tation of the DML strategy, it is developed in more detail and structured way in Chapter
4. The whole research endeavour of this study can be framed from the following posed
question:

Research question 5: Could the temporal dynamics between audio and vi-
sual information be modeled and help us in the domain adaptation task?

Finally, having extensively studied the way that face modality can help in improving
the audio emotion recognition in all the previous questions, in Chapter 5, it is chosen to
focus on researching the converse task, by answering the following posed question:

Research question 6: Is it possible to improve face emotion recognition by
eliciting information from the audio modality?

1.7. THESIS OVERVIEW
This thesis is organized into 6 chapters. Chapter 1 introduces the basic terms such as
domain adaptation, emotion recognition, distance metric learning, generative adversar-
ial networks, and the utilized datasets which are analyzed. Furthermore, an explanation
of our current posed problems regarding this thesis is introduced and formulated using
five different research questions that guide the rest of conducted research.

Chapter 2 describes a metric learning framework for facilitating the task of audio-
visual cross-modal domain adaptation. In particular, a framework that consists of four
steps is deployed. These steps are namely: feature extraction, feature selection, clus-
tering, and finally, distance metric learning. The study aims at performing symmetric
domain adaptation, therefore, the goal is to project the input data points of face and
audio modalities into a common hyper-space where the divergence between the distri-
butions of both modalities is minimized. The evaluation scenario is based on the im-
provement of the classification performance of audio emotion recognition when using
the projected data from face-related datasets. Furthermore, an evaluation measurement
that examines how close the domains are before and after the implementation of the
current framework is also examined. Finally, the advantages and disadvantages of this
approach are discussed in the conclusions of the chapter.

Chapter 3 addresses the third and fourth raised research questions. It establishes an-
other way of performing domain adaptation. At this stage, instead of using metric learn-
ing, we decided to modify our strategy and employ a deep learning architecture with the
purpose of performing cross-modal mapping. The methodology is based on Genera-
tive Adversarial Networks. We analyze the proposed architecture and different ways of
calibrating the weights of the architecture. That approach lies in the category of asym-
metric domain adaptation and could be seen as a generative approach where the one
modality is generated when the other modality it is given as input to the approach. Be-
sides the description of the method, multiple ways of evaluating the proposed approach
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are analyzed in the chapter. Furthermore, the capability of that approach for generating
high quality samples and approximating the target domain is introduced and examined.
Finally, an ablation study is discussed in an effort to show how we were led to use the
current topology.

Chapter 4 addresses the fifth research question. It concerns the modification of the
proposed approach for modeling the temporal dynamics that govern audio-visual cross-
modal relationships in a video clip. We firstly modified the proposed architecture of
Chapter 3 which is based on a static image-to-image translation approach, to take into
account temporally dynamics between the features of the face from video clips. We did
keep the same generative strategy, however, we decided to modify the embodied opti-
mization schema. In this manner, we not only target to improve the performance of
the employed approach but also the time complexity by improving the way that the pro-
posed approach is optimized. Therefore, the Wasserstein distance (or as it called alterna-
tively, Earth-Mover distance) is analyzed. The evaluation of the aforesaid approaches is
done in a similar manner as in Chapter 2 and 3. In this way, we ensure that the reader can
deduce noteworthy conclusions about the method in comparison with the approaches
that are introduced in the previous chapters. Finally, the capability of that approach for
generating high quality samples and approximating the target domain is introduced and
examined.

In Chapter 5, we are grouping together all the aforementioned strategies from the
previous chapters. However, the objective of the chapter is to highlight the performance
of the converse DA task that is related to improving the face emotion recognition (when
leveraging knowledge from the audio modality). That is done in an attempt to evaluate
the versatility of the proposed approaches. In this respect, we are measuring the per-
formances of each approach and we are trying to determine which of these techniques
are performing better regarding the time complexity and the classification performance.
The capability of that approach for generating high quality samples from the face is also
examined. Chapter 6 contains the conclusion of the whole conducted research, as well
as it provides an overview of possible future research directions. Finally the Appendix
contains an explanation to basic notions that are used in this dissertation such machine
learning, neural networks, deep learning and support vector machines. The explanation
for these serves as an introduction and can help the non-experienced reader in several
parts of the dissertation.
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2
METRIC LEARNING FOR DOMAIN

ADAPTATION

The research presented in this chapter is supported by the following publication:

• C.Athanasiadis, E.Hortal, and S.Asteriadis, Bridging face and sound modalities
through Domain Adaptation Metric Learning, European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning (ESANN),
2019.

This chapter introduces the first approach developed in order to accommodate the
task of audio-visual domain adaptation. This approach was the first one in chronologi-
cal order that was attempted during the current dissertation. Therefore, our scope was
to take a step for accommodating cross-modal domain adaptation within the emotion
analysis context. The first attempt is based on a basic well-known technique to get ac-
quainted with the problem to be tackled. On this basis, an intuitive framework based
on Distance Metric Learning is introduced. The main research question that is posed in
this chapter is the following: How can a metric learning framework be deployed to model
audio-visual cross modal relationships?.

In said manner, this chapter introduces a technique based on Distance Metric Learn-
ing (DML) and the pre-processing steps applied for the face and audio related datasets.
The main idea is to exploit robust modalities such as face (from which we can access
dense datasets) to improve the classification performance of weak modalities such as
audio (from which we can only access sparsely available datasets). In this respect, facial
features from video are used in order to represent the dense dataset (robust modality),
while features from audio are utilized to represent the sparse datasets (weak modality).
We perform the whole approach in distinct parameterized modules that can be easily
tuned and function separately. In such a way, we are able to understand and explain
easier the functionality of each of these steps.

The proposed framework is implemented as five distinct modules:
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• Firstly, a pre-processing step for both modalities is performed. In this manner, face
detection, alignment and cropping on images is applied. Moreover, a normaliza-
tion scheme is conducted for the audio signal.

• Secondly, temporal feature extraction is performed for both modalities.

• Thirdly, a feature selection module is carried out, where only the most significant
features of the datasets are chosen and kept.

• Subsequently, a clustering approach is introduced with the purpose of transform-
ing both source and target domains into a common dimensionality.

• Finally, “Distance Metric Learning” (DML) approaches are implemented with the
purpose of establishing a bridge between the two domains.

All these steps are carefully analysed and several techniques are evaluated. More
details about the conducted work can be found in Section 2.1. The whole implemented
approach is summarized and visualized in Figure 2.1. This image renders the whole flow
of the approach for introducing the derived metric.

Having established a transformation between the two modalities, the performance
of the introduced framework is tested using the Support Vector Machine (SVM) classi-
fication [23] for the target task (emotion recognition from audio). This approach is de-
scribed in detail in Appendix 4. In Figure 2.1, the way that the projected features from
the aforesaid procedure are evaluated, using a multi-class SVM classification scheme, is
illustrated (the visualized example consists of four different classes).

Over and above, an evaluation tool is utilized to measure the distance between the
transformed distributions of audio and face modalities and compare them with the dis-
tance between the distributions of the initial datasets (which are derived from raw fea-
tures).

The main contributions that are introduced in the current chapter are three-fold:

1. Up to our knowledge, this is the first study that performs “domain adaptation” for
the domain of emotion recognition using two heterogeneous modalities.

2. This is the first time that an audio-visual projection is performed with respect to
emotion recognition.

3. This is the first time that the current DML framework is introduced and tested in
the task of emotion recognition.

The structure of the remainder of this chapter is as follows: Section 2.1 describes the
Heterogeneous Domain Adaptation (HDA) technique that is applied to AFEW, CREMA-
D and RAVDESS datasets, while in Section 2.2 the experimental results are analyzed. Fi-
nally, Section 2.3 contains the conclusions and the extracted deductions that are anal-
ysed to proceed further with the improvement of our domain adaptation approach.
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Figure 2.1: Visualization of the whole DML framework. XS corresponds to the face modality while XT to audio
modality. “Block A” contains all the necessary step to learn a DML projection matrix A. Having learned this
mapping, in “Block B”, the classification step is employed, where this projection A is applied to input domains
(after applying again the feature extraction, selection and the unsupervised step steps from “Block A” using the
same parameters). Then, multi-class SVM is applied in a common set with projected audio and facial features.

(a) Mean vector average values for face and audio
modalities.

(b) Distribution densities for the average vector’s
values.

Figure 2.2: The feature distributions for the mean face and audio vectors for the AFEW dataset after feature
selection (described in Section 2.1.2). For each average vector the values for each dimension are represented.
Note that this analysis conducted with all samples from the happy class.

2.1. DISTANCE METRIC LEARNING BASED APPROACH
In the current section, the proposed affect-augmented framework, which performs au-
dio emotion recognition through leveraging annotated data related to face modality is
analyzed. The whole framework is visualized in Figure 2.1. Both modalities are gov-
erned by different distributions, however, both could potentially be used for performing
emotion recognition either by eliciting facial expressions or by extracting emotions from
audio features. These two modalities cannot be easily bridged though, because of the
inherent differences in their distributions. Figure 2.2 illustrates the difference in the dis-
tribution of the average vectors for each modality. It is clear that the distributions of the
mean face and audio data features can be vastly different from each other. Moreover,
their initial feature dimensionality is also different and it depends on the initial feature
extraction strategy.

Therefore, to exploit the source domain dataset for the target classification task, a
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transformation that will bridge both domains needs to be established. Firstly, for the
needs of current research, the face modality is defined as source domain XS (represent-
ing the pixels of the images) while the audio modality is defined as target domain XT

(sampled value from the amplitude of the raw audio signal). This is done due to the
lower availability of emotion-related datasets from audio. The proposed framework is
divided into five distinct modules:

• As has been explained already in Section 1.2.3, certain pre-processing steps for
each domain need to be performed for face and audio before proceeding with the
domain adaptation approach. For the face modality, face detection, cropping, and
alignment are performed. For the audio modality, segments of 500ms from the be-
ginning and the end of the audio are removed. These steps are performed in order
to extract only the necessary information (the face bounding box or the audio clip
without silence parts) from both modalities regarding emotion recognition.

• Secondly, the feature extraction module is built. This is done to extract useful in-
formation from both modalities that relates to the emotions that govern both do-
mains, and which can help in obtaining higher performance regarding the face
and audio emotion recognition.

• Thirdly, the feature selection module is performed. In this dissertation, we define
the extracted features for face and audio after this step X̂S and X̂T respectively. Fi-
nally, the most dominant features are kept from both modalities. In such a way, we
discard redundant features that do not contribute or negatively impact the emo-
tion recognition.

• Subsequently, the framework proceeds with the unsupervised learning module.
In this step, a transformation (based on clustering) of the extracted features is per-
formed. The primary task of this transformation is to bring both domains into a
common dimensionality.

• Finally, the last module is the distance metric learning. In this case, a “new dis-
tance” is calculated to minimize the divergence between the two domains.

Briefly, this new distance regards with the learning of a distance d̂(x, y) between sam-
ples {x, y}, based on a dataset that contains pairs of samples that are considered to be
close (similar) based on their class information and pairs of samples that are considered
to be distant (dissimilar pairs). This information (relation between pairs of vectors) can
be mathematically framed with the following equation:

Ci j =
{

1 if (xi , x j ) ∈ S

−1 if (xi , x j ) ∈ D
(2.1)

where the sets S and D correspond to similar and dissimilar pairs of subjects. The
generation of the distance d̂(x, y) is based on these constraints. The goal is to learn the
matrix M in the following equation 2.2:
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Figure 2.3: The way that face detection is conducted in AFEW dataset. The bounding box in green colour
contains each time the detected face for each frame.

d̂m(xi , x j ) = ||(AT xi − AT x j )2||22
= (xi −x j )T A AT (xi −x j )

= (xi −x j )T M(xi −x j ) (2.2)

Where the goal is to learn matrix M = A · AT ∈Sd+. M needs to be an n×n symmetric
positive semi-definite (PSD) matrix [19][21], where n is the number of input features
(both for face and audio domains after the clustering coding). The matrix AT can be
used to transform the input to the distance metric learning domain. More details can be
found in Section 2.1.4.

In the following subsections, all the previously mentioned modules of our approach
are analyzed in detail.

2.1.1. PRE-PROCESSING AND FEATURE EXTRACTION MODULES
In this sub-section, we first explain the pre-processing phase of facial images and how
we obtain facial features from a video. Then, a discussion of a pre-processing step re-
garding audio is following. Finally, we present the low-level feature extraction methods
implemented in our framework for both modalities.

FACIAL FEATURES

With respect to face modality, the first pre-processing module is the face detection pro-
cess. To address the issue of face detection, the system implements Haar Cascade clas-
sifiers which are provided by OpenCV [1]. This algorithm is based on the extraction of
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Haar features which, in principle, involves the convolution of the initial image with Haar
Cascade filters [1] of varying sizes and orientations. Subsequently, a feature selection
process that filters all calculated features and a classification step are performed by mak-
ing use of AdaBoost algorithm [2]. Adaboost selects the best features and trains several
classifiers by using them. This algorithm constructs a strong classifier, which is a linear
combination of weighted simple weak classifiers [1]. Having as an input a single image,
the resulted output is a bounding box with the position of the face within the image.

By using this algorithm, for every frame of a video clip, the system returns facial
bounding boxes in the video sequence. Every video clip contains only one person in the
AFEW, CREMA-D, and RAVDESS datasets. In this way, we are able to remove superflu-
ous information regarding the background and visual information that does not (or even
negatively) contribute to emotion recognition performance. An example of how this pro-
cess can be applied in the AFEW dataset is visualized in Figure 2.3. For each frame, only
the information within the green bounding box is employed in the subsequent frames.

The next pre-processing step of the framework is the face alignment process. This
phase is essential for the system since the faces in the video frames can be found in
different poses and angles which can affect the performance of an emotion recogni-
tion classifier in a negative way. With the purpose of performing facial alignment, the
framework first should proceed with the face landmark detection. On this ground, the
Supervised Descent Method (SDM) [3] approach is applied. The calculated SDM land-
mark points then are used and a similarity transformation is applied with the purpose of
aligning faces with a fixed canonical frame based on eye center positions. Then, all the
extracted faces from the video are cropped and re-sized to a fixed size of 224×224 pixels.
Figure 2.4 renders an example of how the face alignment is utilized using a sample from
the RAVDESS dataset.

As soon as the faces are aligned and cropped, the system proceeds with the tempo-
ral feature extraction phase. To that end, Volume Local Binary Patterns (VLBP) [4] are
employed to extract features from the whole sequence of frames that correspond to a
specific emotion. This approach is the expansion of the local binary patterns (LBP) but
for video (3d-LBP). The main difference between LBP and VLBP is that the extracted
histograms in the latter case is not just a spatial representation of the pixels but is ex-
tended to the spatio-temporal domain. For each video, the extracted dimensionality for
the VLBP approach is R1018. This approach is performing LBP on 3d tensors of facial
frames from the whole video. More details on this can be found in [4].

AUDIO FEATURES

Regarding the audio modality, the methodology described in [14] for extracting
frequency-based features is applied in our work. In particular, our system is using the
audio analysis openSMILE toolkit [10] for audio feature extraction. We are following
the same strategy for extracting audio features as in [11]. This approach is utilized for
extracting features from the audio that contain both the voice quality (represented by
jitter, segments and Harmonics-to-Noise Ratio HNR [12]) and the prosodic characteris-
tics of the speaker. The set of audio features that are extracted contains 1.941 features.
This set is composed based on two categories of features, namely low-level descrip-
tors (LLD), and functional features. LLD are features extracted by using audio-signal
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Figure 2.4: An example of face alignment from the detected faces from the initial frame (top-left) to the aligned
version (bottom). The top-left picture shows the initial image with the detected landmarks. The top-right
shows the canonical aligned landmarks. The example is derived from the RAVDESS dataset [7].

processing methods such as Fourier transformation and by extracting features related
to zero-crossing and pitch. The functionals are features extracted after processing the
LLD features by employing statistical analysis features such as mean, variance, median,
minimum, and maximum values. Secondly, Lasso regression analysis [13] is performed,
which is a common tool for feature selection.

In particular, the final feature vector is composed of 25 energy and spectral related
low-level descriptors (LLD) × 42, 6 voicing related LLD × 32 functionals, 25 delta coef-
ficients of the energy/spectral LLD × 23 functionals, 6 delta coefficients of the voicing
related LLD × 19 functionals, and 10 voiced/unvoiced durational features. The set of
LLD covers a standard range of commonly used features in audio signal analysis and
emotion recognition. In [10], a description of the employed LLD and functional features
is provided.

2.1.2. FEATURE SELECTION
The second part of the approach is performed with the purpose of implementing a fea-
ture selection technique using the extracted features from both modalities. This step
is implemented to keep only the features from both domains which are significant to
the classification task in hand (emotion recognition) and discard less relevant features.
Feature selection is performed for extracted facial and audio features separately. Three
different ways to perform feature selection are tested. In particular:

• Firstly, an implementation solely based on the variance of the features is per-
formed. This methodology can be assigned to the so-called filter feature selec-
tion family of techniques [9]. In this category, statistical tools are employed to
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determine the relationship between each input variable and the target variable.
Then, these statistical tools are the basis to filter the variables (features) that will
be used in the model. In our case, only the features from the source and target
vectors with variance greater than a threshold are chosen. This threshold is calcu-
lated based on the classification performance (for emotion recognition) for both
modalities after feature selection on a validation set. Building on the results ob-
tained, it is found that, by keeping the 75% more significant dimensions, for both
modalities, the classification performance remained practically unchanged. For
instance, the dimensionality of both modalities (audio and face) after the imple-
mentation of variance-based feature selection isR600 andR379 respectively (for the
AFEW dataset). As we already mentioned before, the initial dimension (after fea-
ture extraction module) for face modality is xS ∈R1018 with xS ∈ XS while for audio
modality is xT ∈R1941 with xT ∈ XT .

• Secondly, L1-based feature selection, using logistic regression to perform feature
selection is tested. The whole approach is described in [15]. This approach be-
longs to the so-called wrapper feature selection family of techniques [9]. Wrapper
methods measure the “utility” of features based on the classifier performance. On
this ground, several models that are employing different subsets of input features
are computed and the subgroup with the features that result in the best perfor-
mance according to a prediction metric are chosen to be the final selected fea-
tures. For instance, the dimensionality of both modalities (audio and face) after
the implementation of L1-based feature selection is R621 and R358 respectively (for
the AFEW dataset).

• Finally, tree-based estimators (random forests) are used to compute features’ im-
portance, which, in turn, are used with the purpose of discarding irrelevant fea-
tures. This methodology belongs to the so-called embedded feature selection fam-
ily of techniques [9]. Embedded feature selection methods combine both filter
and wrapper methods. More specifically, they realize feature selection during the
training of the model. That is why they are most often referred to with the term
embedded methods. For instance, the dimensionality of both modalities (audio
and face) after the implementation of tree-based feature selection isR1120 andR682

respectively (for the AFEW dataset).

Initially, as it has been explained in Section 1.1.1, the available dataset from the
source domain is denoted as XS = {xS

1 , xS
2 , .., xS

k } (a set of k different instances), while for

the target domain XT = {xT
1 , xT

2 , .., xT
p } a set of p different instances. After the implemen-

tation of feature selection modules, the source and the target domain can be denoted
as X̂S = {x̂S

1 , x̂S
2 , .., x̂S

k } (with x̂S
k being a vector containing a subset of features from X S

k ).

Moreover, X̂T = {x̂T
1 , x̂T

2 , .., x̂T
p } (with x̂T

p being a vector containing a subset of features

from X T
p ) the dataset for DT after the implementation of feature selection module. The

employed datasets contain videos, hence we have the same amount of samples from
audio and video modalities, thus, k = p. In Figure 2.2, the values of the average vector
and the distribution density for face and audio modalities after the performance of fea-
ture selection are depicted. It is obvious that the distribution divergence between these
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(a) Mean vector average values for face and audio
modalities.

(b) Distribution densities for the average vector’s
values.

Figure 2.5: Feature distributions after the implementation of the clustering approach for the mean face and
audio vectors for the AFEW dataset [5]. For each average vector the values for each dimension are represented.
Note that this analysis conducted with all samples from the happy class.

modalities is still large, given that the selected features are still coming from different
distributions.

2.1.3. UNSUPERVISED LEARNING OF FEATURES

Subsequent to feature selection, an unsupervised learning technique is performed to
transform the already filtered features. During this approach, K clusters are calculated
for both modalities using a clustering technique. Then, every input feature vector for
both domains is represented by the distance of each feature vector to each calculated
center (and this process employed distinctively for each domain) by the clustering ap-
proach. For example if the number of calculated centers for audio are 100 and for face
is 88, then the dimensionality of the extracted representations is 100 for audio and 88
for face. In the end, (ΦKS (X̂S ) andΦKT (X̂T )) are representing the transformed features in
source and target domains. ΦK represents the transformation of the features to the dis-
tance from the calculated centers. In that case, the k-means algorithm is implemented
for calculating the clusters [16].

The motivation behind the aforementioned procedure is manifold: Primarily, both
domains need to be transformed into the same dimensionality (in order to proceed
with the transformation distance metric learning module). Moreover, transformation
techniques and distance metric learning cannot work well in high dimensions, since
their inhibiting complexity relates to the dimensionality of the feature vectors [17].
The best performed size of clustering centers during the experimental phase has been
found to be within the range of 40-60. Thus, the feature dimensionality after perform-
ing clustering transformation reduces significantly the dimensionality of the features.
Hence, our feature dimensionality dropped from x̂S ∈ R1018 and x̂T ∈ R1941 to a range
of ΦKS (X̂S ),ΦKT (X̂T ) ∈ R40−60. In the Experimental results Section 2.2 a tuning process
is performed to find the optimal number of clusters. The desired projection between
the two modalities is easier to be calculated using the clustering approach due to the
decreased number of clusters in comparison to the initially large feature space.

As Figure 2.5 shows (which illustrates the mean face and audio samples after the im-



2

60 2. METRIC LEARNING FOR DOMAIN ADAPTATION

Figure 2.6: A simple instance of how the DML approach can be applied for the face modality. The depicted
images are extracted from the CREMA-D dataset [6].

plementation of the clustering approach, its values, and densities), the distributions of
mean face and audio cannot be considered comparable yet. A transformation is needed
in order to construct the desired bridge between the two domains and reduce the gap be-
tween the inherent differences of the distributions. In the current work, Distance Metric
Learning techniques are chosen to fill this gap.

2.1.4. DISTANCE METRIC LEARNING FOR AUDIO-VISUAL DOMAIN ADAPTA-
TION

The Distance Metric Learning (DML) problem relates to learning a distance function
which is tuned to a specific task using supervised information [17]. In our case, this task
is emotion recognition.

A visual example of this approach is depicted in Figure 2.6. This figure illustrates
the way that DML operates by calculating a new more advanced distance between in-
put samples. This is done in such a way that samples coming from the same class are
projected to a new coordinate space where they are closer to each other. However, in our
work, the effort lies in bridging samples with the same emotion context (affect label), but
from two inherently different domains (face and audio modalities).

All tested methods in this chapter regarding DML assume that we need to have some
annotation information available. In this study, since the effort lies in binding together
samples from face XS ⊂ DS and audio XT ⊂ DT modalities, we foster the assumption
that the label information from both domains can work as supervised input for cal-
culating and optimizing the distance metric. Furthermore, since DML needs to have
pairs of samples with the same dimensionality, we decided to use the extracted features
after the feature selection and unsupervised (see Section 2.1.3) steps. Therefore, the
learned distance can be framed as d̂(ΦKS (x̂S ),ΦKT (x̂T )), where ΦKS (x̂S ) ∈ ΦKS (X̂ S ) and
ΦKT (x̂T ) ∈ ΦKT (X̂ T ). The supervised information that connotes the relation between
pairs of vectors can be mathematically framed with the following equation:
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Ci j =
{

1, if (ΦKS (x̂S
i ),ΦKT (x̂T

j )) ∈ Si m

−1, if (ΦKS (x̂S
i ),ΦKT (x̂T

j )) ∈ D
(2.3)

where the sets Si m and D correspond to similar and dissimilar pairs of subjects, re-
spectively. Therefore, Si m contains samples from the face and audio modality with the
same class, while D contains the same amount of pairs from both modalities coming
from different classes. The set Si m can be defined as:

Si m = (ΦKS (x̂S
i ),ΦKT (x̂T

j )) , if i , j -th samples belong to the same class (2.4)

while the set D can be defined as:

D = (ΦKS (x̂S
i ),ΦKT (x̂T

j )) , if i , j -th samples belong to different classes (2.5)

The generation of the distance d̂(ΦKS (x̂S
i )),ΦKT (x̂T

j )) is based on these constraints.

This “new distance” can be framed using the following equation:

d̂(ΦKS (x̂S
i ),ΦKT (x̂T

j )) = ||(ASΦKS (x̂S
i )− ATΦKT (x̂T

j ))2||22
= (ΦKS (x̂S

i )−ΦKT (x̂T
j ))T A AT (ΦKS (x̂S

i )−ΦKT (x̂T
j ))

= (ΦKS (x̂S
i )−ΦKT (x̂T

j ))T M(ΦKS (x̂S
i )−ΦKT (x̂T

j )) (2.6)

where the goal is to learn the matrix M = A · AT ∈Sd+ where M has to be a n ×n sym-
metric positive semi-definite (PSD) matrix [19][21]. The dimensionality of the matrix n
is the number of input features (both for face and audio domains and corresponds to
the number of clusters K). Matrix AT can be used to transform the input to the distance
metric learning domain. The dimensionality of matrix AT is n ×o where o is a param-
eter of DML to be tuned. When o < n then DML achieves dimensionality reduction as
well. M ∈Sd+ ensures that the “new distance” satisfies the properties of pseudo-distance
which are:

• d̂(ΦKS (x̂S
i ),ΦKT (x̂T

j )) ≥ 0 (non nonnegativity),

• d̂(ΦKS (x̂S
i ), x̂T

i ) = 0 (identity),

• d̂(ΦKS (x̂S
i ),ΦKT (x̂T

j )) = d̂(ΦKT (x̂T
j ),ΦKS (x̂S

i )) (symmetry),

• d̂(ΦKS (x̂S
i ),ΦKT (x̂T

j )) ≤ d(ΦKS (x̂S
i ), v)+d(v,ΦKT (x̂T

j )) (triangle inequality)

The next step of DML is to minimize the distances between those adjacent examples
indicated in Equation 2.3. This minimization can be described with the following loss
function:

L (M ,Si m ,D) = 1

2

n∑
i , j

||(ΦKS (x̂S
i )−ΦKT (x̂T

j ))T M(ΦKS (x̂S
i )−ΦKT (x̂T

j ))||Ci j (2.7)
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The target is to find parameters for the metric such that best agrees with these con-
straints, in an attempt to approximate the underlying semantic metric. This can be
framed as a constrained optimization problem with the following general form:

mi nM L (M ,Si m ,D)+λR(M) (2.8)

where L (M ,Si m ,D) is the loss introduced in 2.7, and it incurs a penalty when train-
ing constraints are violated, R(M) is some regularizer on the parameters M of the learned
metric and λ is the reguralization parameter. All the implemented approaches for learn-
ing the DML space essentially differ by their choice of metric, constraints (Si m and D),
loss function, and regularizer R(M).

Finally, the calculated matrix A is used to project data on the DML space, where the
new distance between the pairs that are considered similar will decrease, while it in-
creases for the pairs that are considered dissimilar. In the current approach, the new
distance is calculated using the same number of pairs (of transformed features from
source ΦKS (X̂S ) and target domain ΦKT (X̂T )) that have the same or different labels. The
cardinality of set Si m and D is equal (|Si m | = |D|). In the end, the projected source do-
main is denoted as HS = AT · (ΦKS (X̂S )) while the projected target domain is denoted as
HT = AT · (ΦKT (X̂T )).

In order to find the optimal matrix M and generate a robust bridge between the do-
mains of face and audio, several techniques are tested. The tested techniques are:

• Sparse Determinant Metric Learning (SDML) [19]: In this approach, the LogDet
[20] divergence and L1-regularization on the off-diagonal elements of M are uti-
lized to minimize the total loss in equation 2.8.

• Relative Components Analysis (RCA) [21]: This approach leverages only the posi-
tive pairs and makes use of subsets of training examples that are denoted as “chun-
klets”. These are acquired from the set of positive pairs by performing a transitive
closure: for instance, if (x1, x2) ∈ Si m and (x2, x3) ∈ Si m , then x1, x2 and x3 belong
to the same chunklet. Points in a chunklet share the same label.

• Local Fisher Discriminant Analysis (LFDA) [22]: LFDA is a linear supervised di-
mensionality reduction method. It is particularly useful when dealing with multi-
modality, where one or more classes consist of separate clusters in the input space.
In this case, the core optimization problem of LFDA is solved as a generalized
eigenvalue problem.

In Figure 2.7, the mean face and audio vectors after the implementation of a DML
transformation (in this example, Sparse Determinant Metric Learning) are depicted
(their values and densities). It should be noted that, after the implementation of the
DML bridge, the gap between the two mean vectors is reduced as can be observed from
Figure 2.7. That is serve as a mere indication of the proximity between the two domains.
The results of all under test approaches are presented in Section 2.2.

Finally, a multiclass SVM [23] is employed to measure the classification performance
in the target domain (audio) for the task of emotion recognition. More information
about SVM method can be found in Appendix 4. The SVM classifier is trained using the
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(a) Mean vector average values for face and audio
modalities.

(b) Distribution densities for the average vector’s
values.

Figure 2.7: Feature distributions after the transformation using SDML approach for the mean face and audio
vectors for the AFEW dataset [5]. For each average vector the values for each dimension are represented. Note
that this analysis conducted with all samples from the happy class.

transformed merged dataset which contains the projected data from both modalities in
the DML space. Therefore, the final dataset is a fusion of the transformed audio and face
modalities after the DML transformation.

The overall framework of training and testing (of learning a DML space, as well as, the
classification schema) is visualized in Figures 2.1. In Figure 2.1, the process for calculat-
ing the DML space is displayed in “Block A”. While “Block B” illustrates the performed
classification schema. “Block A” concerns learning the DML space. Having learned this
space, it can be used to project audio and face datasets into this common sub-space and
perform classification using SVM classifiers (“Block B”).

2.2. EXPERIMENTAL RESULTS USING DISTANCE-METRIC

LEARNING FOR AUDIO-VISUAL EMOTION RECOGNITION
The proposed metric learning framework of this chapter has been validated on the
challenging datasets Acted Facial Expressions In The Wild (AFEW) [5], Crowd-sourced
Emotional Multimodal Actors Dataset (CREMA-D) [6] and The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) [7] datasets. All these datasets, as
mentioned in Section 1.5, contain discrete emotion labels, namely, six basic emotions
except RAVDESS which contains seven (anger, calmness, disgust, fear, happiness, sad-
ness and surprise).

EVALUATION PROTOCOL
During the experimental process, two different scenarios that are related to the learning
process (of the DML projection) of our approach are evaluated for all three datasets:

• Firstly, the scenario of sparsely available data from the target domain.

• Secondly, the scenario of densely available information from the target domain.

Before proceeding with explanation of these two scenarios, it is important to note
that the AFEW dataset is split in training and test sets for the target modality ST =
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XT , XTest for all datasets. For the AFEW dataset the training set XT consists of 773 video
samples while the test set consists of 383 videos. For RAVDESS and CREMA-D dataset,
we create three different sets for the training, validation, and test sets.

SPARSE SCENARIO

The first configuration is the main scenario of the experimental results and it is referred
to as “Semi-supervised Domain Adaptation” in the literature [24]. In this case, a sparse
pair from the face (XS1 ⊂ XS ) and the audio modality (XT 1 ⊂ XT ) are used with the
purpose of learning the “new distance”. The number of samples from both modalities
needed to be identical. The reason behind this is the fact that the DML framework is fed
with pairs of instances from both modalities. For feature selection and clustering, XT 1

and XS sets are used. Subsequently, following a 4-fold cross validation procedure, pairs
of samples (XS1, XT 1) that correspond to part of the dataset (experiments with consider-
ing sparsity levels of 20%, 30%, 40% and 50%) of the dataset are randomly selected. For
applying domain adaptation, as described in Section 2.1, the similarity correspondence
is established by using their label information. Having learned the DML transformation
with the sparse pairs, we can use it to map the training dataset from the source modality
XS and the sparse training dataset from the target modality XT 1 into the common DML
space using the calculated DML projection matrix AT . Then, both datasets are merged
and a new training dataset emerges, namely Htr ai n = (HS , HT 1).

DENSE SCENARIO

Secondly, in order to perform a broader evaluation, a second test for the calculation of
the matrix M was performed by incorporating the full source XS and target domain XT

training sets. This allows us to evaluate the performance of the HDA system under the
dense availability of both datasets. This scheme is referred to as “Fully-supervised Do-
main Adaptation” in the literature [24].

BASELINE

Since the task is to prove that audio emotion recognition can be improved when eliciting
information from the face domain, as a baseline, SVM classifiers are trained on the trans-
formed features after the unsupervised learning step 2.1.3 is utilized. This approach is
considered as the “baseline method”. Training and testing for the SVM is performed us-
ing only data from target domain XT . In particular, for the training process, ΦKT 1 (X̂T 1)
are used for sparse scenario (XT 1 ⊂ XT ) and ΦKT (X̂T ) are employed for the dense one.
The prediction process is performed usingΦKTtest

(X̂Ttest )) set.

MAXIMUM MEAN DISCREPANCY

Moreover, with the purpose of illustrate the way the DML transformation operates, Max-
imum Mean Discrepancy (MMD) was employed [25] in order to investigate the extent to
which the distance between the two domains reduces after the applied DML transfor-
mation. MMD can be framed using the following equation:

DM MD (Q,P ) = ||EQ [F (x)]−EP [F (x)]||2 (2.9)

where Q and P are two different domains, or more analytically in our case:



2.2. EXPERIMENTAL RESULTS USING DISTANCE-METRIC LEARNING FOR AUDIO-VISUAL

EMOTION RECOGNITION

2

65

(a) AFEW dataset. (b) CREMA-D dataset. (c) RAVDESS dataset.

Figure 2.8: Classification results for the evaluation scenarios for the 20% sparsity scenario (which analyzed in
Section 2.2) for different datasets and different cluster center number. The blue line represents the baseline
SVM performance.

DM MD (XS1 , XT1 ) = || 1

m

m∑
k=1

F (xS
k )− 1

n

m∑
k=1

F (xT
k )||2 (2.10)

where XS1 = [xS
1 , xS

2 , ...xS
m] and XT1 = [xT

1 , xT
2 , ..., xT

m] represent feature vectors from
both domains that are governed from these distributions and F is the calculated map-
ping function for the MMD method, which, in our case, is the DML transformation.
Therefore, the MMD metric calculates the distance between the means of the source
and target domains in the transformed space.

An exhaustive search is performed for the type of feature selection, for the chosen
type of clustering method, for the DML technique implemented and finally for the SVM
parameters for both scenarios. Furthermore, SVM classifiers are trained using the au-
dio features after performing the unsupervised step to compare them with the proposed
technique. This approach, as we mentioned before, connotes the baseline approach.
The training is performed using ΦKT 1 (X̂T 1) for the sparse scenario or ΦKT (X̂T ) for the
dense one, while the prediction is conducted using ΦKTtest

(X̂Ttest )). For the baseline ap-
proach, the SVMs are trained for both scenarios and cases. For the tuning process, a
greedy approach is followed by searching all typical parameters for feature selection, k-
means, DML and SVM.

Table 2.1: Best extracted classification performance for varying sparsity (20%, 30%, 40%, 50% and 100%) sce-
narios for the baseline approach and the proposed algorithm. For AFEW and CREMA-D the results are ex-
tracted using SDML while for RAVDESS using RCA.

Case AFEW CREMAD RAVDESS
Baseline SDML Baseline SDML Baseline RCA

20% 21.29% 23.77% 35.82% 37.16% 33.77% 36.20%
30% 21.25% 25.90% 36.13% 37.36% 34.70% 36.83%
40% 22.60% 26.12% 38.36% 38.95% 34.99% 36.77%
50% 24.32% 26.17% 39.44% 40.06% 34.91% 36.90%

Dense 28.84% 29.11% 40.14% 41.58% 37.45% 37.66%
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(a) AFEW dataset. (b) CREMA-D dataset. (c) RAVDESS dataset.

Figure 2.9: Classification results for the evaluation scenarios for the 50% sparsity scenario (which are analyzed
in Section 2.2) for different datasets and different cluster numbers. The blue line represents the baseline SVM
performance.

EVALUATION DISCUSSION

As it is depicted in Table 2.1 where the best results for different sparsity scenarios (20%,
30%, 40%, 50% and 100%) for all datasets are illustrated, the whole framework succeeds
in the target objective. That is the improvement of the classification performance in
the target domain by incorporating information from the source dataset (and outper-
form the baseline method) in all scenarios. This is also depicted from the Figures 2.8,
2.9 and 2.10 (where the results for all datasets are visualized). Moreover, in the case of
SDML, a parameter that regularizes the sparsity of the calculated matrix M during the
DML optimization process λ by using L1-regularization M , is tuned [19]. In this case,
L1-regularizer it gives high penalty in big values of the matrix M on the off-diagonal ele-
ments.

It is found that by defining this parameter equal to λ = 0.05 we can extract the best
results for AFEW while λ= 0.01 for CREMA-D.

Firstly, regarding AFEW, it is found that, by using tree-based feature selection, a lim-
ited number of dimensions can be kept without decreasing the classification perfor-
mance in our experiments. In the same spirit, SDML algorithm has led to the best per-
formance for domain adaptation for the sparse scenario for all cases (20%, 30%, 40%
and 50% target domain sparsity). More specifically, the best performance regarding the
classification results is found by using SDML combined with k-means (and using 53 as
a number of clusters in the case of 20% sparsity). For the case of the 30%, 40% and
50% sparsity, the best performance is achieved by using SDML with k-means with 50,
50 and 46 clusters, respectively. For the dense scenario, the proposed technique man-
aged to outbid (again using SDML and k-means with 46 clusters) the performance of the
baseline SVM classification. The proposed framework’s performance is 29.11% while the
baseline performance is 28.84% for the best-performing baseline k-means SVM using
only the audio features. The approach reaches similar values with the reported state-
of-the-art performance for audio recognition in the dataset which was extracted using
Deep Belief Networks [26]. A striking observation extracted throughout the experimen-
tal phase is the fact that the proposed method (for each sparsity case) is always converg-
ing to the same classification performance using the same number of clusters and the
sparsity parameters.
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(a) AFEW dataset. (b) CREMA-D dataset. (c) RAVDESS dataset.

Figure 2.10: Classification results for the evaluation scenarios for the dense scenario (which are analyzed in
Section 2.2) for different datasets and different cluster numbers. The blue line represents the baseline SVM
performance.

For the baseline approach, due to the randomness in picking samples for the sparse
scenario, and to improve the reliability of the analyses, the results are based on several
iterations of the classification task using different sample splitting processes. This obser-
vation denotes the efficiency of the knowledge transfer of the face modality over audio
modality through the proposed domain adaptation approach.

Furthermore, to better generalize the aforesaid observations, we proceed with two
bigger datasets, namely, CREMA-D and RAVDESS. In such a manner, a generalization for
the classification performance of the proposed approach using different datasets can be
achieved. With respect to CREMA-D, it is found again that, by using the SDML algorithm,
the framework obtains the best performance. These results are found when using 46, 43,
45, and 44 clusters for 30%, 40%, 50% and 100% sparsity levels, respectively (see Figures
2.8, 2.9 and 2.10). Regarding the feature selection approach, the tree-based strategy is
chosen since it leads to the best performance. In all sparsity evaluations, it is observed
that the SDML algorithm is more stable and, in most cases, (for several parameters of the
whole approach), the obtained results are superior than in the case of the RCA algorithm.
On the other side, the LFDA approach is the weakest and did not manage to perform as
well as the rest ones.

Concerning the RAVDESS dataset, the best results are extracted when using tree-
based estimators for feature selection and when using 43, 43, 46 and 43 clusters for the
30%, 40%, 50% and 100% sparsity cases. However, in that case, the best performed DML
approach is the RCA approach (see Figures 2.8, 2.9 and 2.10 where the results for the
three different algorithms and with different sparsity levels are displayed). In the same
vein, the LFDA algorithm cannot perform as good as the other two approaches.

For all three datasets, it is evident that the approach is very much dependent on the
employed algorithm for DML and, furthermore, on the number of clusters chosen for
the clustering step. Even in the same datasets, by changing the sparsity level of available
datasets, the number of clusters needs to be tuned again for the best results to be found.
Therefore, the tuned parameters of this approach are data-dependent.

Figures 2.9 and 2.10 shows the fluctuation of the performance for the three datasets
for different values of the hyper-parameter k for the clustering approach for the baseline
and several approaches applied in this chapter. In both sparse and dense scenarios,
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SDML approach is proven to be more robust in comparison with the other methods.
Regarding the MMD distance between the distributions of the approach, Table 2.2

illustrates the distance between the averages after clustering and the MMD distance after
the DML transformation for several k (numbers of clusters). The table is illustrative of
the fact that the distance after the performed DML transformation is always smaller than
the distance only after the transformation to the clustering procedure (for all datasets
and sparsity levels) which corresponds to Euclidean distance. That is observed for all
three datasets and validates the behaviour that is noticeable in Figures 2.10(a), 2.10(b),
and 2.10(c).

Table 2.2: The distances between domains for several sparsity scenarios.

Dataset AFEW CREMAD RAVDESS
Baseline SDML Baseline SDML Baseline RCA

20% 1.87 1,19 3.50 2.99 4.13 4.69
30% 1.99 1.55 3.71 3.50 4.81 4.27
40% 1.81 1.64 3.81 3.83 4.81 4.27
50% 1.81 1.64 3.85 3.80 4.81 4.27

Dense 2.27 1.53 3.99 3.92 4.81 4.27

2.3. CONCLUSION
In this chapter, a preliminary strategy for accommodating the challenging task of do-
main adaptation is introduced. The study focused mainly on the capability of the pro-
posed technique based on simple distinct modules to enhance the emotion recognition
performance of the audio modality when leveraging data from the face modality. The
goal is to develop a link between both modalities and to eliminate the gap between their
distributions. The proposed approach incorporates an unsupervised learning approach
related to clustering and a metric learning technique with the purpose of establishing a
bridge between the two different domains. Two test scenarios are analyzed and an eval-
uation schema using three different datasets is conducted. Firstly, knowledge transfer
is performed from the source to the target domain, with the target domain availabil-
ity being reduced to 20%,30% and 50% with regards to the original dataset. Secondly,
an investigation in the case of a densely available target domain is conducted. To val-
idate this approach, three different datasets are considered, namely AFEW, CREMA-D,
and RAVDESS. The experimentation phase demonstrated that, for all scenarios, the per-
formance of the DA algorithm surpassed the performance of a baseline SVM algorithm
trained solely on the target domain features. Having established a successful bridge be-
tween the two modalities, consequently, this transformation can be exploited with the
purpose of improving the target classification task of emotion recognition for the audio
modality.

On the whole, the approach is shown to be efficient and very simple to implement
with the training process lasting only a short period of time. On the other hand, for
RAVDESS and CREMA-D datasets, the improvement when using the proposed approach
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is rather marginal and in some cases, even negative knowledge transfer is observed be-
tween the two modalities. Furthermore, it is found that even the classification perfor-
mance of the baseline strategy for these datasets is not really close to the state-of-the-
art. What is more, the whole approach is dependant on the hyper-parameters and even
with a small modification to them, the obtained results are radically different. That is ob-
served when changing the number of clusters, or the parameters, or the feature selection
method. The performance of the approach is radically different. The same fluctuations
in performance are experienced when using the same hyper-parameters for different
datasets. For different datasets, these parameters need to be tuned again.

The current approach focuses on traditional machine learning unsupervised and su-
pervised tools. It provides a proof of concept idea that it is possible to perform emotion-
aware audio-visual domain adaptation. Inspired by this and, considering the fact that
deep learning can provide versatile solutions to a multitude of in-the-wild problems, we
decided to look into a new direction of research. Hence, it was decided to apply deep
learning approaches to study audio-visual relationships. The motivation behind this de-
cision is two-fold. As it is found in [27], recent deep learning approaches perform re-
ally well in the task of Audio Emotion Recognition (AER). Furthermore, deep learning
approaches are implemented in an end-to-end manner. In such a way, the feature ex-
traction process is tackled automatically from the learning algorithm (for instance when
using CNN) and powerful expressivity features related to emotions can be uncovered.
Chapters 3, 4 and 5 contain the work done in this direction.
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3
DOMAIN ADAPTATION USING

GENERATIVE NETWORKS

The research presented in this chapter is supported by the following publications:

• C.Athanasiadis, E.Hortal, and S.Asteriadis, Audio–visual domain adaptation using
conditional semi-supervised Generative Adversarial Networks, Neurocomputing El-
sevier 1, Volume 397, Pages: 331–344, 2020.

• C.Athanasiadis, E.Hortal, and S.Asteriadis, Audio based Emotion Recognition en-
hancement through Progressive GANs, 27th international conference on image pro-
cessing (ICIP), Abu Dabi, 2020.

The core insight established in Chapter 2 is related to the validation of knowledge
transfer when using the learned distance metric learning (DML) approach between
modalities. The learned projection onto a common subspace was managed to minimize
the divergence between the modalities and, consequently, emotion recognition classifi-
cation performance in the fused datasets was improved. The whole technique was val-
idated during the evaluation process in Section 2.2 and in particular in Table 2.1 where
the best results for the baseline and different approaches are illustrated.

In particular, chapter 2 established a “proof of concept” idea that it is possible to per-
form emotion-aware audio-visual domain adaptation. From Table 2.1 is clear that this
approach has improved performance in comparison to “the baseline”. Inspired by this
and, considering the fact that deep learning can provide versatile solutions to a mul-
titude of in-the-wild problems, this chapter is now looking into a new direction of re-
search. Hence, it was decided to apply deep learning approaches for studying the audio-
visual relationships as a next step. The motivation behind this decision is two-fold. As
it was found in in [1], deep learning recent approaches performs really well in the task
of Audio Emotion Recognition (AER). Furthermore, deep learning approaches are imple-
mented in an end-to-end manner. In such a way, the feature extraction process is tackled

1https://doi.org/10.1016/j.neucom.2019.09.106
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automatically from the learning algorithm (for instance, when using CNN) and power-
ful expressivity features related to emotions can be uncovered. The conclusions from the
emotion recognition survey in [1], were validated after experimentation with deep learn-
ing architectures such as Convolutional Neural Networks. It was observed that there is a
discrepancy of approximately 8%−10% in the classification accuracy for audio emotion
recognition (for CREMA-D [2] and RAVDESS [3] datasets) in comparison with the results
from Chapter 2.

Therefore, it is chosen to proceed with the more sophisticated deep learning ap-
proach with the purpose of learning the desired cross-modal projection. This architec-
ture, in principle, is formed by two sub-models. The first one is assigned to perform the
cross-modal transformation from source XS to target domain XT (XS → XT ). While the
second one is tasked with judging whether the above-learned projection leads to mean-
ingful results regarding the target domain XT .

However, this approach comes with one evident drawback. As is expected, this draw-
back is the need of these algorithms for big amounts of data. The introduced deep learn-
ing system is able to be trained only when using the CREMA-D [2] and RAVDESS [3]
datasets which contain a big number of samples. On the contrary, when using the AFEW
dataset [4], the system is not able to smoothly converge and train properly. Therefore,
we decided to proceed only with CREMA-D and RAVDESS datasets and skip the AFEW
dataset in the deep learning-related approaches.

The fostered deep learning approach is the so-called Generative Adversarial Net-
works (GANs) architecture. Over the recent years, explosive popularity has emerged in
the domain of GANs [5] which have become one of the most promising developments in
deep learning. The preliminary idea of GANs can be framed as follows: Given a vector
of random noise z, the whole process endeavors to accomplish a good approximation of
the data distribution in hand (in our case, represented as the target domain) by learn-
ing a mapping between the noise distribution and this domain. GANs usually consist of
two different neural networks which compete in a min-max manner. These networks are
called Generator G and Discriminator D and they are depicted in Figure 3.1. The basic
idea behind this approach (for studying cross-modal relationships between the symbi-
otic modalities of video) is shown in Figure 1.1. An illustrative work that renders in detail
the way that GANs function is introduced in [5]. In that work, the target is to train a net-
work G that, given a noise vector z, is able to generate new samples derived from the
MNIST dataset domain (target domain) by trying to approximate the desired distribu-
tion. In the meantime, D tries to decide whether the generated samples are genuine or
not.

Starting from the above-mentioned architecture (the so-called vanilla architecture),
the scope of the proposed research is to modify it and adapt it to the needs of our goals.
The desired objective is to develop a framework that will be able to not only generate data
in the target domain but also convert source samples into target domain ones. Thereby,
several modifications are needed in the classical version of GANs for the sake of formal-
izing a system that will be able to perform as such. Recent advancements in GANs sug-
gest several modifications that make them more suitable for the field of domain adap-
tation and audio-visual cross-modal mapping and provide fertile inspiration to the cur-
rent work. A cardinal influence is the work done in [6] [7] and, particularly, the one in
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Figure 3.1: Initial version of the Generative Adversarial Networks. The two basic blocks of the architecture,
namely, the Generator G and the Discriminator D are rendered.

[8], where a conditional deep Generative Adversarial Network is proposed with the aim
of performing image-to-image translation. In this modified version of GANs, a U-Net
[9] architecture is proposed with a view to learning the domain shift between two differ-
ent image datasets that share some characteristics. Contrary to the work done in [8], we
propose a semi-supervised architecture, the so-called dacssGAN (Domain Adaptation
Conditional Semi-Supervised Generative Adversarial Network) where the input to the
generator contains, apart from the source modality data, conditional semi-supervised
information extracted using a facial expression classifier (based on convolutional neu-
ral networks) and it is processed using conformal prediction (CP) [10] [11]. Conformal
prediction is a framework for credible machine learning, constituting a methodology
for obtaining error calibration in classification and regression tasks. This framework is
based on hypothesis assumptions to provide rigorous error calibration. It allows obtain-
ing confidence values for any class label given a test instance. In the current work, the
implementation of CP is performed in order to provide robust conditional information
as input to the proposed dacssGAN architecture.

However, directly learning this aforesaid projection based on GANs is still a very com-
plicated procedure that requires sophisticated deep architectures and access to enor-
mous datasets that are also consisted of linked annotations related to the emotion states
of the subjects from videos. For this reason, a progressive training of the whole architec-
ture is also introduced to improve the learning capacity of the whole framework. This
method consists of two steps. Insofar as the first step is concerned, the so-called weight
initialization, a large data corpus of unlabeled audio-visual clips, derived from the Vox-
Celeb dataset [12], is used in an attempt to uncover low-level hidden relationships be-
tween the face and audio modalities. VoxCeleb has proven to be really useful for the
proposed task since it contains a massive unlabelled correspondence of audio and face
samples. As a step further, for the sake of calibrating the network in an emotion-wise
manner, we made use of emotion-labeled datasets, namely, CREMA-D and RAVDESS.

As it has already been mentioned in Chapter 1, the main research questions that we
address in this chapter are two: Firstly, How can Generative Adversarial Networks be de-
ployed to uncover audio-visual cross modal relationships?. Secondly, How can we learn
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and train the proposed Generative Neural Networks in a progressive manner? Or in sim-
ple terms, how can we initialize the weights of the network in such a way that can allow
us to optimize the training process?. On the whole, a synopsis of the current Chapter’s
contributions is summarized as follows:

• The challenging task of heterogeneous semi-supervised domain adaptation be-
tween the symbiotic audio-visual modalities in the affective understanding con-
text is explored.

• A novel label-agnostic architecture for GANs based on conditional information ex-
tracted using a classifier’s prediction scheme is introduced.

• Conformal prediction is utilized as an extra step to update the classifier’s predic-
tion. Inductive conformal prediction [13] is evaluated as well, with a view to rem-
edying the high implementation cost of the traditional conformal prediction ap-
proach.

• A regulation mechanism over the generator that consists of an auxiliary classifier
is opted to impose the emotion states over the generated samples.

• The implementation of the knowledge transfer process occurs by using a progres-
sive calibration of the weights.

• An ablation study is performed in an attempt to investigate the capability of dif-
ferent architectures, loss functions and the performance of different conditional
inputs on the presented GAN approach.

• The evaluation of the domain adaptation procedure is performed by implement-
ing a data augmentation schema (similar to [14] and [15]), where generated and
real samples are fused together and emotion recognition is performed in this ex-
panded dataset.

Finally, the structure of the remainder of this Chapter is as follows: Section 3.1 de-
scribes the introduced Domain Adaptation (DA) method that is based on the proposed
GANs architecture and the progressive training of it, while in Section 3.2 the experimen-
tal protocol, dataset and results are presented and analyzed. Finally, Section 3.3 dis-
cusses the conclusion and the future work of this study.

3.1. DOMAIN ADAPTATION BASED ON GENERATIVE ADVERSAR-
IAL NETWORKS APPROACH

In this section, the proposed GANs approach which is denoted as “dacssGAN” is dis-
cussed in detail. The overall architecture of the approach can be seen in Figure 3.2. Fig-
ures 3.3(a) and 3.3(b) are displaying two different architectures which are implemented
for the network G (and are examined during the ablation study in Section 3.2.3). GANs, as
mentioned before, consist of two networks, a generator G and a discriminator D . Given
a noise vector z as input to the network G and a dataset of samples that come from the
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Figure 3.2: Complete architecture of the dacssGAN approach. The diagram contains the three basic blocks of
the approach namely, the network G , the network D and the classifier network Q. Furthermore, the input and
output, as well as, the architecture for each block are also displayed.

target domain distribution XT = {x1, x2, ..., xn} ⊆ DT , network G is calibrated to gener-
ate unseen samples that resemble that distribution. While for network D , the input is
the samples distributed in the target domain XT and the generated samples G(z). It is
tasked to learn how to distinguish between genuine and synthetic (generated) samples.
The whole training procedure is occurring in an adversarial fashion implemented as a
min-max algorithm. The initial formalization of the process can be framed with the fol-
lowing equation:

min
G

max
D

V1(D,G) = Et∼XT [logD(t )]+Ez∼Pz [log(1−D(G(z)))] (3.1)

where t ∈ XT (samples coming from target domain DT ) corresponds to the data that we
want to approximate while z ∈ Pz corresponds to the distribution domain that the noise
vector z is sampled from. However, the objective in the current work is to implement
a domain shift and calculate a transformation between the source (Ds ) and the target
domain (DT ). Thereby, instead of having as input to the G network the noise vector
z ∈ Pz , samples that are distributed from the source domain XS = {x1, x2, ..., xn} ⊆ DS are
also utilized. However, if we proceed by neglecting completely the noise vector z, that
may result in the development of a network that only produces deterministic outputs.
Thus, the noise vector z should be used also as an input together with the source domain
samples in G [16]. Consequently, Equation 3.1 becomes:

min
G

max
D

V2(D,G) = Et∼XT [logD(t )]+Ez∼Pz ,x∼XS [log(1−D(G(x, z)))] (3.2)

where x are samples derived from the source domain (x ∈ XS ) and t are samples belong-
ing to the target domain (t ∈ XT ). Additionally, since the goal is to generate data that
approximate the target domain XT ⊆ DT conditioned to emotional information, Equa-
tion 3.2 is easily re-framed for the conditional scenario as:

min
G

max
D

V3(D,G) = Et∼XT [logD(t )]+Ez∼Pz ,x∼XS [log(1−D(G(x,c, z)))] (3.3)
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where the input in G network is conditioned to the variable information c. In the current
framework, we examined the possibility of having three alternative sources of condi-
tional information as input to the network G namely: class label information, prediction
of a classifier (trained using datasets that derived from source domain XS ), and confor-
mal predictions [11]. This strategy is analyzed in more detail in Section 3.1.3. Further-
more, similar to [9], in our study, we investigated the possibility of combining the initial
GANs objective with a more classical loss, such as the L1 distance [17]. The discrimi-
nator’s task remains the same, however, the generator is deputed to not only fool the
discriminator but also to be near the ground truth output in an L1 manner (that, in our
case, is calculated in a pixel-wise manner). It is found [9] that L1 norm encourages less
blurring in the results than other metrics like L2. The implemented loss function that is
formulated in our framework is as follows:

L1(G(x,c, z), t ) = Et∼XT ,x∼XS ,z∼pz (z)[||t −G(x,c, z)||1] (3.4)

The complete optimization schema that derives after combining Equations 3.3 and 3.4
is formulated as:

min
G

max
D

(V3(D,G(x,c, z))+L1(G(x,c, z), t )) (3.5)

Hitherto, the system uses some conditional information about the label, however, dur-
ing the experimental phase, it is found that by just adding this conditional variable c is
not efficient enough to produce genuine samples from the target domain (that also rep-
resent the desired emotional states). In Section 3.2.3 a manifestation about the previous
statement is provided. Thereby, we decided to add an extra network Q = fT (x ∈G(x,c, z))
that is producing an error based on the correct or wrong classification of the emotional
states. This model Q is presented in Figure 3.2 as “Classifier”. The proposed network Q is
a CNN network with an architecture similar to that used in the network D . However, they
differ in the last layer that in the classifier case outputs the predicted emotion state for
the input audio samples instead of the binary decision provided by the network D . The
input of this network is the output samples of G and the cross-entropy error is passed
to the generator optimization in tandem with Formula 3.5. Intuitively, the target is to
calibrate and influence the output of the network G by considering its capability to re-
produce samples that are not only governed from the target domain XT distribution but
also represent as good as possible the class information that the samples of the XT are
associated with. In the work presented in [18] and [19], authors already introduced an
extra classifier in the whole training process of GANs. In our approach, the introduced
error of the classifier, the cross-entropy of the generated samples from the network G , is
denoted as:

LC = E[log(P (c = yk |x ′
]))] (3.6)

where P (c = yk ) denotes the probability for the specific class k and (P (c = yk |x ′
])) the

probability of the sample x
′

to belong to class k. This sample belongs either to real
dataset x

′ ∈ XT or in the generated samples x
′ ∈ D(G(x,c, z)). Eventually, the complete

loss function is the summary of Equations 3.5 and 3.6:
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(a) The architecture of the network G (ED). (b) The architecture of the network G (U-NET).

Figure 3.3: Different tested architectures for the network G . In both architectures, we denoted as encoder the
first part that transforms the input image to a latent space, while as decoder the inverse operation.

min
G

max
D

(V3(D,G(x,c, z))+L1(G(x,c, z), t )+E[log(P (c = yk |x ′
])) (3.7)

All the details about the models G ,D and Q can be found in Section 3.1.2.

3.1.1. MODE COLLAPSE PROBLEM AND REMEDIES
One of the most profound drawbacks of GANs is the so-called mode collapse problem.
Mode collapse is the phenomenon where the network G generates a limited diversity of
samples, or even the same samples, regardless of the input. Authors in [23] presented
this issue and provided a precise explanation of the reasons why this phenomenon oc-
curs. According to them, since training is a stochastic process, due to the randomness
introduced with vector z, during the early stages in training, the generated samples will
deviate depending on z ∈ P (z) and the samples drawn from x ∈ X . In other words, the
gradients back-propagated to the network G will deviate between training steps relying
on input information. In practice, there exists a single fixed point for the weights that
network G considers as the optimum ones for the generation process regardless of the
input information we fed into it. However, there is nothing in the objective function that
explicitly forces the network G to generate different samples given different input. For its
part, Network D eventually is not imposing any more variety in the generated samples
or forcing the partially collapsed G towards a different direction.

Possible remedies that are proposed in the literature (mainly in [24] [25] [26]) and
were proven extremely useful during the experimental procedure of the current chapter
for mitigating the mode collapse phenomenon, are:

• Firstly, the normalization of the input in our network G is utilized. That is, in gen-
eral, an intuitive method confirmed to be useful in deep learning. In this manner,
the optimization process stabilizes, and the risk of exploding gradient which leads
to mode collapse is minimized.

• Secondly, another approach is the implementation of batch normalization or
batchnorm for each layer of the employed architecture (Figure 3.2). In this way, not
only the input of the networks but also the intermediate layer are properly normal-
ized. Batch normalization is applied during training by computing the mean and
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standard deviation of the input variables for each layer per mini-batch and using
these statistics we can normalize the activation’s of each layer. More information
can be found in Appendix 3.1. In this manner, we ensure a smooth gradient in each
layer which mitigates the problem of mode collapse.

• Thirdly, the Leaky REctified Linear Unit LeakyRelu [28] is utilized as the activation
function for all three networks (G , D and Q) of the proposed architecture. This
activation function is introduced to mitigate the issue of dying ReLU which is de-
scribed in Appendix 3.1, which is the most commonly applied activation function
in deep learning [28]. The problem with ReLU is that all the negative values be-
come zero immediately. In this way, the capability of the model to fit or train the
data properly decreases. This means that any negative input given to the ReLU
activation function turns the value into zero immediately, which in turn affects
the result by not mapping the negative values appropriately. Therefore, a small
variation of ReLU is proposed in order to be able to not loose the negative values
(LeakyReLU). Both activation functions are visualized in Figures .10(c) and .10(d).

• Furthermore, the application of soft and noisy labels is employed (in the case that
the conditional variable c is formed by the real label information, see “Supervised
conditional GAN” in Section 3.2.2). The inspiration for this approach is the work
in [26] where the labels, in the same way, are input to the network G .

• Another remedy that can be utilized, is the adoption of Adagrad [27] as the opti-
mizer for all networks of the dacssGAN architecture. According to [26], the Ada-
grad optimizer helps the GANs system becoming more flexible and less prone to
mode collapse. This is due to the adjustable nature of the learning rate during the
training process.

• As a final remedy, the addition of some noise to the input data [26] for each batch
step has been also shown to provide a solution, since in this way we are able to
add some stochasticity in the data themselves and can push the generator into
less deterministic results.

3.1.2. NETWORKS’ TOPOLOGY
Taking into account the aforesaid remedies, we designed all the networks of our archi-
tecture accordingly. In Figure 3.2 the topology of the network G , is displayed, as well as
the input and output for each network. In this figure, we mainly display the tensor sizes
after the applied operations involved in the CNN network. The operations are convolu-
tion, max pooling, dropout and batch Normalization, an activation function and a fully
connected layer (depicted in Figure 3.2 with one dimensional tensors) operations which
are described in Appendix 3.1. For each tensor, as described in Appendix 3.1, firstly, the
convolution operator is applied, then batch normalization and dropout. The resulted
tensor then is filtered using an activation function.

This topology is influenced from the image to image conditional Deep Convolutional
Generative Adversarial Networks topology, found in [20]. However, several modifications
are performed to simplify the training procedure by taking into account the aforesaid
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Table 3.1: Details about the employed networks. The variable θ stands for the dropout parameter (see Ap-
pendix 3.1).

Network learning rate Optimizer θ

G 0.001 RMSProp 0.5
D 0.001 RMSProp 0.5
Q 0.001 RMSProp 0.5

remedies for the mode collapse problem. On this ground, we have chosen Leaky REcti-
fied Linear Unit (LeakyReLU) as the activation function for each of the layers (for more
details see Appendix 3.1). As an exception, in the output layer, we made use of the hyper-
bolic tangent function in order to normalize the output to be between [−1,1]. Further-
more, batch normalization and the dropout operations are performed in all the layers
of all three networks except the output layer. Table 3.1 contains details related to the
networks hyper-parameters such as learning, optimizer and dropout parameter θ.

Table 3.2 contains all the details of the generator network G , with all the dimension-
alities of the input and output tensors, as well as all the involved operators. Similarly,
Table 3.3 renders all these details for the discriminator network D . Classifier network Q
is actually similar with the discriminator D with only difference the last layer (is a dense
layer with k dimensions instead of a binary layer as in case of the discriminator).

3.1.3. SEMI-SUPERVISED GANS
The conditional information c that has been applied as a supplementary input to net-
work G (together with the vector noise z) in the classical version of conditional GANs [5]
is mainly associated with the label information (c = yi ∈Y ) of the target domain samples
(x ∈ XT ). This label information is represented by categorical vector with its dimension-
ality to be the number of classes.

However, these labels are not always available, and being able to construct a network
G regardless of the label information is one of the main objectives in the current chapter.
Having said that, the very first approach that is fostered to displace the conditional label
information is to use a trained classifier fS (XS ) that relates to source classification task
TS . This classifier (displayed in Figure 3.4) will output the prediction confidence that
depicts the probability for each sample of being associated with each class (yi ∈ Y that
represents in our case every different emotion, denoted in Equation 3.7 as c). In this
respect, by neglecting the class information in the input of the network G , we can state
that our generator is operating in a semi-supervised manner.

CONFORMAL PREDICTION

As an alternative to the analyzed semi-supervised approach of Section 3.1.3, we inves-
tigate the efficiency of conformal prediction (CP) [11] as a way to output better class-
confidence and use it as the conditional information that is fed into the network G in-
stead of simply using the classifier prediction output. The CP framework is a probabilis-
tic approach focused on post-processing of classification results for more reliable pre-
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Table 3.2: The model employed for the generator network G .

Layer type tensor input tensor output

Flatten 3×28×28 1×2352
Dense 1×2352 1×1024

Batch Normalization 1×1024 1×1024
Dropout 1×1024 1×1024

Dense 1×1024 1×512
Batch Normalization 1×512 1×512

Dropout 1×512 1×512
Dense 1×512 1×256

Batch Normalization 1×256 1×256
Dropout 1×256 1×256

Dense 1×256 1×64
Batch Normalization 1×64 1×64

Dropout 1×64 1×64
Dense 1×64 1×256

Batch Normalization 1×256 1×256
Dropout 1×256 1×256

Dense 1×256 1×512
Batch Normalization 1×512 1×512

Dropout 1×512 1×512
Dense 1×512 1×1024

Batch Normalization 1×1024 1×1024
Dropout 1×1024 1×1024

Dense 1×1024 1×2048
Batch Normalization 1×2048 1×2048

Dropout 1×2048 1×2048
Dense 1×1024 1×2048

Batch Normalization 1×2048 1×2048
Dropout 1×2048 1×2048

Dense 1×2048 1×4096
Batch Normalization 1×4096 1×4096

Dropout 1×4096 1×4096
Flatten 1×2352 3×112×28
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Table 3.3: The model employed for the discriminator network D .

Layer type tensor input tensor output

Conv2D 3×112×28 64×112×28
Batch Normalization 64×112×28 64×112×28

Dropout 64×112×28 64×112×28
MaxPooling 64×112×28 64×56×28

Conv2D 64×56×28 32×56×28
Batch Normalization 32×56×28 32×56×28

Dropout 32×56×28 32×56×28
MaxPooling 32×56×28 32×28×28

Conv2D 32×56×28 16×56×28
Batch Normalization 16×56×28 16×56×28

Dropout 16×56×28 16×56×28
MaxPooling 16×56×28 16×28×28

Conv2D 8×28×28 8×28×28
Batch Normalization 8×28×28 8×28×28

Dropout 8×28×28 8×28×28
MaxPooling 8×28×28 8×14×14

Conv2D 8×14×14 4×14×14
Batch Normalization 4×14×14 4×14×14

Dropout 4×14×14 4×14×14
MaxPooling 4×14×14 4×7×7

Conv2D 4×7×7 4×4×4
Batch Normalization 4×4×4 4×4×4

Dropout 4×4×4 4×4×4
MaxPooling 4×4×4 4×2×2
Dense layer 4×2×2 1×16]
Dense layer 1×16 1×512
Dense layer 1×512 1×6

Figure 3.4: The face classifier applied in the case of semi-supervised GANs. In the same manner as in Section
3.1.2, the classifier contains the similar activation function and operations such as batch normalization and
dropout.
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dictions. It combines a methodology of algorithmic randomness and hypothesis testing
to provide error calibration in online settings. It is important to note here, that an iden-
tically independently distributed (i.i.d.) assumption for the data samples of the dataset
is made. Conformal prediction uses past experience to determine precise levels of con-
fidence in predictions.

CP is a classical frequentist method and concerns a hypothesis testing which creates
error regions for each sample. This is done, without employing prior probabilities as
it would have been the case for Bayesian modelling. CP goal is to produce error regions
around the predictions. The underlying rationale is that samples less similar to the train-
ing set should lead to less certain estimates: this is captured by nonconformity scoring
function.

On the whole, the methodology is summarized in Algorithm 3. In particular, an
illustrative example of the way CP functions is described as follows: given a dataset
XD = {(x1, y p ), (x2, y p ), ..., (xn , y p )} (where p ∈ {1,2, ..., w} with w the number of classes),
a classifier f (X ) and a new test data point xn+1, the hypothesis that xn+1 is assigned
to a specific class label c = y p ∈ Y is adopted. Having defined the test hypothesis, a
re-training process for the adopted classifier f (X ), with XD ∪ {xn+1, y p } is performed.
Subsequently, a nonconformity function for all the data points {(x1, x2, ..., xn+1)} is re-
computed assuming this hypothesis true. This nonconformity function is correlated
with the chosen classifier that is selected. In [21], several nonconformity measures that
correspond to several classifiers are presented. For the case of CNN, the nonconformity
measure for sample x j is framed by using two different types [13]. Firstly, the so-called
hinge nonconformity:

ay p

j = 1−oy p

j (3.8)

and secondly, the so-called margin nonconformity:

ay p

j =−oy p

j + max
i=1,..,w,i 6=p

oy i

j (3.9)

where oy p

j denotes the output of the last layer of the CNN for the specific class p and

in particular, it corresponds to the softmax output function of the CNN architecture for

the j-th sample (trained in the whole dataset XD ). Then, maxi=1,..,M ,i 6=p oy i

j corresponds

to the higher value among all conformity hypotheses excluding the case where i = p.
Both measures try to measure the degree of strangeness for the new data. We can say for

both measures that the sample x j does not conform to class p when ay p

j is low. In the

current approach, we used Equation 3.8 as the established nonconformity measure. The
next step of the approach is to define a p-value function measurement for each posed
hypothesis, given in Equation 3.10:

p(ay p

n+1) =
count {k ∈ {1, ...,n +1} : ayP

k ≥ ayP

n+1}

n +1
(3.10)

where ayP

n+1 denotes the nonconformity measure of xn+1 when it is assumed that it be-
longs to class label c = y p . This test hypothesis is performed with all available classes
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(and the corresponding p-value for each hypothesis is calculated). It is obvious that the
p-value is highest when all nonconformity measures of training data belonging to the
class c = y p are higher than that of the new test point xn+1, which points out that xn+1

is most conformal to the class c = y p . This process is repeated by performing the null
hypothesis for all class labels, and the highest p-value is used to decide the actual class
label to be assigned to xn+1. Considering p j as the highest p-value and pk as the second-
highest p-value, p j is called the credibility of the decision while 1 - pk represents the
confidence of the classifier’s decision.

Algorithm 1 Pseudo-code for the conformal prediction process [21].

1: Given a training set D = (xi , y p ), ..., (xn , y p ), xi ∈ X , number of classes y p ∈ Y =
y1, y2, ..., y w and a classifier f (X ):

2: Get a new unlabeled sample xn+1.
3: for all class labels y j , where j = 1, ..., w do
4: Assign label y j to xn+1.
5: Re-train the classifier f (X ), with D ∪ {xn+1, y ( j )}.

6: Compute nonconformity measure value, ay j

i with i = 1....,n + 1 to compute the
p-value according to Equation 3.10.

7: end for
8: Output all the conformal prediction based on the p-value prediction for each of the

w class according to Equation 3.10.

However, as it was already mentioned before, in the current approach, we use the in-
ductive conformal predictions that are introduced in [13], where a set of size l = n − r is
denoted as the training set and a set of size r is denoted as the calibration set of the con-
formal prediction. For a new xn+1 now the calculation of p-value is occurring without
the re-training of the classifier f (X ) but just by directly comparing the nonconformity
value of that sample with the nonconformity values of the calibration set. This method
is preferred rather than the classic CP method described in Algorithm 3 to reduce the
complexity of the approach.

3.1.4. CONFORMAL PREDICTION IN GANS FOR DOMAIN TRANSFER
In the light of the above, the p-values are calculated for the training and test datasets by
implementing the mentioned inductive CP approach. This is done by using the CREMA-
D and RAVDESS datasets and by applying the same CNN network (to calculate the non-
conformity measures) as in the previous semi-supervised case (which is displayed in
Figure 3.4) and its details are analyzed in Section 3.1.2. More details, about the way that
the datasets are split and applied for calculating the p-values for the inductive CP (into
the train, calibration, and test subsets), as well as the training and prediction phase of
GANs can be found in Experimental phase Section 3.2.

The calculated p-values of the training dataset mentioned before, are given as con-
ditional input c to the proposed dacssGAN architecture (to the generator network G).
Hence, the conditional input is modified, instead of directly using the label information
or the outcome of the classifier fS (XS ), as illustrated in Figure 3.2. Then, the whole train-
ing procedure for GANs proceeds as before. Regarding the test procedure for generating
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samples using the test subset, we can apply the trained model for generator G as be-
fore. By giving as input to the G the p-values again instead of the labels we can generate
spectrograms related to the source domain.

The rationale behind using inductive CP is the high computational complexity cost
of the initial conformal prediction algorithm in combination with a GAN architecture.
This approach only requires that the underlying algorithm be employed once to gener-
ate a classification rule, and thus, the re-training process for each new xn+1 sample is
not necessary as in the case of the classic CP. Additionally, experimental tests resulted
in similar behaviors when using inductive CP in our dacssGAN approach in compari-
son with the plain version of the CP algorithm. The way that the dataset can be split by
forming the training and calibration subsets (hence, determining the size of r ) is based
on techniques (query functions) which are described in [13]. These techniques provide
an efficient way to split the training and calibration subsets for the inductive CP and are
based on picking the most uncertain samples (based on the nonconformity measure-
ment) or the most diverse samples in the training set, or randomly choosing the samples
for the calibration subset.

As it is explained in more detail in the experimental phase (Section 3.2.3), we demon-
strate that in order to reduce the computational cost, the most straight-forward way is to
employ as a query function the random split of the subsets.

3.1.5. PROGRESSIVE TRAINING
Directly training the proposed deep learning architecture introduced in Section 3.1 may
be a challenging task. Furthermore, it is observed, that the proposed architecture needs
to be complex enough to learn a meaningful projection between both domains. In total,
during the training procedure, our architecture needs to calibrate more than 50 million
parameters. Directly learning this number of parameters requires an extremely large
data corpus of correlated face and audio samples annotated with the emotional states.
Unfortunately, such a big dataset, with these specifications, could not be easily met in
the affective computing field. To facilitate this task, a progressive learning procedure is
introduced in this work.

This approach is proposed to better tune the weights of the architecture and increase
the efficiency of the method. It consists of two steps:

• Firstly, a corpus of unlabeled data (VoxCeleb dataset [22]) is used with the purpose
of initializing the weights of the networks G and D . In this sense, with this process,
our goal is the network G to learn a general audio-visual mapping (XS → XT ) with-
out placing any additional conditional constraints (such as the class information).
The network G is fine-tuned to generate samples from the target domain condi-
tioned merely upon the low-level pixel information of the source domain XS . In
this manner, low-level, not related to emotions, correlations among features can
be retrieved and pave the path for domain adaptation at a later stage. In this un-
labelled training of the whole architecture, the same GANs architecture is applied
with all the implemented details described in Section 3.1.2.

– Firstly, since we do not use any label information for the tuning of the net-
work, we need to modify the input to the network G . Instead of using as in-
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put the conditional information [x, z,c] with x ∈ XS , z ∼ P (z) the noise vector
and c the conditional information, we just make use of [x, z].

– The second modification concerns the removal of the classifier Q from the
whole process. Since we do not possess any label information in VoxCeleb
corpus, the classifier Q is unnecessary. We proceed with the GANs training
using only the generator G and the discriminator D .

• Then, having initialized the weights of G to produce unlabelled data from the tar-
get domain, the next step is to continue the optimization of the whole network
(as described in the previous subsections) by using a fully annotated audio-visual
dataset (the conditional information [x, z,c] and the classifier network Q) with a
view to calibrating the weights and to expose high-level emotion-wise relation-
ships between the face and the audio domain. In this manner, having tuned the
weights emotion-wise, we can evaluate whether the previous step is helpful re-
garding knowledge transfer evaluation.

• The evaluation of the whole progressive training is performed at the end of the
second step. Having trained our GANs approach by using these two steps, we can
calculate then the performance of the approach as it is performed for the normal
training of GANs (without the weight initialization process). More details about
the evaluation and the metrics implemented can be found in the experimental
phase of this chapter in Section 3.2.4.

The evaluation of progressive training is introduced in Section 3.2.

3.1.6. PRE-PROCESSING STEPS FOR FACE AND AUDIO MODALITIES
In this Section, the main pre-processing steps that are followed in respect to face and
audio modalities are analyzed. As it has been analytically presented in the introduc-
tory chapter, Section 1.2.2, these steps are performed to extract the most relevant infor-
mation that relates to emotion labels. In this way, we discard unnecessary noisy infor-
mation from both modalities and transform the raw signals into more compact repre-
sentations that will be easily handled by our GANs architecture. Hence, regarding the
pre-processing steps for the face, we follow the same strategy as in Chapter 1, in order
to extract the bounding box for the faces. While for the audio modality, we are using
spectrogram representation. Having performed these steps, then, the proposed GANs
architecture is implemented using the transformed modalities.

In [40], an analysis with the common way of performing pre-processing for both
modalities for emotion recognition can be found. It is evident, for the audio-modality
the most recent techniques employ the spectrogram representation as well.

CALCULATION OF SPECTROGRAMS

Motivated by several works dealing with audio classification tasks [29] [30] [31], it was
decided to extract and make use of a spectrogram representation (instead of making use
of the raw audio signals for the target domain XT ) for the feature extraction process.
A spectrogram is a visual depiction of the spectrum of frequencies of a signal (audio
signal in our case) and its fluctuations over time. In this manner, the whole approach of
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(a) Raw audio derived from CREMA-D dataset.

(b) Spectrogram with size 112×28 pixels.

(c) 56×28 pixels. (d) 28 × 28
pixels..

Figure 3.5: The initial raw audio and the correspondent transformed spectrogram.

knowledge transfer is transformed into an image-to-image translation task that will also
make easier the implementation of our GAN architecture. Additionally, it also facilitates
the qualitative inspection of the generated spectrograms produced during experimental
results. The whole process of extracting spectrograms given raw audio is detailed in [32].
In Figure 3.5, a raw audio signal and its correspondent spectrogram are visualized.

Finally, from the resulting spectrograms, only the central parts of the clips are kept.
For this purpose, three different configurations have been considered: 28× 28, 56× 28
and 112×28 pixels. This fixed size is established by always starting from the middle part
of the spectrogram and symmetrically keeping the surrounding regions (that roughly
corresponds to auditory information of 0.2, 0.5, and 1 second respectively) to avoid the
silence appearing in the beginning and in the end of the file. In Figure 3.6(a), samples of
spectrograms extracted from the CREMA-D dataset are visualized.

Data augmentation for the spectrograms A data augmentation technique with which
it is possible to increase the number of samples from the target domain is also applied.
This technique is based on SpecAugment [33].

SpecAugment is an approach for performing data augmentation in spectrograms. It
modifies the spectrogram by warping it in the time direction, masking blocks of consec-
utive frequency channels, and masking blocks of utterances in time.

In this way, by having as input one spectrogram, 10 new spectrograms are generated
and in this way, we are able to increase the number of data samples in our dataset.
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(a) Samples of extracted spectrograms.

(b) Real samples derived from the CREMA-D.

Figure 3.6: Samples extracted from CREMA-D dataset.

FACE CROPPING AND ALIGNMENT

As described in Section 1.5, in this work, we use the CREMA-D and RAVDESS datasets.
Using the data included in these datasets, the same strategy that was followed in Chapter
2 for obtaining aligned faces from the initial videos is utilized. The extracted images are
cropped and re-sized to a fixed resolution chosen to be 28×28. The main rationale for
proceeding with the aforementioned size is that we need a reasonably small size images
as input to our network G . In this way, the system is able to restrict also the complexity
of the whole training process. In Figure 3.6(b), instances of the CREMA-D database after
the whole cropping and alignment steps are shown.

3.2. EXPERIMENTAL PHASE FOR USING GENERATIVE ADVER-
SARIAL NETWORKS FOR EMOTION-AWARE DOMAIN ADAP-
TATION

In this section, the empirical results for the evaluation of our approach are displayed.
As mentioned before, we tested the proposed approach using the Crowd-sourced Emo-
tional Multimodal Actors Dataset (CREMA-D) and the Ryerson Audio-Visual Database
of Emotional Speech and Song (RAVDESS) datasets. CREMA-D consists of facial and
vocal emotional expressions in sentences spoken in a range of basic emotional states
(happy, sad, anger, fear, disgust, and neutral). 7,442 clips of 91 actors with diverse eth-
nic backgrounds were rated by multiple raters in three modalities: audio, visual, and
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audio-visual. The RAVDESS is a validated multimodal database of emotional speech and
songs. The database is gender balanced consisting of 24 professional actors, vocalizing
lexically-matched statements in a neutral North American accent. Speech includes calm,
happy, sad, angry, fearful, surprise, and disgust expressions, and the song segments con-
tain calm, happy, sad, angry, and fearful emotions.

Furthermore, progressive learning process makes use of the VoxCeleb dataset as well.
It should be noted that the CREMA-D and RAVDESS datasets, during the whole exper-
imental phase, are balanced with the purpose of containing approximately the same
amount of data samples for each class. Both datasets are split into four different subsets
for both modalities. The splitting process is performed using in each subset, different
subjects from CREMA-D and RAVDESS datasets, respectively.

• Firstly, the subset which is denoted as S1, is utilized in order to train the classifier
from the source domain fS (xS ) to perform facial expression recognition, with the
purpose of using it for the semi-supervised GANs. This subset consisted of the 60%
of the whole dataset. This is the classifier that is analyzed in Section 3.1.3.

• Secondly, the subset S2 is used to calibrate the classifier (defined in Section 3.1.4)
by calculating the p-values of conformal prediction (Equation 3.10). This subset
consisted of the 20% of the whole dataset

• Thirdly, the samples in a subset denoted as S3 are used for retrieving their p-values
and for training the dacssGAN architecture (networks G , D and Q). This subset
consisted of the 10% of the whole dataset

• Finally, the rest of the subjects, grouped as the subset S4 are used for the testing of
the whole approach. This subset consisted of the 10% of the whole dataset

3.2.1. METRICS FOR EVALUATING GENERATED SAMPLES
Four different metrics have been applied to evaluate the quality of the generated samples
2. These four metrics are: augmentation scheme using real and generated data, inception
score, fréchet inception distance and finally structural similarity index.

Augmentation scheme using real and generated data: Firstly, the classification per-
formance of the data augmentation scheme is assessed as the first metric. We fuse real
audio samples from the original dataset (from the S1 subset) with the ones generated
from our architecture and we extract the classification performance of the expanded
subset (from the S4 subset). This is done with the aim of testing whether the generated
spectrograms encompass efficiently the emotion recognition performance and whether
they can improve the classification performance of the initial real dataset. In this sense,
we can perceive data augmentation as an affordable alternative to easily expand audio-
related datasets. The training for this scheme, in the end, has the double size of S1. It

2For this purpose, a separate research item was picked up, in collaboration with the Master student Adam
Eljasiak in his Master Thesis: “Can You Hear a Face? – Measuring The Quality of Spectrograms Generated
by Generative Adversarial Network From Faces”, Maastricht University, Bachelor Thesis Conference, June 25,
2019
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is important to note here that this approach should not be confused with the approach
described in Section 3.1.6 (SpecAugment [33]).

Qualitative metrics Secondly, in an attempt to evaluate the quality of the generated
samples, three metrics are established. The first one, the Inception Score (IS) [34] is uti-
lized as an evaluation measurement. The approach is using an Inception network pre-
trained on performing emotion recognition on real spectrogram datasets. Training is
performed using data from dataset A, while the metric is applied to dataset B and vice
versa. These datasets A and B in our case are CREMA-D and RAVDESS. This pre-trained
model is applied to the generated samples in an effort to compare the conditional label
distribution with the marginal label distribution. The marginal distribution inidicates
how much variety there is in the generated samples, while the condition distribution
whether there is high confidence in the class prediction in the generated samples (which
can be interpreted whether each image looks distinctly like something). IS score com-
bines these two measures in order to evaluate the quality of the generated samples. To
combine these two factors, authors in [34], made use of the Kullback-Leibler (KL) diver-
gence [35]. This is framed in the following equation:

I S(x) = exp(Ex [K L(p(y |x)p(y))]) (3.11)

where x is a generated sample and p(y |x) represents the distribution of the classes for
this sample. We want the posterior probability p(y |x) to be highly predictable so to have
low entropy. Furthermore, the marginal probability p(y) is the overall distribution of
classes across the sampled data and should have a high entropy which means the ab-
sence of dominating classes and a well-balanced training set. Altogether, the higher the
IS score, the better the quality of the generated samples.

The second qualitative metric that is employed is the so-called Fréchet Inception
Distance (FID) [36]. This metric compares the statistics of generated samples to real
ones, instead of only evaluating generated ones. This approach is based on the same
Inception model (previously used for the IS) and it is applied to the generated and real
images to calculate the prediction using the Inception network. In more detail, FID could
be framed as:

F I D(XR ,XG ) = ||µR −µG ||+Tr (ΣR +ΣG −2(ΣRΣG )( 1
2 )) (3.12)

where XR and XG are distributions of real and generated images (after the utilization of
the Inception network) respectively and µR,G and ΣR,G correspond to the mean and co-
variance of the real and generated datasets, respectively. Lower FID values mean better
image quality and diversity.

Finally, the Structural SIMilarity index (SSIM), which is described in [37] compares
two images based on perceptual differences. It is expressed as a floating-point number
ranging from -1 to 1, where 1 indicates exact similarity and -1 means a complete dis-
similarity. The comparison is based on the following three measurements (between the
two data samples): luminance, contrast, and structure. Calculating the SSIM for two
grayscale images (x, y) is as follows:
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L(x, y) = 2µxµy + c1

µ2
x +µ2

y + c1
(3.13)

C (x, y) = 2σxσy + c1

σ2
x +σ2

y + c1
(3.14)

S(x, y) = σx y + c3

σxσy + c3
(3.15)

with c1 = (K1 ·L2), c2 = (K2 ·L2) and (with K1,K2 < 1) to be constants, L being the dynamic
range of the pixel values (255 for 8-bit grayscale images), and c3 = c2

2 . Variables µ, σ are
the mean and variance operations for the input images. Finally the SSIM measure can
be formulated as:

SSI M(x, y) = L(x, y)α ·C (x, y)β ·S(x, y)γ (3.16)

whereα> 0,β> 0 andγ> 0 are the parameters used to adjust the relative importance
of the three components. In our case, for simplicity reasons, as in [37], we defined these
three values to be equal to 1 (α = β = γ = 1). In this case, Equation 3.16 can be re-written
as:

SSI M(x, y) = (2µxµy + c1)(2σxσy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(3.17)

SSIM is calculated with a one-pixel offset over a 11× 11 sliding window containing
Gaussian weighting function, and then the final metric of an image is calculated as an
average of the SSIMs of each window [37]. For color images, the average SSIM for each
color channel is computed.

3.2.2. EXPERIMENTAL PROTOCOL

In the experimental phase, two basic scenarios are assessed:

• Firstly, the simple tuning of the whole architecture without any weight initializa-
tion (the so-called moderate training scenario) is applied.

• Secondly, the whole approach is utilized with the implementation of the weight
initialization strategy (progressive training scenario) analyzed in Section 3.1.5.

For each of these two scenarios, the proposed architecture is evaluated in several
steps. The objective of the current work is to evaluate the capacity and the amount of
knowledge transferred between the source and target domains as well as to inspect the
quality of the generated samples. For this reason, we employ the metrics described in
the previous sub-section for each step of the experimental protocol.
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(a) The architecture for spectrogram.

(b) The architecture for face.

Figure 3.7: The implemented CNN network for the classifier Q.

BASELINE

Primarily, the emotion recognition classification performance of audio ( fT (XT )) and vi-
sual ( fS (XS )) domains is established as the baseline in the evaluated datasets (CREMA-D
and RAVDESS) accordingly, without utilizing any domain adaptation strategy. For each
of these datasets, we are employing the provided annotation information. The classifier
employed to establish this baseline (for both modalities, audio and face) is a network
similar to the one used as part of the dacssGAN topology and represented in Figure 3.7
as “Classifier” (network Q) for both cases (a more detailed description about the topol-
ogy can be found in Section 3.1.2). The mere difference between them is two extra con-
volutional layers that are added to tackle the different sizes of the two domains (as it is
also depicted in Figure 3.7). The rest of the layers and the implemented operations (con-
volutions, max pooling, batch normalization and dropout) in the network are the same.
For training the baseline for face and audio, the S1 subset is utilized while for testing
purposes, we made use of the S4 subset.

As a preliminary step, three different experiments are performed, evaluating three
different spectrogram datasets with corresponding sizes of 28×28,56×28 and 112×28
pixels. In this analysis, it is found that the best results are obtained in the case of spec-
trograms with a resolution of 112×28 (see Table 3.4). This outcome is anticipated and is
aligned with the assumption that the largest the spectrogram is (regarding its time dura-
tion) the better the classification results will be. From this point on, all the audio-related
experiments are referring to this case 3.

The results of this baseline evaluation are compared with the evaluation of all the
performed GANs approaches, and more specifically with the classification performance
of the “GANs augmentation scheme using real and generated data” explained in Section
3.2.1. To ensure a fair comparison, for the baseline evaluation, an extra basic data aug-

3Normally, this analysis should have been included in the ablation study (Section 3.2.3), however, it is placed
here to ensure a smooth transition in the corpus.
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Table 3.4: Audio emotion recognition classification performance from spectrograms datasets of different size.

Spectrogram dimensionality Performance

28×28 41.60%
56×28 46.77%

112×28 49,34%

mentation is performed using the SpecAugment technique (described in Section 3.1.6)
in order to increase the number of samples to be equal with the baseline approach. Fi-
nally, both approaches consisted of the same amount of training data.

That being said, the classification performance using the CNN classifier is estab-
lished as 49,34% and 64,50% for the audio and face modalities respectively for the
CREMA-D dataset while for the RAVDESS dataset these values are established as 46,28%
and 59,79% respectively. These aforesaid results will be noted henceforth as the baseline
scores for the whole evaluation schema.

GANS TRAINING PROTOCOL

The next step of our evaluation schema is to train the whole GAN architecture (shown in
Figure 3.2) by making use of the available training S3 subset. To that end, three different
cases are considered:

• Supervised conditional GAN: In this case, we have as input to the network G the
samples from the target domain. Additionally, part of the input is the noise vector
z and the conditional information vector c (represented by the label information).

• Semi-supervised conditional GAN: In this case, we explored the possibility of re-
placing the label information that is given as input to the generator G with the
output of a classifier fS (XS ) trained using S1 to perform emotion recognition on
the source domain. The output of this classifier is a six-featured vector that con-
tains, for each feature, the probability of the input sample to be derived from a
specific emotional label.

• Semi-supervised conditional CP GAN: Finally, in this case, we explore the possi-
bility of replacing the classification conditionality with the calibrated version pro-
vided using inductive conformal prediction. As was already mentioned, for cal-
culating the inductive CP, we make use of the subset denoted as S2 as a valida-
tion bucket that helped us to calculate the p-values for the denoted subset S3 that
played the role of the conditional information.

In the first case, we will evaluate the performance of the whole approach by using
explicitly annotated information. However, as a step further, we want to show whether
it is possible to train the whole network without explicitly using any label information.
Hence, in the second case, an evaluation of whether the label information can be re-
placed by an emotion recognition classifier is examined. The outcome of this experi-
ment is that the whole GANs architecture can be trained in a semi-supervised manner
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Table 3.5: Results from the ablation study.

Classification performance for different experiments

Omitting noise vector z ∈ Pz 41.40%
Omitting conditional vector c 39.83%

Omitting the source domain input XS ∈ DS 49.61%
All three inputs to network G 52.52%

by avoiding explicitly having annotation information as input. Finally, a way to improve
this conditional information further is proposed.

3.2.3. ABLATION STUDY

Over the abovementioned evaluation approaches, an ablation study has been performed
by appraising the performance of different architectures for the generator network G ,
different loss functions, different types of input for the network G , different sparsity lev-
els concerning the data availability in the target domain and different algorithms for
conformal predictions. The motivation for the ablation study is originated due to the
overwhelming number of possible tests that can potentially be performed. Since the
complexity of the approach is high, it is imperative to find elegant ways to reduce the
total experimental phase duration. Therefore, an efficient way to prune the search space
of the possible tests needs to be performed. The idea is to evaluate, in steps, the above-
mentioned framework setups, and each time, keep the best-performing combinations.
Having found the best-performing combination for the loss function, input composition
for the network G and architecture of the network during the ablation study in the case
of moderate learning using supervised GANs we test the same variation in the case of
progressive learning and the rest of the conditionality steps. It is important to note that
the ablation study was performed solely on the CREMA-D dataset.

Firstly, a deep convolutional U-Net and a structure that resembles an encoder and
decoder approach (EncDec) using dense layers are evaluated as the possible architec-
tures for network G . Figures 3.3(a) and 3.3(b) depict these two architectures for network
G . Moreover, Figure 3.2 reveals all the details for the EncDec architecture. Table 3.6
shows that U-Net does not outperform the simplified (EncDec) architecture. In this ta-
ble, the performances of the three mentioned scenarios (supervised, semi-supervised,
and semi-supervised CP GANs) when using CREMA-D are depicted. A possible assump-
tion for this outcome is that U-Net, due to a very large number of free parameters to
be trained, needed much more time and computational power (that was not practi-
cally possible given our setup) to be tuned properly than the simple EncDec approach.
Henceforth, all the conducted experiments are using exclusively the EncDec architec-
ture.

Additionally, the standard GANs optimization loss function is regularized by applying
the L1 norm (Equation 3.4). This loss during the training process compares pixel-wise
the generated images with the real ones. The addition of L1 is shown to be decisive for
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Table 3.6: The classification performances of the target domain task TT for the performed ablation study.

Baseline 49,34%
Case EncDec U-Net EncDec_without L1

Supervised GANs 52.52% 50.24% 38.11%
Semi-Supervised GANs-classifier 49.92% 50.12% 31.67%

Semi-Supervised GANs-CP 50.29% 50.09% 31.69%

the outcome of the dacssGAN topology (as displayed in Table 3.6). When this part is
omitted from the optimization function, it is observed that the results are deteriorating
not only classification-wise but also and most notably regarding the forfeiting of visual
fidelity of the generated images. A possible explanation is that pixel to pixel distance as
a loss is helping the calibration of network G and is forcing the generated distributions
to be closer to the real ones. Therefore, for the rest of the conducted evaluations, L1 is
integrated into all under test frameworks.

Moreover, we performed some further experiments wherein combinations regarding
the input to the network G are formed and evaluated. In particular, as mentioned above,
the input to the generator is the noise vector z ∼ P (z), the conditional information c and
the source domain x ∈ XS . Therefore, it is chosen to perform three different experiments
where, in each case, one of the three inputs is omitted. This is done in an effort to evalu-
ate the importance of each input to the network G . In particular, in the case that x ∈ XS is
omitted, we are using a different EncDec architecture, where we drop the encoding part
for the input x ∈ XS . These results are displayed in Table 3.5.

• Firstly, it is found that by neglecting the label conditionality c, the classification
performance is deteriorating, while negative knowledge transfer is experienced.
This phenomenon is analyzed in Section 1.1.1 and is related to decreasing results
when leveraging data from the source domain.

• Secondly, when the noise vector z ∼ P (z) is omitted, the mode collapse phe-
nomenon re-occurred. During training, similar patterns in generated data re-
occur and, therefore, including the noise vector helps alleviate this phenomenon.

• Finally, in the last combination, where the source domain x ∈ XS is omitted from
the input, the obtained results deteriorate (with respect to the classification per-
formance that is explained in Section 3.2.1), while convergence becomes slower.

As a conclusion, it is inferred that each of the inputs considered has a positive impact
on the overall performance of the framework and, consequently, all of them are included
in subsequent experimental procedures (see Section 3.2.4 for further details).

Another performed study is concerned with the conformal prediction conditionality.
In this study, it is decided to monitor the performance of the whole approach by having
different sparsity availability in the target domain. In this case, we decided to make use
of the 50% and 20% of the initial datasets and extract the results for the Semi-supervised
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conditional CP GAN case (analyzed in Section 3.1.3). During this experiment, we want
to determine how crucial is the availability of data for the proper training of the whole
GAN approach. This study is explained in more details in Section 3.2.5.

It is important to note here that in the case of conformal prediction, we validate both
the initial algorithm (explained in Algorithm 3) and the inductive conformal prediction
(analyzed in Section 3.1.3). It is found that the performance of both techniques is simi-
lar, however, the computation complexity of the initial version of conformal prediction
in comparison to inductive conformal prediction is large. Therefore, it is decided to
stick with the results of inductive conformal prediction and introduce it as our semi-
supervised technique. Furthermore, since the classification performance of the induc-
tive conformal prediction had similar results with the results using a random split for the
training and calibration subsets, it is decided that it is not necessary to employ a more
sophisticated way to split the subsets.

To sum up the findings of the ablation study, the best-obtained observations that
resulted from the related experiments are the following:

• Firstly, spectrograms of size 112 × 28 pixels are chosen to represent the audio
modality.

• Furthermore, also the EncDec architecture is used (instead of U-Net). The basic
topologies of these networks can be found in Section 3.1.2.

• It is shown also that the L1 norm as part of the framework’s loss function is neces-
sary for the outcome of the results.

• Moreover, it is deduced, that all three inputs to the network G are crucial for the
performance of knowledge transfer of our system.

• Finally, regarding conformal prediction, inductive CP is chosen as an algorithm,
while random splitting is chosen as the way to split our datasets into the subsets
{S1, ..., S4} introduced at the beginning of this Section.

3.2.4. EXPERIMENTAL RESULTS AND DISCUSSION
The best-performing combinations extracted from the ablation study are employed to
analyze the performance of moderate and progressive learning and also by applying
the three conditionality approaches (in total, six possible configurations are evaluated).
Firstly, the results for the moderate learning case are illustrated in the following para-
graphs. For both scenarios, our analysis is divided into two inspections, namely: quan-
titative and qualitative results.

MODERATE LEARNING

Firstly, the classification performance and the qualitative metrics of moderate learning
are presented. In this case, the training of the whole GANs architecture occurs once by
using the emotion-aware datasets (CREMA-D or RAVDESS) and without any pre-training
of the architecture’s networks. Furthermore, the visual results (generated spectrogram
samples) extracted when performing the moderate learning are presented as well.
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QUANTITATIVE RESULTS

In this Section, the quantitative results, obtained during the evaluation phase for all the
three cases of the experimental protocol (supervised conditional GAN, semi-supervised
conditional GAN and semi-supervised conditional CP GAN) are described. In Table 3.7,
the performance regarding all four metrics of all the aforementioned cases of the experi-
mental protocol is presented (Section 3.2.1). Firstly, in the initial GAN case, the so-called
supervised conditional GAN is evaluated. In this case, the approach reached the best
performance (52.52% for CREMA-D and 47.11% for RAVDESS). The same behavior is
demonstrated by the results extracted using the other evaluation metrics, namely, the
IS, FID and SSIM (see Table 3.7).

However, in the current work, our main effort is focused on the much more interest-
ing semi-supervised case where the goal is to generate annotated audio samples coming
from rich but not necessarily annotated video samples. As a subsequent step, the semi-
supervised conditional GAN is evaluated. In this case, the obtained results are 49.92%
for CREMA-D and 46.23% for RAVDESS.

Finally, the evaluation of the semi-supervised conditional CP GAN is conducted. The
extracted results are 50.29% for CREMA-D and 46.55% for RAVDESS and are slightly bet-
ter than the baseline results for both datasets. The rationale behind this improvement in
the results (in contrast to the previous case) is mainly that, after the application of con-
formal prediction, the calculated p-values contain better-distributed confidences in the
rest of the labels in comparison to the confidences derived using merely the classifier.

Table 3.7: Classification, FID and IS performance for all experimental protocol scenarios (moderate GANs).

Case CREMA-D RAVDESS
Classification FID IS SSIM Classification FID IS SSIM

Bas. 49.34% 44.73%
Sup. GANs 52.52% 59.44 2.16 0.77 47.11% 49.77 2.21 0.90

S-Sup.GANs 49.92% 60.13 2.01 2.01 46.23% 50.33 2.05 2.05
S-Sup.GANs-CP 50.29% 60.10 2.00 2.00 46.55% 49.95 2.01 2.01
DML approach 41.58% - - - 37.66% - - -

Further stimulating observations can be found in the confusion matrices (CM) ex-
tracted when using the CREMA-D dataset for the baseline case (displayed in Figure
3.8(a)), supervised GAN approach (Figure 3.8(b)) and semi-supervised CP (Figure 3.8(d)).
Firstly, all figures show that the considered emotions are well discriminated since the di-
agonal elements of the matrix have (in all cases) the highest classification performances.
Also, in all three cases, it is evident that the strongest captured emotion is anger. It is
noteworthy that this behavior is consistent with the study performed in [38] concerning
the human accuracy in audio emotion recognition, where it was stated that the best-
performing emotion label was anger for the CREMA-D dataset. In [40], the authors ob-
served a similar finding when using also other state-of-the-art audio-based datasets. In
the case of the data augmentation schema of the supervised case, in Figure 3.8(b), we
can observe that, while the anger emotion performance drops, the efficiency of the rest
of the emotions roughly increases and, thus, more uniform recognition is achieved by
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making use of supervised learning.
Altogether, a captivating observation in this chapter can be extracted from the com-

parison between the results of the best-performing approach (Supervised GANs, see Ta-
ble 3.7) with the best-obtained results from the previous Chapter (that can be seen in
Table 2.1). We extracted two main observations:

• Firstly, both the baseline emotion recognition for CREMA-D and RAVDESS
datasets are improved when using CNN architecture like the one in Figure 3.4 in-
stead of simple SVM classification.

• Secondly, the experienced transfer knowledge is more acute in the case of the ap-
proach based on Generative Adversarial Networks.

To ensure a fair comparison between the results of these two different methods, we
are employing the same datasets. The training and test sets are partitioned in the same
manner. Furthermore, regarding the pre-processing steps, we followed the same process
regarding the face extraction, by performing face detection, alignment and cropping.
However, for the feature extraction process, both for face and audio we could not follow
the same process, since the GANs network input and output are raw images instead of
features.

Table 3.8: Classification, FID and IS performance for all experimental protocol scenarios (progressive GANs).
The last row contains the results from the DML approach from the previous Chapter from Table 2.1. We add
this information for comparison reasons.

Case CREMA-D RAVDESS
Classification FID IS SSIM Classification FID IS SSIM

Bas. 49.34% 44.73%
Sup. GANs 53.71% 57.22 2.16 0.86 47.55% 49.59 2.15 0.90

s.Sup. GANs CP 50.40% 59.91 2.22 0.81 46.77% 48.98 2.05 0.95
DML approach 41.58% - - - 37.66% - - -

QUALITATIVE RESULTS

With respect to the qualitative analysis, visual generated samples from the performed
experiments that are introduced in the ablation study, as well as the results for the best-
performing architectures regarding moderate learning (which are also evaluated in the
quantitative study) are displayed. These experiments constitute the so-called qualitative
research that is performed for this chapter.

Firstly, the results from the mentioned under investigation frameworks introduced in
the quantitative study are rendered. In Figure 4.14(a) generated samples from the super-
vised conditional GANs are illustrated. Whereas, Figure 4.14(b) represents the generated
spectrograms that are derived from the semi-supervised conditional GANs. In Figure
3.11(a), the results in the scenario where conformal prediction is used as part of the in-
put to the networks G are visualized.

From all these figures that represent the generated spectrograms for all three cases
(described in 3.2.2), we can deduce that the dacssGANs approach in all three configu-
rations managed to approximate the target domain in each case while the visual results
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(a) Baseline. (b) Supervised approach for moderate learning.

(c) Semi-supervised approach for moderate learn-
ing.

(d) Semi-supervised CP approach for moderate
learning.

(e) Supervised approach for progressive learning. (f) Semi-supervised approach for progressive learn-
ing.

Figure 3.8: Confusion matrix for the emotion recognition classifier through audio spectrograms using different
approaches for the six distinct emotion in CREMA-D.
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(a) Methodologies for the CREMA-D . (b) Methodologies for the RAVDESS .

Figure 3.9: Std error bars for the baseline, the moderate and progressive GANs methods for the four different
subsets of the set S4.

(a) Supervised conditional GAN.

(b) Semi-supervised conditional GAN.

Figure 3.10: Generated spectrograms of the GAN approach calibrated using the CREMA-D dataset.
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(a) Generated spectrograms for the semi-supervised CP GAN.

(b) Generated spectrograms for the semi-supervised CP GAN..

Figure 3.11: Generated samples of the GAN approach that calibrated using CREMA-D dataset.

can be considered faithful representations of the target distribution domain. The ap-
proaches in all cases managed to track meaningful patterns that represent similar pat-
terns that are found in the original spectrograms. However, from the mere visual inspec-
tion, it is not possible to infer deductions regarding a visual comparison between these
three categories. Furthermore, it is difficult to extract conclusions concerning the wealth
of affect context in the generated results. This comparison is mainly established using
the extracted results from the quantitative analysis.

With regard to the conducted experiments for the ablation study, qualitative results
are displayed here. Firstly, the generated spectrograms for the experiment conducted by
omitting the source domain XS from the network G input are rendered in Figure 3.12(a).
As it has already been discussed in Section 3.2.3, in this case, we negative transfer knowl-
edge is observed since the performance of the fused audio emotion classification is lower
than the baseline. This behavior is validated also by the visual results where it can be ob-
served that there is a lot of unexpected artifacts and noise in the generated samples.

Regarding the training of the whole approach without the implementation of the reg-
ularization L1 norm in the loss function of the framework (see Section 3.1) the visual re-
sults are depicted in Figure 3.12(b). In this case, the whole approach failed completely
to capture any meaningful pattern with respect to the audio signal spectrum and led to
very noisy visual results.
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(a) Generated spectrograms when omitting the source domain XS .

(b) Generated samples when omitting the L1 norm from the opti-
mization function.

Figure 3.12: Generated samples of the GAN approach for the ablation study (moderate GANs).

PROGRESSIVE LEARNING

Furthermore, the evaluation of progressive learning is performed. In this case, as it is an-
alyzed in Section 3.1.5, the training of the whole framework is performed in two-steps.
Firstly, an unlabelled dataset is applied to initialize the weights of the frameworks and,
secondly, two emotion-annotated datasets are applied to calibrate the weights emotion-
wise. Again the same two categories of investigation are deployed, namely the quantita-
tive and qualitative studies.

QUANTITATIVE ANALYSIS

Regarding the quantitative results, we tested the progressive training of GANs for both
datasets and all three possible scenarios. The obtained results are 53.71% for CREMA-
D in the supervised scenario, 50.40% for the semi-supervised one, and 52.55% in the
case of CP. For the RAVDESS dataset, the performance obtained is 47.55%, 46.77% and
47.37% respectively. In Table 3.8, the performance for this case is displayed. Moreover,
figures 3.8(e) and 3.8(f) depict the confusion matrices for the supervised GANs and semi-
supervised GANs for the progressive learning. From the quantitative results, it is obvious
that by using this approach we are able to improve the performance of the algorithm
for at least 1.2% for the CREMA-D and 0.5% for RAVDESS in the supervised GANs case
between moderate and progressive learning. Regarding the divergence between the two
approaches in the semi-supervised CP case, the improvement is rather marginal and we
could not extract any safe observations.

In an attempt to better understand the performance of the proposed semi-
supervised CP GAN in comparison with the baseline, a statistical analysis has been per-
formed. In this analysis, the statistical results (mean and standard deviation) for the
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classification performance are extracted from different folds (each fold containing dif-
ferent subjects of the dataset). The results obtained for both datasets are illustrated in
Figure 3.9. From this figure, we can observe that, in the case of RAVDESS, the standard
deviation is narrow and there exists a significant difference in the mean value. In the
case of CREMA-D, the deviation from the mean is higher which could be attributed to
the bigger variety of the subjects included in the dataset.

Since performing cross-validation was not feasible due to the high computational
power, it was decided to test our models solely with the test set by splitting this subset
(S4) into 4 different subsets (that contains different subjects) and then we extracted the
prediction performance per subset. The average and standard deviation (also the out-
liers) of this prediction are depicted in Figure 3.9. In this way, we were able to assess and
monitor the performance of the model from different subjects in the dataset and hence
to perform the evaluation in a more efficient way.

QUALITATIVE ANALYSIS

To supplement the quantitative results, qualitative evaluation of progressive training is
discussed as well. As can be seen in Figure 3.13, the quality of the visual results is high,
and visually approximating the real spectrograms. It is obvious, especially for the case
of the RAVDESS dataset, that the generated results after our subjective visual inspection
keep similar patters in the generated results in comparison with the real samples, as well
as, some color information. However, from the extracted visual results it is difficult to
analyze about the affect load of these samples merely using visual inspection.

Therefore, the quality of the extracted images could not be assessed directly.
Nonetheless, a comparison between all our applied methods except the baseline (mod-
erate and progressive GANs) using the three introduced quality metrics (see Tables 3.7
and 3.8) can be examined. It is obvious that the best extracted results for both datasets
can be found in the case of the progressive GANs.

3.2.5. TRAINING PROCESS EVALUATION
In order to examine the performance of the training process of our dacssGANs algorithm,
we visualize the loss function of the G , D and Q networks, as well as, the IS and FID scores
during the training procedure. Figures 3.14(a) and 3.14(b) render the loss function of the
three networks for the CREMA-D and RAVDESS datasets, respectively. Figures 3.15(a)
and 3.15(b) display the IS and FID scores for the CREMA-D and RAVDESS datasets (using
the test subset S4) and also the evaluation performance for the sparsity test. The aim
of this experiment is to investigate the training performance of the method when using
different sparsity levels (20%, 50% and 100% of the initial training subset) for the training
data of the whole GANs architecture for the supervised case. In Chapter 2, the sparsity
test is performed to illustrate the robustness of the new DML distance with different
sparsity levels. In this chapter, it is performed to depict the relation of GANs architecture
with the available datasets.

As aforementioned, deep learning approaches require massive amount of data.
Hence, with this experiment, we wanted to identify the importance of the size of our
training datasets. From the correspondent figures, we can deduce that during training,
even using 50% of the dataset leads to noticeably poorer results in qualitative perfor-
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(a) Generated spectrogram samples for CP approach and moderate
learning.

(b) Generated spectrogram samples for CP approach and progressive
learning.

Figure 3.13: Generated visual results when the framework was trained using the RAVDESS dataset.

mance than using the whole dataset. On the whole, an evident observation during the
training procedure is that the approach steadily converges and the quality of the visual
results improves as the number of epochs increases. Finally, regarding the complex-
ity of our approach, all the conducted experiments are performed by using the same
hardware (as mentioned before). For a single experiment, the total time duration is ap-
proximately 82 and 102 hours (for RAVDESS and CREMA-D respectively) that is equated
approximately to 100 epochs. We chose to proceed with this number of epochs for all
the conducted experiments to reduce the time of our experiments.

(a) CREMA-D dataset. (b) RAVDESS dataset.

Figure 3.14: Loss function during the training procedure of dacssGANs CP (for moderate learning).
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(a) Féchet Inception Distance. (b) Inception Score.

Figure 3.15: FID and IS values during the training procedure of dacssGANs CP (for moderate learning).

3.3. CONCLUSION
The first research question posed in the current dissertation is related to whether it is
possible to transfer knowledge between facial expressions to the audio information from
the same sequences. In the previous chapter, an approach that was based on distance
metric learning was introduced to accommodate the domain adaptation task.

In this chapter, we introduce a new approach to studying the cross-modal relation-
ships between audio and visual modalities, which is based on Generative Adversarial
Networks. In particular, the name of the approach is domain adaptation conditional
semi-supervised Generative Adversarial Networks or dacssGANs. The core objective of
the approach is to tune the weights of the generator network G which will generate sam-
ples that are distributed from the target domain (audio domain in the presented case)
and represent specific emotion states. The input to network G is a random noise vec-
tor z ∈ Z , fused together with samples from the source domain (x ∼ XS ) corresponding
to emotionally expressive faces and with conditional information (c) corresponding to
the nature of the emotion. It is important to note here that the source domain input
has a static nature since it corresponds to a single frame. The conditional information is
calculated using a semi-unsupervised technique called Conformal Prediction. We pro-
posed the use of these confidence values, instead of labels, as a softer and more reliable
manner to introduce knowledge into the generator. Furthermore, we investigated the
efficiency of a network Q that works as a classifier in the target domain and calibrates
the generated samples from network G .

Therefore, in this chapter, we deal with the third and fourth research questions posed
in Section 1.6. The first one is concerned with whether domain adaptation using GANs
could be used to uncover audio-visual relationships. Furthermore, the second posed
question is associated with the progressive training of the topology and whether this pro-
cess can improve further the domain adaptation. In the progressive learning schema,
a weight initialization process is introduced, which uses an abundance of unlabelled
audio-visual information to tune the weights of our G and D networks. By having initial-
ized the weights to map audio-visual relationships (without using any explicit emotion
information), the next step is to calibrate the weights emotion-wise.

On this ground, an investigation regarding the improvement of the knowledge trans-
fer approach in comparison with the work done in Chapter 2 is performed. In particular,
we tried to figure out whether we can improve the knowledge transfer by using the GANs
scheme than using the DML technique. Furthermore, an evaluation that is associated
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with the improvement of the approach under the progressive learning process is also
performed.

The efficiency of our approach is established during the experimental phase. We
propose a data augmentation schema dealing with the hypothesis that it is possible to
generate emotionally enhanced audio data from visual cues. As a further step, it is shown
that by using progressive learning we are able to improve the results even further and, as
a consequence, the knowledge transfer performance. The introduced measurement for
the knowledge transfer implements the classification performance as an evaluation tool
(similarly to the DML approach from Chapter 2). Furthermore, some metrics that mea-
sure the quality of the generated images are introduced as well. In comparison to the
previous chapter, the approach adopted in this chapter improves the knowledge trans-
fer results and generalizes better in the challenging CREMA-D and RAVDESS datasets.
Moreover, it has been shown that the deep learning architecture, when combined with
spectrograms (as audio information) performs better than using simple SVMs on the ex-
tracted features (analyzed in Chapter 2). In summary, our main observations extracted
from this chapter are:

• We confirmed that performing domain adaptation using deep learning architec-
tures, and in particular GANs, led to an increased transfer of knowledge.

• Furthermore, we can replace the supervised conditional information of the ap-
proach by employing a semi-supervised methodology based on the CP algorithm,
without decreasing the performance significantly.

• Finally, we have shown that it is possible to increase the transfer of knowledge with
the progressive training of the whole network.

However, some noticeable limitations that are faced during the implementation of
the proposed approach are the following:

• The introduced network led to better classification results (for the fused real and
generated data used jointly in training) compared to the knowledge transfer using
DML. However, its sophisticated nature required a very complex deep learning ar-
chitecture. In order for this architecture to be properly tuned, a training process
that ranging from 3-5 days took place. Therefore, the time complexity is signifi-
cantly higher than that of the previous light-weighted DML approach.

• Secondly, the whole approach did not take into account the temporal nature of
facial expressivity within the video. In fact, in the whole approach, we map the
middle face of a video sequence with the corresponding, expected audio spectro-
gram. However, in this manner, a lot of useful information concerning the tem-
poral dynamics of the face (such as muscle movements) goes astray. Therefore, a
mechanism to study these dynamics should be provided.

• Finally, while the generated results are quite promising, from our subjective ob-
servations it is deduced that we need to proceed using a more efficient training
process in order to obtain visually better results.
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TEMPORAL CONDITIONAL

WASSERSTEIN GANS FOR

STUDYING CROSS-MODAL

RELATIONSHIPS

The research presented in this chapter is supported by the following publication:

• C.Athanasiadis, E.Hortal, S.Asteriadis, Temporal wGANs for investigating audio-
visual affect ties, 9th International Conference on Affective Computing and Intelli-
gent Interaction Workshops and Demos (ACIIW), 2021.

The core insights established in Chapter 3 were associated with audio-visual transfer
of knowledge when using a strategy based on Generative Adversarial Networks (GANs).
In particular, an image-to-image approach (a facial frame to spectrogram) was inves-
tigated for studying the cross-modal emotion recognition. Having as input to the pro-
posed GANs architecture (“dacssGANs”) a vector of noise, some conditional information
and an image from the source domain XS , the task of the proposed GANs is to approx-
imate the distribution of the target domain XT (that is represented again by images-
spectrograms). The annotations could be either given directly or can be calculated us-
ing an auxiliary classifier. Hence, the whole approach regards a “supervised” (or “semi-
supervised”) “image-to-image” approach.

This approach has been shown to be robust, while performance in terms of domain
adaptation was validated using several state-of-the-art metrics. However, several deduc-
tions were extracted through the experimental phase:

• Firstly, the duration of the training process can take approximately 5-6 days (120-
144h). The conducted experiments were applied in a Titan XP GPU and the total
number of training epochs was 100. Tuning the whole architecture was proven to
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be a very challenging task since each time a parameter needs to be tuned, a new
training process must be executed, which entails another additional 120-144 com-
puter hours to obtain new measurements of the framework performance. Thus,
the whole architecture needs a large amount of time to be tuned properly and find
the performed parameters.

• Secondly, the loss function considered in Chapter 3, while it performs well when
approximating distributions, leaves plenty of space for improvement, especially
concerning training stability and the convergence to optimal solutions and find-
ing the Nash equilibrium. To this end, related approaches (such as Wasserstein
distance [1]) can be incorporated with the current approach to improve training
stability and, as a consequence, to improve the knowledge transfer.

• Furthermore, from the experimental phase observations from Chapter 3, while the
quality of the generated images is quite convincing, still, we believe that there is
a potential space for improvement. GANs in the vanilla architecture has shown to
be an effective approach in regard to approximating visual distributions. However,
several state-of-the-art architectures are allegedly able to perform better training
(by improving the train stability) for their networks and enhance the quality of the
generated results. Hence, by using these new approaches in training GANs, we can
potentially improve the performance of the knowledge transfer and the quality of
the generated samples.

• Finally, as said before, the study conducted in Chapter 3 is concerned with the
static image-to-image audio-visual domain adaptation. This approach presents
a main constraint. While the constructed spectrograms entail temporal informa-
tion, the input XS , represented by the face modality, is composed of a static frame.
However, as research in cognitive psychology suggests [2], studying the audio-
visual relationships for emotion recognition should entail the temporal relations
that govern face and audio. In particular, a study that tries to associate the move-
ments of muscles with temporal information is researched in [2]. On this ground,
while by using static image-to-image GANs some promising results were extracted,
we decided to proceed with further investigation into the temporal connections
between the face and audio using a modified GANs architecture.

Contrary to the work done in the previous chapter, in this work, by summarizing the
previous deductions, we mainly focus on studying two research topics: Firstly, we study
the implementation of an alternative loss function for the whole GANs training instead
of the conventional loss implemented in Chapter 3. Secondly, the implementation of
temporal information as input to the network G to represent the source domain is per-
formed instead of using raw images (as we did in the previous chapter). Hence, this is
the motivation behind the title of this chapter.

Regarding the first research topic of this chapter, the applied new loss function is
based on Earth-Mover distance (or as alternatively called, Wasserstein distance). The
motivation behind using this function is two-fold:

• Firstly, this is done to examine whether the Wasserstein loss can improve further
the performance of the conducted knowledge transfer and the quality of the gen-
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erated samples. Our motivation is the fact that Wasserstein loss was proved to be a
much more stable approach regarding GANs training convergence and can lead to
better performance regarding approximating distributions [1]. Therefore, we pose
the assumption that it could be shown to be suitable and efficient regarding our
cross-modal study as well.

• The second motivation behind this loss is associated with several indications that
Wasserstein loss can speed up the training process. This behavior is analyzed in
[1] and [6] and is an effect of the training stability of this approach described in the
previous point.

Regarding the second research topic and the implementation of temporal features,
the stimulation behind this choice is motivated firstly, with the intuition that the human
brain processes audio-visual signals in a temporal manner [3]. On this ground, several
studies in the field of cognitive psychology displayed temporal connections between the
two modalities [3][4], especially within the emotion context [2].

To study the temporal dynamics between the two modalities, it is decided that tem-
poral features will be extracted from the source domain XS which represents the face
modality. Furthermore, these extracted features will be added as an input to the whole
GANs network as conditional information (bound together again with a random noise
vector z ∈ P (z) and the annotations for each video c). For the sake of efficiency, and to
keep the complexity of the whole approach in low-level, it is decided, as a first step, to
extract the temporal information and, as a second step, to train the whole GANs archi-
tecture by giving the extracted temporal features as input to the network G . Training
everything on an end-to-end basis would have increased dramatically the complexity of
the whole training process and the demand for more resources (RAM memory, CPUs and
GPUs).

With respect to the temporal feature extraction, a pre-processing step is performed
in an attempt to extract meaningful representations for both modalities. Toward this
end, the same steps that were performed in the previous chapters are conducted also
here (are displayed in Section 3.1.6).

Regarding the face modality, face detection, cropping, and alignment are performed
on the video clips. Having extracted the faces and spectrograms from each video, sev-
eral steps regarding temporal feature extraction are performed to capture the correspon-
dences of sequences of frames with spectrograms. Furthermore, an approach to increase
the number of samples in the dataset is performed using data augmentation. All these
steps are analyzed further in Section 4.1.

Regarding feature extraction from the face modality, for each video, the extracted
frames from the video are grouped into consecutive sets of frames (or sequences of
frames). Then, several techniques are introduced to extract common representations,
in particular:

• Firstly, 3d Convolution Neural Networks (3dCNN [16]) are implemented. The kept
set of frames constitute the input to the 3dCNN topology. For each of these sets,
the algorithm outputs one common representation denoted henceforth as 3d-
embeddings.
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• Secondly, a Long Short-Term Memory network (LSTM [17]) is tested. The algo-
rithm combines these sets of frames into a common representation using LSTM
architecture (LSTM-embedding).

• Thirdly, a strategy based on a transformer attention mechanism [18] is imple-
mented. The algorithm outputs embeddings that combine all these frames into
a common representation in a similar way with LSTM (which henceforth will be
denoted as transformer-embeddings). More details will be given in Section 4.1.4.

• Finally, a combination between the transformer and 3dCNN approaches is applied
for extracting the temporal information. In this case, firstly, we extract the 3d em-
beddings from sets of frames. Secondly, since each video consists of several sets of
frames, we combine them using the transformer approach.

More details for all the above methods can be found in Section 4.1.4.
Regarding the audio modality, we proceed with the implementation of spectrograms

and perform identical pre-processing steps to the ones presented in Chapter 3.
Moreover, it is important to note that we decided to compare the introduced tech-

nique which has as input to GANs architecture features with temporal information with
the conventional GANs (proposed in Chapter 3) performed under the supervised sce-
nario and by using the moderate training (described in Section 3.1.5 and denoted as
dacssGANs). Firstly, we decided to skip the semi-supervised training (explained in de-
tail in Section 3.1.3), since, while it has proven to perform similarly with the supervised
case, still we were able to obtain the best results in the latter case. Regarding the progres-
sive training (analyzed in Section 3.1.5), we found that while it is a promising approach
and can improve the performance of the network, the training of the whole approach
needs considerable time and computational power, and therefore, we decided to skip it
and proceed with the moderate scenario (which is the training of the GANs architecture
without performing the progressive training).

Finally, the structure of the remainder of this chapter is as follows: Section 4.1 de-
scribes the introduced DA method that is based on the proposed temporal GANs archi-
tecture and the way that we extract temporal features from the source domain informa-
tion. In Section 4.2, the implemented metrics, the experimental protocol, the experi-
mental results, and the training process analysis are presented and analyzed. Finally,
Section 4.3 contains the conclusions and possible future directions related to this study.

4.1. TEMPORAL GENERATIVE ADVERSARIAL NETWORKS AP-
PROACH

As stated before, the core research conducted in this chapter is directly related to two
research questions:

• Can we improve the performance of the whole system (demonstrated in Chapter 3)
further by making use of the Wasserstein loss?

• Can the audio-visual knowledge transfer increase if we take into account temporal
information extracted from the face modality?
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Figure 4.1: Temporal Wasserstein GANs architecture. The input to the generator are temporal features ex-
tracted from the upper-block of the figure. The features are extracted either using a) 3dCNN b) LSTM or c)
transformer encoder (using as input 2dCNN embeddings).

The following paragraphs contain the analysis for the first research question. Fur-
thermore, a brief summary of the way that GANs architecture is introduced in our work
is also placed.

The overall architecture of the approach can be seen in Figure 4.1. Initially, we
needed to alter the vanilla GANs architecture to meet the demands of our current re-
search and investigate the two posed questions. Hence, a brief reminder of how GANs
are operated will be presented in the following paragraphs. However, this will be ana-
lyzed from a slightly different point of view (a more probabilistic aspect). In this way, we
will be able to connect the loss function of the GANs approach with the Wasserstein loss.
The initial formalization of the GANs min-max game could be framed with the following
equation:

min
G

max
D

E
x∼Pr

[l og (D(x)]+ E
x̂∼Pg

[1− log (D(x̂)] (4.1)

where x ∼ Pr is a real sample coming from the target domain and x̂ ∼ Pg is a gen-
erated sample (that our approach targets to bring as close as possible to the real distri-
bution). The input to the generator G for the vanilla GANs as mentioned already is the
vector z ∼ P (z). More compactly, we could frame Equation 4.1 as:

min
G

max
D

S1(D,G) = Ex∼XT (x)[logD(x)]+Ez∼Pz [log(1−D(G(z)))] (4.2)

where x ∈ XT (is a sample distributed in the target domain DT ) corresponds to the data
that we want to approximate. In a more theoretical analysis, our network aims at min-
imizing the divergence between our unknown real data distribution Pr which is repre-
sented from the XT ∈ DT set, which is the distribution of the targeted samples and the
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distribution of the generated samples denoted as Pg represented by all samples G(z).
Using a different notation it can be re-written as:

min
G

max
D

S1(D,G) = Ex∼Pg [logD(x)]+Ex∼Pg [log(1−D(x))] (4.3)

Now after calculating these expected values by marginalizing over x then also by re-
placing using some simple auxiliary variables (x̃ = D(x), α= Pr (x) and β= Pg (x)) it can
be easily shown (for this proof you could check [8]) that the optimal discriminator D∗
has the shape of:

D∗ = Pr (x)

Pr (x)+Pg (x)
(4.4)

and furthermore, by replacing back in Equation 4.3 (can be seen in [8]) it was proven
that the loss function (that is denoted as L) from Equation 4.1 could be framed as:

L(D∗,G∗) = 2JSP (Pr ||Pg )−2log 2 (4.5)

where JSP corresponds to Jensen-Shannon divergence [11] which can be formulated
as:

JSP (Pr ||Pg ) = 1

2
K L(Pr ||P A)

1

2
K L(Pg ||P A) (4.6)

where A is the average distribution with density:

P A = Pr +Pg

2
(4.7)

while the Kullback-Leibler (KL) divergence [12] between two distributions is de-
scribed by the following equation:

K L(Pr ||Pg ) =
∫
X

Pr (x)l og
Pr (x)

Pg (x)
d x (4.8)

In this way, the work done in [8] shown that optimizing the GANs loss function is
equated with optimizing the Jensen-Shannon divergence as described in Equation 4.6.

LOSS THAT INCORPORATES SOURCE DOMAIN, CONDITIONAL INFORMATION AND CLASSI-
FIER Q
The objective in the current research is to implement a temporal domain shift and calcu-
late a transformation between source (XS ⊂ DS which is represented by temporal-related
facial features) and target domain XT ⊂ DT (represented by spectrograms) which is de-
noted as XS → XT . Thereby, instead of having as input to the generator G merely the
noise vector z ∈ Pz , we coupled it together with samples that are distributed from the
source domain XS = {x1, x2, ..., xn} ⊆ DS . Additionally, since the goal is to generate data
that approximate the target domain XT ⊆ DT conditioned to emotional information, the
conditional information that is denoted as c is added to the equation as well. The loss
function of the GANs (denoted as J1(D,G(x,c,z))) can be formulated as:
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min
G

max
D

J1(D,G) = Ey∼XT [logD(y)]+Ez∼Pz ,x∼XS [log(1−D(G(x,c,z)))] (4.9)

where x are samples derived from the source domain (x ∈ XS ) and y are samples belong-
ing to the target domain (y ∈ XT ). Finally, the next step is (as explained in Section 3.1), to
incorporate into the whole architecture a classifier Q and the L1 norm (the loss between
real and generated samples during training) denoted as L1(G(x,c,z)). In this manner, the
formulation of the final joint loss (denoted as J (D,G(x,c,z))) could be framed as:

min
G

max
D

(J1(D,G(x,c,z))+L1(G(x,c,z))+E[log(p(c = yk |x ′
]))]) (4.10)

where the last part of the loss function represents the cross-entropy for the sample
x
′

which is either a real or a generated sample x
′ ∈ G(x,c,z) to belong to a specific class

c = yk where yk the categorical vector represent the class.

4.1.1. ISSUES WITH THE CONVENTIONAL GANS APPROACH
However, even if GANs in this initial version, are powerful generative models, they suffer
from training instability. As it has been demonstrated by previous works [7], GANs (in
their original form) suffer from the following drawbacks:

• It is hard to achieve a Nash equilibrium: The works presented in [7] and [8] estab-
lished a theoretical analysis regarding the problem with GAN’s gradient-descent-
based training procedure. Two models are trained at the same time to reach a
Nash equilibrium to a two-player non-cooperative min-max game. However, each
model updates its cost independently and irrespectively of the other player. Up-
dating the gradient of both models concurrently cannot guarantee a convergence
[8].

• Vanishing gradients: GANs can optimize network D much easier than G [8]. Min-
imizing the GANs objective function with an optimal D is equivalent to minimiz-
ing the Jensen–Shannon-divergence loss as shown in Equation 4.6. An optimal
network D back-propagates the proper gradient for network G to be tuned. How-
ever, if G is not properly learning, the gradient for G diminishes and this network
is not tuning properly as well. Furthermore, the work conducted in [7] suggests
that the divergence function (between real and generated data distributions) that
GANs architecture typically aims at minimizing is potentially not continuous with
respect to the generator’s parameters, leading to training instability and difficulty
in training convergence.

• Mode collapse: This problem is analyzed in Section 3.1.1. Briefly, the generator
may collapse to a setting where it always produces a reduced set of outputs. Even
though the generator might be able to trick the corresponding discriminator, it
fails to learn a meaningful representation of the complex real-world data distribu-
tion and gets stuck in a small space with extremely low variety.

• Lack of a proper evaluation metric: GANs, in their initial form, do not have a
proper loss function that is informative regarding the training process. While the
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cross-entropy is an indication for the distance, still is not indicative of the visual
quality of the generated results [8]. Without having a good evaluation metric dur-
ing training, the network does not have any good indication of whether it reached
a convergence or not. Furthermore, it is not easy to compare the method with
other methodologies.

• Time complexity: From some preliminary conducted tests, we figured out that
there are different types of loss functions (like Wasserstein distance) which, when
incorporated into GANs, managed to accelerate the training process. Through ex-
perimentation, we discovered that conventional GANs converge much slower than
approaches like Wasserstein GANs.

With this in mind and by taking into account the work done in [1][6], we decided
to foster Wasserstein distance and incorporate it in our audio-visual cross-modal GANs
architecture. Our hypothesis is that by doing so, the training procedure will stabilize fur-
ther and the overall quality of generated samples, as well as the efficiency of knowledge
transfer will improve.

4.1.2. WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS
Wasserstein GANs [1] are introduced in an attempt to mitigate the shortcomings that es-
cort the conventional GANs architecture. This approach is based on the “Earth-Mover’s”
distance [9], which can be described as follows: It is the minimum cost of moving and
transforming a pile of mass in order to match the shape of one probability distribution
with the shape of another one [1]. In order to better grasp this definition, an example
is provided. Let us assume that we have the following four samples from two different
distributions Pr and Pg (representing real and generated data respectively):

Pr = {P 1
r = 1,P 2

r = 5,P 3
r = 4,P 4

r = 5}

Pg = {P 1
g = 5,P 2

g = 3,P 3
g = 6,P 4

g = 1}
(4.11)

where in P d
i , d represents whether the distribution is real or generated and i the

index of the value in the distribution. Hence, to calculate the Earth Mover’s distance in
our example means that we need to recalculate the sample values of Pg to match the
distribution of Pr . On this ground, if we move four piles from (P 1

g → P 2
g ), then, (P 1

g ,P 1
r )

have the same value. In the same manner, we move two piles from (P 2
g → P 3

g ) and four

from (P 3
g → P 4

r ). The cost for each move, could be defined as: δi+1 = δi +P i
g −P r

i , while
the total cost:

c =∑
δi (4.12)

This c cost defines the total amount of mass moved in order to perform that transfor-
mation. In the case of the continuous probability domain, the distance could be framed
as:

W (Pr ,Pq ) = inf
γ∼Π(Pr ,Pg )

Ex,y [||x − y ||] (4.13)
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In this equation,Π(Pr ,Pg ) corresponds to the set of all possible joint probability dis-
tributions between the probability distributions Pr and Pg . A single joint probability
distribution γ ∈ Π(Pr ,Pg ) describes one possible strategy for mass moving. In particu-
lar, γ(x, y) describes the percentage of mass that needs to be transported from point x
to y so as to make x distribution to approximate the distribution of y . However, it is in-
feasible to search and track all the possible joint distributions in Π(Pr ,Pg ) to compute
infγ ∼ Π(pr , pg ). Hence, a common approach [1] is to alter the formula based on the
Kantorovich-Rubinstein duality (and transfer it closer to the initial GANs formula found
in Equation 3.1) and constrain Equation 4.13 to:

W (Pr ,Pq ) = min
G

max
D∈D

Ex∼Pr [D(x)]−Ey∼Pg [D(y)] (4.14)

where D is a set of K-Lipschitz functions. A real-valued function D is called K-
Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x1, x2 ∈ RD

(with D to be an arbitrary dimension):

|D(x1)−D(x2)| ≤ K |x1 −x2| (4.15)

It is important to note that Equation 4.14 can be used for the GANs strategy (and it
is connoted as wGANs). Samples x1, x2 ∈ RD could be samples from real and generated
distributions, while, function D could be represented by the discriminator of GANs net-
work. Furthermore, the task of the generator is still to generate samples from the DT

in the same way as in Chapter 3. However, the task of the discriminator network D (in
the literature it is connoted also as critic function), instead of judging whether a sam-
ple comes from the real or generated distribution, is to minimize the distance found in
Equation 4.14. Hence, its eventual purpose of the wGANs is to minimize the distance
between the distributions of real and generated datasets, and in this manner, to learn a
proper function D. In other words, the critic is trained to learn a K-Lipschitz continu-
ous function to help compute the Wasserstein distance. As the loss function (Equation
4.14) decreases during training, the Wasserstein distance gets smaller and the generator
model’s output approximates better the real data distribution. The wGANs loss function
results in a critic which outputs a better-behaved gradient with respect to its input than
its conventional GANs counterpart, making the optimization of the network G easier.
This claim can be intuitively explained by comparing Wasserstein distance with Jensen-
Shannon divergence. When comparing two different distributions, even when these are
to be found in lower dimensional manifolds without overlaps, Wasserstein distance can
still yield a meaningful in-between distance. While with JS we will receive zero difference
[1][6].

Empirically, it was also observed that the wGANs loss value allegedly correlates with
sample quality of the generated instances, which is not the case for the conventional
GANs [1][6].

To enforce the Lipschitz constraint on the critic, authors in [1] proposed to restrict
the weights of the critic to lie within a specific range (weight clipping). The set of func-
tions satisfying this constraint is a subset of the K-Lipschitz functions for some K . Yet,
this approach still is proved to be problematic (as explained in [6]), regarding finding op-
timal K-Lipschitz functions. Therefore, to circumvent the tractability issues (for finding
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K-Lipschitz functions), an alternative strategy for enforcing the K-Lipschitz needs to be
fostered. The shortcomings of enforcing the K-Lipschitz by weight clipping exposed in
[8] are:

• The whole wGANs approach is proved to have unstable training while it leads to
slow convergence of the weights of network G and D as well.

• The wGANs optimization process is difficult because of interactions between the
weights’ constraint and the cost function, which result in either vanishing or ex-
ploding gradients without carefully tuning and choosing the clipping threshold c.

• Implementing a K-Lipschitz constraint via weight clipping biases the critic by cal-
culating much simpler Lipschitz functions.

Algorithm 2 Wasserstein GANs implementing the gradient loss. Initially, the following
parameters are initialized randomly: λ, nc , λr , β1 and β2. The variables α and β are
variables related to AdaGrad algorithm [10]. Moreover, Gθ represents the weights of gen-
erator G while Dw represents the weights of critic D .

Require: The gradient penalty coefficient λ, the number of critic iterations per genera-
tor iteration nc , the batch size M, AdaGrad hyper-parameters learning rate λr , β1 and
β2.

Require: Initialize generator Gθ and critic Dw weights randomly.
while The weights of the generator Gθ did not converge yet do

for i = 1, 2, 3, ..., nc do
for j = 1, 2, 3, ..., M do

Sample real data x ∼ Pr , a noise vector z ∼ Pz and some uniformly distributed
noise: ε∼U [0,1]
x̃ ←Gθ(z) {x̂ represents the generated samples}
x̂ ← εx + (1−ε)x̃ {adding some noise ε∼U (1,2)}
L j ← Dw (x̂ −Dw (x)+λ(||∇x̂ Dw (x̂)||2 −1)2

end for
w ← Ad aGr ad(∇w

1
M

∑M
j=1 L j , w,α,β1,β2)

end for
Sample a batch of latent variables {z j }M

j=1 ∼ Pz

θ← Ad aGr ad(∇θ 1
M

∑M
j=1−Dw (Gθ(z)),λr ,β1,β2)

end while

As mentioned before, a differentiable function is K-Lipschitz if and only if it has gra-
dients with norm at most K everywhere (shown in equation 4.15). Hence, another strat-
egy can be implemented to directly constrain the gradient norm of the critic’s output
with respect to its input. On this ground, as proposed in [6], we enforce a K-Lipschitz
constraint with a penalty on the gradient norm when using random samples x̂ ∈ Pz .
Therefore, Inequation 4.15 can be framed as:

L = Ex̂∼Pg [D(x̂)]−Ex∼Pr [D(x)]+λ Ex̂∼Px̂ [(||∇x̂ D(x̂)||2 −1)2] (4.16)
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Table 4.1: Details about the employed networks. The variable θ stands for the dropout parameter (see Ap-
pendix 3.1).

Network learning rate Optimizer θ

G 0.01 RMSProp 0.5
D 0.01 RMSProp 0.5
Q 0.01 RMSProp 0.5

where the variable λ corresponds to the regularization parameter regarding the en-
forced gradient penalty. Again, Pr represents the distribution of real samples, Pg the
distribution of generated samples and Px a random combination of real and generated
samples. The whole strategy for this version of Wasserstein GANs is summarized in Al-
gorithm 2. As we can observe, firstly, the parameters regarding the regularizer of the
gradient and the optimizer (AdaGrad) of the whole process are initialized. Then, the
weights of the critic are tuned (multiple times based on a parameter denoted as nc ). Fi-
nally, the weights of the network G are trained. The whole training process is looped
until the weights of G converge.

INCORPORATING CLASSIFIER Q AND CONDITIONAL INFORMATION IN WASSERSTEIN LOSS

Finally, Equation 4.16 is modified in order to incorporate (as in the case of the conven-
tional GANs approach analyzed Chapter 3) the classifier Q and the conditional informa-
tion c. Therefore, the equation can be framed as:

L = Ex̂∼Pg [D(x̂)]−Ex∼pr [D(x)]+λ Ex̂∼Px̂ [(||∇x̂ D(x̂)||2−1)2]+E[log(p(c = yk |x ′
]))]) (4.17)

where p(c = yk |x ′
]) denotes the probability of a sample x

′
to belong to the specific

class c = yk .

4.1.3. NETWORK TOPOLOGY
In this paragraph, we analyze the topology for all the involved networks in our Wasser-
stein GANs scheme. Firstly, the tensor dimensionalities (that are mainly referring to con-
volution and max pooling operations) are displayed in Figure 4.1. More details can be
found for generator and discriminator in Tables 4.2 and 4.3 where all the input outputs
are depicted. However, besides the tensor dimensionalities, in the same way as in Chap-
ter 3, we make use of the same operations (namely, “dropout”, “batch normalization”).
The activation function for each layer for all networks is “LeakyRELU”, while the activa-
tion function in the output layer is “hyperbolic tangent” function.

Finally, Table 4.1 contains details related to all networks hyper-parameters such as
learning, optimizer and dropout parameter θ.

4.1.4. TEMPORAL FEATURE EXTRACTION
In this subsection, the focus lies on the second posed question of this chapter and
in particular: Can the audio-visual knowledge transfer be increased if we take into ac-
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Table 4.2: The model employed for the generator network G .

Layer type tensor input tensor output

Dense 1×102 1×6272
Reshape 1×6272 7×7×128

Cov2d 7×7×128 7×7×128
Upsampling2d 7×7×128 14×14×128

Batch Normalization 14×14×128 14×14×128
Dropout 14×14×128 14×14×128

Cov2d 14×14×128 14×14×128
Upsampling2d 14×14×128 28×28×128

Batch Normalization 28×28×128 28×28×128
Dropout 28×28×128 28×28×128

Cov2d 28×28×128 28×28×64
Upsampling2d 28×28×64 28×56×64

Batch Normalization 28×56×64 28×56×64
Dropout 28×56×64 28×56×64

Cov2d 28×56×64 28×56×32
Upsampling2d 28×56×32 28×128×32

Batch Normalization 28×128×32 28×128×32
Dropout 28×128×32 28×128×32

Cov2d 28×128×32 28×128×3
Tanh 28×128×3 28×128×3
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Table 4.3: The model employed for the discriminator network D .

Layer type tensor input tensor output

Conv2D 3×112×28 64×112×28
Batch Normalization 64×112×28 64×112×28

Dropout 64×112×28 64×112×28
MaxPooling 64×112×28 64×56×28

Conv2D 64×56×28 32×56×28
Batch Normalization 32×56×28 32×56×28

Dropout 32×56×28 32×56×28
MaxPooling 32×56×28 32×28×28

Conv2D 32×56×28 16×56×28
Batch Normalization 16×56×28 16×56×28

Dropout 16×56×28 16×56×28
MaxPooling 16×56×28 16×28×28

Conv2D 8×28×28 8×28×28
Batch Normalization 8×28×28 8×28×28

Dropout 8×28×28 8×28×28
MaxPooling 8×28×28 8×14×14

Conv2D 8×14×14 4×14×14
Batch Normalization 4×14×14 4×14×14

Dropout 4×14×14 4×14×14
MaxPooling 4×14×14 4×7×7

Conv2D 4×7×7 4×4×4
Batch Normalization 4×4×4 4×4×4

Dropout 4×4×4 4×4×4
MaxPooling 4×4×4 4×2×2
Dense layer 4×2×2 1×16]
Dense layer 1×16 1×512
Dense layer 1×512 1×6
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Figure 4.2: The way that the video frames are grouped into a sequence of frames.

count the temporal information extracted from the face modality? Therefore, in this new
approach, we analyze the extracted temporal information regarding the face. On this
ground, before studying the cross-modal relationships with the proposed architecture, a
pre-processing step is performed to extract the targeted temporal information both from
face and audio.

Briefly, regarding the audio modality, as described in Section 3.1.6, spectrograms are
extracted for the target domain XT as its temporal information representation. The ra-
tionale of choosing spectrograms are based firstly on previous findings in the literature
[13] [14] and, secondly, on visualization purposes. This is a key point since we can easily
infer the quality of the generated images from GANs architecture using visual inspection.
As a final step, an augmentation strategy is utilized in the same spirit as in [15] to increase
the number of samples in the dataset. This strategy is analyzed in more detail in Section
3.1.6. This approach modifies the spectrograms by warping them in the time direction,
masking blocks of consecutive frequency channels, and masking blocks of utterances in
time. In this way, for each input spectrogram, we are able to construct 9 different new
ones.

With respect to pre-processing steps for face modality: firstly it is decided to keep
the middle 55 frames of each video. In this way, we wanted to exclude frames that do not
contain important information from the beginning and the end of the video clips. Then,
face detection and alignment are performed (following the strategy previously described
in Section 3.1.6). Subsequently, for each video, overlapping time-windows sequences of
10 frames are created. In this manner, the windows are slid by five frames each time,
which results in an overlap of five frames between the time-windows. This process is
portrayed in Figure 4.2 where all the extracted sequences for one specific video clip are
shown. Since, for each video, there are 10 sequences (consisting of 10 frames) and 10
different spectrograms (generated after the data augmentation approach described in
Section 3.1.6), by combining them, 100 different new pairs are obtained.

Subsequently, the temporal feature extraction process for the face is performed. This
is displayed in Figure 4.1 and more particularly in the upper block. Four different ap-
proaches are investigated for extracting temporal features. In particular, 3dCNN, LSTM,
attention mechanisms and a combination between 3dCNN and attention mechanisms.

3D CONVOLUTIONAL NEURAL NETWORKS

3dCNNs constitute an extension of conventional CNNs (see Appendix 3.1), expanded in
three dimensions, mainly to include the notion of time. The main applications of this



4.1. TEMPORAL GENERATIVE ADVERSARIAL NETWORKS APPROACH

4

125

Figure 4.3: An example of how the 3d convolution is performed in the 3dCNN topology. The input to the
operation is a sequence of frames while the kernel applied is 3d.

approach can be found in the domain of computer vision or graphics and especially for
volumetric video analysis [22][23] or for 3d imaging.

The input to a 3dCNN is 3d data and more specifically, a 3d tensor (a set of frames
derived from a video in our case), while the output is a common representation (the ex-
tracted temporal features). This approach extracts spatio-temporal features by perform-
ing 3d convolutions, and, in particular, by capturing the motion information encoded in
multiple adjacent frames. Furthermore, in the same spirit as with the input, the learned
convolution kernels that are applied and the max pooling operation are performed in
a 3d manner as well. This operation is visualised in Figure 4.3. Having as input a 3×3
region, then, we apply the feature kernel which has the same dimension. By sliding the
filter all over the input tensor, we can calculate the extracted feature map.

LONG SHORT-TERM MEMORY

Long short-term memory (LSTM) networks [17] algorithm was employed as follows:
Given as input ten frames (their 2dCNN features) to the algorithm, it process them
in different output timestamps. Then, it outputs one common representation which
is tuned using a classification schema Facial Emotion Recognition (FER). That output
comes from the final cell of the LSTM. More details about the LSTMs topology and infor-
mation about the algorithm (cell input or output) are analyzed further in Appendix 3.2.
We apply LSTMs in our case, since it is a very popular technique for extracting temporal
information in general in time signals but also when handling videos. For the training
process as well as for the test process the same exact topology is applied.

ATTENTION MECHANISMS AND THE TRANSFORMER ATTENTION CASE

The transformer attention mechanism [18] is a type of neural network architecture intro-
duced mainly to tackle machine translation and sequence to sequence tasks by placing
attention on related and semantically involved parts of a sentence. In our work, it is
modified and implemented for video analysis and more specifically for extracting tem-
poral embeddings that are placing attention in different parts of the input video signal
(which consist of facial expressions). Before explaining how this framework is incorpo-
rated in our work, a description of the overall technique is presented.

In its core essence, the framework operates as shown in Figure 4.4. This is a simplifi-
cation of how the initial framework functions for the machine translation problem. This
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Figure 4.4: Basic example of the transformer architecture. It consists of stacked encoders networks and stacked
decoders networks. In this example, the transformer framework accommodates a machine translation prob-
lem. The input sequence corresponds to a Greek phrase while the output sentence corresponds to its transla-
tion in English.

task concerns the linguistic translation of an input sentence from the input language (for
example, Greek source domain DS ) into the targeted language (for example English, tar-
get domain DT ). Normally, the input sentences, instead of string representations (using
actual words) are portrayed by numerical representations of the initial words, which al-
ternatively are called embeddings. This approach is called word vectorization, which is
a methodology in Natural Language Processing (NLP) to map words or phrases from vo-
cabulary to a corresponding vector of real numbers by using techniques such as bag of
words, term frequency-inverse document frequency (tf-idf), Neural models and so forth
[25].

However, in our approach, our task is related to video, and in particular, in extract-
ing features from sequences of frames. Hence, instead of having words and sentences
(or textual embeddings) as input to the transformer framework, we have sequences of
frames from a video. The input is visualised in Figure 4.2. Each time, the input to the
framework is one sequence (consisting of 10 frames). Furthermore, each frame is repre-
sented by its extracted features (by a 2dCNN network using xi ∈R128). The implemented
network used to extract these features is using the same topology implemented as face
classifier and rendered in Figure 3.4.

In further detail, the initial transformer network consists of a set of stacked encoder
networks and a set of stacked decoder networks. This is illustrated in Figure 4.4. Firstly,
we should explain the term “stacked”, a ubiquitous term in the deep learning domain
which is associated with putting deep learning networks in a sequence (as depicted in
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Figure 4.5: The three assembled modules that the feature extraction procedure based on transformer archi-
tecture (self-attention layer, feed-forward layer and LSTM). The positional encoding is performed to the input.
In the presented approach, the dimensionality for all the embeddings is: xi ∈ R128, si ∈ R256, zi ∈ R256 and
c ∈R64. The total number of frames applied as input to the network in our approach was N = 10.

Figure 4.4). Furthermore, the notion of “encoder” in essence is a network that, given as
input information from a specific domain, learns as an output a feature representation
for this domain. While the “decoder” network has as input the feature representation
(derived from the encoder) and its task is to transform this input to a specific output
domain.

All these encoder and decoder networks are identical to each other (they have the
same architecture) with an exception of the weights sharing. Essentially, the encoder’s
task is to extract features from the input data, while the decoder’s task is to translate these
features to the targeted output. With respect to the encoder network, it is visualized in
Figure 4.5, while it can be decomposed into three modules:

• Firstly, the so-called self-attention module, which allows the input frames (or
words in case of machine translation) of the transformers framework to interact
with each other, and discover to which other frames of input they should pay more
attention to. The outputs are aggregates of these interactions and attention scores.
In this way, multiple representations for each input are constructed. Part of the
self-attention, is also the multi-head mechanism which is introduced for extract-
ing better representations and is analyzed further later in this section.

• Secondly, the feed-forward layer module, which combines multiple representa-
tions for each input extracted from the self-attention module in a single represen-
tation.

• Finally, the positional encoding layer module, which is a method to memorize the
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Figure 4.6: Illustration of some details regarding the self-attention mechanisms related to query Q key K and
value V weights. These matrices are learned during the training of the whole scheme. Then, each input xi ∈
R128 is transformed by applying these weights to vectors: qi ∈R64,ki ∈R64and vi ∈R64. This example is again
for the case that we have as input N = 10 frames and represents one head.

order of the sequence frames.

Before analyzing these modules in details we should give some more details about
the input we applied to them. Since the task of the current work is to combine several
input frames (xi , with i ∈ {1, ...,10}) into one common representation, the decoder part
mentioned before is neglected. The reason behind this decision is that our task extracts
features and does not perform domain translation directly. Therefore, we need to use
only the outputs of the stacked encoders (denoted as zi ), which will be combined to-
gether using an LSTM scheme in order to produce one common representation c.

In the following paragraphs, the basic blocks of the encoder networks are analyzed
in further detail.

Self-Attention module: As it was mentioned before, the self-attention layer helps the
encoder look at other frames in the input sequence as it encodes a specific frame. There-
fore, for each input frame, it performs some specific operations in an attempt to learn a
distributed vector of weights that associates each frame with the rest of the input frames.

The first operation of the self-attention module is tasked to calculate three vectors,
namely key k, query q and value v, for each of the different encoder input frames xi .
This can be seen in both Figures 4.6 and 4.7. These vectors, while they do not have
any physical meaning, are helpful abstractions for calculating the attention weights
for each frame. These vectors are created by multiplying the input embeddings X =
{x1, ...,xi , ...,x10} by three matrices (feature maps) W K , W Q and W V that are network
weights tuned during the training process. The dimensionality of these weights is the
same with W K ∈ Rd×l where d is the new dimensionality that we want to transform the
input while l is related to the number of input frames (in this case, l = 10). In the fol-
lowing paragraphs, it will be shown that in practice, multiple weight matrices need to be
calculated for the key, query and value.
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Figure 4.7: This figure visualizes the whole encoder process. The multi-head mechanisms are composed of four
heads as depicted in the figure (each row in the blue box). Each input xi ∈ R128 is transformed by applying all
this process to the encoder embeddings, where output zi ∈R64 corresponds to each frame. The dimensionality
of the output of the self-attention mechanism is si ∈R256

It is important to note that the dimensionality d of these vectors could be either
smaller or bigger than the size of the embeddings and it is the architecture choice that
should be tuned during the training process.

Having trained the aforesaid weights, the three vectors k, q and v can be calculated
for each input frame. Subsequently, the second operation of the self-attention layer is
to calculate the score s̃ ∈ R. This value reveals how much focus needs to be placed on
different parts of the input sequence of frames as we encode a frame at a certain position.
Finally, the score s̃ = qT k can be found by calculating the dot product of the query vector
with the key vector of the respective frame which is under examination.

The next calculation is the division of the calculated score s̃ with the square root
of the dimensionality of the key vector size dk , ŝ = s̃/dk . This is done in an effort to
normalize the output and stabilize the gradients of the network. Then, a softmax process
normalizes these scoresσ(ŝ) values within 0-1 range. This softmax scoreσ(ŝ) determines
how much each frame will be expressed at this position. It is obvious that each time the
current frame will have the highest softmax score, but the interesting part is the softmax
score regarding the rest of the input frames.

The next operation, for a specific input frame xi , is to multiply each value vector
σ(ŝ)∗ vi for each frame by the softmax score of the input frame. The final operation
of the self-attention is to sum up all these weighted value vectors. This produces the
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output of the self-attention layer at this position. All these aforesaid steps are performed
for each frame. Therefore, for xk frame the sum-up of these weighted value vectors is
framed as zk = ∑10

i=1σ(ŝk )∗ vi , where, we sum-up the values vectors for all the frames.
Moreover, it is important to note that the score of xk for the rest of frames are calculated
as: s̃ = qT

k ki

That concludes the self-attention calculation. The resulting vector is the input to the
feed-forward layer. In the actual implementation, however, this calculation is done in
a matrix perspective for faster processing. It is worth noting that Q query, K key and
V value matrices must be calculated after applying some weight matrices (feature map
weight matrices) that are learned during the learning procedure. We can denote as Q =
X ×W Q , K = X ×W K and V = X ×W V all these above-mentioned operations, where
W Q , W K and W V are the matrices to be learned and X = {x1, ...,x10} ∈R128×10 is a matrix
which combines all input embeddings vectors xi . On the whole, we can frame the whole
approach using the following equation:

z =σ(
Q ×K T√

Kd

)×V (4.18)

where Kd is the dimensionality of the key matrix.

Multi-headed Attention: Additionally, authors in [18] introduced a mechanism called
multi-headed attention. This methodology is part of the self-attention mechanism. In
its essence, this mechanism produces several attention outputs zi (see Equation 4.18)
called heads for a single frame input. Instead of having just one set of W Q , W K and
W V , as it was described before, we can perform this process several times (each being a
different head). Hence, if we decide to have four different heads in our approach, four
different z matrices for each input frame xi will be calculated. This is visualized in Figure
4.7, where we have as input N frames (each frame is represented by an embedding with
d feature dimensionality). Furthermore, we can see the different heads of the encoder.
The same is depicted in Figure 4.7.

This improves the performance of the attention layer in two ways:

• It expands the model’s ability to focus on different positions.

• It gives the attention layer multiple representation sub-spaces.

Feed-forward layer: The matrices Q, V and K , are calculated after the Multi-headed
Attention step for all the heads and frames, are concatenated into one matrix. Eventu-
ally, the weights of a feed-forward layer are applied to this matrix and the final output is
another matrix that contains one embedding zi for each input frame xi . This process is
represented by Figure 4.7 from the dense layer weights W0.

Positional Encoding: One fundamental operation involved in the transformer frame-
work is the so-called positional encoding mechanism which is a way to account for the
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order of the input sequences. The positional encoding step allows the model to recog-
nize which part of the sequence an input belongs to. That is a pre-processing step that
is applied to the input embeddings of the transformer’s network. It is necessary to note
here that this operation is not part of the learning process meaning that it is just an op-
eration and not a trainable procedure.

At a higher level, the positional embedding is a set of vectors, where each of the vec-
tors represents the position of a specific input embedding in the sequence. These vec-
tors are added to the input embeddings to produce a final embedding vector with order
information. This operation in our proposed transformer network is added before the
transformer encoding part.

As we mentioned before, our sequence of frames are represented by feature embed-
dings (extracted using 2dCNN) xi ∈ RN×h , where N represents the number of frames in
a sequence, while the h represents the dimensionality of the input embeddings. Then,
we define i to be the position of the frame in the sequence, and j ∈ [0,h −1] the index
that spans the dimensions of the input embeddings. Moreover, the positional encoding
procedure can be framed from the following equations:

Pi ,2 j = si n

(
i

10000
2 j
h

)
(4.19)

Pi ,2 j+1 = cos

(
i

10000
2 j
h

)
(4.20)

It is easy to see that the frequency of the sine and cosine functions is determined
by the dimensional index i . Once the positional encoding vectors are calculated, the last
procedure is to add these vectors to the initial embeddings xi (via standard element-wise
addition) x

′
i = xi +pi (where pi is a specific vector from matrix P ).

To capture positional information, each element of the positional embedding varies
according to a frame’s position and the index of the element within the dimension of the
frame embedding h. This is achieved by varying frequencies, as mentioned above.

Embedding combination and training: Finally, in order to combine all the extracted
embeddings outputs zi of the encoder network (visualized in Figure 4.5), an LSTM layer
is employed which outputs a common dense layer (x ∈ R256), when given as an input
representation for each frame.

As mentioned before, our purpose is to tune the weights of the whole transformer
network in such a way that we will be able to extract a good temporal representation of
facial frames. With the purpose of tuning the whole transformer encoder, the emotion
recognition task is utilized. To this end, for each input video, the common dense layer
can be returned as the temporal embeddings. In Figure 4.5, the input xi represents one
of the frames from a set of 10 frames. Instead of giving the raw frames as input, we
transformed the set of 10 frames into 2dCNN features. As a corollary, the output of the
whole approach is one common representation for all 10 frames in the set.

Therefore, by having as input 10 frames, the encoder network returns one common
representation of these 10 frames as seen in Figure 4.7. Finally, for each video, from the
100 possible sets of 10 frames (that described at the beginning of the current sub-section)
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we can extract 100 different embeddings based on the transformer encoder. Figure 4.5
displays how the whole architecture looks like in the case of one stacked encoder. In the
case of multiple stacked encoders, the output of the first one is processed as input to the
second one and so forth. The final output of the whole network is the embedding that
we keep for using it in the GANs network. Finally, it is important to note that in total, for
our network, we applied a topology with 8 stacked encoders.

COMBINATION OF TRANSFORMER AND 3DCNN
Finally, a modified version of the transformer framework is also performed. This time,
instead of extracting 2dCNN embeddings, we use the 3dCNN network to extract feature
embeddings.

This combination could be better understood by making reference to Figure 4.2. For
each of the 10 sequences of frames represented in this figure, we extract their 3dCNN
embeddings. Finally, for each video, we have 10 temporal 3dCNN extracted embed-
dings. These embeddings can be used subsequently, as our input to the transformer
framework. The transformer encoder uses these embeddings and outputs one common
representation (following the same procedure applied in the previously described case
of the transformer framework).

For each video, in the end, we can extract one embedding from the faces that corre-
sponds to one spectrogram.

SIMPLE DATA AUGMENTATION APPROACH FOR SPECTROGRAMS

It is important to mention here that we followed the same strategy with Chapter 3.1.6, for
data augmentation in order to increase the number of audio samples and thus, increase
the size of our datasets. Briefly, as it was explained before, we made use of SpecAugment
[19] approach which, given as input a spectrogram, can generate new ones by perform-
ing some time wrapping and by applying some block masking. This approach is denoted
as simple data augmentation.

4.2. EXPERIMENTAL PHASE FOR USING TEMPORAL GENERA-
TIVE ADVERSARIAL NETWORKS FOR EMOTION-AWARE DO-
MAIN ADAPTATION

This chapter’s main target is to study two core research questions:

• The first posed question concerns the efficiency of the Wasserstein loss in com-
parison with the loss implemented in the framework (consisting of minimax GAN
Loss and the L1 loss) described in Section 3.1.

• In the second posed question, we want to scrutinize whether modelling the tem-
poral dynamics that govern the audio-visual relationship could help to improve
the performance of knowledge transfer.

In the rest of the current section, the conducted experiments that were performed to
study these two research topics are presented. To better display the experimental phase
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and clearly illustrate the conducted experiments, we segregate this section into the fol-
lowing subsections: Firstly, we discuss the evaluation metrics which were applied to cal-
culate the performance of the tested approaches (Section 4.2.1). Secondly, we analyze
the experimental protocol (for all the performed cases) which is applied for answering
the two posed questions (Section 4.2.2). In the experimental results (Section 4.2.3) sec-
tion, we discuss about the observed results for the whole experimental protocol. Finally,
in the training process subsection, some results that are related to the training process
and concern the time and stability of the process are analyzed (Section 4.2.4).

4.2.1. EVALUATION METRICS

To be able to compare the conducted research of this chapter with the work of the pre-
vious ones (especially for Chapter 3), we employ the metrics introduced in Section 3.2.1.
In particular, we implement the same four evaluation metrics:

• GANs augmentation scheme using real and generated data: A GANs data aug-
mentation scheme where real and generated samples are fused. The scope is to
evaluate whether, by fusing the generated samples to the initial dataset, the con-
ducted Audio Emotion Recognition (AER) could achieve greater performance and
improve the classification rate. This approach is the same as implemented in Sec-
tion 3.2.1.

• Inception Score (IS): This score is measured based on two criteria: firstly, whether
the generated spectrograms have diversity and, secondly, whether they have good
quality. The higher the IS score, the better the quality of the generated samples.

• Fréchet Inception Distance (FID): the FID score compares the statistics of gener-
ated samples to real ones. Lower FID values mean better image quality and diver-
sity in the generated samples.

• Structural Similarity Index (SSIM): the SSIM score allows comparing two images
based on perceptual differences. It is expressed as a floating-point number ranging
from -1 to 1, where 1 indicates exact similarity and -1 means a complete dissimi-
larity.

In addition to these metrics, since we wanted to evaluate the efficiency of Wasser-
stein GANs and the conventional approach time-wise, we decided to add, as an extra
measurement tool, the total amount of time needed for training each of the conducted
approaches (conventional GANs or Wasserstein GANs). The training was deployed on a
Titan XP GPU and the total amount of time corresponds to 100 epochs. From the exper-
imental phase (for the wGANs using features extracted using 3dCNN as it is analyzed in
Section 4.2.4), while we run our experiments in total for 100 epochs, we deduced that we
could apply an early stopping operation and quit the training process at 55 epochs. In
this way, we could reduce even more the training complexity and computational time.
More details regarding how this metric is deployed can be found in Section 4.2.3.
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4.2.2. EXPERIMENTAL PROTOCOL
In this subsection, the structure of all conducted experiments conducted to study the
two aforesaid research questions is analyzed. The core three parts of the experimen-
tal protocol are the baseline evaluation, the evaluation of the Wasserstein loss, and the
evaluation of the temporal information.

It is important to state that in the same way as in Chapter 3, CREMA-D and RAVDESS
datasets were applied. Furthermore, we are using the same scheme to split both datasets
(to S = {S1,S2,S3,S4}) where S is the complete dataset. However, sets S2 and S3 are
merged and form the validation sets. Set S1 is as in Chapter 3 applied for training our
GANs scheme. S4 is utilized for performing the test. An extra definition which is useful
for further reading is the size of each subset which can be framed as N = {N1, N2, N3, N4}.

BASELINE METHOD

Before analyzing the experimental protocol for the two core research questions, for
comparison purposes, we developed a CNN network for performing audio emotion
recognition (AER) using only the real spectrograms from both datasets (CREMA-D and
RAVDESS) respectively. The architecture that is implemented is the one displayed in Fig-
ure 3.7 (classifier Q). More details about the topology can be found in Section 4.1.3. This
evaluation will be denoted henceforth as “baseline evaluation” (in the same way as in
Chapter 3), since our primary focus is to investigate whether, by fusing the generated
samples with the real ones, we can outbid the performance of this baseline. This ap-
proach is explained in Section 3.2.2. Before performing the training of this approach, we
make use of the simple augmentation scheme (Section 3.2.1) to increase twice the size of
the training subset (2·N1). This step is implemented in order to be able to fairly compare
the baseline with the GANs augmentation scheme (analyzed in Section 3.2.1). The train-
ing of this method and the methods that we are comparing with have the same training
size.

EVALUATION OF WASSERSTEIN LOSS

To answer the first posed research question of this chapter, we perform multiple tests.
All these tests are compared against the performance of the baseline evaluation. The
rationale behind these tests is to evaluate the efficiency of the Wasserstein GANs and in-
vestigate whether we can increase the cross-modal “knowledge transfer” in comparison
with conventional GANs. In particular, this evaluation consists of the following steps:

• Firstly, the best-performed approach derived from Chapter 3 is utilized. This ap-
proach implements the conventional GANs version using an architecture based
solely on dense layers (called EncDec and explained in Section 3.1), an extra L1-
norm for the loss function, and the classifier Q for enforcing affect information in
the generated spectrograms. All these details are described in Section 3.2.3. In this
approach (denoted as dacssGANs) the input to the generator G is a noise vector
bind together with conditional information and one image from the source do-
main. The whole architecture of this approach is rendered in Figure 3.2.

• Secondly, we incorporate into the architecture of the conventional GANs the
Wasserstein loss (by replacing the loss applied in Section 3) as can be seen in Equa-
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tion 4.17. This approach, denoted as wGANs-im2im, is based on the EncDec archi-
tecture. As explained in Section 4.1.1, with Wasserstein loss, the training process
has proven to be more stable (regarding the convergence) and reaches an optimal
solution much more often. Therefore, we are expecting, by using this loss, to in-
crease the performance of the knowledge transfer as well.

• As an extra evaluation, the performance of the Wasserstein GANs, but this time
without taking into account information from the source domain DS (and partic-
ular extracted facial features), is evaluated. This approach is denoted as wGANs-
decoder. In this version, the only information we add in the generator G is noise
and label information. In this case, we needed to modify the architecture that is
shown in Figure 3.2. We remove completely the encoder part of the generator net-
work G and we kept only the decoder part of G . In such a manner, we could add di-
rectly the input (the noise vector and the conditional information). The role of the
generator encoder part in the network G is mainly to analyze the input images into
latent space, while the role of the decoder is to transform the latent space to target
size images. The input of the network is a vector of noise and some conditional in-
formation related to emotion labels. It is important to note, that the terms encoder
and decoder are referring explicitly to the network G and we should not confuse
them with the ones analyzed in the transformer networks in Section 4.1.4. The rest
of the architecture is similar to the one displayed in Figure 3.2. This evaluation
is performed to ensure a smooth transition and validate whether an architecture
with just the decoding part (of the network G) performs as good as the previous
evaluation.

In all these evaluations, our goal is to investigate whether the transferred knowledge
between the two domains could be further increased when the Wasserstein loss is incor-
porated in the GANs approach. On this ground, we employ all the metrics discussed in
Section 4.2.1.

EVALUATION OF TEMPORAL INFORMATION

Furthermore, the second core pillar of the conducted research is associated with the
study of temporal information as input to the whole network. To test the efficiency of
temporal information, several approaches for extracting related features are applied.
More specifically, as already mentioned: 3dCNN, LSTM, attention transformers, and a
combination between 3dCNN and transformers.

More details can be found for all these approaches in Section 4.1.4.
Moreover, in an attempt to compare the performance when using Wasserstein loss

with the dacssGANs method (the employed method of Chapter 3) an extra test is applied.
In this case, we modified the architecture of the dacssGANs to be the same with all the
topologies associated with the Wasserstein GANs. Therefore, by taking as a reference
point the architecture found in Figure 3.3(a) we kept only the decoder part. The input to
this generator G is again a noise vector z ∼ P (z) coupled with a conditional vector c and
a vector representing the temporal information c. This is represented by 3dCNN features
from the face modality. The applied loss function can be seen in Equation 3.7.
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By performing the above-mentioned test, we want to compare whether Wasserstein
loss (when having as input the temporal information) performed better than the conven-
tional GANs when also leveraging the temporal information. This approach is denoted
as dacssGANs-tmp.

Before analyzing the experimental results, it is essential for clarity purposes, to or-
ganize all the aforesaid topologies. In this way, straightforward navigation through the
experiments is guaranteed. All these topologies can be found in Table 4.4.

Table 4.4: Information about the features embodied in each of the approaches evaluated in this chapter. For
each approach, we can see some of the inputs, features, and types of loss functions that are embodied in these
approaches.

.

Case/Feature Raw input w.loss LSTM 3dCNN transformer 2dCNN

dacssGANs - - - - -
wGANs-3d - - - -

wGANs-LSTM - - -
wGANs-trs - - -

wGANs-trs-3d - - -
wGANs-im2im - - - -

wGANs-decoder - - - -
dacssGANs-tmp - - - - - -

4.2.3. EXPERIMENTAL RESULTS
In this section, we present the quantitative results for the first posed question (related to
the evaluation of the Wasserstein loss research question) and then the quantitative re-
sults for the second posed question (related to the evaluation of the temporal informa-
tion research question). Moreover, we present qualitative results from both cases which
are displayed by the generated samples and qualitative interpretation of them.

Table 4.5: Classification performance, FID, IS and SSIM for all the methods associated with the first posed
question.

Case CREMA-D RAVDESS
clas. FID IS SSIM clas. FID IS SSIM

Baseline 49.34% 44.73%
dacssGANs 52.52% 59.44 2.16 0.77 47.11% 49.77 2.21 0.90

wGANs-im2im 52.88% 51.55 2.50 0.90 49.81% 41.34 2.27 0.95
wGANs-decoder 51.17% 50.82 2.55 0.91 46.23% 42.11 2.32 0.94

QUANTITATIVE RESULTS REGARDING THE FIRST RESEARCH QUESTION

In Table 4.5, all the results from the conducted experiments to investigate whether by
incorporating the Wasserstein loss in our GANs scheme we can improve the efficiency of
our approach are illustrated. The table contains the following:
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• The first row of the table (referred as Baseline) contains the results of both datasets
for the baseline evaluation approach.

• In the second row, the results obtained when using the approach implemented in
Section 3.1 for the conventional GANs, denoted as dacssGANs, can be seen. As
stated before, this approach managed to outbid the baseline evaluation regarding
the classification metric (see in Section 3.1 and the statistical analysis in Figure
3.9). The classification performance is based on GANs augmentation scheme us-
ing real and generated data, while the assessment of the quality metrics is based
only on the generated samples. The same goes for the rest of the cases.

• The third row (referred as wGANs-im2im) of the table is associated with the
image-to-image implementation of the Wasserstein GANs. This approach reached
slightly better results than the conventional GANs approach.

• Finally, the fourth row (wGANs-decoder) concerns the Wasserstein version but this
time without the usage of the source domain.

Regarding the classification performance, when we apply the Wasserstein loss, we
are able to slightly improve the gained results (approximately 0.3%) in comparison with
the conventional GANs case. This is experienced though, only when the source domain
is taken into account. For the wGANs-decoder, our approach failed at capturing emo-
tion patterns during the generation of the spectrogram samples. Regarding the quality
metrics on the generated images, there is a significant discrepancy in all three metrics
between the conventional GANs and the Wasserstein GANs cases (see Table 4.5).

The best-obtained results (regarding the quality metrics) are found when the source
domain is not taken into account (wGANs-decoder). Firstly, as a reminder regarding
these metrics, the highest the IS and SSIM and the lowest the FID score the better the
quality of the generated images. These insights are contradictory to the classification be-
haviour which analyzed in the previous paragraph. However, our hypothesis regarding
this behavior is that wGANs-decoder approach managed better at learning the distribu-
tions of spectrograms in general, however, it failed at incorporating nuanced emotion
patterns when approximating the audio distributions. This behaviour demonstrates the
importance of the source domain information when training our wGANs approach.

As a supplementary evaluation, we measured the time discrepancy in the training
of all the aforesaid approaches (the training process lasted for 100 epochs for all ap-
proaches). The training process occurred for all cases using the subset S1 which is de-
fined in Section 3.2 (the training subset). For each approach, the hyper-parameters ana-
lyzed in Section 4.2.2 are chosen. The training subset is processed through mini-batches
of 64 samples for all performed experiments.

That is displayed in Table 4.6, where we can observe a huge time discrepancy be-
tween the conventional GANs and the approaches that implement Wasserstein loss. We
further observed that there is a noticeable time discrepancy between the Wasserstein
GANs (wGANs-im2im) and in the case where we alleviate the source domain from the
input of the generator G (wGANs-decoder). We attribute that to two factors. Firstly, the
architecture in the first example is more complicated (in terms of the amount of training
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Table 4.6: The time performance for the experiments conducted regarding the first posed research question.
In all cases, we measure the total amount of time after 100 epochs. All the experiments were performed in the
same hardware (Titan XP GPU).

All conducted methods Time in hours

dacssGANs 112h
wGANs-im2im 58h

wGANs-decoder. 43h

parameters and layers) and secondly, by adding the source domain as input, the conver-
gence of the whole approach is slower.

QUANTITATIVE RESULTS REGARDING THE SECOND RESEARCH QUESTION

In Table 4.7, all the results from the conducted experiments regarding the evaluation of
temporal information are depicted. This table contains the following:

• The first row of the table contains the baseline results of both datasets (denoted as
Baseline). These results are included for the convenience of the reader since they
are the same results presented in Chapter 3.

• Secondly, the results obtained when using the approach implemented in Section
3.1 can be seen (denoted as dacssGANs). This approach managed to outbid the
baseline approach. These results are exactly the same as in the case of Chapter 3
(for the supervised dacssGANs). The classification performance is based on the
GANs augmentation scheme using real and generated data, while the assessment
of the quality metrics is based only on the generated samples. The same goes for
the rest of the cases.

• The third row (denoted as wGANs-3d), contains the results extracted from the
Wasserstein GANs with input to the network G temporal features extracted using
the 3dCNN approach.

• The fourth row (denoted as wGANs-LSTM), contains the result extracted from the
Wasserstein GANs with input to the network G temporal features by using LSTM
framework.

• The fifth row (denoted as wGANs-trs), contains the results extracted from Wasser-
stein GANs with input to the network G temporal extracted using transformer
mechanism.

• The sixth row (denoted as wGANs-trs-3d) contains the results extracted from
Wasserstein GANs with input to the network G temporal information extracted
using the combination of transformer architecture and the 3dCNN algorithm.
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• Finally, the last row (denoted as dacssGANs-tmp) contains the result of a modified
version of conventional GANs. In this case, we keep only the decoder part of the
network which is fed with features that are extracted using 3dCNN. It is obvious
that this is the worst performed approach. The whole approach failed at generat-
ing samples which can help to improve the AER performance.

Table 4.7: Classification performance, FID, IS and SSIM for all the methods analysed in the current chapter for
the Wasserstein GANs with temporal information as input associated with the second posed research question.

Case CREMA-D RAVDESS
clas. FID IS SSIM clas. FID IS SSIM

Baseline 49.34% - - - 44.73% - -
dacssGANs 52.52% 59.60 2.16 0.77 47.11% 49.95 2.13 0.90
wGANs-3d 55.87% 38.55 2.65 0.91 51.81% 41.34 2.27 0.95

wGANs-LSTM 51.07% 39.03 2.60 0.87 49.84% 41.12 2.32 0.96
wGANs-trs 54.72% 39.15 2.66 0.93 51.76% 41.10 2.30 0.95

wGANs-trs-3d 53.09% 40.12 2.51 0.91 50.10% 41.12 2.21 0.95
dacssGANs-tmp 49.91% 69.77 1.97 0.65 41.90% 61.45 1.81 0.72

There are several insights obtained from the experimental phase, presented in Table
4.7. Firstly, the version of conventional GANs using temporal information (denoted as
dacssGANs-tmp) failed to generate samples that will approximate the distributions of
the real spectrograms and incorporate a rich emotional context. This became apparent
from the classification performance, but also from the visual quality metrics.

Regarding the rest of the approaches, the best extracted results are found when using
3dCNN to extract the temporal information (in the third row, denoted as wGANs-3d). In
comparison with the results of the approach implemented in Chapter 3, there is a classi-
fication improvement of 3.3% for CREMA-D and 3.0% for RAVDESS datasets. Regarding
the quality metrics, it is obvious that with this approach we obtained superior results in
comparison with conventional GANs, presenting the best results for some metrics (FID
and SSIM for both CREMA-D and RAVDESS). That is also validated from the visual results
that can be found between Figure 4.13 and Figures 4.9, 4.10, 4.11 and 4.12. However, with
some other approaches like wGANs-3d and wGANs-trs we obtained better results for the
quality metrics.

Then, slightly less efficient (regarding the classification metric) is the case of tempo-
ral information using transformer encoder (with input 2dCNN embeddings, denoted as
wGANs-trs). This approach reached similar performance regarding the quality metrics,
however, it performed slightly worse classification-wise than wGANs-3d regarding the
GANs augmentation scheme.

Subsequently, in the sixth row of Table 4.7, where the temporal features are extracted
using a combination of transformer and 3dCNN (denoted as wGANs-trs-3d), the per-
formance is 53.09% for CREMA-D and 48.10% for RAVDESS. This approach managed
to slightly overbid dacssGANs. However, this approach did not perform as well as the
previous two approaches. Our hypothesis is that the transformer’s encoder failed to cap-
ture correlations within different frames in a sequence by using 3dCNN embeddings.
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Table 4.8: The time performance for the experiments conducted regarding the second posed research question.

All the conducted methods Time in hours

wGANs-3d 46h
wGANs-LSTM 44h

wGANs-trs 48h
wGANs-trs-3d. 50h

dacssGANs-tmp. 104h

We believe that this contributes to the fact the temporal information from the input is
not cascaded properly during the time back-propagation due to the complexity of the
approach.

The last case concerns the extracted temporal features using LSTM (denoted as
wGANs-LSTM). In this version, the methodology failed to properly generate samples that
approximate the distribution of the real spectrograms with a rich emotional context. Yet,
the generated samples performed well in the quality metrics. Again we can assume that
the approach managed at learning the distributions of spectrograms in general, however,
it failed when it comes to generating spectrograms with intense emotion information.

All things considered, it is apparent that the extracted results, when using Wasser-
stein loss, managed to approximate the distribution of the real spectrograms much bet-
ter than conventional GANs. However, regarding the Wasserstein GANs, we do not ob-
serve a significant difference between the quality metrics. Hence, strong conclusions
cannot be extracted regarding this aspect. Based on our findings, it appears that, by us-
ing 3dCNN to extract features, there is a small improvement in the IS and FID scores,
while in the case of the SSIM, the best-performed case is when implementing LSTM as
the temporal information extractor (denoted as wGANs-LSTM).

The duration of training of all the aforesaid approaches is measured to address the
second posed question. Results can be seen in Table 4.8, where again it can be ob-
served a significant improvement between the conventional GANs and the Wasserstein
loss cases. Concerning the Wasserstein loss case, we measured the time needed to com-
plete 100 epochs of training running in an Nvidia Titan XP. In particular, the training for
the wGANs-LSTM lasted approximately 44 hours. Secondly, wGANs-3d and wGANs-trs
performed similarly with 46h and 48h respectively. Finally, the most time-consuming
case is that corresponding to wGANs-trs-3d with approximately 50h training time which
attributed to the complicated nature of the model. The relation between time and per-
formance is also studied (just for our best-performed approach the wGANs-3d case). It
is analyzed in Section 4.2.4 (and displayed in Figure 4.15).

QUALITATIVE RESULTS

The approach described in this section (with Wasserstein loss and using extracted tem-
poral information) appears to be more promising in comparison to conventional GANs
and the image-to-image approach for the generation of spectrograms, while it reduced
significantly the training process duration by using the Wasserstein loss. On top of this,
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(a) Real spectrogram samples from CREMA-D.

(b) Real spectrogram samples from RAVDESS

Figure 4.8: Real spectrogram samples from our implemented datasets.

it also managed to generate visual results of high quality. In comparison with the vi-
sual results obtained in Chapter 3, it is apparent that our approach managed to generate
spectrograms with higher visual clarity and with more detailed patterns. This can be
validated from all the quality metrics described in Table 4.7 and from the visual inspec-
tion of the generated results as well. Firstly, in Figure 4.8, real spectrograms from the
CREMA-D and RAVDESS datasets are depicted. In Figures 4.9 and 4.11 the results for
wGANs-3d and wGANs-LSTM approaches for CREMA-D and RAVDESS respectively, are
shown. By comparing (by visual inspection) these images with the real spectrograms in
Figures 4.8(a) and 4.8(b), we can conclude that both approaches managed to generate
results that are close to the real ones. In Figures 4.10 and 4.12, results obtained using the
wGANs-trs and wGANs-trs-3d methods are rendered. Again, it is noticed that the visual
fidelity of the generated results is high and the visual inspection goes in parallel with the
obtained results using the image quality metrics (FID, IS and SSIM).

Finally, in Figure 4.13 we can see the results from the dacssGANs-tmp where it is
obvious that this approach failed at approximating the distributions of spectrograms and
any emotion-related information.

4.2.4. TRAINING PROCESS

In order to examine the performance of the training process of Wasserstein GANs, we
visualize the loss function of the Wasserstein loss during training (see Figure 4.15(b)), as
well for the validation set. Furthermore, Figure 4.15(a) shows the accuracy during the
training process (for the training and the validation set) when using wGANs-3d on the
CREMA-D dataset. From both figures, it can be deduced that, after some epochs, the
classification performance on the training and validation set, as well as the FID score are
stabilized. For the IS score is harder to judge since there is high fluctuation during the
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(a) Generated spectrogram samples produced using wGANs-3d.

(b) Generated spectrogram samples produced using wGANs-LSTM.

Figure 4.9: Generated samples.

(a) Generated spectrogram samples produced using wGANs-trs.

(b) Generated spectrogram samples produced using wGANs-trs-3d.

Figure 4.10: Generated samples.
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(a) Generated spectrogram samples produced using wGANs-3d.

(b) Generated spectrogram samples produced using wGANs-LSTM.

Figure 4.11: Generated samples.

(a) Generated spectrogram samples produced using wGANs-trs.

(b) Generated spectrogram samples produced using wGANs-trs-3d.

Figure 4.12: Generated samples.
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(a) Generated spectrogram samples produced using CREMA-D.

(b) Generated spectrogram samples produced using RAVDESS.

Figure 4.13: Generated samples.

(a) Methodologies for the CREMA-D . (b) Methodologies for the RAVDESS .

Figure 4.14: Std error bars for several applied methodologies.
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(a) Classification accuracy. (b) Wasserstein loss.

Figure 4.15: Training and validation information of wGANs-3d for CREMA-D.

(a) Féchet Inception Distance. (b) Inception Score.

Figure 4.16: FID and IS values during the training procedure of wGANs-3d for CREMA-D.

training process.
For that reason, it is decided to perform early stopping after 55 epochs. That is

aligned with the observation that the test performance on 100 and 55 epochs is approxi-
mately the same. Furthermore, the time needed for training can be further reduced. On
this ground, we need to state that while we train in total for 100 epochs and report the
time results for this number of epochs in Figure 4.8, when it comes to the performance
(classification accuracy and metrics) we employ trained models for 55 epochs since the
performance is the same.

To supplement the previous results, it is decided to perform an analysis of the qual-
ity of the generated results during the training procedure. In this manner, the training
and validation performance is calculated using FID and IS during training (when using
wGANs-3d). The performance for CREMA-D dataset can be seen in Figures 4.16(a) and
4.16(b) when using wGANs-3d. We can see for both measures and evaluations (in train-
ing and validation set) that, after the fifth epoch, there is a significant increase in the
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quality for the generating samples taking into account both FID and IS.

4.3. CONCLUSION
One of the main objectives of this dissertation is to study the problem of audio-visual
domain adaptation and examine whether we can transfer knowledge from face to audio
modalities to improve the AER efficiency. In Chapter 3, an approach based on generative
adversarial networks (GANs) was introduced to accommodate the domain adaptation
task. The goal of that approach, similarly to this chapter, is to generate spectrograms
using, as input to the generator G , information from the source domain (static facial im-
ages) coupled together with conditional information c and a noise vector z ∼ P (z). The
final core task was to investigate whether AER could be improved by incorporating gen-
erated spectrogram samples from GANs to actual spectrograms, to expand the available
training set.

In the current chapter, audio-visual domain adaptation within emotion-rich con-
texts is expanded by introducing a temporal conditional Wasserstein GANs approach.
Conversely to the previous chapter, in this work, we focused on examining two key re-
search questions. Firstly, our main focus is the study of temporal dynamics that govern
audio and face modalities. To study the related cues, we modified our initial GANs ar-
chitecture (presented in Chapter 3). In this case, instead of having as input static im-
ages from the source domain, we input temporal features extracted from sets of frames.
Several approaches are studied for temporal feature extraction (3dCNN, LSTM, a trans-
former framework, and a combination of 3dCNN and transformer). Consequently, sev-
eral additional modifications in the architecture of G needed to be performed to tackle
our new task. After the experimental phase, it is observed that by using 3dCNN embed-
dings, the highest results could be obtained, achieving an improvement equal to 2.5%
and 4.5% (for dataset CREMA-D and RAVDESS, respectively), in comparison to the mod-
els proposed in the previous chapter, where static visual features are employed.

Secondly, we examine whether training can be further improved by incorporating a
state-of-the-art loss function called Wasserstein loss. As a result, we need to change the
nature of the discriminator network D to encompass the new loss. From the experimen-
tal phase, it is proved that by implementing this new loss function, we could improve
the complexity of the approach and reduce significantly the time of the training process.
Furthermore, the quality of the generated results is improved significantly as well. This
can be seen through visual observation of the obtained samples, but also by taking into
account the image quality metrics introduced in Chapter 3, namely Inception Score (IS),
Fréchet Inception Distance (FID) and Structural Similarity Index Measurement (SSIM).

From the experimental phase, we validated both claims raised at the beginning of the
chapter. However, this chapter raises several future research lines as well. More specifi-
cally:

• The introduced transformer network is integrated into our GANs approach by ex-
tracting features from the source domain DS (face modality) using only the stacked
encoders of the initial transformer scheme introduced in [18]. Another possibility
would be to investigate the same problem, making use of transformer attention
mechanisms by employing the overall sequence-to-sequence framework. This
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would involve making use of both the encoder and decoder networks, similarly to
the original machine translation problem [18]. In the problem tackled in this dis-
sertation, instead of translating between two different languages, the goal would
be to translate between facial and audio time series data.

• Thus far, in this dissertation, we studied transfer learning by always defining the
face modality as the source domain DS and the audio modality as target modality
DT . Therefore, we studied the generation of audio samples with the help of GANs
using input data extracted from the face modality. However, the inverse problem
was not addressed: how can we use the lessons learned so far in order to use au-
dio information for generating emotionally expressive facial images not seen be-
fore? Chapter 5 deals with this problem, proposing necessary amendments to the
topologies proposed so far, while results on the datasets used in previous chapters
are presented.
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5
DOMAIN ADAPTATION FOR

IMPROVING THE FACE EMOTION

RECOGNITION

The core insights which were obtained from the previous chapters can be summarized
into the following key points:

• It was observed that it is possible to transfer knowledge from the face to audio
modality by implementing a distance metric learning-based algorithm (Chapter
2). In this way, we can elicit information from the face modality and project it into
a common sub-space with audio where a common classification can be held.

• Additionally, it is possible to increase the transfer of knowledge performance if we
employ a deep learning architecture by utilizing Generative Adversarial networks
(GANs) (Chapters 3 and Chapter 4).

• The conducted research in the previous chapter consolidated the performance of
the Wasserstein loss which can improve both the training stability and the perfor-
mance.

• Finally, the importance of taking into account temporal information from the
source domain (face) XS was also established (Chapter 4).

However, in order to accommodate the last posed research question from Section 1.6
(Is it possible to improve the face emotion recognition by eliciting information from the
audio modality?), in this chapter, the objective is to perform the converse task. In this
manner, we will investigate whether features from the source domain DS (represented
by audio modality this time) can be leveraged to improve Facial Emotion Recognition
(FER). Our main motivation for this approach is two-fold:

151
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• We would like to assess the performance of the most successful approaches for
transfer learning found in the previous chapters when implemented for the con-
verse task, namely face generation using audio information as input. In this way,
it will be also easier to visually verify the performance of these domain adapta-
tion approaches since it is much natural for humans to evaluate face samples
rather than audio samples (especially in its spectral representation through spec-
trograms).

• Secondly, this study is also inspired by the work done in the cognitive psychology
domain. From this perspective, authors in [1] performed several experiments re-
garding the audio-visual relationship within the emotion context and the way it is
perceived by the human brain. Their results strongly suggest the existence of bidi-
rectional links between affect detection structures in visual and auditory human
systems. In greater prominence, it is the work associated with the first performed
experiment (see in [1]), in particular: the identification of emotion in the face and,
whether it is biased in the direction of the simultaneously presented tone of voice.
The findings of this experiment validate the work of McGurk and MacDonald [2],
illustrating that speech from a video is perceived in a different manner when the
correspondent face from the video is also observed or not by the visual system of
a human subject.

Having said the above, in the current chapter we intend to transform these cognitive
psychology research questions to an affective computing perspective. We are mainly
focusing on the research of performing domain adaptation from audio modality to face
modality. In particular, the generation of emotion-driven faces by having as input to our
system audio-driven information. In terms of related work, plenty of research work can
be found in the domain of audio-driven generation of the face modality.

One of the most popular and provocative works is the notorious “Synthesizing
Obama”1 in [3]. This application became very popular in recent years, but it provoked
a lot of controversy as well. The core idea is as follows: given the audio of President
Barack Obama, the task is to synthesize high-quality videos of him speaking with accu-
rate lip sync, composited into a target video clip. Trained by using a large amount of
real videos of Obama speeches, an RNN learns the mapping from raw audio features to
mouth shapes. Given the mouth shape at each time step, their application synthesizes
high-quality mouth texture, which when is combined with a proper 3d pose can change
what this person appears to be saying in a target video.

Authors in [4] proposed a technique called WAV2PIX which aims at generating face
images of a speaker by using conditional Generative Adversarial Networks (cGANs) with
raw speech input. The proposed system is composed of three distinctive modules.
Firstly, the encoder of the input speech aims at extracting features from the raw audio
signal. Secondly, the generator network G , which, given the extracted features from au-
dio, is able to generate an image of size 128× 128. Finally, a discriminator network D
aims at judging whether the generated faces are real or not.

In the work done in [5], authors, research is focused on generating high-quality talk-
ing face videos by having as input an audio speech of a source person and a short video

1https://www.youtube.com/watch?v=9Yq67CjDqvw&feature=emb_logo

https://www.youtube.com/watch?v=9Yq67CjDqvw&feature=emb_logo
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of a target person. Moreover, to perform the projection from the audio speech domain
to face-lip motion with facial expressions, the talking face generation also takes into ac-
count the information from the target talking head such as head pose. The approach is
mainly composed of two stages. Firstly, the mapping from audio-visual information to
3d facial animation. Then, the goal of the second stage is to perform realistic talking face
video generation using the 3d facial animation from the previous stage.

Authors in [6] approached the video generation of “talking heads” by employing an
end-to-end system by using as input a still image of the person and an audio clip con-
taining speech, without relying on handcrafted intermediate features.

Their method generates videos which have (a) “lip movements” which are synchro-
nized with the audio speech segments and (b) natural facial expressions such as blinks
and eyebrow movements. The whole system is based on temporal GANs. This approach
consists of three different discriminators focused on achieving increased frame quality,
a proper synchronization between audio and video, and realistic generated expressions,
respectively. The evaluation of the generated videos is performed based on their sharp-
ness, reconstruction quality, lip-reading accuracy, synchronization, as well as their abil-
ity to generate natural blinks.

However, all these approaches are tasked to synthesize faces in a different setup and
for different reasons than our current study. They are assigned not to improve Face Emo-
tion Recognition (FER) but are mainly tasked to generate high-quality video sequences.
On this ground, we decided to proceed with an architecture similar to the one proposed
in the previous chapters. In particular, in this chapter, we employ Wasserstein GANs for
generating samples from the face modality given as input features extracted from audio
modality bound together with the noised vector z ∼ P (z) and conditional information
related to annotations. However, during the process of structuring and organizing the
research of the current chapter, new key challenges were encountered. These challenges
are framed in the following questions:

• Firstly, what modifications should be done to the network’s architecture and input
size in order to incorporate the modifications of this current research (the audio is
now the source domain while the face is the target domain)?

• We also need to determine what is the ideal input to the network G in an attempt
to generate faces that properly represent the targeted emotions. For this reason,
the following question would be addressed: what will be the format of the audio
modality that we provide as an input to our generator G?

• What will be the output of our generator? Is it going to be a single frame image or
a sequence of frames that represents the whole or part of the video clip?

• Finally, an evaluation schema must be established. In particular, we should answer
the following questions: how can we evaluate the amount of the expressivity and
emotional context of the generated samples?

On this ground, several modifications needed to be done in an effort to accommo-
date the necessary changes in comparison with Chapter 4. Firstly, we will use Wasser-
stein distance as a loss function to the whole architecture. Secondly, the same architec-
ture with the previous chapter is utilized (as in Section 4.8) but this time we will modify
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Figure 5.1: The core architecture that is implemented for face generation (single frame) GANs using informa-
tion from the audio spectrograms.

the interior tensor shapes of our models (G , D , and Q) to meet the demands of the cur-
rent task. In Figure 5.1, the proposed topology for this chapter can be seen.

Furthermore, a second strategy which aims at generating a sequence of facial frames
instead of a single frame is also performed. Briefly, this is depicted in Figure 5.2. More
information on this technique will be provided in Section 5.1.

In terms of evaluation of the proposed approaches, similar to Chapters 3 and 4, we
perform the same evaluation schemes to gauge the performance of knowledge transfer
between audio and face modalities. More specifically:

• The data augmentation scheme is performed as well. In this sense, a fusion be-
tween the real faces from the datasets with the generated ones using our GANs
approach is performed (GANs augmentation scheme). More details for this com-
parison can be found in Section 5.1.2.

• Secondly, the quality metrics are also evaluated. In this vein, the IS, FID, and SSIM
quality metrics are applied to the generated samples to measure their visual fi-
delity performance.

• An extra approach to evaluate the facial expressivity of the generated samples is
used in an effort to determine how well the generated images contain facial poses
with intense emotions (by employing the work done in [7]).

• Eventually, a visual inspection of the generated results was performed.

The structure of the remainder of this chapter is as follows: Section 5.1 describes
the introduced DA method that is based on the proposed GANs architecture, while in
Section 5.2 the experimental protocol, dataset, and results are presented and analyzed.
Finally, Section 5.3 contains the conclusion and the future work of this study.

5.1. DOMAIN ADAPTATION FOR FACE EMOTION RECOGNITION

APPROACH
Τhe core research conducted in this chapter can be framed by the following research
question:
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Figure 5.2: The core architecture in the second strategy of our approach for generating sequences of frames.

• Is it possible to improve face-based emotion recognition by eliciting information
from the audio modality?

To answer this question, the best-performed findings from Chapter 4 are employed.
In particular, Wasserstein GANs (wGANs) are applied by leveraging temporal informa-
tion as input to our generator system in this chapter. On this account, we implement
wGANs to create a system for generating data from the face domain given as input in-
formation from the source domain (this time, audio modality). To study this converse
scenario, two distinct strategies are implemented:

• Firstly, a single face-frame wGANs approach with input audio-related features ex-
tracted from spectrograms representation using 2dCNN and as output, a single
generated face-frame is utilized. In Figure 5.1, the architecture implemented for
this strategy is visualised. We can observe that the input of the network G is the
source domain XS (represented by audio-related features) bound together with a
noise vector and condition information related to the annotation of the audio.

• In the second strategy, instead of using the single face-frame approach, the net-
work outputs a sequence of frames by giving as input to the network again the
same features. This strategy’s architecture is visualized in Figure 5.2.

5.1.1. NETWORK’S TOPOLOGY
Figures 5.1 and 5.2 depict the architectures for the two proposed strategies (the gener-
ation of a single frame and sequence of frames respectively). In these figures, we can
see the tensor dimensionalities calculated after the convolution and max-pooling op-
erations which change the size of the tensors. The output of the generator is either a
single frame (in Figure 5.1) or a sequence of frames (in Figure 5.2). However, besides
the convolutional and max-pooling operations, in the same spirit as with the previous
chapters, we add the same operations: “dropout”, “batch normalization” and activation
function. “LeakyRELU” is added in the output of each convolution layer, while the acti-
vation function in the output layer is the hyperbolic tangent function (for more details
see Sections 3.1, 3.1 and 3.1). The details regarding the generator G and discriminator D
can be seen also in Tables 5.2 and 5.3. We need to note that the classifier network Q is
the same network with the discriminator with the only difference between the last layer
where instead of a binary classification we perform multi-class classification.
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Table 5.1: Details about the employed networks. The variable θ stands for the dropout parameter (see Ap-
pendix 3.1).

Network learning rate Optimizer θ

G 0.001 RMSProp 0.5
D 0.001 RMSProp 0.5
Q 0.001 RMSProp 0.5

Regarding the second strategy, the generation of sequences, for the implemented
scheme, we need to modify the network G output and the input of the discriminator D .
In particular, the desired output is a combination of 10 frames with size 28×28×3 pixels.
In this sense, for the adopted approach, the dimensionality of the output was 28×280×3
pixels.

At this point, we need to highlight that the split of our datasets occurred in the same
spirit likewise to Section 4.1.4 (for both strategies). However, there is one difference since
we flipped the notation for the source and target domains. In this chapter, the source
domain XS is the audio while, the target domain XT is the face. Moreover, for the second
strategy, the source domain is represented by spectrograms, while the target domain is
represented by extracted sequences of 10 frames. Each of these sequences of 10 frames
was combined in this bigger image of 28×280×3 pixels. An example of the combined 10
frames from a specific video of CREMA-D can be seen in Figure 5.3.

Finally, the critic D and the classifier Q networks received as input a tensor of size
28×280×3 pixels. Both networks process this input using the following steps:

• They split the input into 10 distinct frames and then these networks are applied
separately for each frame.

• For each of these frames, we apply both networks in the same way as in the case of
the first strategy.

• Finally, an average of the loss for all these frames is performed, which in fact is the
loss that these networks are back-propagating.

In Table 5.1 the learning rate, optimizer and the θ parameters for the dropout can be
seen. In Tables 5.2 and 5.3, all the inputs and outputs for the generator and discriminator
networks are depicted.

5.1.2. PRE-PROCESSING STEPS

In the following paragraphs, the basic pre-processing techniques for the audio and face
modalities in this chapter are developed. Most of the pre-processing steps are similar to
those described in previous chapters, however, some important key differences should
be applied.
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Table 5.2: The model employed for the generator network G .

Layer type tensor input tensor output

Dense 1×102 1×6272
Reshape 1×6272 7×7×128

Cov2d 7×7×128 7×7×128
Upsampling2d 7×7×128 14×14×128

Batch Normalization 14×14×128 14×14×128
Dropout 14×14×128 14×14×128

Cov2d 14×14×128 14×14×128
Upsampling2d 14×14×128 28×28×128

Batch Normalization 28×28×128 28×28×128
Dropout 28×28×128 28×28×128

Cov2d 28×28×128 28×28×64
Batch Normalization 28×28×64 28×28×64

Dropout 28×28×64 28×28×64
Cov2d 28×28×64 28×28×32

Batch Normalization 28×28×32 28×28×32
Dropout 28×28×32 28×28×32

Cov2d 28×28×32 28×28×3
Batch Normalization 28×28×3 28×28×3

Dropout 28×28×3 28×28×3

Table 5.3: The model employed for the discriminator network D .

Layer type tensor input tensor output

Conv2D 3×28×28 8×28×28
Batch Normalization 8×28×28 8×28×28

Dropout 8×28×28 8×28×28
MaxPooling 8×28×28 8×14×14

Conv2D 8×14×14 4×14×14
Batch Normalization 4×14×14 4×14×14

Dropout 4×14×14 4×14×14
MaxPooling 4×14×14 4×7×7

Conv2D 4×7×7 4×4×4
Batch Normalization 4×4×4 4×4×4

Dropout 4×4×4 4×4×4
MaxPooling 4×4×4 4×2×2
Dense layer 4×2×2 1×16]
Dense layer 1×16 1×512
Dense layer 1×512 1×6
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Figure 5.3: Sequence of 10 real frames from the CREMA-D dataset.

Figure 5.4: The way that the video frames are grouped into a sequence of frames.

FEATURE EXTRACTION FROM AUDIO MODALITY

As we already mentioned, we use spectrograms to represent the audio modality. This
choice is made to keep the same image-to-image spirit introduced in Chapter 3. How-
ever, learning this image-to-image transformation in an end-to-end manner is proven
to be a time-consuming task (and would have required big computation power). As a
consequence, it is decided (similarly to Chapter 3) to firstly extract features from the
spectrogram, and then, use these features as input to the wGANs generator G .

To extract these audio features, we use a 2dCNN classifier (which is depicted in Figure
3.7(a)). The stored model is retrieved. However, this time we want to extract features
rather than perform an emotion classification using the spectrograms. Towards this end,
the output layer of the model (that is responsible for the emotion classification) needs to
be omitted. We are keeping the rest of the layers of the network (with the last kept layer to
be a dense layer of 512 neurons). In this way, by applying this classifier, we could extract
for each input spectrogram, embeddings (or otherwise denoted as feature vector) with
the dimensionality to be 512.

PRE-PROCESSING STEPS FOR FACE MODALITY

In the same way as in the previous chapters, the pre-processing steps performed for each
video, we are following the same strategy as the one explained in Section 4.1.4.

Firstly, it is decided to keep several frames for the middle part of each video. Subse-
quently, for each video, overlapping time-windows sequences of 10 frames are created.
In this manner, the windows are slid by five frames each time, which results in an overlap
of five frames between time-windows. This process is portrayed in Figure 5.4 where all
the extracted sequences for one specific video clip are shown. For this chapter, we use
a different number of middle frames (instead of only using the 55 frames used in previ-
ous approaches). This is done to examine whether we can increase the performance by
keeping a larger amount of frames. In particular, four different approaches are utilized:

• By keeping the middle 55 face frames of the video in the same manner, as it was
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explored in Section 4.1.4.

• By keeping the 120 middle facial frames for each video while discarding the rest
ones.

• By keeping the 10 middle facial frames for each video.

• By keeping 10 frames for each video. This time the frames are chosen based on
their emotional content. To perform this, we employ an emotion classifier which
is tasked to evaluate how strong is the emotion in each frame. This classifier is
depicted in Figure 3.7(a) and its architecture details can be found in Section 5.1.1
and Table 5.3. In this table, the architecture of a discriminator network is depicted.
The only difference with the classifier network is the last layer.

SIMPLE DATA AUGMENTATION APPROACH FOR FACE

Finally, for both strategies (generation of single and multiple frames), to increase the
number of samples and for evaluation purposes, we need to perform a simple data aug-
mentation approach. That is a necessary process to be in the position to properly train
our deep learning networks.

In this simple augmentation approach for face modality, given as an input a single
face (which is paired with a corresponding spectrogram), some noise is fused in order to
be able to create new samples. The way that this is implemented is the following: Each
time, we randomly pick pixels (from 1-10% of the image) and replace the pixel values
with uniform noise. In this way, we are able to generate ten new samples and increase
the number of data samples in our dataset. Figure 5.5 shows how the noise is fused
with the input image. For one input image (the first image of the figure) this approach
generates another nine.

Each of these new samples is paired with the same corresponding spectrogram from
the initial sample. Therefore, we can generate 10 new face-spectrogram pairs.

In this way, we are able to increase the number of samples in the dataset, when we are
in need of more data. This is particularly important for our second implemented strategy
(the generation of a face sequence), and particularly in the case when we keep 10 middle
frames. That is because in this strategy we need even more data for training, since we
have fewer pairs of source and target domain samples. Furthermore, this augmentation
approach is also important, since we will be able to fairly compare the proposed GANs
augmentation scheme (where real and generated samples are fused) and the baseline
data augmentation approach (where we increase the number of samples by performing
this simple noise data augmentation). In this way, the GANs augmentation scheme for
FER and our implemented “baseline” (based on this simple data augmentation scheme)
should have the same amount of samples.

In order to disentangle potential conflicts in terminology, we are defining this ap-
proach as “simple data augmentation”. This technique was applied and used for extract-
ing the baseline FER. In the experimental results, this approach will be compared with a
GANs-based augmentation scheme.
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Figure 5.5: Creating 10 new samples using a simple data augmentation scheme based on noise.

5.2. EXPERIMENTAL PHASE FOR USING TEMPORAL GENERA-
TIVE ADVERSARIAL NETWORKS FOR EMOTION-AWARE DO-
MAIN ADAPTATION

In this section, we will discuss all the experiments conducted to support and evaluate
the main objective of this chapter. This objective is related to the sixth research question
found in Section 1.6 (regarding face generation) and the two proposed strategies ana-
lyzed in Section 5.1. It is important to state that in this chapter (similarly with all the
previous ones), we employed the CREMA-D and RAVDESS datasets. Furthermore, the
datasets were partitioned following the same scheme as in Chapter 3.

5.2.1. EXPERIMENTAL METRICS
Firstly, the following experimental metrics are applied in this chapter, in similar terms
with previous ones:

• A GANs data augmentation scheme (where the real and the generated samples
are fused) is employed. It is important to state here that this data augmentation
scheme is different from the one which is analyzed in Section 5.1.2 which is re-
lated to just increasing the sample number of the real datasets and do not use the
generated samples.

• The Inception Score (IS), Fréchet Inception Distance (FID), and Structural Similarity
Index (SSIM) are employed for evaluating the quality of the generated results using
both our strategies.

• Moreover, the total amount of time regarding the training process was calculated.
In this way, we are able to evaluate the efficiency of the approach time-wise.

• Finally, as an extra metric dedicated to the evaluation of the generated faces, we
adopted the so-called expression net model (exp-net). Given a frame with a face as
input, this technique is able to reconstruct the 3d pose of the face (as a 3d avatar)
in the case that it contains a wealth amount of expressivity features.

EXPRESSION NET MODEL

This approach was introduced in [7], and is applied to evaluate the emotional expressiv-
ity of generated face samples by detecting the pose of the faces. The performed experi-
ments made use of a pre-trained model publicly available on Github 2. By applying this
pre-trained model, the output is a 3d facial avatar where the emotion and facial pose of
the input frames become apparent. Using this 3d model, it is easier to judge whether

2https://github.com/fengju514/Expression-Net

https://github.com/fengju514/Expression-Net
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Figure 5.6: The way that our model was applied to generate the expressivity avatars. In this way, we made use
of 3DMM-CNN model described in [8].

the generated faces consist of poses that are highly associated with specific emotions.
Consequently, more concrete deductions related to the quality of the generated results
can be extracted visually.

In particular, the authors introduced a system that estimates the facial expression
coefficients (3D morphable model coefficients [8]) for a given face sample. A Deep Con-
volutional Neural Network (DCNN) model was introduced to perform the robust esti-
mation of the facial expressivity features, directly from an unconstrained face image and
without the use of face landmark detectors. Having calculated the facial expressivity fea-
tures, the model is able to reconstruct a 3d graphic model of the input image by properly
representing the emotion and using a simple 3d graphic avatar. This approach was per-
formed by applying AFEW [10] and Cohn-Kanade (CK+) [11] datasets which use the basic
emotion categories. More details about the implementation of the expression net model
can be found in [7].

However, after experimentation, in our work, it was proven a constraint to apply this
approach in images of low dimensionality. For instance, generated (or real) images with
resolution 28× 28 pixels did not provide accurate results. With this resolution, it was
impossible for the approach to infer the poses of the input images. Through testing, it
was proven to be applicable only to high-resolution images (higher than 100×100 pixels).
On this ground, and just for performing this evaluation using exp-net, it was chosen as
the lowest possible resolution, 112×112×3 pixels. Hence, the performed experiments
just for the exp-net occurred to generate samples of this dimension.

As a result, we needed to perform some modifications in our proposed GANs archi-
tecture (Figure 5.1) in order to generate samples of this resolution. For this reason, we
added a new set of operations in the proposed GANs architecture, and in particular, for
the generator network of Figure 5.1. Thus, we added in the network two more convo-
lution layers and two un-pooling layers together with the corresponding batch normal-
ization, dropout, and activation function (LeakyRelu) operations. For the critic and the
classifier, it was not necessary to add any new layer or operations.

As a consequence, due to all these extra operations (for generating samples of this
resolution), it was obvious that the computational complexity of this experiment was
significantly increased. Hence, it was chosen to perform this evaluation only for the first
strategy of our current approach, namely for the generation of a single frame. Regarding
the generation of a sequence of frames, in this case, this approach would have required
the generation of multiple frames with size 112×112×3 pixels that would have exploded
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our needs for computational power and, furthermore, was not feasible to be done using
our available computational resources.

5.2.2. EXPERIMENTAL PROTOCOL

In this section, we are analyzing all the experiments conducted to demonstrate the effi-
ciency of the transfer of knowledge from audio to face modality when using the wGANs
approach. Mainly, the performed experiments were related to the two strategies intro-
duced in Section 5.1. However, several additional experiments were applied to evaluate
the validity of these cases. In more details:

• Firstly, we extracted the FER performance using only real face samples from both
datasets after performing the simple data augmentation scheme described in
5.1.2. Henceforth, this approach is denoted as baseline. To perform this experi-
ment, we use the S1 subset described already in Section 3.2 for training the clas-
sifier. In particular, after the aforesaid augmentation method the cardinality of
the employed set is 2 times the cardinality of the set S1. The performance of the
baseline is measured using set S4. The employed classifier is described in Section
5.1.1.

• Secondly, an implementation that made use of wGANs architecture, where the in-
put was noise conjugated with the conditional information related to emotions
from each video was conducted. This experiment was employed in an effort to
measure the importance of the absence of the source domain (audio modality) to
the input of the generator G (denoted as wGANs with a single frame without source
information or wGANs-sf-wt).

• A natural extension of the previous experiment is to add the extracted features
from the audio modality (2dCNN features) as the input to the generator (denoted
as wGANs with a single frame in the source domain wGANs-sf-wi) in order to per-
form the image-to-image translation and domain shift.

• Furthermore, regarding the generation of the sequence of faces, we proceeded
with the same two experiments (as in the case of the single-frame generation) by
omitting or not the source domain denoted as wGANs-se-wt and wGANs-se-wi
related to sequences and with/without source domain information.

• An extra performed evaluation, the quality of the generated results using the exp-
net model was also assessed. In this case, we only tested the wGANs-sf-wi using a
modified version of the architecture, since the task was to generate samples with
size 112×112×3 pixels (denoted in this Section as wGANs-sf-wi-big) by given as
input to the generator G features from audio domain coupled together with a noise
vector and conditional information c related to the annotation. Figure 5.6 shows
how this approach is applied to an input image.

• Finally, for comparison purposes, the performance of the generated faces when
using the dacssGANs architecture from Chapter 3 is applied.
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Table 5.4: Emotion recognition using four different approaches for the CREMA-D dataset.

All the tested methods Accuracy

55 middle frames 54.11%
120 middle frames 49.08%
10 middle frames 53.98%

10 frames with biggest emotion context 52.01%

5.2.3. EXPERIMENTAL RESULTS
Having analyzed the proposed structure and organization of the experimental proto-
col, in the following paragraphs, we will analyze the experimental results. By keeping
the same spirit as in the previous chapter, we divide this section into three main parts,
namely: ablation study, quantitative and qualitative results.

5.2.4. ABLATION STUDY
We are starting with insights from an ablation study related to facial frame extraction
from the input video are presented. This approach examines which combination of
frames from the input video will lead, during training, to the best FER performance.

In particular, we are exploring which combination of frames contributes the most
to emotion recognition performance when they are used to train the above-mentioned
GANs networks. This study is associated with the four different scenarios related to face
frame selection (in the face pre-processing step) that are introduced and analyzed in
Section 5.1.2. These scenarios regard the implemented policy for keeping some of the
frames of each input video. In specific, these options are to keep the middle 55, 120, and
10 middle frames and finally, keep 10 frames based on their emotional context.

After training a FER model using all four aforesaid methodologies (using the same
dataset split that was performed for the rest of the cases in this chapter), the obtained
deduction during the FER testing phase is that the best approach is to keep 55 frames
from the middle frames from the video where the best-obtained results are obtained
(54.11%). The results for these four experiments can be found in Table 5.4.

This ablation study was performed just by using the CREMA-D dataset. The chosen
methodology for extracting frames (using 55 frames) was implemented for the CREMA-
D and RAVDESS datasets.

QUANTITATIVE RESULTS

On the whole, the quantitative results from the experimental protocol can be found in
Table 5.5.

It is evident that when using the Wasserstein loss to generate single frames coupled
together with source information (as in the cases of wGANs-sf-wi), we obtained the best
classification results (concerning the GANs augmentation scheme using real and gen-
erated data) for CREMA-D dataset, while, for RAVDESS the best-performed approach is
wGANs-sf-wt with the wGANs-sf-wi to perform very close regarding the data augmen-
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Table 5.5: Classification performance, FID, IS, and SSIM for all the methods analyzed in the current chapter for
the wGANs with temporal information as the input for the CREMA-D and RAVDESS datasets.

Case CREMA-D RAVDESS
clas. FID IS SSIM clas. FID IS SSIM

Baseline 54.11% - - - 49.12% - -
dacssGANs 54.08% 59.60 2.16 0.77 50.30% 49.95 2.13 0.90

wGANs-sf-wt 53.20% 44.32 2.49 0.96 51.81% 39.88 2.30 0.92
wGANs-sf-wi 55.97% 46.09 2.57 0.96 51.85% 39.86 2.31 0.92

wGANs-sf-wi-big 54.12% 43.23 2.77 0.97 47.11% 37.77 2.51 0.95
wGANs-se-wt 52.66% 56.33 2.66 0.89 49.99% 45.57 2.13 0.82
wGANs-se-wi 51.10% 58.94 2.51 0.88 50.10% 45.58 2.01 0.83

tation classification metric. In particular, it is important to note that using the source
domain extracted from the audio modality, we experienced an improvement in the per-
formance of approximately ∼ 1.9% and ∼ 2.7% for CREMA-D and RAVDESS in compari-
son with the baseline.

Furthermore, it is also apparent that our second strategy, generating a sequence of
frames, failed at generating robust results (regarding the GANs augmentation scheme
using real and generated data) and the results were inferior in comparison with all the
conducted experiments with single frame generation. In some cases, we even experience
“negative transfer learning” for this approach. This could be attributed to the way that
the critic D and classifier Q networks combined the frames in order to evaluate the per-
formance of these multiple frames. This was confirmed by the extracted results when
using this technique only on real data samples, where the same way of combining the
frames was implemented to extract the classification performance. In this case, we ob-
tained 52.44% for the CREMA-D and 43.79% for the RAVDESS dataset. A more sophisti-
cated approach (like LSTM) should have been deployed for combining the sequence of
frames for critic and network Q to improve the performance. However, due to our hard-
ware limitations, this approach would have required access to more hardware resources,
that were not available, and hence, we decided to perform it as future work. It is impor-
tant to state here that it was decided to keep this strategy due to the interesting visual
results.

Regarding the quality metrics (FID, IS, and SSIM), it is obvious again that wGANs for
the single frame strategy (wGANs-sf-wt and wGANs-sf-wi) performed better than in the
case of sequential generation (wGANs-se-wt and wGANs-se-wi) as well as for the dac-
ssGANs approach in almost all metrics and for both datasets. That is attributed to the
implementation of Wasserstein loss (in comparison with the dacssGANs). While in com-
parison with the sequential approaches (wGANs-se-wt and wGANs-se-wi) the difference
is attributed again to the way that the critic D and classifier Q networks are combining
the sequence of frames.

The best-obtained results regarding all quality metrics are obtained when using the
wGANs-sf-big approach. That is validated also after the visual inspection of the gener-
ated results.
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Table 5.6: The time performance for the experiments conducted in this chapter. In all cases, we measure the
total amount of time after 100 epochs. All the experiments performed in the same hardware (Titan XP GPU)

All the conducted methods Time in hours

dacssGANs 108h
wGANs-sf-wt 17h
wGANs-sf-wi 21h
wGANs-se-wt 98h
wGANs-sf-wt 113h

Furthermore, following the strategy described in Chapter 4, it was decided to cal-
culate the total training time for the different approaches. In this way, we were able to
assess the performance of all under-test approaches time-wise. These results can be
seen in Table 5.6. These results were extracted when training using CREMA-D to give
some intuition about the time-performance of the algorithms. Again, in a similar fash-
ion as in Chapter 4, the total number of epochs for training was limited to 100 while all
experiments were deployed on the same hardware, in particular using a Titan XP GPU.

It is noteworthy that when performing the sequential strategy, there is an increase
in time duration in a ratio of 4-5 times in comparison with the single-frame generation
methodology. This behavior was expected due to the more complicated network that is
employed to handle this experiment.

QUALITATIVE RESULTS

Regarding the visual inspection of the generated results, several approaches were tested
in order to evaluate the performance of the method. The performed evaluation contains
the following examined cases:

• Generated samples using the dacssGANs approach (the implementation was
based on the architecture found in Chapter 3).

• Extracted faces using the architecture based on wGANs with the single-face as an
output (wGANs-sf-wi).

• The generation of sequences of frames instead of a single frame again using the
wGANs architecture (wGANs-se-wi).

• These techniques (wGANs-sf-wi and wGANs-se-wi), evaluated with the imple-
mentation of source information.

• Furthermore, we inspected the performance of wGANs-sf-wi when generating im-
ages with their dimensionality to be 112×112 instead of 28×28 pixels (denoted as
wGANs-sf-wi-big).

• The exp-net model was also applied to evaluate the expression wealthiness (for the
wGANs-sf-wi-big approach).
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(a) Real face samples.

(b) Generated faces samples.

Figure 5.7: Generated visual faces when using CREMA-D during the test process for 28×28×3 pixels size using
dacssGANs.

Single frame: Firstly, the visual results regarding the single frames generation is de-
picted in Figure 5.7 when generating faces using the dacssGANs. We can observe that,
while the generated results have high visual fidelity and approximate the real ones, there
are also several artifacts and deformations that reduce the aesthetic performance (as it
was perceived from a subjective visual inspection). This observation is in parallel with
the quantitative metrics performance of dacssGANs as it is depicted in Table 5.5.

As a further step, the performance of the approach proposed using the first strategy
namely, in the case of the single-face generation (wGANs-sf-wt), when having as input
to network G the features from the audio domain can be seen in Figure 5.8. Again from a
subjective visual inspection perspective, it is obvious that the quality of the visual result
is significantly improved (a claim that is supported by the quantitative metrics of Table
5.5 as well). We can observe that both the issue with the visual artifacts and the deforma-
tions experienced in the generated results in the case of “dacssGANs” were mitigated. In
Figure 5.9, the extracted visual results of the same approach when using samples from
the RAVDESS dataset can be seen.

Furthermore, in Figure 5.10, the generated “big” faces (with size 112×112×3 pixels)
can be seen. These samples were generated in an effort to evaluate the performance of
Exp-Net when inferring the emotional content of generated faces. However, we can also
add here a visual analysis for the results. While it is a subjective impression, in our view,
the generated results are of high quality.

Finally, regarding single face generation, we performed one extra evaluation step by
using the exp-net model. In this way, as it was mentioned in Section 5.2.1, this model
was applied to the generated and, real images to estimate the amount of expressivity
of these samples. In Figure 5.11 we can see the obtained results for both cases. The
exp-net model was applied to the generated samples of wGANs-sf-wi-big (with targeted
generated sample dimensionality to be 112×112×3 pixels). The derived inference from
this experiment was that our approach can successfully generate samples that contain
a wealth amount of facial expressivity features. On this ground, we can validate that the
emotional context of the audio samples was transferred successfully to the face samples
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(a) Real face samples.

(b) Generated faces samples.

Figure 5.8: Real and generated faces when using CREMA-D during the test process for 28×28×3 pixels size
using wGANs.

(a) Real face samples.

(b) Generated faces samples.

Figure 5.9: Real and generated faces when using RAVDESS during the test process for 28× 28× 3 pixels size
using wGANs.
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(a) Generated face samples.

(b) Real faces samples.

Figure 5.10: Generated visual faces when using CREMA-D and during the train process for 112×112×3 pixels
size using wGANs.

Figure 5.11: The extracted poses when using exp-net model to output the corresponding 3d model can be seen
in the second and fourth row. These correspond to the real face samples which can be seen in the first and
third rows.



5.3. CONCLUSION

5

169

(a) Real sequence of faces.

(b) Generated sequence of faces.

Figure 5.12: Generated visual sequences of faces for the CREMA-D dataset.

as well.

Sequence of frames: With respect to the second pillar of the current approach, the
generation of sequences of frames, in Figure 5.12 we can see the associated visual results
(for wGANs-se-wt). The same behavior was experienced in the case of wGANs-se-wi.
It is evident that while the GANs augmentation scheme did not perform well for that
case, still the generated results were close to the real ones. This approach clearly suf-
fers from mode-collapse and over-fitting issues. The generated sequence samples were
similar (even if the annotation and the noise vector were different). Moreover, during
the training, the generated results were identical to the real ones (with the addition of
some artifacts). We attribute this behaviour to the limited number of data samples for
this second scenario.

5.3. CONCLUSION
The main effort of this dissertation is to study audio-visual domain adaptation and ex-
amine whether we can transfer knowledge from the source modality (face) into the target
one (audio). The effort is to improve the classification performance of the target domain
by leveraging information from the source domain.

In Chapters 3 and 4, two core approaches based on generative adversarial networks
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(GANs) are introduced to accommodate the domain adaptation task. These approaches
are employed to generate spectrograms using as input to the generator G information
from the source domain coupled together with conditional information c and a noise
vector z ∼ P (z). The final core task was to investigate whether Audio Emotion Recogni-
tion (AER) could be further improved by incorporating the generated samples from the
GANs to model the real spectrogram datasets.

Alternatively, in the current chapter, we perform the converse task, where we aim at
improving Face Emotion Recognition (FER) by leveraging information from the audio
modality. In this sense, audio is defined as the source modality while face is applied as
the target modality. The motivation for this research is mainly to prove the robustness of
the domain adaptation model introduced in Chapters 3 and 4. Furthermore, in this case,
it will be easier to visually investigate the obtained results of the proposed generative ap-
proach. Two different strategies are followed and tested, namely, single face generation
and sequence of frame generation. Furthermore, to establish the performance of this
approach, the introduced metrics from Chapters 3 and 4 are employed.

During the experimental phase, the hypothesis that FER can be improved after the
GANs fusion scheme (where real and generated samples are fused) is shown to be valid.
On this ground, the final research question posed in this dissertation is: Is it possible
to improve face emotion recognition by eliciting information from the audio modality?.
In order to confirm this hypothesis, a thorough experimental procedure is performed
where several key deductions are obtained. More concretely, in this chapter:

• The performed architecture using wGANs and as input audio extracted informa-
tion using 2dCNN, managed to create generated samples that, when fused with
the real ones, improved the FER by approximately 1.9% for CREMA-D and 3.9%
for RAVDESS datasets. Such finding further corroborates our belief that using as
source domain audio-related information can enhance the FER performance.

• After a close visual inspection of the extracted generated results, we can deduce
that the generated distributions of face images approximate well the real distribu-
tions of faces. Especially, the approach has proven to be very robust when it comes
to generating “big images” of 112×112 pixels.

• Furthermore, regarding the second experiment (generation of a sequence of
frames), while it is not possible to significantly increase the transfer learning per-
formance, the extracted generated results are very promising visually but they lack
of variety. Our hypothesis is that this behavior is attributed to the mode collapse
issue. But also, in the way that we combine the sequence of frames in the classifier
Q and critic D of the network. As an alternative, for future work, it will be to replace
the whole generator G with more sophisticated architecture to incorporate the 3d
temporal face information (for instance, 3dCNN or LSTM).

To conclude, we can state that the last research question posed in this dissertation is
affirmed, where we investigated whether FER can be improved by using generated face
samples from a wGANs architecture. At the same time, we validated that it is possible
to transfer knowledge between audio and face modalities. However, several noticeable
obstacles are faced. The “naive” approach for combining the facial frames failed in the
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generation of sequences of frames with quality that can be translated to improvements
in FER performance. For this case, while the generation of a single frame has proven to
be robust, it did not come with very competitive FER performance as well.

As future work, we can explore further the generation of frame sequences. In this
respect, more sophisticated approaches for capturing the temporal information in con-
secutive frames needs to be investigated using algorithms such as LSTM or 3dCNN.
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6
CONCLUSIONS AND FUTURE

RESEARCH

This thesis investigates how domain adaptation can be employed to perform audio-
visual knowledge transfer to improve audio emotion recognition (AER) and face emotion
recognition (FER). In Chapters 2, 3 and 4 we study the case of AER, while in Chapter 5
the case for FER is explored. Τhe main effort in all chapters is to elicit information from
the “source domain” and improve the classification performance in the “target domain”.
Towards this end, several research questions have been formulated to investigate cross-
modal domain adaptation that should be addressed before answering the overall prob-
lem statement of this dissertation. This chapter provides a summary of answers to these
posed questions (see Section 1.7). An overall answer to the posed research statement is
given in Section 6.2. Finally, the last part of this chapter consists of recommendations
for future research (see Section 6.3).

6.1. ANSWERS TO THE RESEARCH QUESTIONS
In this section, a synopsis of the answers to each of the research questions posed in this
thesis can be found. These posed questions and their answers help us to better grasp the
formulated statement and the essence of the current research. The core inspiration of
the current study lies in the domain of cognitive psychology, and the conducted research
in the domain of knowledge transfer between the face and audio modalities from the
affective computing perspective.

6.1.1. FIRST RESEARCH QUESTION
The first posed question is framed as:

Research question 1: How could domain adaptation approaches be em-
ployed to improve emotion recognition in one modality and perform knowl-
edge transfer from the other modality?
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This is a rather general question and concerns all the main chapters of this disser-
tation (namely, Chapters 2, 3, 4 and 5). It refers to the possibility of applying domain
adaptation techniques to perform knowledge transfer between two different modalities.
As we have seen already in each chapter, multiple approaches are followed to tackle this
question. In Chapter 2, a distance metric learning algorithm is employed to learn a com-
mon projection of these two modalities (face and audio). This approach, while simple,
can provide a proof of concept for the fact that “knowledge transfer” is possible between
the audio and face modalities. While it performs worse that the deep learning approach
that is deployed in the following chapters, it is still a straightforward and elegant tech-
nique and its performance can be more easily explained than in the case of the “more”
sophisticated deep learning techniques.

In Chapter 3, a different approach is followed to address the same problem. More
specifically, we employed a generative machine learning technique (GANs), where the
task is to generate novel audio samples with a wealth of emotion information by pro-
viding as input face samples. This approach validates that deep learning approaches
can improve model performance in comparison to the deployed technique in the previ-
ous chapter. This motivated us to work towards this direction. In particular, in Chapter
4, an approach that takes into account the dynamics of the input face and a state-of-
the-art approach for performing GANs (Wasserstein GANs) is employed. The observed
performance in this work validates the fact that studying temporal dynamics is essential
when modelling the cross-modal relations between face and audio domains. Finally, in
Chapter 5, the best architectures found from the previous chapters are implemented to
perform the converse task, that is to generate faces giving audio features as input to the
GANs model. From the experimental phase of each chapter, it is proven that it is possible
to elicit information from one modality to improve the AER or FER.

6.1.2. SECOND RESEARCH QUESTION
As we have seen in Chapter 1, to answer the above-mentioned generic question, we
posed more detailed research questions that are associated with the nature of the em-
ployed techniques. In this spirit, the following question concerns the implementation of
metric learning strategies (which are analyzed in Chapter 2) for our audio-visual domain
adaptation task. This question can be framed as follows:

Research question 2: How could a metric learning framework be deployed
to model audio-visual cross-modal relationships?

In Chapter 2, a simple way to perform cross-modal domain adaptation is applied.
This approach is based on a distance metric learning supervised approach, which is
implemented to project both domains into a common space where the distance be-
tween samples from the face and audio modalities with common emotion context is
minimized. This is performed in three basic steps: a) Feature extraction and selection,
choosing emotion-related features from both modalities that contribute the most to the
domain adaptation, b) secondly, an unsupervised technique is employed to transform
both modalities into a common sub-space and finally, c) the implementation of the dis-
tance metric learning. The evaluation of this approach validated that it is possible to
transfer knowledge from the source to the target modality. This is shown by using data
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from the source modality to improve the emotion recognition performance in the target
modality. This observation confirmed our hypothesis that the model can be employed to
perform cross-modal domain adaptation. Furthermore, given the simplicity of this ap-
proach this research worked for us as a proof of concept (and also a boost of confidence)
for our dissertation claim that “knowledge transfer” is possible between the audio and
face modalities.

6.1.3. THIRD RESEARCH QUESTION
Subsequently, a more sophisticated deep learning based approach is introduced in an
effort to model the complex patterns that govern these cross-modal relations. This strat-
egy is deployed since, after some preliminary experimentation, it is observed that better
results can be obtained for audio emotion recognition using deep learning techniques.
The employed architecture is based on Generative Adversarial Networks (GANs) and the
posed research question is the following:

Research question 3: How could Generative Adversarial Networks be de-
ployed to uncover static audio-visual cross modal relationships?

An analytic answer to the aforesaid question can be found in Chapter 3. This ap-
proach’s strategy is to generate novel audio samples by giving as input face samples cou-
pled together with noise and label information related to emotion. Having given as input
the face samples, a noise vector, and conditional information, our task is to generate au-
dio spectrogram samples that are expected to convey emotional information. A fusion
scheme is employed to evaluate the performance of domain adaptation in this case. It
is shown that we can generate novel audio samples using a variation of the initial vanilla
GANs architecture and deploy it to improve the AER of the initially limited datasets (by
increasing the amount of data samples). This observation shows that there are hidden
patterns that connect both modalities and therefore, we can model them by employing
a deep neural network such as GANs.

Furthermore, now we are in the position to compare the results of this part of the
research with the research from the Chapter 2. It is obvious that with the introduced deep
learning approach the performance of the FER and AER was improved, as well as, the
performance of the domain adaptation. Hence, this led to adoption of a deep learning
strategy for the rest of the dissertation.

6.1.4. FOURTH RESEARCH QUESTION
Having performed the training of GANs for audio-visual domain adaptation, an obvious
insight that is extracted is the difficulty and the large amount of time required to perform
training. Hence, a new question is posed. This question is associated with the way that
the optimization process of the whole network is held. On this ground, we pose the
following question:

Research question 4: How could we train the proposed Generative Neural
Networks in a progressive manner? Or in simple terms, how can we initial-
ize the weights of the network in such a way that will optimize the training
process?
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An analytical answer is given in Chapter 3. It is shown that an improvement of the
process can be achieved by using a progressive way of training the whole GANs system.
In this case, we first pre-trained the generator network G using an enormous unlabeled
audio-visual dataset, while in a second step, we calibrated these weights emotion-wise.
This observation validates our expectations, since the audio-visual modelling occurs in
two steps by employing two enormous datasets and especially through the employment
of Voxceleb in the first step.

6.1.5. FIFTH RESEARCH QUESTION

Furthermore, inspired by several proposed works that can be found in the literature, it
is evident that an investigation of the temporal cross-modal relationships between face
and audio modalities is imperative in our study. Towards this end, on top of the previ-
ously posed tasks, we decided to proceed with the study of the time dynamics between
both domains. While this is partially done and described in Chapter 2, during the im-
plementation of the DML strategy, it is developed in a more solid way in Chapter 4. The
whole research endeavour of this Chapter can be framed based on the following posed
question:

Research question 5: Could the temporal dynamics between audio and vi-
sual information be modeled and help us in the domain adaptation task?

This research question is addressed in Chapter 4. By leveraging a novel algorithm
of machine translation from Natural Language Processing, we model the dynamic con-
nection between the face and audio modalities. It is confirmed that indeed the audio-
visual temporal dynamics can be modeled and help improve the amount of transfer of
knowledge between these two modalities. An improvement in the audio-visual domain
adaptation is observed. This can be validated by the evaluation metrics employed in this
dissertation such as data augmentation classification, as well as the introduced quality
metrics.

6.1.6. SIXTH RESEARCH QUESTION

As is shown from the experiments conducted in Chapters 2, 3, and 4, audio emotion
recognition performance is less than the face emotion recognition performance and this
is validated also from the human performance in all of our implemented datasets. This
is one of the reasons that in this dissertation we focused mainly on trying to improve
audio modality performance by leveraging information from face modality. In the last
research question of this thesis, we address the converse task. In particular, to improve
FER by taking into account samples from the audio modality and performing the transfer
of knowledge between these two modalities. The reason for performing this research is
to evaluate the proposed architectures from previous chapters in a different task that can
contribute to visual results that are easier to inspect. Hence, we formulated the following
research question:

Research question 6: Is it possible to improve face emotion recognition by
eliciting information from the audio modality?
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To that end, the architecture from Chapter 4 is modified to tackle the opposite task.
In particular, the extracted 2dCNN features from audio modalities are given as input to
GANs (as conditional information) and the output of the network is a face image having
the same emotion with the input audio sample. This research question is validated in
Chapter 5. It is observed that indeed it is possible to generate results with a great amount
of emotion information by leveraging audio modality samples. This chapter works as
a proof-of-concept. While the extracted observations are promising, some extra work
needs to be done by addressing the shortcomings of our methodology, such as work-
ing in more depth towards sequence-to-sequence analysis. In this regard, an attention
based architecture (such as transformers) can be employed for the generator network
that will focus on extracting dynamic features from the input audio signal and connect-
ing them with the output of the network G that will be a sequence of face frames. Hence,
by using an approach like that, we can leverage the dynamic relationship between the
two modalities.

6.2. ANSWER TO THE PROBLEM STATEMENT
After addressing the six research questions, an answer to the problem statement can be
provided. Firstly, to remind our reader about the research statement, we can summarize
it as follows:

Problem statement: Is it possible to transfer knowledge between the face
and audio modalities from the machine perspective when the emotion con-
text is taken into account?

The answer to this problem statement is based on the answers to the research ques-
tions given above. We have shown that the DML approach can reduce the discrepancy
between the face and audio modalities. This is validated by the experimental results
where a metric to calculate the distance between the two modalities as well as the AER
trained on a fused dataset with transformed faces and audio in the DML space is per-
formed. Then, a more advanced approach based on progressive training of GANs is uti-
lized. With this deep learning approach, we are able to perform better in AER and also
validate the transfer of knowledge between the two domains. As we stated before, by
studying the temporal dynamics and using a novel loss function for the GANs approach
(Wasserstein loss), we experience even higher knowledge transfer.

Finally, our research statement is validated also in the converse task which is to im-
prove FER by eliciting information from the audio modality. In this case, 3dCNN and
Wasserstein GANs are employed to perform this projection.

6.3. RECOMMENDATIONS FOR FUTURE RESEARCH
In future research, it would be interesting to investigate more techniques for performing
cross-modal domain adaptation. All these techniques are related to the ones we cur-
rently researched and are extensions of our research with small modifications. In partic-
ular:

• Regarding Chapter 2, it will be interesting to investigate deep metric learning tech-
niques instead of the standard DML approaches. Based on these techniques, neu-
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ral networks are employed to learn a common representation of the two modali-
ties and learn an ideal metric learning using efficient deep metric approaches such
as “Siamese networks” or “triplet loss-based”. Thus, we hope that we will be able
to learn a more meaningful sub-space where the two domains divergence will be
minimized and the transformed face modality could be deployed to help increase
the AER performance further.

• With respect to generative techniques for yielding new samples for the target sam-
ples by giving the source domain as input, a different approach to the problem
could be our new focus. In particular, deep probabilistic generative models such
as variational auto-encoders or probabilistic GANs such as ProbGANs, where the
focus is on the probabilistic perspective of the generation process, are promising
research directions. In this way, we could provide another remedy to the notorious
mode collapse problem and improve the performance of the knowledge transfer.

• Another interesting idea would be to perform the whole learning scheme (from
Chapter 4) end-to-end. Therefore, instead of using different architectures to ex-
tract features (especially temporal features from the face modality), a more so-
phisticated approach to include the feature extraction in the generator G could
be analyzed. In particular, to model the temporal dynamics of face and audio in
a common network, a solution based on attention mechanisms could be consid-
ered. This network would be our new generator G which can be tuned as usual in
the min-max fashion.



IMPACT PARAGRAPH

In this addendum, a discussion is presented to introduce the scientific and social impact
of the conducted research in this dissertation, its results, and the proposed methodolo-
gies. The core research of this dissertation is domain adaptation, that is applied mainly
in Human-Computer Interaction (HCI) and Affective Computing (AC). However, while
the main experimentation was conducted in the spectrum of these fields, in principle,
the applied methodologies could be easily transferred to a plethora of diverse applica-
tions where domain adaptation could be useful.

All these aforesaid applications have an enormous social and economic impact on
society. On this ground, according to Maastricht University’s “Regulations for obtain-
ing the doctoral degree Maastricht University”, dissertations should encompass an im-
pact section which should include the “short-term” and “long-term” contributions of the
conducted research and its results in relation to shifting insights and stimulating science,
methodologies, results, theory, and applications. On the other hand, the social impact
relates to the short and long-term contributions of the conducted research to changes
in the development of social sectors and to social challenges. This paragraph addresses
the drafted four questions in the doctorate regulations, which are related to the main
objective of the research and its relevance, its target groups, and activities.

Research: What is the main objective of the research described in the thesis
and what are the most important results and conclusions?

The main objective of this dissertation is to address an important research problem
in machine learning, that is: performing domain adaptation from audio and visual cues.
It approaches the task from different perspectives with various methodologies with the
end goal of enhancing the performance of Emotion Recognition (ER) when it is gauged
in one modality by leveraging information from the other. For instance, the task can be
to improve Audio Emotion Recognition (AER) by leveraging information from the face
modality. In particular:

• Chapter 1 introduces the task under study and the state-of-the-art approaches in
the fields of domain adaptation, emotion recognition (FER and AER) with the fo-
cus on the ones that widely inspired this dissertation. Furthermore, Chapter 1
presents state-of-the-art technologies, datasets, applications, modalities’ repre-
sentations, and learning schemes.

• In Chapter 2, the domain adaptation study is performed from the Distance Met-
ric Learning (DML) perspective. In this case, a proof-of-concept algorithm is de-
veloped to model the audio-visual relations and study whether face modality can
help improve AER. This approach is composed of several modules such as: feature
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extraction and selection, clustering and the core DML projection. From the ex-
perimental phase, it is shown that it is indeed possible to transfer knowledge from
face to audio modality.

• In Chapter 3, a deep learning direction is pursued. A study on Generative Adversar-
ial Networks (GANs) is performed, with the purpose of discovering the correlation
between face and audio modalities. Several methods are studied with the aim to
build the proper architecture for the GANs network, and a proper way to tune the
networks is also performed.

• As a follow-up research, a method to perform temporal analysis and study the tem-
poral connection between face and audio modalities is applied in Chapter 4. This
methodology makes use of 3d extracted features from face modality and attention
mechanisms. A way to improve the training procedure of GANs architecture is also
suggested.

• Finally, Chapter 5 studies the inverse task which is the improvement of FER using
the audio modality. It is shown that it can be possible to increase the performance
of the face modality by leveraging audio.

From the experimental phase, from all chapters it is clear that domain adaptation
can be successfully applied to improve the performance of the audio or face modality by
leveraging the other modalities and improving the AER and FER correspondingly. Chap-
ter 2 provided a compact framework to perform domain adaptation, however, when we
employed more sophisticated deep learning architectures (as in Chapters 3 and 4) we
managed to outperform our initial results from Chapter 2. Moreover, we observed that
it is really crucial to study the temporal relations between the two domains, which can
lead to a more efficient “transfer” of knowledge between them. Finally, in Chapter 5 we
performed a preliminary study on domain adaptation for the face modality. In this case,
it was proven that it is possible to improve FER by employing audio information.

The next question that this chapter addresses is the following:

Relevance: What is the (potential) contribution of the results from this re-
search to science, and, if applicable, to social sectors and social challenges?

Our current era is mainly shaped from the so-called “digital revolution” in which the
fields of data and computer science play a leading role. In the last decades, we are ex-
periencing a constantly increasing interest in the fields of machine learning and deep
learning in academia but also in industry. The “corporate world” has shown a great in-
terest in investing in these fields and most of the big IT companies have already created
their own dedicated “artificial intelligence” research and development department. This
interest of the corporate world is also redeemed in our society since it equates to a shift
in everyday life, which is now shaped through the omnipresence of modern technology.
From mobile phones, smart TV’s and electronic devices, to wearable health sensors and
software that analyzes data for companies, states or individuals. In the near future, it
seems likely that this tendency will increase and continue changing our lives. This ten-
dency also fuels the popularity of research in machine learning and artificial intelligence
in academia.
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However, one of the notorious shortcomings of this cutting edge research is the so-
called “lack of generalization”. The developed machine learning algorithms need an
enormous amount of datasets to learn how to perform a specific task, while, at the same
time, they lack the flexibility to be employed in related tasks with slightly different char-
acteristics and input datasets. Hence, in this dissertation we investigated a remedy for
this notorious drawback which can be drawn from the research of the domain adapta-
tion field.

Each chapter of this dissertation demonstrates the ability of the proposed solutions
to perform DA efficiently between two inherently different modalities. This methodol-
ogy can be used in a broader context, by applying it to different modalities. The im-
portance of domain adaptation in research and as a consequence in society is beyond
doubt.

By employing domain adaptation our purpose is to develop a more efficient frame-
work that is able to combine data of a different nature to generate efficient models. In
this scheme, we can leverage a big amount of data from different cues, which is crucial
when developing a deep learning model since using only narrow data distributions is not
really possible. Several popular deep learning and machine learning algorithms (object
detection, language translation, face recognition, and so forth) can be benefited from
this application.

The second contribution of this study is related to emotion recognition where the
focus is to enhance emotionally incapable machines with emotional intelligence to im-
prove human-machine interaction. Particularly, when the task is to perform emotion
recognition in modalities for which we do not possess plenty of data. While the main fo-
cus of this dissertation is to perform domain adaptation, the task under study in each
chapter is emotion recognition. We are modelling whether it is possible to perform
domain adaptation with the purpose of enhancing the classification performance of a
modality for instance, audio, by leveraging information from another modality. Hence,
Chapters 2, 3 and 4 provide methodologies for performing emotion recognition from au-
dio. While, in Chapter 5 we provide methodologies for performing face emotion recog-
nition.

Target group: To whom are the research results interesting and/or relevant?
And why?

The conducted research concerns developers, practitioners, and researchers in the
fields of “machine learning” and affective computing. In this work, we provide several
frameworks for performing “heterogeneous” domain adaption between two inherently
different modalities such as face and audio. We hope that researchers in the same and in
similar fields will be inspired to continue research in this direction and will expand our
research and ideas in new and interesting paths.

As aforementioned, this work was tested on the domain of affective computing and
concerns the study of audio-visual relations. However, it can be easily transferred to dif-
ferent tasks and different modalities by performing the necessary modifications in the
corresponding parts of the approach. For instance, in the case of performing a differ-
ent classification than emotion recognition, we will need to change and retrain all the
involved classifiers. One simple example is the following: performing person identifica-
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tion from audio that lacks annotated datasets by leveraging the huge availability of face
recognition datasets. Towards this end, we can make use of the introduced techniques in
this dissertation to generate audio samples by giving as input face samples, and leverage
these generated samples to perform person identification.

Furthermore, our work can be useful to industry and developers that would like to
develop robust classifiers in domains that lack large annotated datasets. In particular,
they can leverage our approach by transferring knowledge from “close-related” domains
to enhance the performance of the classifier at hand. A real-life tool for domain adap-
tation (part of the conducted research of this dissertation) was developed for the Euro-
pean Horizon research project called “MaTHiSiS” 1. The scope of this tool was to im-
prove emotion recognition performance from cues for which we do not have access to
large datasets. Mainly, this tool was tested for performing audio emotion recognition
by leveraging information from the face modality. However, this tool provides a friendly
interface that can handle easily different modalities other that face and audio.

Some other applications where domain adaptation can be applied in industry is “the
task of language translation”, image classification for unseen objects, in gaming, in edu-
cation applications and many more.

Activity: In what way can these target groups be involved in and informed
about the research results, so that the knowledge gained can be used in the
future?

This thesis is article-based, where the studies in Chapters 2, 3 and 4 are published
in various conferences and journal proceedings. At the beginning of each chapter, the
papers which are parts of the corresponding chapter are listed. Moreover, throughout
the course of the Ph.D. research, the proposed methodologies and the conclusions of
their findings have been presented in the respective scientific venues. Besides, a tool for
performing domain adaptation was developed for European Horizon2020 project called
MaTHiSiS and was part of the whole learning framework.

1http://mathisis-project.eu/
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APPENDIX

In this Appendix, the basic principles of Machine Learning (ML) and deep learning (DL)
are analyzed. We explore algorithms that were widely used in this dissertation and were
not explained in depth in the previous chapters. The scope of this appendix is to provide
the basic information of these algorithms to the reader. For more details regarding “Ma-
chine Learning” (ML) algorithms, an extremely influential and recommended reference
is Bishop’s book titled Pattern Recognition and Machine Learning [4] and Mathemat-
ics for machine learning [4]. For deep learning (DL) algorithms, an excellent book that
helped us give a shape to this chapter is the book “Deep Learning” by Aaron Courville,
Ian Goodfellow, and Yoshua Bengio [5] as well as [6].

1. MACHINE LEARNING
Firstly, it is important to introduce the reader to the basic terminologies of modern “Ar-
tificial Intelligence” (AI). One of the most commonly coined terms is “Machine Learn-
ing” (ML). From our perspective, the most efficient way to define this, is to cite popular
quotes for this term such as:

• Machine learning is the science of getting computers to act without being explicitly
programmed, but instead letting them learn a few tricks on their own 1.

• Machine Learning at its most basic is the practice of using algorithms to parse data,
learn from it, and then make a determination or prediction about something in the
world 2.

• Machine learning research is a part of research on artificial intelligence, seeking to
provide knowledge to computers through data observations and interacting with

1https://www.coursera.org/learn/machine-learning
2https://www.mckinsey.com/industries/technology-media-and-telecommunications/
our-insights/an-executives-guide-to-machine-learning
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the world. Acquired knowledge allows computers to correctly generalize to new set-
tings 3.

• Arthur Samuel described it as: “the field of study that gives computers the ability to
learn without being explicitly programmed”. This is an older, informal definition.

• Tom Mitchell provides the following definition: “A computer program is said to
learn from experience E with respect to some class of tasks T and a performance
measure P, if its performance on tasks in T, as measured by P, improves with expe-
rience E”.

1.1. MACHINE LEARNING CATEGORIZATION
Having defined ML, we can also group ML into several categories. One common way of
categorization is based on the way ML algorithms perform the learning process which
are: supervised, unsupervised and reinforcement learning [8] ML techniques.

• In supervised learning, ML algorithms process the data examples (or alternatively
called “data samples” or “data instances”) along with annotation information de-
noted as “labels” or “targets” (y ∈R or y ∈RK in the case of categorical annotation)
for each sample x ∈RD . These labels represent the semantic category to which the
corresponding sample x belongs. Two of the most common supervised machine
learning tasks are classification and regression. For classification, the aim is to
assign unseen data samples to a category (for instance in emotion recognition the
samples are assigned to emotion classes like happiness, sadness, neutral and so
forth). For regression, given a sample x the goal is to estimate a target value (for
instance, the temperature forecast, and so forth) based on a set of features.

• In the unsupervised learning methodology, the employed algorithms attempt to
uncover hidden patterns (in a new “latent space”) from the data themselves. There
is a lack of annotation information for the given input samples x ∈RD . Some com-
mon tasks in this category involve grouping similar examples together, called clus-
tering, or performing dimensionality reduction.

• Regarding reinforcement learning (RL), it is different from the previous two cases,
in the sense that RL performs actions directly, without learning a set of data first. In
this case, RL directly performs actions and learns from these actions to re-calibrate
its decision making strategies using rewards or penalties.

Another interesting way of grouping ML techniques is between a probabilistic and
non-probabilistic point of view. In the first category, we seek to interpret ML algorithms
using probabilistic modelling by either examining the data likelihood or by inferring pos-
terior distributions. While in the second category, the target is to minimize directly a cost
function that is related to the expected behaviour of the algorithm (in comparison with
its real behaviour) without explicitly employing any probabilistic interpretation.

Finally, another possible way to categorize ML approaches is related to whether they
are based on neural network approaches (and as an extra sub-categorization whether

3https://becominghuman.ai/what-is-machine-learning-d292114cc6ce/

https://becominghuman.ai/what-is-machine-learning-d292114cc6ce/


2. NEURAL NETWORKS 187

they are related to deep neural networks) or not. This categorization is analyzed in
further detail in Sections 2 and 3 where more insights into neural networks and deep
learning are presented.

2. NEURAL NETWORKS
“Neural Networks” (NNs) is a sub-category of ML algorithms that are the reason for the
recent hype about AI and ML and are responsible for the most state-of-the-art applica-
tions (face recognition, object classification, deep fakes, hand-digit recognition and so
forth).

NNs are a family of algorithms whose structure reminisces an abstracted and sim-
plified version of human brain topology. Similarly to the human brain networks that is
composed of layers of simple entities called “neurons” and connections between these
entities.

To explain better the functionality of these networks, we first introduce the so-called
basic linear classification models that provide insights about the holistic structure of
neural networks. In particular these algorithms try to model single neuron functionality.

BASIC LINEAR CLASSIFICATION MODELS

Before presenting the details behind these linear models, we need firstly to provide some
generic terminology related to machine learning and neural networks. The following
definitions will be helpful for the rest of the Appendix chapter (and for all chapters of the
current dissertation):

• Employed dataset: A collection of data D= {x1, ...,xn} with x ∈RD (D-dimensional
vectors) that are related to a problem that needs to be handled by the ML algo-
rithm. For example, for a binary classification task related to the face detection
problem, the dataset will be represented by a collection of images containing faces,
and images that do not contain any face. In the case that each of these images has
a size, for instance 28×28 (as in the case of MNIST [9]) then, we can represent each
image by a vector of 784 dimensions.

• Dataset sample: One sample from the MNIST dataset xi ∈RD is an image that lies
in xi ∈ R784 space. Normally, these samples are represented by a vector of values
which in our example represents all the pixels of the image. We can of course use
a feature transformation φ (denoted also as “basis functions”) to extract another
meaningful representation of our input image (for instance, we can apply a filter-
ing technique such as edge detection to obtain a new representation).

• Sample features: This term is associated with the values of the aforesaid vector
(xi d ∈ R, index i corresponds to the i -th sample of the dataset and d to d-th di-
mension of the data sample). In our example, for the MNIST dataset, each of these
variables represent a single pixel of the images.

• Target value: As aforementioned, in the case of supervised ML the target is to es-
timate a specific class for the given problem. Therefore, the standard datasets,
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besides the samples, contain also some annotation information (that can be de-
noted alternatively as “labels” or “target values”) which is related to the task that
the ML needs to perform. It is normally denoted as t = {t1, ..., tn} (or as y) and rep-
resents information related to the classification task. For instance, for the MNIST
dataset, the target value is all digits (0, 1, 2, ..., 9).

• Weights: “Weights” are trainable parameters that are deployed from ML algo-
rithms and are associated to a corresponding task. In most algorithms, the val-
ues of these variables are randomly initialized as a first step. Moreover, during the
training phase these values are updated to represent the input dataset as good as
possible. The task is to optimize these values by minimizing a target error function
that compares the target value with the algorithm output. More details about this
process will be presented in the next paragraphs. These weights can be denoted
as: w = {w1, w2, w3, .., wn}.

• Bias: A “bias” value w0 is an extra trainable parameter that provides ML algorithms
extra flexibility. As an example, in the case of a binary classifier, which is tasked to
learn a decision boundary to split data in two classes, it allows to shift the decision
boundary in a specific direction. In this way, it helps the training of the model to
be faster and with better quality.

Having defined all these terms, we can now proceed with the explanation of linear
classification algorithms. These approaches normally assume a model framed by the
following form:

y(x) = f (wT x+w0) (1)

where w are the weights of the algorithm and w0 is the bias. The function f (.) is the
so-called “activation function” that, given the inner product of weights with the input
data samples and the bias term, returns one scalar value. Moreover, Equation 1 can be
easily extended to:

y(x) = f (wTφ(x)+w0) (2)

where φ is a transformation of the initial space (“basis functions”). This can be a
transformation related to a feature extraction process, or the implementation of a stan-
dard basis function like a polynomial, for example. This can help to separate non-linear
datasets using the linear operation of Equation 2.

PERCEPRTON ALGORITHM

One of the most prominent examples in the family of linear classification algorithms is
the perceptron algorithm. It corresponds to a two-class approach which makes use of
the model from Equation 3. The activation function in this case can be expressed by the
following expression:

f (wTφ(x)+w0) =
{
+1, wTφ(x)+w0 ≥ 0

−1, wTφ(x)+w0 < 0
(3)
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where {+1,−1} corresponds to two possible target classes. The main functionality of
the algorithm is to find values for w that can linearly separate data points that belong to
two different classes.

A sane strategy in this case is to design an error function and perform a gradient-
based optimization to find the optimal weights. One intuitive way to choose the error
function is to use the total number of the mis-classified samples from the given dataset:
D = {{x1, y1}, ..., {xn , tn}} with tn ∈ {+1,−1}. However, this is proven to be meaningless
since, in this case, we cannot calculate the derivative over w.

Another strategy is to utilize the following error function:

En∈M =−∑
n

wTφ(xn)tn (4)

where n ∈M are the mis-classified indexes of the corresponding data points. In this
way, the error function is a positive value and its amount is related to how many how
many samples were misclassified during the training process. To optimize its values w,
the algorithm makes use of a gradient-based technique, for example gradient descent:

wι+1 = wι−η∇E(w) (5)

where the derivative of the error function E over w can be easily calculated, and in
a vectorized form is −φ(xn)T tn . This error can be calculated in steps after passing each
sample from the dataset.

To make the algorithm complete, an initialization step is defined during which the
weights w are randomly picked, and the iteration loop is performed. This algorithm can
be run after processing the available samples from the dataset one or multiple times
(epochs).

The perceptron learning algorithm loops through the training data samples in turn,
and for each sample xn the algorithm evaluates the error function. When the sample is
properly classified, then the weight vector does not change, while when it is incorrectly
classified, then for class C1 it adds the vector φ(xn) onto the current estimate of weight
vector w while for class C2 it subtracts the vector φ(xn) from w. This approach is called
“training” since the algorithm learns the optimal weights gradually in steps.

Convergence theorem: One important characteristic of this algorithm is the percep-
tron convergence theorem which states that if there exists an exact point solution for the
weights, then the algorithm is guaranteed to discover the exact solution in a finite num-
ber of steps.

Algorithm drawbacks: However, on the negative side, the drawbacks of the percep-
tron algorithm can be summarized as follows:

• This algorithm cannot be interpreted probabilistic perspective since it does not
output a probability but a simple output y .

• Also the algorithm is restricted to two classes and cannot handle multi-class
datasets.

• The feature mappingφ needs to be defined beforehand. For each different dataset
we need to employ a different basis function.
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Figure 1: Visualization of a single neuron with xi to be the input to the neuron, wi the learning parameters
and y the output of the algorithm. The bias term is represented by w0 and in order to easily vectorize the linear
calculations we add as x0 = 1.

• Most importantly, this approach can handle only datasets that are linearly separa-
ble (or can be linearly separable when applying a specific combination of the basis
function). For data sets that are not linearly separable, the perceptron learning al-
gorithm will never converge.

• Even when the dataset is linearly separable, there may be many solutions.The
found solution quality will depend on the parameter’s initialization and the order
in which the data points are presented to the algorithm.

Geometric motivation The input vector xi = {xi 1, xi 2, .., xi D } (representing here a data
sample) can be visualized as points in the D-dimensional space. Then, the weight sum-
mation wT xi defines a hyperplane in D-dimensions that can be shifted by using the bias
parameter. Actually, the bias term w0 is embedded in the weight summation by mul-
tiplying with a new variable xi 0 = 1. Figure 1 provides a visual representation of this
weight summation procedure.

In Figure 2, the hyperplane that is calculated using the weight summation for the two
and three-dimensional space is displayed. The final task of perceptrons is to segregate
the space in two half-spaces as can be seen from this image using these hyperplanes.
In this sense, the perceptron can be seen as an algorithm that is tasked with learning a
linear function (represented by the hyperplane) which is able to perform a binary classi-
fication.

Another useful representation of the perceptron algorithm (and in general of linear
classifiers and SVM as well) can be found in Figure 3. Here again we can see the same
hyperplane as in the case of .2(a). We can apply also some intuition from linear algebra,
and more specifically, we can state that the weight w is orthogonal to the hyperplane
and therefore it can define its direction, while the bias value amounts for the distance
of the hyperplane to the origin. Finally, for a specific data sample x its distance to the

hyperplane amounts to: y(x)
||w || .
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(a) A hyperplane in case of two dimensional input
space.

(b) A hyperplane in case of three dimensional input
space.

Figure 2: The way that the weight summation operation.

LOGISTIC REGRESSION

Similarly to the perceptron algorithm, logistic regression is another type of linear classifi-
cation model which tackles some of the limitations of the perceptron. One fundamental
difference is the use of another activation function which, given the weight summation,
outputs probabilities. In particular:

y(φ(x)) =σ(wTφ(x)+w0) (6)

where σ function is the “sigmoid activation” given by the following expression:

σ(α) = 1

1+exp(−α)
(7)

The motivation for this activation function is derived from the calculated posterior
probability for classification, which, by applying Bayesian rule for a sample x can be
framed as:

p(C1|x) = p(x|C1)p(C1)

p(x|C1)p(C1)+p(x|C2)p(C2)
(8)

which can be easily shown that is of sigmoid form if we divide everything with
p(x|C1)p(C1) and make the proper replacements.

Having defined our model and the activation function, in a similar fashion with per-
ceptron, we need to define the error function to calculate the gradient over w. The error
function that is implemented for the case of logistic Regression is the cross-entropy and
has the following shape:

E(w) =−
N∑

n=1
{tn ln(yn)+ (1− tn) ln(1− yn)} (9)
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Figure 3: Geometric interpretation of perceptron

where yn = σ(wTφ(xn)+w0) is the prediction of our model. The importance of this
error function can be explained form the “Information Theory” perspective. For more
details, see Section 1.6 in Bishop’s book [4].

Multi-class Logistic Regression Logistic Regression can be expanded also to take into
account datasets with multiple classes. Towards this end, instead of the sigmoid function
we make use of the softmax activation function, which in fact, is the extension of the
sigmoid function for the multi-class case. Note here, that in this case instead of one
output and one vector of weights, we have one output for each class and one vector of
weights for each class. Therefore, the output y for the k − th class can be re-formulated
as:

yk (φ(x)) = eαk∑
j eα j

= ewT
k φ(x)+w0∑

j e
wT

j φ(x)+w0
= ζ(k) (10)

with αk = wT
k φ(x)+w0, and we can see that the process is calculated once for each

of the K different classes, and therefore, we have K different weights w. The derivative of
this function can be analyzed for a specific index i to be the following:

∂y(φ(x))k

∂wi
= ∂ζ(k)

∂wi
= ζ(k)(Ik j −ζ(i ))) (11)

where Ik j is equal to one when k = j and zero otherwise. While the cross entropy in
this case can be expressed as follows:

E(w1, ...,wk ) =−
N∑

n=1

K∑
k=1

tnk l n(ynk ) (12)

For this form of the cross-entropy is important to note that we use categorical vectors
for the labels tnk (with n to represent the n-th sample). The dimensionality of these
vectors is K (where K is the total number of classes). Finally, the gradient of the error
function can be calculated and it is:
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∇w j E(w1, ...,wK ) =
N∑

n=1
(yn j − tn j )φn (13)

The update of the weights can occur in a similar fashion with the perceptron algo-
rithm using a gradient-based iterative algorithm like stochastic gradient descent.

Finally, by using this approach we can overcome two of the perceptron’s drawbacks
namely:

• Firstly, with logistic regression, we can have a probabilistic interpretation of the
output by making use of the sigmoid function as activation function.

• Secondly, by applying the softmax activation function, the LR algorithm can be
extended to the multi-class case.

2.1. MULTI-LAYER PERCEPTRON

All the aforesaid basic operations are very interesting and intuitive to understand, how-
ever, they have been proven to be simplistic, and, they can only model linear represen-
tations. Furthermore, when it is necessary to learn a more complicated and meaning-
ful separation plane for the input data (which cannot be expressed by linear separable
classes), we need to employ manually a basis function φ before performing the training
process, which as we mentioned before, needs to be different given different datasets. In
this case, we need to be familiar with the input datasets and the underlying distributions
of these datasets, which are not always easy to obtain.

To mitigate this challenge, and to solve more sophisticated problems, an automatic
way to learn these basis functions should be employed. On this ground, the “Multi-Layer
Perceptron” (MLP) algorithm, also called “Neural Networks” (NN), is introduced. This
approach is an extension of the previously analyzed linear models, and in particular, it
consists of multiple neurons structured in several layers. Neural networks are nested
functions performing linear or non-linear (depending on the activation function) oper-
ations to some input, that produce an output in the same way as logistic regression.

A simple multi-layer perceptron with one hidden layer is visualized in Figure 4.
Firstly, we can see that the network input has the same dimensionality as the data sam-
ple (x = {x1, ..., xD }, where x ∈ RD here is a data sample). Secondly, the hidden layer is
represented by h = {h1, ...,hM } ∈RM , where M is the total amount of hidden neurons and
is a hyper-parameter to be tuned during the training process. Finally, the output layer is
represented by y = {y1, ..., yK } where, K is the number of classes.

A neuron, in a similar fashion to perceptron and logistic regression, combines lin-
early input φ(x) with a set of weights w, that either amplify or downplay that input,
thereby assigning significance to inputs with regard to the task the algorithm is aiming
to learn.

The tuning of these weights occurs during the “training process”. As depicted in Fig-
ure 4, in this example there is only one hidden layer, however, there could be more. The
network in this figure contains K output neurons, a number that is suitable for K -class
classification.
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Figure 4: A multi-layer Perceptron or Neural Network topology. In the similar spirit as in case of perceptron,
each neuron h j (from the hidden layer) in the network contains a weight w j i that connects its inputs (i repre-
sents the input layer.

The output of its network is calculated in the same manner as in the logistic regres-
sion algorithm and is based on the weight summation which is then passed to the acti-
vation function. The same process occurs for the hidden layer, where, the neuron can
determine whether and to what extent the input signal should progress further through
the network and cascade information to the next layer to affect the ultimate outcome.
If the signals pass through, the neuron has been activated. The weight summation and
activation operations for all neurons of the network (from all layers) is denoted as the
feed-forward pass.

Moreover, we will provide a simple example with three layers which are the input,
hidden, and output layers (as depicted in Figure 4 ). Firstly, for the input vector x ∈ RD

we can construct M linear combinations of the input variables with the hidden layer:

a j =
D∑

i=1
w (1)

j i xi +w (1)
j 0 = wT

(1)x (14)

where a j is the the output of a j -th neuron from the hidden layer and is called “ac-
tivation”, with j = 1, ..., M . Finally, the superscript (1) denotes the weights of the hidden
layer. Moreover, with w (1)

j 0 we define the bias of the neuron where the superscript de-

fines the layer and we add in the data sample one extra dimension x0 = 1 to be able to
vectorize the expression (as in case of logistic regression). To calculate the final output of
the neuron, we should apply an activation function h(.) (for instance, it can be a sigmoid
function) and we can have z j = h(a j ). This entity is defined as a “hidden unit”. For the
output layer, we have:

ak =
M∑

j=1
w (2)

k j z j +w (2)
k0 (15)

where k = {1, ...,K } is the index for the specific output class of the output layer. This
layer is denoted by (2) superscript while its weights are denoted by the following w (2)

k j z j .
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Again, w (2)
k0 corresponds to the bias of the output layer. In a similar way as in hidden

layer neurons, this activation also needs to be passed from an activation function like
the sigmoid. The choice of this activation function depends on the nature of our data
and can also be a hyperparameter that needs to be tuned during the training process.

Having a dataset of data samples, we need to pass them through the network and
calculate the output of the hidden neurons. This output is compared with the initial
annotation and an error score based on the predictive power of the output is calculated.
This error score can be used to re-calibrate the weights of the whole network. The core
idea is to always move the weights in the direction that will minimize the “error score”.
To do so, the “back-propagation” algorithm is proposed to re-update the weights. Back-
propagation is based on the the gradient descent algorithm. However, before explaining
this algorithm, an explanation of the basic error function is introduced.

Error function in Neural networks: The error function is a way to evaluate how well
a neural network performs. Given a training sample, the error function compares the
expected targeted output and the actual network output. The error function is a single
value (scalar), not a vector, that denotes how well the neural network does as a whole. A
simple version of this error function (denoted as squared error) can be framed as:

E(w, w0,x, y) = 1

2

m∑
i=1

{ynk − tnk }2 (16)

where ynk is the target value and tnk the predicted one, similarly to “logistic regression”.
However, this error has proven to be problematic with outliers.

From a more rigorous probabilistic point of view and in a similar way with the logistic
regression algorithm, we can apply the binary loss function (“cross entropy”) as:

E(w, w0) =−
n∑

n=1

K∑
k=1

{tnk ln(ynk )+ (1− tnk ) ln(1− ynk )} (17)

Or in case of K mutually exclusive classes we can write it as:

E(w, w0) =−
n∑

n=1

K∑
k=1

tnk ln(ynk ) (18)

Gradient Descent Algorithm Having designed our network and error function, a
method to update the whole network weights should be also employed. Towards this
end, we employ again Gradient Descent Algorithm (GDA).

This algorithm is associated with the way that NNs algorithm updates its weights
each time the error function is calculated. This occurs after one pass of the whole dataset
in one epoch (or possibly in a different way, for instance, after one data sample or a
batch of samples). Having calculated the error function Ew,w0 , this value can be back-
propagated and utilized to modify the values of NN’s parameters {w, w0} in such a way
that the Ew,w0 error will be minimized.

GDA is associated with calculating the gradient of the error function ∇E(w, w0) at a
specific point and is a vector, tangential to the surface pointing in the direction where the
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function increases most rapidly. The reason for this lies in the specific design of the er-
ror function (otherwise it could have also been the point of rapid decrease). Conversely,
the negative gradient −∇E(w, w0) will point in the direction in which the function de-
creases most rapidly. By taking this into account, we can denote the gradient update of
the weights as:

wτ+1 = wτ−λ∇Ew (19)

In the equation above, λ is a constant parameters that is denoted as “learning rate”.
This parameter reflects the importance that the algorithm gives to the gradient vector
during the updating of the weights. If it is set too low, the weights will be adjusted slowly
and the convergence to a local minimum will take a lot of time. On the contrary, if it is set
too high, the algorithm might not be able to track the local minimum since the update of
the weights is too big. In a more analytical form of Equation 19 and using denominator-
layout notation, GDA can be framed as:

∇Ew =


∂Ew
∂w1
∂Ew
∂w2

...
∂Ew
∂wD

 (20)

and when combined with Equation 19 we can develop it as:


wτ+1

1
wτ+1

2
...

wτ+1
D

=


w1

w2

...
wD

−λ


∂Ewτ

∂w1
∂Ewτ

∂w2

...
∂Ewτ

∂wD

 (21)

The most compelling thing about the GDA algorithm is that it will try to adjust those
weights that are in most need, while the weights in less need will change less (due to the
partial derivatives calculation). This is closely connected to the fact that the negative gra-
dient vector points exactly in the direction of maximum descent. This is also visualized
in Figure 5 in a two-dimensional space.

So far the partial derivatives of the error function E are calculated over the variable
w, that represents the weights. For simplicity reasons, the variable w0 that representing
the bias term is omitted. However, in reality, the partial derivative of the error function
over the bias variable needed to be calculated as well: ∂Ew

∂w0
.

Back propagation With GDA, the way that the weights and bias variable needs to be
modified to optimize the error function is shown. This modification is based on the
partial derivative of the error function over the weights and bias. However, calculating
these partial derivatives is not a straightforward task (due to the nested nature of the
weights) and is related to implementation of the “chain rule”, since we need to calculate
nested derivations.

To be more precise, the total error after adopting the independent and identically
distributed assumption (i.i.d) can be formulated as:
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Figure 5: A visualization of the gradient procedure in a 3d space.

E(w) =
N∑

n=1
En(w) = 1

2

N∑
n=1

K∑
k=1

(ynk − tnk )2 (22)

where the error function from Equation 16 is applied. The goal is to find the optimal
weights w∗ (by including also the bias term) such that if we perform a feed pass of the
input dataset the error function value will be minimum. We can formulate this mathe-
matically in the following way:

w∗ = argmin
w

E(w) (23)

In general, for the feed-forward Neural Network, each output unit computes a
weighted sum of the following form:

a j =
M∑

i=0
w j i zi (24)

with z j = h(a j ) being the activation of this specific neuron. In our simple example
with one input, one hidden, and one output layer zi = xi (for the input layer). Therefore,
for the neuron z j = h(a j ) can be either one in the output layer or one of hidden layer (in
this case: a j =∑M

i=0 w j i xi ).
Having calculated the feed-forward step, we need to calculate the gradient of the

error function over these weights. The whole process of calculating the gradient of the
error function over w j i for sample n (where j is the j -th neuron in the hidden layer) can
be deconstructed using the chain rule:

∂En

∂w j i
= ∂En

∂a j

∂a j

∂w j i
(25)

where it can be easily shown that
∂a j

∂w j i
= zi . When the activation function is the iden-

tity function zi = xi . Moreover, we can disentangle the derivations if we define δ j = ∂En
∂a j
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Figure 6: A visualization of the gradient procedure in a 2d space. Being in a current position the goal is to
modify the weights w in such as way that the algorithm will reach the minimum error function Ew.

and therefore, the result of the whole derivation is ∂En
∂w j i

= δ j zi . Hence, by calculating δ j

we can calculate the desired derivative. For the output layer we have:

δk = ∂En

∂ak
= yk − tk (26)

since the neuron is connected to all output neurons as is depicted in Figure 6, we
derive:

δ j =
K∑

k=1

∂En

∂ak

∂ak

∂a j
= h

′
(a j )

∑
k

wk jδk (27)

where ∂En
∂ak

= δk = yk−tk and ∂ak
∂a j

= wk j h
′
(a j ). Here we should also develop the equa-

tion for yk :

yk = h(
K∑

k=0
wi k z j ) (28)

For an unseen sample x
′
, we can use Equation 28 to calculate its output layer acti-

vation for each class. Then, we can assign the test sample in the class with the highest
activation.

3. DEEP LEARNING
In a nutshell, deep learning networks are differentiated from single-hidden-layer neural
networks by the number of node layers that they consist of. The basic versions of NNs
such as the one explained in the previous section are the so-called shallow networks,
composed of one input and one output layer, and at most one hidden layer in between.
Networks with more than three layers (including input and output) qualify as deep learn-
ing. In this section, we will delve into deep learning architectures. For instance, in the
following sub-sections we will analyze Convolutional Neural Networks (CNNS), Recur-
rent Neural Networks (RNNs), and some useful features of deep learning.
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Figure 7: A diagram of Convolutional Neural Network (CNNs) classifying basic emotion from an input face. In
this figure we can see the tensor sizes in each step of the operation that are implemented in Chapters 3, 4 and
5. In between each layer we apply max pooling, batch normalization and dropout.

3.1. CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks (“ConvNets“ or CNNs) [15] [16] are a special category of
“sparse” neural networks that has been proven to be very effective especially for com-
puter vision applications. These networks are considered to be sparse since in compari-
son with NNs and fully connected layers, only some of the connections are activated due
to the convolution operation.

CNNs have been successfully implemented to perform face recognition, object
recognition, and in general in classification applications related to images, video or
graphics [14] [17] [18].

The CNN in Figure 7, is based on the LeNet [19] architecture and classifies a face in-
put image into six categories of emotion: anger, disgust, fear, happy, neutral, and sad.
The figure visualises how an input image can be transformed through the CNN opera-
tions and lead to the output layer. The operations involved will be analysed into further
details in the following paragraphs. In the visualised example of the figure, when the
system receives an angry face image as input, the network correctly assigns the highest
probability for anger (0.94) and the remaining 0.06 is distributed across all five remaining
categories. The sum of all probabilities in the output layer should be one.

In more detail, regarding the feed-forward pass, the operations that are applied to
the input tensor (in the previous example represented by an image) are the Convolution
operation, the activation function, the pooling operation and finally, the fully connected
layer or as called alternatively fully connected layer. In more details:

• Convolution operation: During this step, the convolution operation is performed
to the input image using a set of filters (whose values are to be learned during the
training). The basic idea of the CNNs algorithm is that a set of convolution filters
are applied to the image with unknown trainable parameters. In this way, the net-
work tunes the parameters of these filters, which lead to learn robust features from
the image after the convolution operation.

• Pooling or Sub Sampling: This operation is applied to decrease the dimensional-
ity of the tensors, and, as a result, to reduce the computational complexity of the
whole training approach.

• Classification (Fully Connected Layer): After performing multiple convolution
and pooling layers, in the end a fully connected layer (similar to a swallow neural
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Figure 8: An example of how convolution operates in 2d image.

network) is applied to easily connect the result of the whole network to an output
layer.

These operations are the basic building blocks for the CNNs. Finally, the training
procedure is performed by using the standard backprogragation algorithm and tuning
the weights of the whole network, while the error function depends of the application
that the algorithm needs to perform.

CONVOLUTION OPERATION

The basic operation that gives CNNs their name is the “convolution” operation. The
purpose of convolution is to extract features from the input image. To do so, there are
several convolutional layers in the network. Each of these layers consists of several filters
that are used to perform the convolution operation on the inputs of the layer. These
filters, in a similar way to the dense layer in the multi-layer perceptron, contain weights
that are randomly initialized. These filters are applied to the input data (by performing
the convolution operation as shown in Figure 8). During the training procedure, their
values are tuned by the back-propagation process. By learning the weights that represent
the values of the convolution operation, the network preserves the spatial relationship
between pixels by learning image features using small squares of input data.

To give a better intuition about the convolution process, Figure 8 displays the way
that the convolution process operates for a 2d image. In the specific example, we make
use of a static filter that is called “average filter”. In the case of CNNs, the values of the
filter are tuned during the training process and are fixed values.

Transposed convolution layer: In several occasions, it is very useful to perform, the
converse convolution operation called “transposed convolution” or otherwise “decon-
volution”. This is normally the case (when using GANs or auto-encoder inspired archi-
tectures) when it is desired to map an input (for instance an input image) to a target
image.

The basic explanation of converse convolution can be as follows: let us assume an
input image and a convolution filter and the output after the application of the convolu-
tion operation. The intuitive idea behind the converse convolution is the following: after
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(a) Transpose convolution operation first part.

(b) Transpose convolution operation second part.

Figure 9: Transpose convolution operation.

applying the operator to the input image the output image emerges. If we then apply a
normal convolution to this output image it should lead to the initial input image.

The basic principle of the transposed convolution layer can be summarized using
the example of Figure 9. In this Figure, we have a 2×2 input, as well as a filter with the
same pixel values. The result of the operation can be seen in the end of this figure. While
this operation is also called deconvolution, it does not exactly perform the converse op-
eration of the convolution itself, but it is an up-sampling operation that simulates the
operation of the convolution itself.

ACTIVATION FUNCTION

A basic operation that provides non-linearity in neural networks and in deep learning is
the application of an “activation function”. This function is applied to the activation of
each artificial neuron. Some typical implemented activation functions are:

Sigmoid:
The sigmoid function is a mathematical formula that is shaped to be like an S-shape

function. It can be framed using the following formula:

h = 1

1+exp−x = expx

1+expx (29)

The main reason that the sigmoid function is employed is because it transforms
all input values so that they are between zero and one. Hence, it is useful for models
that needs to output probabilities. Since the probabilities are valid only in the range
of 0 to 1, sigmoid is a logical option. Another significant feature is that the function is
differentiable. That is to say that the slope of the sigmoid curve can be calculated at any
two points. This activation function is visualized in Figure .10(a).

Hyperbolic tangent:
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(a) Sigmoid activation function. (b) Tanh activation function.

(c) ReELU activation function. (d) Leaky ReLU activation function.

Figure 10: Activation functions.
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h = expx −exp−x

expx +exp−x (30)

The hyperbolic tangent or tanh framed by Equation 3.1 is also a simgoid style
function with an S-shape. The fundamental difference to the simple sigmoid is framed
in Figure 10. It actually projects the negative inputs to be mapped as strongly negative
and the zero inputs will be mapped near zero in the tanh graph.

ReLU: Rectified Linear Unit is another type of activation function. Mathematically, it
is framed in Equation 31. Visually, it is displayed in Figure .10(c):

h =


max(0, x) if x ≥ 0

undefined if x = 0

0 if x < 0

. (31)

The ReLU is widely applied as an activation function in deep learning state-of-the-art
approaches. In particular, it has been used in almost all convolutional neural networks
or deep learning approaches. One notorious drawback with this activation function is
that the negative values turn into zero steeply. This characteristic affects the training
process of the network and the ability of the model to properly fit the training datasets.

Leaky ReLU: In an attempt to solve the dying ReLU problem a new modified version
of the ReLU activation is proposed, the so-called Leaky ReLU. This activation function is
displayed in Figure .10(d) and framed in Equation 32.

h =


max(0, x) if x ≥ 0

undefined if x = 0

αx x < 0

. (32)

MAX POOLING OPERATION

Spatial Pooling (also called sub-sampling or down-sampling) is an essential operation
that is part of the CNNs architectures, that aims at reducing the dimensionality of the
feature maps by keeping only essential information. Spatial Pooling has different mode
types: Max, Average, Sum, and so forth. In the case of Max Pooling, we define a spatial
neighborhood (for example, a 2× 2 window), and for this window, we keep the largest
element that results from the convolution filter after the application of the activation
function. Instead of taking the largest element, we could also take the average (Aver-
age Pooling) or the sum of all elements in that window. Empirically, Max Pooling has
been shown to work better. In Figure 11, an example of how this operation functions
is depicted. It is important to state here that there are no trainable weights for this op-
eration in the network. Furthermore, for each convolution layer, normally there is one
max-pooling layer as well.

Up-sampling operation This operation (in a similar spirit to transpose convolution)
is proposed for performing the reverse task regarding the max polling operation. This
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Figure 11: The max pooling process example for a 2d input image matrix.

Figure 12: The up-sampling operation example for a 2d input image matrix.

operation simply takes as input one image of dimensions k ×k and quadruples its size
by replicating each pixel 4 times (as a 2×2 region).

BATCH NORMALIZATION

Batch normalization [20] is the idea of normalizing the intermediate layers of the CNNs
during the training process. Normally, in machine learning, the input layer is normalized
by scaling the input feature values. For example, when an input variable ranges from 0
to 1 while another ranges from 1 to 1000, then a standard normalization process occurs
to speed up the learning. Since it has been proven that this process for the input layer
has beneficial effects, the same can be applied to the values in the hidden layers, which
are constantly changing.

To accelerate the convergence of a neural network, batch normalization “normal-
izes” the output of a previous activation layer by subtracting the batch mean and divid-
ing by the batch standard deviation. However, after this shift of the activation outputs,
the weights in the next layer are no longer optimal. Consequently, batch normalization
adds two trainable parameters to each layer, so that the process will be smoother. The
whole approach is summarized in Algorithm 3.
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Figure 13: Dropout operation for the dense connected layer in a specific batch.

Algorithm 3 Batch normalization approach implemented in the output of the activation
function x .

1: Input: Values of x over a mini batch B = {x1,x2, ...,xm} and parameters to be learned
γ and β.

2: Output: The normalized output x̂i = φ(γ,β)(xi ) with i = 1, ...,m and φ the batch nor-
malization function.

3: µB = 1
m

∑m
i=1 xi

4: σ2
B = 1

m

∑m
i=1(xi −µB )2

5: x̃i = xi−µB√
σ2

B+ε
6: x̂i = γx̃i +β

DROPOUT OPERATION

Dropout operation [21] regards ignoring several neurons (which are chosen randomly)
in NNs by using skip connections [4] during the training phase of the network. This
approach can be applied to Neural Networks and in general in deep learning approaches.
This means, that during the forward and backward training pass, some neurons of the
weights are neutralized. More technically, at each training stage, individual nodes are
either randomly dropped out or kept. That decision is based on a Bernoulli distribution
with probability p to keep the node and probability 1−p to keep drop the node.

The reason that this operation is applied is to avoid over-fitting. During training,
there is a chance that the network collapses and only some of the neurons of the network
really fire up. In these situations, no matter what is the input, there are neurons that are
never influenced by it and lead to a problematic output. On this ground, by neutralizing
different parts of the network during each epoch, we are trying to uniformly enforce that
all neurons learn some meaningful information. In Figure 13, the way that this approach
operates in the case of dense connected layers is displayed. In the case of the CNNs, the
“dropout” operation operates in a similar fashion. However, in this case, it occurs in the
filters of a CNNs layer.
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Figure 14: A diagram of Recurrent Neural Network (RNNs).

3.2. RECURRENT NEURAL NETWORKS

All the previous ML algorithms can be categorized as non-sequential-based networks
since they always process a single input (for example, a single image frame) indepen-
dently of other frames. However, in several cases, when we are trying to model data
that embed time information, a modified strategy needs to be applied. Hence, recurrent
neural networks (RNNs) [23] [24] are proposed as the natural extension of simple NNs
for sequential-related problems to time signals (video classification, stock market pre-
diction, machine translation, text generation, and so forth [23][24]). To explain the way
that RNNs operate, we will proceed with the following example: Let us assume that a
viewer is watching an animation movie, and a new scene from this animation is about
to start. Having already watched several scenes of the animation, the viewer can already
rationalize about the story of the animation and start connecting the dots of the whole
movie. Hence, the current scene will be interpreted by human perception by taking into
account the existing information.

However, when it comes to the analysis of the animation by ML algorithms such as
CNNs, this is not the case. The reason is that the CNNs are always processing one state
of the problem at a time (by processing just one frame), and therefore, the information
from previous frames is lost. One possible way to deal with this, is to apply the network
in a self-loop by giving as input frames from different time sequences and by keeping a
memory information from previous frames.

On this ground, RNNs are introduced to mitigate the insufficiency of CNNs to handle
temporal information. Since now the input is data over time, we can denote the input
data (frames in our example) as xi where index i stands for the time order in the se-
quence of the frames. An RNN network takes as input not only the input frames xi but
also the network’s output from the previous instance hi−1 (where h represents the hid-
den state of the NNs or CNNs). Hence, if the output of the network at t = 1 is h0 and the
input x0, the training for the network at t = 2 will also consider h0 (the output received
from the previous instance of time). If we unroll the network, we will get the structure
visualized in Figure 14.

It is important to note that the sequential units A (depicted in Figure 14) are the same
over time. This unit A actually can be represented by a dense Neural Network, a CNN, or
any other architecture. Again, for the error function, it is chosen depending on the nature
of the input datasets and the task that we want to perform. Finally, the feed-forward and
back-propagation are occurring in the same fashion as in the case of NNs.

Unfortunately, RNNs notoriously face a severe issue regarding the way that back-
propagation operates over time. This could notoriously lead to “vanishing gradient” or
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Figure 15: Long short-term memory (LSTM) cell or unit.

“exploding gradient” problems 4 and to a de-stabilized training process due to the un-
rolled performance of the chain rule over time. In simple words, RNNs can not keep in
memory important information (from early previous time sequences) that may provide
important insights to later timestamps. To overcome these problems, Long Short Term
Memory (LSTM) is proposed by Hochreiter and Schmidhuber in [25].

LONG SHORT-TERM MEMORY

LSTM is a special type of RNNs that can learn long-term dependencies that do not suffer
from the “vanishing or exploding gradient” to the same extent as in the case of RNNs.
The LSTM unit has four different neural network layers which interact differently with
the input data, unlike RNNs that only have a single neural network layer.

In particular, the LSTM unit consists of the cell state (current information flow of the
unit) and three Gates - forget gate, input gate, and output gate. These operations can
be seen in Figure 15. In more detail:

• Cell State: The cell state plays the role of the continuous flow of information over
various instances of time. At each instance of time it needs to be decided how
much information the cell state will maintain or modify. The reason why LSTMs
are introduced in the first place, is to retain the importance of the information
that comes from a particular sequence in time that is time-distant from the cur-
rent sequence (in contrast with RNNs that take into account only the immediately
preceding frame while the information from older sequences vanishes). Naturally,
in the first time step there is not any cell state ct−1 from the previous step to be
given as input.

• Gate: The LSTM has the ability to let information through the network by either
adding or removing information from previous states by using the “gates”.

4shorturl.at/efzBL

shorturl.at/efzBL
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• Forget gate: In order to decide which information the LSTM will pay more atten-
tion to (at each stage) the forget gate is introduced. Firstly, let us take a closer look
at the various notations we have:

– ct−1 is the previous cell state, while ct the current cell state.

– ht−1 is the output from the previous state, while ht is the output of the current
state.

The forget gate regulates the amount of information from the previous cell state
that will be used and how much will be discarded. The output from the last state
ht−1 is concatenated with xt and passed through a sigmoid function. This oper-
ation can be formalized as: ft = σ(w f [ht1 ,xt]+w0 f ). Sigmoid activation provides
an output between 0-1. Intuitively, 0 can be translated as a “complete” forget while
one means that everything should be kept in memory.

• Input gate: The input gate regulates which new information will be added to the
cell state. The concatenated xt and ht−1 is sent over a sigmoid unit that decides
what value we will be updated. This value is also processed by a hyperbolic tan-
gent layer which normalizes its value between −1 to +1. Then, we multiply the
hyperbolic tangent output with the sigmoid output and add it to the cell state. Af-
ter performing all these operations the output of the cell state can be extracted.
This operation can be formalized as: it =σ(wi [ht1 ,xt]+w0i ).

• Output gate: The output gate decides which information will be passed to the
next instance of time. Firstly, the input xt and ht−1 are sent over a sigmoid unit.
Then, the current cell state is processed by the hyperbolic tangent function (point
wise). This is formalized as: C̃t = tanh(wc [ht1 ,xt]+ w0c ). Both of these outputs
are multiplied and sent over to the next instance of time. We can frame this as:
Ct = ft Ct−1 + it C̃t .

It is important to state here that the weights of LSTM are shared among the differ-
ent timestamps. In this way, previous information from previous states still remains in
memory. Finally, by using this RNNs architecture, we are able not only to take into ac-
count the temporal information from previous frames, but to also alleviate the vanishing
gradient problem that is introduced by RNNs.

4. SUPPORT VECTOR MACHINES
Support Vector Machines (SVM) is a popular supervised classification and regression ML
algorithm. It lies in the non-probabilistic and non-deep learning approaches. One im-
portant feature that makes SVM a popular algorithm is that it can be framed as a convex
optimization problem, which means that we can have only one optimal solution. An-
other characteristic that makes SVM a good classification option is that it is not sensitive
to outliers. In this section, we will analyze its basic form that is related to binary clas-
sification tasks. It can be easily expanded for multi-class classification and regressions
tasks as well.
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(a) The initial two datasets. (b) Support vectors and the calculated hyperplane.

Figure 16: The objective of the SVM algorithm when trying to classify two different data points in two different
classes.

The goal of SVM is to define a hyperplane in a multidimensional space that separates
two different classes from a given dataset. The algorithm is considered to be a maximum
margin classifier since its task is to find a maximum marginal hyperplane that best di-
vides the dataset into classes. To calculate the aforesaid hyperplane, its task is to deter-
mine the correspondent training data points which can specify a hyperplane that can
divide the two classes in the most optimal way by maximizing the margin between the
two classes. These data points that defined the hyperplane are called support vectors.

Firstly, we will denote out dataset as {xn , tn} with xn ∈RD to be a D-dimensional vec-
tor, n = {1, ..., N } to be the indexes of the data points and tn ∈ {−1,1} the class information
associated with the data samples. SVM in its core is a linear and binary classifier, and
thus, we can use the following model:

y(x) = wTφ(x)+w0 (33)

where φ denotes a fixed feature transformation (coined alternatively as basis func-
tions, which is a possible transformation from the initial pixel space to a targeted space)
and w and w0 denote the associated linear parameters of the SVM algorithm. The deci-
sion of the network is determined by the sign of y(x). SVM employs the term “margin”
which is coined as the perpendicular distance from the decision boundary to the closest
data points [4], as illustrated in Figure .16(b).

The distance from any of the points in this figure, to the boundary decision defined
as y(x) = wTφ(x)+w0 = 0 is given by:

d = |y(x)|
||w || (34)

That is shown before in Figure 3. Since we are interested only in the decision
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boundaries where all points are correctly classified, therefore, tn y(xn) > 0 that means
y(xn) ≥ 0 if tn = 1 or y(xn) < 0 if tn = −1. Moreover, we can re-write the previous equa-
tion as:

tn y(xn)

||w || = tn(wTφ(xn)+w0)

||w || (35)

The definition of the term margin in SVM (that needs to be maximized) can be as
follows: the perpendicular distance to the closest point xn from the data set. Moreover,
as we mentioned before, we wish to optimize the parameters w and w0 to maximize this
distance. Thus, the maximum margin solution is found by solving:

argmax
w,w0

{ 1

||w|| min
n

[tn(wTφ(xn)+w0)]
}

(36)

From Equation 36, it follows that there are several values of weights that satisfy this
optimization. If we replace w with κw it is obvious that we can lead to the same op-
timization problem. However, to make the problem tractable, we can assume that the
following is true:

tn(wTφ(xn)+w0) = 1 (37)

In this case, all data points xn need to satisfy the following constraint:

tn(wTφ(xn)+w0) ≥ 1, with n = {1, ..., N } (38)

Maximizing Equation 36 is equivalent to minimizing the following expression:

argmin
w,w0

1

2
||w||2 (39)

where the utility of adding the fraction lies in its convenience for the numerical
derivations, while the square was added to guarantee the final optimization scheme to
be convex. Bare in mind that the minimization of Equation 39 is subjected still to the
constraint of Equation 37, therefore the whole optimization, ends up being a constrained
“quadratic optimization”. To solve this constraint optimization problem, Lagrangian
multipliers need to be introduced and to form the following equivalent Lagrangian func-
tion:

L(w, w0,a) = 1

2
||w ||2 −

N∑
n=1

an{tn(wTφ(xn)+w0)−1} (40)

For each of the data points xi corresponds one Lagrangian multiplier ai . It is impor-
tant to note here, that the minus sign of the Lagrangian function is due to the fact that
we want to perform minimization and not maximization. Then, the stationary points of
the Lagrangian can be calculated. Deriving over w will lead to w = ∑N

n=1 an tnφ(xn) and
deriving over w0 will lead to 0 =∑N

n=1 an tn . The previous optimization is subject also to
Karush-Kuhn-Tucker constraints (KKT):

an ≥ 0 (41)



4. SUPPORT VECTOR MACHINES 211

tn y(xn)−1 ≥ 0 (42)

an(tn y(xn)−1) = 0 (43)

with the first constraint being the dual feasibility the second one being the primal
feasibility, and the last one to be the complementary slackness. Having calculated the
stationary points, we can eliminate w and w0 from the Lagrangian, which leads to the
dual Lagrangian representation:

L̃(a) =
N∑

n=1
−1

2

N∑
n=1

N∑
m=1

an am tn tmφ(xn)Tφ(xm) (44)

which is subject to Karush-Kuhn-Tucker constraints (KKT): an ≥ 0 and
∑N

n=1 an tn = 0.
The main reason for the dual representation is that we can easily replace the expres-

sion: k(x, x
′
) = φ(x)Tφ(x) with a kernel and take advantage of the kernel trick and the

powerful expressivity that comes along with it. The prediction function for a new data
sample can be calculated using the following formula:

y(x) =
N∑

n=1
an tbk(x,xn) (45)

As is obvious from Equation 45, if the Lagrangian multiplier for a point is equal to
an = 0 then it will not influence the calculation of the prediction decision so it will be
considered inactive, while the rest of the samples for which an ≥ 0 will be considered the
active samples, or otherwise called support vectors. From the complementary slackness
we know that if an ≥ 0 then we have tn y(xn) = 1 and thus, the support vector points lie on
the maximum margin hyperplane. Hence, in the end, we can discard most of the points
and we are only interested in a set of points that lie in the maximum margin hyperplane.
On this ground, SVM can be considered as a Sparse Machine kernel method.

As aforesaid, we employed in SVM basis functions to map the initial input space
(which is not linearly separable) into a feature space in which the same classification
can be linearly separable and proceeded to calculate the decision boundary. Further-
more, we explained how in the dual Lagrangian representation the basis function can be
replaced by kernels and in order to reduce the calculation complexity.

However, in this introduced feature space (in which we mapped our problem using
kernels), still, we cannot always guarantee that our problem will be linearly separable.
After applying the kernels though, the resulting decision boundary will give exact sepa-
ration of the training data even if the correspondent decision boundary is not linear. On
this ground, the non-linear separable problem will have class-distributions that have
significant overlap and therefore, the decision boundary will lead to problematic gener-
alization behaviours.

To cope with this issue, Vapnik and Cortes in [26] employ the slack variables ξi ≥ 0,
where each one of these variables corresponds to each of the data points xi . For ξi = 0
then the correspondent data point xi lies in the correct margin boundary and when ξi =
1 then the data point lies exactly in the decision boundary and when ξi > 1 the data point
is misclassified. After introducing these slack variables, we can modify the constraints of
the SVM optimization correspondingly:
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tn y(xn) ≥ 1−ξn , with i = {1, ...,n} (46)

In this way, the algorithm relaxes the hard margin constraint and gives a soft margin
which allows some misclassified training data samples. We can pose our soft minimiza-
tion now as:

C
N∑

n=1
ξn + 1

2
||w||2 (47)

where the relaxation parameter C accounts for trade-off between the minimization
of the margin and the slack variables. Setting C to a value close to zero gives a lot of
emphasis to slack variables, while setting C >> 0 poses again our initial SVM optimiza-
tion. Having introduced the slack variables, we can reformulate our primal and dual
Lagrangian forms again. In this case, the primal Lagrangian can be framed as:

L(w, w0,ξa,µ) = 1

2
||w ||2 +C

N∑
n=1

ξn −
N∑

n=1
an{tn(wTφ(xn)+w0)−1+ξn}−

N∑
n=1

µnξn (48)

with µn >> 0 to be Lagrangian multipliers, in order to take into account the new
constraint that is ξn >> 0. That is reflected in the last part of the Equation 48. We can
re-write the KKT conditions as:

an ≥ 0 (49)

tn y(xn)−1+ξn ≥ 0 (50)

an(tn y(xn)−1+ξn) = 0 (51)

ξn ≥ 0 (52)

µn ≥ 0 (53)

µnξn = 0 (54)

And finally, by calculating the stationary points we can write the dual form as:

L̃(a) =
N∑

n=1
−1

2

N∑
n=1

N∑
m=1

an am tn tmφ(xn)Tφ(xm) (55)
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conducting research in the recent advances in these fields.
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