7 research outputs found

    An unexpected cause of palmar paraesthesia in a soldier : a case report

    Get PDF
    Athletes presenting with neurological symptoms merit thorough assessments that in most cases will include investigations with one or more imaging modality. Imaging is especially useful in atypical presentations of neurological pathology (both acute and chronic) as was the instance in the presented case report. The case of a 22-year-old male soldier is presented who presented with a two week history of paraesthesia involving his right hand. After being assessed by the military medical officer, a presumptive diagnosis of cervical radiculopathy was made and appropriate treatment was prescribed. Symptoms persisted despite treatment and following an inconclusive cervical X-Ray, a magnetic resonance scan was booked that confirmed the diagnosis of multiple sclerosis. The patient was admitted to hospital and started on intravenous methylprednisolone and beta-interferon therapy with resolution of his symptoms. This case highlights the usefulness of imaging in confirming diagnosis, especially in atypical presentations of pathology afflicting the neurological system. Atypical symptoms, lack of response to standard therapy and inconclusive initial radiological investigations, should prompt the physician to carry out further detailed imaging modalities. The choice of the latter will need to reflect the working differential diagnoses. With reference to the presented case, imaging plays a role not only in diagnosis but also in assessing response to treatment and disease progression.peer-reviewe

    AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis.

    Get PDF
    BACKGROUND Contrast-enhancing (CE) lesions are an important finding on brain magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) but can be missed easily. Automated solutions for reliable CE lesion detection are emerging; however, independent validation of artificial intelligence (AI) tools in the clinical routine is still rare. METHODS A three-dimensional convolutional neural network for CE lesion segmentation was trained externally on 1488 datasets of 934 MS patients from 81 scanners using concatenated information from FLAIR and T1-weighted post-contrast imaging. This externally trained model was tested on an independent dataset comprising 504 T1-weighted post-contrast and FLAIR image datasets of MS patients from clinical routine. Two neuroradiologists (R1, R2) labeled CE lesions for gold standard definition in the clinical test dataset. The algorithmic output was evaluated on both patient- and lesion-level. RESULTS On a patient-level, recall, specificity, precision, and accuracy of the AI tool to predict patients with CE lesions were 0.75, 0.99, 0.91, and 0.96. The agreement between the AI tool and both readers was within the range of inter-rater agreement (Cohen's kappa; AI vs. R1: 0.69; AI vs. R2: 0.76; R1 vs. R2: 0.76). On a lesion-level, false negative lesions were predominately found in infratentorial location, significantly smaller, and at lower contrast than true positive lesions (p < 0.05). CONCLUSIONS AI-based identification of CE lesions on brain MRI is feasible, approaching human reader performance in independent clinical data and might be of help as a second reader in the neuroradiological assessment of active inflammation in MS patients. CRITICAL RELEVANCE STATEMENT Al-based detection of contrast-enhancing multiple sclerosis lesions approaches human reader performance, but careful visual inspection is still needed, especially for infratentorial, small and low-contrast lesions

    Material state tracking by nondestructive evaluation data

    Get PDF
    This thesis tackles the challenge of using nondestructive evaluation data as a sensor measurement input for a state estimation scheme in order to estimate the current state a part that is changing over time. This is made particularly challenging because of the multidisciplinary nature of the problem. The estimation solution incorporates work from statistics, computer vision, and the physics of nondestructive evaluation. This thesis discusses the basis for spatio-temperal Kalman filtering and uses a simple version of spatio-temperal filtering to simulate material state tracking on composite spec- imens. The simulation illustrates that by using the algorithm presented here, even with very naive inputs, it is possible to track a dynamic material state and provide estimates that better reflect the true state of the part as compared with the most recent sensor measurement alone. Additionally, this thesis demonstrates the algorithm on laboratory test data. Com- posite panels were manufactured and then intentionally impacted to induce subsurface delaminations. The composite panels were then loaded multiple times in four-point bending to induce incremental damage growth. After each damage event (initiation and loading) flash thermography and computed tomography data was collected. The flash thermography data was used as a sensor measurement in the spatio-termporal Kalman filter and the computed tomography data was used as a ‘truth\u27 value for comparison. For four out of five data sets, at every time step, the spatio-temporal Kalman filter estimate matched the computed tomography ‘truth\u27 better than the most recent single sensor measurement. For the fifth data set, the estimate better matched the truth at most time steps. Finally, we present a method that uses a probabilistic approach to identifying the location and orientation, or pose, of a specimen or part within an image. This process found the most likely transformation from the object coordinate frame to the camera coordinate frame but also ranked less probable transformations by likelihood. The discus- sion is continued with an exploration of different, non-Gaussian uncertainty distributions that result from the process of registering two dimensional images to three dimensional part models. A method for approximating non-Gaussian distributions using Gaussian mixtures is presented and discussed. The work presented in this thesis successfully demonstrates that Bayesian estimation with nondestructive evaluation data will provide superior and more meaningful state estimates while discussing the issues that must be considered in doing this estimation properly

    Multiple sclerosis Lesion Detection via Machine Learning Algorithm based on converting 3D to 2D MRI images

    Get PDF
    In the twenty first century, there have been various scientific discoveries which have helped in addressing some of the fundamental health issues. Specifically, the discovery of machines which are able to assess the internal conditions of individuals has been a significant boost in the medical field. This paper or case study is the continuation of a previous research which aimed to create artificial models using support vector machines (SVM) to classify MS and normal brain MRI images, analyze the effectiveness of these models and their potential to use them in Multiple Sclerosis (MS) diagnosis. In the previous study presented at the Cognitive InfoCommunication (CogInfoCom 2019) conference, we intend to show that 3D images can be converted into 2D and by considering machine learning techniques and SVM tools. The previous paper concluded that SVM is a potential method which can be involved during MS diagnosis, however, in order to confirm this statement more research and other potentially effective methods should be included in the research and need to be tested. First, this study continues the research of SVM used for classification and Cellular Learning Automata (CLA), then it expands the research to other method such as Artificial Neural Networks (ANN) and k-Nearest Neighbor (k-NN) and then compares the results of these

    Automatic Segmentation of Intramedullary Multiple Sclerosis Lesions

    Get PDF
    Contexte: La moelle Ă©piniĂšre est un composant essentiel du systĂšme nerveux central. Elle contient des neurones responsables d’importantes fonctionnalitĂ©s et assure la transmission d’informations motrices et sensorielles entre le cerveau et le systĂšme nerveux pĂ©riphĂ©rique. Un endommagement de la moelle Ă©piniĂšre, causĂ© par un choc ou une maladie neurodĂ©gĂ©nĂ©rative, peut mener Ă  un sĂ©rieux handicap, pouvant entraĂźner des incapacitĂ©s fonctionnelles, de la paralysie et/ou de la douleur. Chez les patients atteints de sclĂ©rose en plaques (SEP), la moelle Ă©piniĂšre est frĂ©quemment affectĂ©e par de l’atrophie et/ou des lĂ©sions. L’imagerie par rĂ©sonance magnĂ©tique (IRM) conventionnelle est largement utilisĂ©e par des chercheurs et des cliniciens pour Ă©valuer et caractĂ©riser, de façon non-invasive, des altĂ©rations micro-structurelles. Une Ă©valuation quantitative des atteintes structurelles portĂ©es Ă  la moelle Ă©piniĂšre (e.g. sĂ©vĂ©ritĂ© de l’atrophie, extension des lĂ©sions) est essentielle pour le diagnostic, le pronostic et la supervision sur le long terme de maladies, telles que la SEP. De plus, le dĂ©veloppement de biomarqueurs impartiaux est indispensable pour Ă©valuer l’effet de nouveaux traitements thĂ©rapeutiques. La segmentation de la moelle Ă©piniĂšre et des lĂ©sions intramĂ©dullaires de SEP sont, par consĂ©quent, pertinentes d’un point de vue clinique, aussi bien qu’une Ă©tape nĂ©cessaire vers l’interprĂ©tation d’images RM multiparamĂ©triques. Cependant, la segmentation manuelle est une tĂąche extrĂȘmement chronophage, fastidieuse et sujette Ă  des variations inter- et intra-expert. Il y a par consĂ©quent un besoin d’automatiser les mĂ©thodes de segmentations, ce qui pourrait faciliter l’efficacitĂ© procĂ©dures d’analyses. La segmentation automatique de lĂ©sions est compliquĂ© pour plusieurs raisons: (i) la variabilitĂ© des lĂ©sions en termes de forme, taille et position, (ii) les contours des lĂ©sions sont la plupart du temps difficilement discernables, (iii) l’intensitĂ© des lĂ©sions sur des images MR sont similaires Ă  celles de structures visiblement saines. En plus de cela, rĂ©aliser une segmentation rigoureuse sur l’ensemble d’une base de donnĂ©es multi-centrique d’IRM est rendue difficile par l’importante variabilitĂ© des protocoles d’acquisition (e.g. rĂ©solution, orientation, champ de vue de l’image). MalgrĂ© de considĂ©rables rĂ©cents dĂ©veloppements dans le traitement d’images MR de moelle Ă©piniĂšre, il n’y a toujours pas de mĂ©thode disponible pouvant fournir une segmentation rigoureuse et fiable de la moelle Ă©piniĂšre pour un large spectre de pathologies et de protocoles d’acquisition. Concernant les lĂ©sions intramĂ©dullaires, une recherche approfondie dans la littĂ©rature n’a pas pu fournir une mĂ©thode disponible de segmentation automatique. Objectif: DĂ©velopper un systĂšme complĂštement automatique pour segmenter la moelle Ă©piniĂšre et les lĂ©sions intramĂ©dullaires sur des IRM conventionnelles humaines. MĂ©thode: L’approche prĂ©sentĂ©e est basĂ©e de deux rĂ©seaux de neurones Ă  convolution mis en cascade. La mĂ©thode a Ă©tĂ© pensĂ©e pour faire face aux principaux obstacles que prĂ©sentent les donnĂ©es IRM de moelle Ă©piniĂšre. Le procĂ©dĂ© de segmentation a Ă©tĂ© entrainĂ© et validĂ© sur une base de donnĂ©es privĂ©e composĂ©e de 1943 images, acquises dans 30 diffĂ©rents centres avec des protocoles hĂ©tĂ©rogĂšnes. Les sujets scannĂ©s comportent 459 sujets sains, 471 patients SEP et 112 avec d’autres pathologies affectant la moelle Ă©piniĂšre. Le module de segmentation de la moelle Ă©piniĂšre a Ă©tĂ© comparĂ© Ă  une mĂ©thode existante reconnue par la communautĂ©, PropSeg. RĂ©sultats: L’approche basĂ©e sur les rĂ©seaux de neurones Ă  convolution a fourni de meilleurs rĂ©sultats que PropSeg, atteignant un Dice mĂ©dian (intervalle inter-quartiles) de 94.6 (4.6) vs. 87.9 (18.3) %. Pour les lĂ©sions, notre segmentation automatique a permis d'obtenir un Dice de 60.0 (21.4) % en le comparant Ă  la segmentation manuelle, un ratio de vrai positifs de 83 (34) %, et une prĂ©cision de 77 (44) %. Conclusion: Une mĂ©thode complĂštement automatique et innovante pour segmenter la moelle Ă©piniĂšre et les lĂ©sions SEP intramĂ©dullaires sur des donnĂ©es IRM a Ă©tĂ© conçue durant ce projet de maĂźtrise. La mĂ©thode a Ă©tĂ© abondamment validĂ©e sur une base de donnĂ©es clinique. La robustesse de la mĂ©thode de segmentation de moelle Ă©piniĂšre a Ă©tĂ© dĂ©montrĂ©e, mĂȘme sur des cas pathologiques. Concernant la segmentation des lĂ©sions, les rĂ©sultats sont encourageants, malgrĂ© un taux de faux positifs relativement Ă©levĂ©. Je crois en l’impact que peut potentiellement avoir ces outils pour la communautĂ© de chercheurs. Dans cette optique, les mĂ©thodes ont Ă©tĂ© intĂ©grĂ©es et documentĂ©es dans un logiciel en accĂšs-ouvert, la “Spinal Cord Toolbox”. Certains des outils dĂ©veloppĂ©s pendant ce projet de MaĂźtrise sont dĂ©jĂ  utilisĂ©s par des analyses d’études cliniques, portant sur des patients SEP et sclĂ©rose latĂ©rale amyotrophique.----------ABSTRACT Context: The spinal cord is a key component of the central nervous system, which contains neurons responsible for complex functions, and ensures the conduction of motor and sensory information between the brain and the peripheral nervous system. Damage to the spinal cord, through trauma or neurodegenerative diseases, can lead to severe impairment, including functional disabilities, paralysis and/or pain. In multiple sclerosis (MS) patients, the spinal cord is frequently affected by atrophy and/or lesions. Conventional magnetic resonance imaging (MRI) is widely used by researchers and clinicians to non-invasively assess and characterize spinal cord microstructural changes. Quantitative assessment of the structural damage to the spinal cord (e.g. atrophy severity, lesion extent) is essential for the diagnosis, prognosis and longitudinal monitoring of diseases, such as MS. Furthermore, the development of objective biomarkers is essential to evaluate the effect of new therapeutic treatments. Spinal cord and intramedullary MS lesions segmentation is consequently clinically relevant, as well as a necessary step towards the interpretation of multi-parametric MR images. However, manual segmentation is highly time-consuming, tedious and prone to intra- and inter-rater variability. There is therefore a need for automated segmentation methods to facilitate the efficiency of analysis pipelines. Automatic lesion segmentation is challenging for various reasons: (i) lesion variability in terms of shape, size and location, (ii) lesion boundaries are most of the time not well defined, (iii) lesion intensities on MR data are confounding with those of normal-appearing structures. Moreover, achieving robust segmentation across multi-center MRI data is challenging because of the broad variability of data features (e.g. resolution, orientation, field of view). Despite recent substantial developments in spinal cord MRI processing, there is still no method available that can yield robust and reliable spinal cord segmentation across the very diverse spinal pathologies and data features. Regarding the intramedullary lesions, a thorough search of the relevant literature did not yield available method of automatic segmentation. Goal: To develop a fully-automatic framework for segmenting the spinal cord and intramedullary MS lesions from conventional human MRI data. Method: The presented approach is based on a cascade of two Convolutional Neural Networks (CNN). The method has been designed to face the main challenges of ‘real world’ spinal cord MRI data. It was trained and validated on a private dataset made up of 1943 MR volumes, acquired in different 30 sites with heterogeneous acquisition protocols. Scanned subjects involve 459 healthy controls, 471 MS patients and 112 with other spinal pathologies. The proposed spinal cord segmentation method was compared to a state-of-the-art spinal cord segmentation method, PropSeg. Results: The CNN-based approach achieved better results than PropSeg, yielding a median (interquartile range) Dice of 94.6 (4.6) vs. 87.9 (18.3) % when compared to the manual segmentation. For the lesion segmentation task, our method provided a median Dice-overlap with the manual segmentation of 60.0 (21.4) %, a lesion-based true positive rate of 83 (34) % and a lesion-based precision de 77 (44) %. Conclusion: An original fully-automatic method to segment the spinal cord and intramedullary MS lesions on MRI data has been devised during this Master’s project. The method was validated extensively against a clinical dataset. The robustness of the spinal cord segmentation has been demonstrated, even on challenging pathological cases. Regarding the lesion segmentation, the results are encouraging despite the fairly high false positive rate. I believe in the potential value of these developed tools for the research community. In this vein, the methods are integrated and documented into an open-source software, the Spinal Cord Toolbox. Some of the tools developed during this Master’s project are already integrated into automated analysis pipelines of clinical studies, including MS and Amyotrophic Lateral Sclerosis patients

    Design and clinical validation of novel imaging strategies for analysis of arrhythmogenic substrate

    Get PDF
    _CURRENT CHALLENGES IN ELECTROPHYSIOLOGY_ Technical advances in cardiovascular electrophysiology have resulted in an increasing number of catheter ablation procedures reaching 200 000 in Europe for the year 2013. These advanced interventions are often complex and time consuming and may cause significant radiation exposure. Furthermore, a substantial number of ablation procedures remain associated with poor (initial) outcomes and frequently require ≄1 redo procedures. Innovations in modalities for substrate imaging could facilitate our understanding of the arrhythmogenic substrate, improve the design of patient-specific ablation strategies and improve the results of ablation procedures. _NOVEL SUBSTRATE IMAGING MODALITIES_ __Cardiac magnetic resonance__ Cardiac magnetic resonance imaging (CMR) can be considered the most comprehensive and suitable modality for the complete electrophysiology and catheter ablation workup (including patient selection, procedural guidance, and [procedural] follow-up). Utilizing inversion recovery CMR, fibrotic myocardium can be visualized and quantified 10–15 min after intravenous administration of Gadolinium contrast. This imaging technique is known as late Gadolinium enhancement (LGE) imaging. Experimental models have shown excellent agreement between size and shape in LGE CMR and areas of myocardial infarction by histopathology. Recent studies have also demonstrated how scar size, shape and location from pre-procedural LGE can be useful in guiding ventricular tachycardia’s (VT) ablation or atrial fibrillation (AF) ablation. These procedures are often time-consuming due to the preceding electrophysiological mapping study required to identify slow conduction zones involved in re-entry circuits. Post-processed LGE images provide scar maps, which could be integrated with electroanatomic mapping systems to facilitate these procedures. __Inverse potential mapping__ Through the years, various noninvasive electrocardiographic imaging techniques have emerged that estimate epicardial potentials or myocardial activation times from potentials recorded on the thorax. Utilizing an inverse procedure, the potentials on the heart surface or activation times of the myocardium are estimated with the recorded body surface potentials as source data. Although this procedure only estimates the time course of unipolar epicardial electrograms, several studies have demonstrated that the epicardial potentials and electrograms provide substantial information about intramyocardial activity and have great potential to facilitate risk-stratification and generate personalized ablation strategies. __Objectives of this thesis__ 1. To evaluate the utility of cardiac magnetic resonance derived geometrical and tissue characteristic information for patient stratification and guidance of AF ablation. 2. To design and evaluate the performance of a finite element model based inverse potential mapping in predicting the arrhythmogenic focus in idiopathic ventricular tachycardia using invasive electro-anatomical activation mapping as a reference standard

    Automated injury segmentation to assist in the treatment of children with cerebral palsy

    Get PDF
    corecore