6 research outputs found

    Automatic deployment of an RPAS Mission Manager to an ARINC-653 compliant system

    Full text link
    [EN] The development process of avionics system requiring a high level of safety is subjected to rigorous development and verification standards. In order to accelerate and facilitate this process, we present a testbed that uses a suite of methods and tools to comply with aerospace standards for certification. To illustrate the proposed methodology, we designed a Mission Management System for Remotely Piloted Aircraft Systems (RPAS) that was deployed on a particular run-time execution platform called XtratuM, an ARINC-653 compliant system developed in our research group. The paper discusses the system requirements, the software architecture, the key issues for porting designs to XtratuM, and how to automatize this process. Results show that the proposed testbed is a good platform for designing and qualifying avionics applications.This research has been financed by the Institute of Control Systems and Industrial Computing (Ai2), and by projects GVA AICO/2015/126 (Ayudas para Grupos de Investigacion Consolidables) and GVA ACIF/2016/197 (Ayudas para la contratacion de personal investigador en formacion de caracter predoctoral) of the Spanish Regional Government "Generalitat Valenciana".Usach Molina, H.; Vila Carbó, JA.; Crespo, A.; Yuste Pérez, P. (2018). Automatic deployment of an RPAS Mission Manager to an ARINC-653 compliant system. Journal of Intelligent & Robotic Systems. 92(3-4):587-598. https://doi.org/10.1007/s10846-017-0694-3S587598923-4Aeronautical Radio, Inc.: ARINC specification 653-1. Avionics Application Software Standard Interface (2003)Bonasso, R., Kerri, R., Jenks, K., Johnson, G.: Using the 3T architecture for tracking Shuttle RMS procedures. In: Proceedings of the IEEE International Joint Symposia on Intelligence and Systems. IEEE, Rockville, MD, USA (1998) https://doi.org/10.1109/IJSIS.1998.685440fentISS: XtratuM Hypervisor Emulator (SKE) start guide. Tech. rep., Universidad Politècnica de València (2015)Fons, B.: Plataforma para diseño y ejecución de aplicaciones de aviónica. Universitat Politècnica de València, Master’s thesis (2013)International Civil Aviation Organization: Doc. 9613 AN/937: Performance-based Navigation (PBN) Manual, 4th edn. (2013)International Civil Aviation Organization: Doc. 10019, AN/507: Manual on Remotely Piloted Aircraft Systems (RPAS), 1st edn. (2015)Koehl, D.: SESAR initiatives for RPAS integration. In: ICAO Remotely Piloted Aircraft Systems Symposium. Montreal, Canada (2015)Masmano, M., Ripoll, I., Crespo, A., Metge, J.: XtratuM: A hypervisor for safety critical embedded systems. In: Proceedings of the 11th Real-Time Linux Workshop. Dresden, Germany (2009)Masmano, M., Valiente, Y., Balbastre, P., Ripoll, I., Crespo, A., Metge, J.: LithOS: A ARINC-653 guest operating for XtratuM. In: Proceedings of the 12th Real-Time Linux Workshop. Nairobi, Kenia (2010)McCarley, J.S., Wickens, C.D.: Human factors implications of UAVs in the national airspace. Tech. Rep. AHFD-05-05/FAA-05-01, University of Illinois, Institute of Aviation, Aviation Human Factors Division (2005)North Atlantic Treaty Organization: STANAG 4703: Light Unmanned Aircraft Systems Airworthiness Requirements. NATO Standarization Agency (2014)Radio Technical Commission for Aeronautics (RTCA): DO-178C/ED-12C Software Considerations in Airborne Systems and Equipment Certification. RTCA (2011)Ribeiro, L.R., Oliveira, N.M.R.: UAV autopilot controllers test platform using Matlab/Simulink and X-Plane. In: 40th ASEE/ IEEE Frontiers in Education Conference. IEEE, Washington, DC, USA (2010). https://doi.org/10.1109/FIE.2010.5673378Spitzer, C.R.: Digital Avionics Handbook: Elements, Software and Functions, 2nd edn. CRC Press (2006)The MathWorks Inc.: Simulink Coder Target Language Compiler (2012)Usach, H.: Integridad y tolerancia a fallos en sistemas de aviónica. Universitat Politècnica de València, Master’s thesis (2014)Usach, H., Fons, B., Vila, J., Crespo, A.: An autopilot testbed for IMA (Integrated Modular Avionics) architectures. In: Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace. Elsevier, Würzburg, Germany (2013). https://doi.org/10.3182/20130902-5-DE-2040.00076Usach, H., Vila, J., Crespo, A., Yuste, P.: A highly-automated RPAS Mission Manager for integrated airspace. In: Proceedings of the 5th International Conference on Application and Theory of Automation in Command and Control Systems, ATACCS’15. ACM, Toulouse, France (2015). https://doi.org/10.1145/2899361.289936

    Architectural Design of a Safe Mission Manager for Unmanned Aircraft Systems

    Full text link
    [EN] Civil Aviation Authorities are elaborating a new regulatory framework for the safe operation of Unmanned Aircraft Systems (UAS). Current proposals are based on the analysis of the specific risks of the operation as well as on the definition of some risk mitigation measures. In order to achieve the target level of safety, we propose increasing the level of automation by providing the on-board system with Automated Contingency Management functions. The aim of the resulting Safe Mission Manager System is to autonomously adapt to contingency events while still achieving mission objectives through the degradation of mission performance. In this paper, we discuss some of the architectural issues in designing this system. The resulting architecture makes a conceptual differentiation between event monitoring, decision-making on a policy for dealing with contingencies and the execution of the corresponding policy. We also discuss how to allocate the different Safe Mission Manager components to a partitioned, Integrated Modular Avionics architecture. Finally, determinism and predictability are key aspects in contingency management due to their overall impact on safety. For this reason, we model and verify the correctness of a contingency management policy using formal methods.This work was supported by the Spanish Regional Government "Generalitat Valenciana" under contract ACIF/2016/197.Usach Molina, H.; Vila Carbó, JA.; Torens, C.; Adolf, FM. (2018). Architectural Design of a Safe Mission Manager for Unmanned Aircraft Systems. Journal of Systems Architecture. 90:94-108. https://doi.org/10.1016/j.sysarc.2018.09.003S941089

    Advancing the Standards for Unmanned Air System Communications, Navigation and Surveillance

    Get PDF
    Under NASA program NNA16BD84C, new architectures were identified and developed for supporting reliable and secure Communications, Navigation and Surveillance (CNS) needs for Unmanned Air Systems (UAS) operating in both controlled and uncontrolled airspace. An analysis of architectures for the two categories of airspace and an implementation technology readiness analysis were performed. These studies produced NASA reports that have been made available in the public domain and have been briefed in previous conferences. We now consider how the products of the study are influencing emerging directions in the aviation standards communities. The International Civil Aviation Organization (ICAO) Communications Panel (CP), Working Group I (WG-I) is currently developing a communications network architecture known as the Aeronautical Telecommunications Network with Internet Protocol Services (ATN/IPS). The target use case for this service is secure and reliable Air Traffic Management (ATM) for manned aircraft operating in controlled airspace. However, the work is more and more also considering the emerging class of airspace users known as Remotely Piloted Aircraft Systems (RPAS), which refers to certain UAS classes. In addition, two Special Committees (SCs) in the Radio Technical Commission for Aeronautics (RTCA) are developing Minimum Aviation System Performance Standards (MASPS) and Minimum Operational Performance Standards (MOPS) for UAS. RTCA SC-223 is investigating an Internet Protocol Suite (IPS) and AeroMACS aviation data link for interoperable (INTEROP) UAS communications. Meanwhile, RTCA SC-228 is working to develop Detect And Avoid (DAA) equipment and a Command and Control (C2) Data Link MOPS establishing LBand and C-Band solutions. These RTCA Special Committees along with ICAO CP WG/I are therefore overlapping in terms of the Communication, Navigation and Surveillance (CNS) alternatives they are seeking to provide for an integrated manned- and unmanned air traffic management service as well as remote pilot command and control. This paper presents UAS CNS architecture concepts developed under the NASA program that apply to all three of the aforementioned committees. It discusses the similarities and differences in the problem spaces under consideration in each committee, and considers the application of a common set of CNS alternatives that can be widely applied. As the works of these committees progress, it is clear that the overlap will need to be addressed to ensure a consistent and safe framework for worldwide aviation. In this study, we discuss similarities and differences in the various operational models and show how the CNS architectures developed under the NASA program apply

    Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0 (“roadmap”) is an update to version 1.0 of this document published in December 2018. It identifies existing standards and standards in development, assesses gaps, and makes recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 78 issue areas, identified a total of 71 open gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 47 gaps/recommendations have been identified as high priority, 21 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 53 cases, additional R&D is needed. As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. It is also envisioned that a mechanism may be established to assess progress on its implementation

    Manipulador aéreo con brazos antropomórficos de articulaciones flexibles

    Get PDF
    [Resumen] Este artículo presenta el primer robot manipulador aéreo con dos brazos antropomórficos diseñado para aplicarse en tareas de inspección y mantenimiento en entornos industriales de difícil acceso para operarios humanos. El robot consiste en una plataforma aérea multirrotor equipada con dos brazos antropomórficos ultraligeros, así como el sistema de control integrado de la plataforma y los brazos. Una de las principales características del manipulador es la flexibilidad mecánica proporcionada en todas las articulaciones, lo que aumenta la seguridad en las interacciones físicas con el entorno y la protección del propio robot. Para ello se ha introducido un compacto y simple mecanismo de transmisión por muelle entre el eje del servo y el enlace de salida. La estructura en aluminio de los brazos ha sido cuidadosamente diseñada de forma que los actuadores estén aislados frente a cargas radiales y axiales que los puedan dañar. El manipulador desarrollado ha sido validado a través de experimentos en base fija y en pruebas de vuelo en exteriores.Ministerio de Economía y Competitividad; DPI2014-5983-C2-1-
    corecore