14 research outputs found

    Improving the connectivity of community detection-based hierarchical routing protocols in large-scale wsns

    Get PDF
    The recent growth in the use of wireless sensor networks (WSNs) in many applications leads to the raise of a core infrastructure for communication and data gathering in Cyber-Physical Systems (CPS). The communication strategy in most of the WSNs relies on hierarchical clustering routing protocols due to their ad hoc nature. In the bulk of the existing approaches some special nodes, named Cluster-Heads (CHs), have the task of assembling clusters and intermediate the communication between the cluster members and a central entity in the network, the Sink. Therefore, the overall efficiency of such protocols is highly dependent on the even distribution of CHs in the network. Recently, a community detection-based approach, named RLP, have shown interesting results with respect to the CH distribution and availability that potentially increases the overall WSN efficiency. Despite the better results of RLP regarding the literature, the adopted CH election algorithm may lead to a CH shortage throughout the network operation. In line with that, in this paper, we introduce an improved version of RLP, named HRLP. Our proposal includes a hybrid CH election algorithm which relies on a computationally cheap and distributed probabilistic-based CH recovery procedure to improve the network connectivity. Additionally, we provide a performance analysis of HRLP and its comparison to other protocols by considering a large-scale WSN scenario. The results evince the improvements achieved by the proposed strategy by means of the network connectivity and lifetime metrics. (C) 2016 The Authors. Published by Elsevier B.V.Federal University of São Paulo, Avenida Cesare Mansueto Giulio Lattes, 1201, Parque Tecnológico, 12247014, São José dos Campos-SP-BrazilFederal University of São Paulo, Avenida Cesare Mansueto Giulio Lattes, 1201, Parque Tecnológico, 12247014, São José dos Campos-SP-BrazilWeb of Scienc

    Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks

    Get PDF
    This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks

    GPS-Free Localization Algorithm for Wireless Sensor Networks

    Get PDF
    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time

    Variable Power Energy Efficient Clustering for Wireless Sensor Networks 1

    Get PDF
    Abstract : Wireless sensor networks (WSN) are inheriting many application areas like environment observation, target tracking, border monitoring and battle field surveillance. To alleviate the problem of energy utilization and extending the lifetime of wireless sensor nodes, one approach is employing an effective clustering mechanism. In this paper variable power energy efficient clustering (VEEC) mechanism for wireless sensor networks has been proposed. It is a well distributed, energy efficient clustering algorithm which employs relay nodes, variable transmission power and single message transmission per node for setting up the cluster. The proposed scheme is compared with two existing distributed clustering algorithms LEACH and HEED. Simulation results clearly show an excellent improvement in average communication energy and the total energy of the wireless sensor system. Simulation study also shows the reduction in node death rate and prolongation in network lifetime compared to the two existing algorithms

    A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks

    Get PDF
    A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements

    Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Get PDF
    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks
    corecore