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Abstract

The recent growth in the use of wireless sensor networks (WSNs) in many applications leads to the raise of a core infrastructure

for communication and data gathering in Cyber-Physical Systems (CPS). The communication strategy in most of the WSNs relies

on hierarchical clustering routing protocols due to their ad hoc nature. In the bulk of the existing approaches some special nodes,

named Cluster-Heads (CHs), have the task of assembling clusters and intermediate the communication between the cluster members

and a central entity in the network, the Sink. Therefore, the overall efficiency of such protocols is highly dependent on the even

distribution of CHs in the network. Recently, a community detection-based approach, named RLP, have shown interesting results

with respect to the CH distribution and availability that potentially increases the overall WSN efficiency. Despite the better results

of RLP regarding the literature, the adopted CH election algorithm may lead to a CH shortage throughout the network operation.

In line with that, in this paper, we introduce an improved version of RLP, named HRLP. Our proposal includes a hybrid CH

election algorithm which relies on a computationally cheap and distributed probabilistic-based CH recovery procedure to improve

the network connectivity. Additionally, we provide a performance analysis of HRLP and its comparison to other protocols by

considering a large-scale WSN scenario. The results evince the improvements achieved by the proposed strategy by means of the

network connectivity and lifetime metrics.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.
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1. Introduction

Wireless Sensor Networks (WSNs) are ad hoc networks that may be composed by hundreds to thousands resource-

constrained sensor nodes1. In such networks, the task of each sensor node is to deliver previously acquired data from

the environment to a resourceful node, the Sink. This procedure is attainable by built-in wireless communication

capabilities, such as those provided by low-powered RF devices.

As stated by Santi2, collaboration among sensor nodes is essential to minimize and evenly distribute the impact that

communication costs have in the energy availability. Hierarchical routing protocols have been extensively adapted and
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developed over the last decade3. This trend could be justified by their ability to provide simple, yet efficient clustering

routing protocols for low to medium scale WSNs. In hierarchical clustering routing protocols, some elected nodes are

responsible for assembling clusters by gathering other nodes within their communication range. These cluster-head

nodes (CHs) intermediate the communication between the cluster members and the Sink while performing tasks such

as cluster coordination and data aggregation. Due to the high communication costs of long-range transmissions, the

CHs demand more energy than other nodes. Heinzelman et al. 4 state that the task of CH must be evenly distributed

among sensor nodes to ensure energy-efficiency. Accordingly, the great majority of hierarchical clustering routing

protocols employ, in some extent, a periodical CH task rotation among the available sensor nodes. The network

operation is thus split in a sequence of time-intervals (named rounds), where each of them is preceded by a CH

election.

To reduce the computational complexity of the cluster formation, some protocols only allow CHs to gather nodes

within their one-hop neighborhood. This can lead to a disconnection of some nodes of the WSN. Consequently,

situations in which there is no path between the sensor nodes and the Sink may happen and disrupt the communication

in the WSN. This situation happens specially when the sensor nodes are not able to increase their transmission range.

Therefore, when considering applications that expect strict response times from sensor nodes, such as tracking and

intruder-detection, the overall efficiency of hierarchical clustering routing protocols is tightly bounded to their ability

of keeping the even distribution of CHs in every round. Hierarchical clustering protocols were classified by Mamalis

et al. 5 according to their CH election algorithms. Probabilistic-based protocols employ probability distributions to

produce fast and low complexity CH election algorithms. Meanwhile, non-probabilistic protocols rely on graph-

based or distributed heuristic algorithms to pursue the optimal CH distribution. The authors of6 applied a community

detection-based routing protocol to balance the CH distribution between the network communities. They have shown

that this approach can lead to a more even CH distribution than the strategy proposed in4. However, a fading in the

availability of CHs over the elapse of rounds was observed. This behavior results from the CH election procedure

adopted in6, which relies on an indication of the next CHs by the actual CHs into communities.

In line with the low complexity of probabilistic-based CH election algorithms and the observed deficiency of

community detection-based CH election described in6, this paper introduces a hybrid CH election algorithm for com-

munity detection-based WSN routing protocols. The proposed approach extends the original CH election algorithm

presented in6 by including a distributed probabilistic-based CH recovery procedure which improves the connectivity

between nodes and CHs inside communities.

The remaining sections are organized as follows. Section 3 presents a survey of some noteworthy CH election

algorithms described in the literature. Section 4 describes the protocol introduced in De Paulo et al. 6, summarizing its

main proprieties and adversities while Section 5 describes the CH recovery procedure that improves its CH availability

throughout the rounds.

2. Notations and Definitions

This section presents the definitions and notations used thorough the paper.

Let G = (V, E) be an undirected graph. The set of vertices (nodes) V is composed by n elements represented by
consecutive integers from 1 to n. The set of edges, E, indicates the pairwise relationship between members of V .
Therefore, if (i, j) ∈ E, it means that vertices i and j are adjacent in graph G. The degree of a node i consists in the
number of vertices adjacent to it. Here, the degree of a node i is denoted by δi. The average degree of V , δ̄, is the ratio
between sum of the degrees of every vertex from V and n.

The neighborhood of a vertex i, i.e., the set of neighbors of i, is Ni = { j ∈ V : (i, j) ∈ E}. A clique is a set of pairwise

adjacent vertices. A k-partition of its vertex set is some finite collection C = {C1,C2, . . . ,Ck} where each C j ∈ C is a

set or community of highly related vertices. Equations (1) and (2) describe the main properties of communities in G.

k⋃

i=1

Ci = V (1)

Ci ∩C j = ∅, ∀i � j. (2)
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3. Related Work

In this section we present the CH election algorithms most related to our proposal. The classification of these

algorithms into probabilistic-based and non-probabilistic-based is according to Mamalis et al. 5.

3.1. Probabilistic-based CH election algorithms

Probabilistic-based CH election approach relies on low complexity probability distributions. In4, the authors

present the Low-Energy Adaptive Clustering Hierarchical (LEACH) protocol. Using a simple distribution proba-

bility, their CH election algorithm ensures that an expected amount of CHs elected in every round can be previously

defined by a global parameter. However, the expected distribution of CHs at a given round may not guarantee any

level of network connectivity. This occurs because, although CHs are randomly elected among the sensor nodes, the

election approach does not provide guarantees about the even distribution of such elected CHs over the network.

Equation (3) presents the core mechanism of the CH election employed by LEACH. It calculates the probability P
of a node i to be elected as CH in round r. In this equation, p is the expected proportion of CHs in any given round and
Cr is the set of nodes that have not been a CH in the last

⌈
1
p

⌉
rounds. Therefore, every node in the network calculates

P and becomes a CH for a given round if and only if the value of P is greater than a value chosen by chance in [0, 1].

P(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p
1−p
(
r mod 1

p

) , if i ∈ Cr,

0, otherwise.
(3)

The load balance and energy-efficiency strategy of LEACH relies only on assigning the task of CH to sensor nodes

that were not elected on the former
⌈
1
p

⌉
rounds. Therefore, Handy et al. 7 adapted the CH distribution probability

designed in4 to take into account the energy availability of each sensor node. Their expected result is that nodes with

low residual energy would have a small probability of been selected as CH. Equation (4) presents the probability P′of
node i becomes a CH in round r as defined in7.

P′(r) =
p

1 − p
(
r mod 1

p

) [ei + Kir (1 − ei)] . (4)

In Equation (4), ei ∈ [0, 1] is the residual energy of node i and Kir is a factor proportional to the number of

consecutive rounds that node i was not a CH, Handy et al. 7 claim that the convex combination introduced in Equation

4 enables a balance between energy conservation and the CH availability. However, likewise in4, the strategy adopted

in7 does not guarantee any level of network connectivity. Bearing that in mind, Liu et al. 8 introduced an adaptation

of the election strategy of4 considering the ratio between the degree of the node candidate to be a CH and the average

degree of nodes of the network, the relative degree.

Additionally, the strategy also takes into account the residual energy of each sensor node. Equation (5) presents the

probability P′′ of node i be elected as CH in round r calculated by sensor nodes in the protocol proposed in8, named
LEACH-D.

P′′(r) =
p

1 − p
(
r mod 1

p

) ei
δi

δ̄
. (5)

The use of the relative degree in Equation (5) enables a CH distribution that provides a good connectivity at the

beginning of the protocol execution. The reason behind that is that nodes with the highest relative degrees can clearly

gather more nodes into their clusters. Nevertheless, the CH availability of LEACH-D may decrease over the passing

of rounds, as the energy consumption tends to be more intense in those sensor nodes with the highest relative degrees.

Therefore, leading them to exhaust their energy supply faster than other sensor nodes. Besides that, the maintenance

of relative degree information by sensor nodes is costly to the network since they need to periodically to exchange

control messages.
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3.2. Non-probabilistic-based CH election algorithms

Although probabilistic-based CH election algorithms have low computational cost, they produce random CH dis-

tributions among the network. Differently, the non-probabilistic-based CH election algorithms are mostly heuristics

and that aim at better distributing the CHs among the network according to a given criterion. Chang and Perrig9

proposed an adaptive strategy that iteratively spawns and migrates clusters in the designed of Algorithm for Cluster

Establishment (ACE). Each CH election procedure in ACE is split in c asynchronous iterations. Nodes declare them-
selves as CH in iteration i if l ≥ fmin(i), where l is the number of neighboring nodes that are not members of any other
cluster (named, loyal followers) and fmin(i) is the spawning threshold at iteration i, given by the Equation (6), where
k1 and k2 are predefined constants.

fmin(i) =
(
e−k1

i
c − k2

)
δ̄. (6)

In ACE, initially the CHs recruit all neighbors to their clusters, even those that already belong to other clusters.

Later, a cluster migration is performed by every CH to reduce the number of members overlapping with other clusters.

In the migration process each CH seeks for a member of its cluster with the greatest value of l. If such member does
exist it is promoted as a new CH, otherwise the CH remains the same. Therefore, the cluster members that are adjacent

to the promoted CH are kept in the cluster, whereas those which are not can be part of other cluster.

Likewise in ACE, Wen and Sethares10 introduced the Clustering Algorithm via Waiting Timer (CAWT) aiming

at a fast and distributed CH election algorithm with the optimal connectivity. CAWT relies on the use of adaptive

waiting times before a node decides to become a CH or join a nearby cluster. At the protocol beginning every sensor

node i initializes a random waiting timer variable (WTi). In addition, each sensor node broadcasts a hello message
after λ WTi U(0, 1) units of time, where λ ∈ (0, 0.5) and U is a uniform distribution. In the mean time, whenever a

sensor node i receives a hello message from any of its neighbors, the value ofWTi is reduced by a factor of β ∈ (0, 1).
Therefore, if the WTi expires and none of i neighbors belong to any cluster then i declares itself as a CH by sending

a CH announcement message to all its neighbors. In this case, if any sensor node receives a CH announcement, it

becomes a member of the announced cluster and no longer attempts to elect itself as CH.

Brust et al. 11 introduced a CH election algorithm based on a strong local connectivity parameter. The clustering

coefficient of node i (CCi), given by Equation (7), measures how far its neighborhood is from been a clique12. Each

node only requires information from its 2-hop neighborhood to evaluate its clustering coefficient, allowing for a

attainable local metric in WSNs.

CCi =
2 | {(u, v) ∈ E : u, v ∈ Ni} |

|Ni| (|Ni| − 1)
. (7)

In order to efficiently elect CHs in a given network, the strategy proposed in11 first classifies each node according

to the following. Nodes with less than three neighbors or with a clustering coefficient lower than a threshold are

classified as weak nodes. Otherwise, they are classified as strong nodes. Afterward, nodes represented by cut vertices
in G are classified as bridge nodes since they represent single points of failures by causing a network disconnection.
Furthermore, the strategy also identifies the nodes that are localized on border regions of possible clusters (named the
border nodes) using a local procedure that checks for two-hop neighborhood intersection at each node. At the end of
the election strategy the remaining strong nodes are classified as CHs.

The topology-based CH election algorithms presented so far may guarantee even distribution but not energy-

efficiency. In line with that Ngo et al. 13 introduced the Messaging Passing (MEPA) clustering protocol, a distributed

preference-based optimization aiming to energy-efficiency and connectivity. According to13, nodes with the highest

residual energy and degree are preferable to play the CH role. Equation (8) presents the normalized preference metric

of node i with respect to node j.

pi( j) =
e j∑
k∈Ni ek

(8)

In MEPA, the likelihood of a node becoming a CH is proportional to the normalized preferences that it receives

from its neighbors, that is from {pi( j) : j ∈ Ni}. In addition, this probability takes into account its self-normalized
preference, given by pi(i). In order to self-elect as CHs, nodes share their preferences with their neighborhood using
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two types of messages. Request messages reqi( j) sent from node i to neighbor j ∈ Ni contain the likelihood of j been
selected as CH according to i. Each request message has a counterpart in a response message resi( j) sent from node

j to node i. Equations (9) and (10) evaluate, respectively, the request and response messages from node i to node j.

reqi( j) = pi( j) − max
{k∈Ni:k� j}

{pi(k) + resi(k)}. (9)

resi( j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min{0, req j( j)
+
∑

{k∈Ni:k� j}max(0, req j(k))}, if j ∈ Ni,∑
k∈Ni max{0, reqi(k)}, if i = j.

(10)

After the request and response procedure, nodes are elected as CHs if they maximize a function of normalized

preferences and responses within their neighborhood. Equation (11) summarizes the decision factor of the CH election

in MEPA.

CHi = argmax
j∈Ni∪{i}

{resi( j) + pi( j)}. (11)

Routing Label Propagation (RLP)6 is a cluster-based hierarchical protocol that aims to evenly distribute CHs in

WSNs. RLP employs a topology-based CH rotation between nodes from the same community, which is detected by

a distributed algorithm, named Vertex Label Propagation (VLBP). Although the protocols described in this section

have been developed aiming at achieving their optimal criteria, such as connectivity and energy-efficiency, they do

not employ any fault tolerance mechanism to recover from CH and communication failures. In the following sections

we present a CH recovery procedure designed to improve the performance of the RLP protocol proposed in6. For

this reason, a general guideline to the VLBP and the CH election procedure of RLP are presented in next section,

introducing their main functionality.

4. Routing Label Propagation

4.1. Vertex Label Propagation Algorithm

In order to detect a vertex partition, De Paulo et al. 6 introduced the Vertex Label Propagation (VLBP) algorithm

as a distributed adaptation of the well-established community-detection algorithm Label Propagation (LP)14. They

considered the following assumptions to represent the WSN as an undirected graph G:

• Each sensor node has a unique representation as a vertex of V .
• The edge set E represents the local communication capabilities between pairs of devices. That is, (u, v) ∈ E iff

u, v ∈ V can communicate with each other through the wireless medium.

• The communication radius is unique and shared among sensor nodes. Therefore, each sensor node i ∈ V has

Ni = { j ∈ V : (i, j) ∈ E} as its neighborhood set.

VLBP is an iterative algorithm based on a joint decision among the neighborhood of nodes to define their label.

For this, during the iterations temporary or definitive labels are assigned to the nodes, depending on the labels of the
nodes neighboring them.

The iterations of VLBP are defined by two procedures. Foremost, a label exchanging procedure occurs between

neighboring nodes. Each node broadcasts a message carrying its current label and its status (temporary or definitive).
Upon receiving these messages, neighboring nodes store the received labels into separated sets according to their

classification. In the end of the label exchanging procedure, nodes that broadcast a definitive label halts in the VLBP
algorithm. After the label exchanging procedure, the nodes that are still running the VLBP algorithm elect as their

new label the most frequent label stored. The temporary labels are discarded and nodes classify their new label as

temporary if the current and previous labels differ, otherwise the new label is set as definitive. Each iteration of VLBP
requires only one broadcast by node. According to Raghavan et al. 14, the LP algorithm requires a constant number of
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iterations to converge. Therefore the VLBP also requires a constant number of broadcasts by each node throughout

its execution (5 on average as observed in the experiments).

The result of the VLBP algorithm in every node is a definitive label representing its community. Figure 1 presents
an example of the communities organization after the execution of the VLBP in a WSN composed by 3000 nodes.

It is noteworthy that labels only represent the association of nodes with their communities, not guaranteeing that the

labels uniquely represent a community in the partition. Besides that, the VLBP execution does not rely on the previous

definition of the partition size, resulting in an adaptive community-detection algorithm.
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Fig. 1. An example of a 3000 nodes WSN organized in communities generated by the VLBP.

4.2. Cluster-Head Election

In the RLP, the CH task is rotative among the members of the communities. Therefore, in order to assign the role

of CH to members in the communities, RLP defines an intra-community CH election algorithm, namely Cluster-Head

Establishment (CHE) procedure. At the first round of CHE the set of CHs is composed by the set of Community

Border Members (CBMs). A CBM is any node adjacent to at least one node outside its community. In the subsequent

rounds, each CH randomly chooses a non-CH node member of its community as the new CH. Every CH then sends an

indication message to the respective elected node informing about its new role. The drawback of the CHE procedure

is the reduction of CHs caused whenever either a node is elected by more than one CH or the transmission of any

indication message fails. Consequently, RLP may experience a shortage of CHs throughout the rounds specially in

large-scale WSNs. Therefore, a distributed adaptive CH recovery procedure is proposed in next section to preserve

the CH availability during the network operation.

5. The proposed CH recovery procedure

As described in Section 3, the probabilistic distributions are suitable for producing computationally cheap CH elec-

tion algorithms. Therefore, a probabilistic-based CH recovery procedure is proposed in this Section as an extension of

the CHE procedure adopted in RLP. The main objective of this extension is to enhance the number of available CHs

and therefore, the network connectivity. An exponential distribution describes the elapsed time between occurrences

of Poisson-distributed events. One of such events could be interpreted as the CH availability at a given round. In this

case, its cumulative exponential distribution could express the probability of a self-election as CH nodes for those

nodes that were temporarily disconnected from the Sink.

However, the estimation of Poisson parameters is highly dependent of the current CH distribution. Since in RLP,

nodes only operate with local information, such estimation is not trivial. Therefore the exponential-based distribution

here introduced was obtained and verified by simulation. If k ∈ N is the quantity of consecutive rounds where node

i ∈ V was not a CH or was not connected to any CH, Equation (12) introduces the probability, ψ, of a node i to
self-elect as a new CH at the end of each CHE procedure of RLP.
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ψi(k, λ) = 1 − e−λk (12)

where eλ � |V | |Ni ||V | .

The CH recovery procedure combined with the original CHE procedure of RLP produces a hybrid CH election

algorithm, and, therefore an improved version of RLP, here named Hybrid Routing Label Propagation (HRLP).

6. Performance Evaluation

A simulation-based evaluation was conducted for evaluating the overall improvement of the proposed HRLP in

comparison to the strategies proposed in4 and6. The simulation models were implemented in Castalia/OMNeT++

simulation framework15.

6.1. Evaluation Metrics

For evaluating the described CH election strategies and compare them to each other, as defined in6, we considered

two metrics: the Connectivity and the Lifetime.

Definition 1 (Connectivity). The observed connectivity at a given round is the proportion of sensor nodes capable of
routing data to the Sink. Therefore, the connectivity is the ratio of the sum of CHs and cluster members to the |V |.
Definition 2 (Lifetime). The lifetime is the amount of rounds that the percentage of clustered nodes (CH and members)
remains above a certain connectivity threshold α ∈ [0, 1] for at least γ ∈ N consecutive rounds.

Therefore one may notice that the better the CH distribution in the network, the greater the network lifetime.

The connectivity threshold α measures the desired fraction of the network that must be connected to the Sink. By

performing the CH rotation, the effective fraction of connected nodes may vary during the rounds. The recovery

threshold γ indicates the tolerance, in rounds, of the protocols to the temporary absence of network connectivity.

6.2. System Model and Simulation Parameters

For conducting the presented performance analysis we assume a large-scale WSN with the following properties:

• Nodes are homogeneous with respect to hardware capabilities and do not support any level of mobility.

• Nodes admit two distinct levels of transmission power. As in6 and4, the lowest level is used for short range com-

munications between nodes and their neighborhood whereas the highest level is used only by CHs to transmit

data directly to the Sink.

• All nodes share a wireless communication channel where the medium access control is performed by a Carrier

Sense Multiple Access protocol with collision avoidance (CSMA-CA). However, transmissions may fail due to

the hidden terminal problem.

Table 1 summarizes the main simulation parameters. The presented simulation results represent the average of

values obtained by 40 independent simulation executions of every scenario derived of each parameter arrangement. In

every scenario nodes were randomly placed in the environment whilst the Sink was placed in the middle of the field.

An example of the nodes placement is illustrated in the Figure 1.

The p parameter of Equation (3) was set to the most frequent CH availability achieved by the HRLP to ensure an

equivalent operation of LEACH when compared to HRLP. Therefore, the directed comparison of LEACH and RLP

can not be done by observing the results presented in this paper. For this specific comparison, see6.

6.3. Results and Discussion

6.3.1. Connectivity and Lifetime
Figure 2 presents the observed connectivity throughout the rounds of LEACH, RLP and HRLP. It is noteworthy

that RLP presents a lower connectivity in comparison to the results achieved by LEACH and HRLP. Despite that, as
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Table 1. Simulation Parameters
Parameter Values

|V | (units) 3000

Environment Area extent (m2) 868 × 868

RF device CC2420

Lower Transmission Power (dBm) −5
Higher Transmission Power (dBm) 0

Simulation Time (rounds) 1800

α ([0, 1]) {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
γ (rounds) {1, 2, 3, 5, 8, 10, 15, 20, 25, 30}

expected, LEACH presented a greater variation in the connectivity than HRLP. These results indicate a substantial

growth and stability in the connectivity levels achieved by the HRLP in comparison to those obtained in RLP. Ad-

ditionally, since the proposed CH recovery procedure is computationally cheap it may be adapted to other protocols

without compromise their design and operation. Again, it is very important for applications that require strict re-

sponse times to keep constantly a high connectivity. Bearing that in mind, let us analyze the lifetime results displayed

in Figure 3.
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Fig. 2. Connectivity of RLP and HRLP. Each data series represents the connectivity of the CH election algorithms throughout the rounds.

The RLP lifetime results, showed in Figure 3.a, evince its inability of recovering from the reduction in the number

of CHs. This reduction is caused by either transmission failures in indication messages or multiple messages indicating

the same node as CH. Differently, LEACH achieved the best lifetime results for values of γ from 8 to 30 (Figure 3.b).

These results support the claim that LEACH may not guarantee constant connectivity. Besides that, the observed

small variability in the connectivity of HRLP (Figure 2) is responsible for its best results of lifetime even for small
values of α as observed in Figure 3.c.

6.3.2. CH Distribution and Load Balancing Capabilities
Figure 4 presents histograms related to the CH availability achieved by every evaluated protocol. Each bar of the

histogram represents the percentage of rounds with the related range of available CHs. In Figure 4.a, one may observe

that although LEACH has presented approximately 386 CHs per round in average, in almost 25% of the rounds the

achieved number of CHs significantly deviates from the desired number of 360 CHs per round. On the one hand, in

Figure 4.b, one may underline that almost 60% of the RLP rounds have less than 100 available CHs, what explains the

CH shortage of RLP. In Figure 4.c, on the other hand, shows that more than 90% of the rounds of HRLP have more

than 300 CHs.

Notice that the CH shortage of RLP impacts on its capability of reacting to a connectivity decrease, remarkably

by its inability to reintroduce new CH nodes. This can be observed in Figure 3.a when attaining for the small gaps

between data series. In contrast, the CH recovery employed on HRLP is capable of sustaining CH nodes throughout

the network operation.



529 Matheus A. de Paulo et al.  /  Procedia Computer Science   96  ( 2016 )  521 – 530 

●
●

●

●

●

●

α

Li
fe

tim
e

●
●

●

●

●

●

0
40

80
12

0
16

0
20

0
24

0
28

0
32

0
36

0

0.9 0.8 0.7 0.6 0.5 0.4

●

●

γ

1
2
3
5
8
10
15
20
25
30

(a) Lifetime for RLP.

● ● ●

● ● ●

α

Li
fe

tim
e

●

● ● ● ● ●

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00

0.9 0.8 0.7 0.6 0.5 0.4

●

●

γ

1
2
3
5
8
10
15
20
25
30

(b) Lifetime for LEACH.

●

●

● ● ● ●

α

Li
fe

tim
e

●

● ● ● ● ●

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00

0.9 0.8 0.7 0.6 0.5 0.4

●

●

γ

1
2
3
5
8
10
15
20
25
30

(c) Lifetime for HRLP.

Fig. 3. The lifetime results. Each data series corresponds to a distinct recovery threshold γ.
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Fig. 4. The histograms related to the CH availability in the simulated scenario.

To validate the benefits of the topology-awareness provided by the community detection-based approach employed

in our proposal, Figure 5 displays the results with respect to the quantity of non-CH nodes connected to clusters in

the simulated scenarios for the evaluated protocols. Each bar of the histogram represents the percentage of rounds

with the related range of non-CH members. It is worthy mentioning that the average number of nodes connected to

the CHs in every round of RLP, LEACH and HRLP were, respectively, 876.34, 1869.41 and 2159.06. Additionally,

the average number of nodes per CH in each round were, respectively, 8.18, 4.83 and 5.88. Therefore, the proposed

HRLP presented better CH distribution than RLP and LEACH, which consequently may lead to a better balance in

the network load.

7. Final Remarks

In this paper, we introduced a hybrid CH election algorithm designed to community detection-based routing pro-

tocols in WSNs. The proposed strategy is an extension of the Routing Label Propagation (RLP), here named Hybrid

Routing Label Propagation (HRLP). The HRLP, as its precursor, is a community detection-based protocol that relies

on a computationally cheap and distributed probabilistic-based CH recovery procedure that improves the network

connectivity by electing CHs on demand inside the communities. Additionally, we provided a performance evaluation

of our proposal and a comparison to other protocols by considering a large-scale WSN scenario. The results evinced

the improvements achieved by HRLP by means of the network connectivity and lifetime metrics. As future research
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Fig. 5. The histograms related to the Non-CH distribution in the simulated scenario.

we intend to evaluate the performance of the HRLP in a greater variety of large-scale scenarios regarding the latency

and data delivery reliability metrics.
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