312 research outputs found

    Global ECG Classification by Self-Operational Neural Networks with Feature Injection

    Get PDF
    Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performances. This study proposes a novel approach to narrow this gap and propose a real-time solution with shallow and compact 1D Self-Organized Operational Neural Networks (Self-ONNs). Methods: In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification. Results: Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs)

    Heart patient health monitoring system using invasive and non-invasive measurement

    Get PDF
    The abnormal heart conduction, known as arrhythmia, can contribute to cardiac diseases that carry the risk of fatal consequences. Healthcare professionals typically use electrocardiogram (ECG) signals and certain preliminary tests to identify abnormal patterns in a patient’s cardiac activity. To assess the overall cardiac health condition, cardiac specialists monitor these activities separately. This procedure may be arduous and time-intensive, potentially impacting the patient’s well-being. This study automates and introduces a novel solution for predicting the cardiac health conditions, specifically identifying cardiac morbidity and arrhythmia in patients by using invasive and non-invasive measurements. The experimental analyses conducted in medical studies entail extremely sensitive data and any partial or biased diagnoses in this field are deemed unacceptable. Therefore, this research aims to introduce a new concept of determining the uncertainty level of machine learning algorithms using information entropy. To assess the effectiveness of machine learning algorithms information entropy can be considered as a unique performance evaluator of the machine learning algorithm which is not selected previously any studies within the realm of bio-computational research. This experiment was conducted on arrhythmia and heart disease datasets collected from Massachusetts Institute of Technology-Berth Israel Hospital-arrhythmia (DB-1) and Cleveland Heart Disease (DB-2), respectively. Our framework consists of four significant steps: 1) Data acquisition, 2) Feature preprocessing approach, 3) Implementation of learning algorithms, and 4) Information Entropy. The results demonstrate the average performance in terms of accuracy achieved by the classification algorithms: Neural Network (NN) achieved 99.74%, K-Nearest Neighbor (KNN) 98.98%, Support Vector Machine (SVM) 99.37%, Random Forest (RF) 99.76 % and Naïve Bayes (NB) 98.66% respectively. We believe that this study paves the way for further research, offering a framework for identifying cardiac health conditions through machine learning techniques

    Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias

    Get PDF
    Each year more than 7 million people die from cardiac arrhythmias. Yet no robust solution exists today to detect such heart anomalies right at the moment they occur. The purpose of this study was to design a personalized health monitoring system that can detect early occurrences of arrhythmias from an individual's electrocardiogram (ECG) signal. We first modelled the common causes of arrhythmias in the signal domain as a degradation of normal ECG beats to abnormal beats. Using the degradation models, we performed abnormal beat synthesis which created potential abnormal beats from the average normal beat of the individual. Finally, a Convolutional Neural Network (CNN) was trained using real normal and synthesized abnormal beats. As a personalized classifier, the trained CNN can monitor ECG beats in real time for arrhythmia detection. Over 34 patients' ECG records with a total of 63,341 ECG beats from the MIT-BIH arrhythmia benchmark database, we have shown that the probability of detecting one or more abnormal ECG beats among the first three occurrences is higher than 99.4% with a very low false-alarm rate. 1 2017 The Author(s).Scopu

    A Real-Time Automated Point-Process Method for the Detection and Correction of Erroneous and Ectopic Heartbeats

    Get PDF
    The presence of recurring arrhythmic events (also known as cardiac dysrhythmia or irregular heartbeats), as well as erroneous beat detection due to low signal quality, significantly affects estimation of both time and frequency domain indices of heart rate variability (HRV). A reliable, real-time classification and correction of ECG-derived heartbeats is a necessary prerequisite for an accurate online monitoring of HRV and cardiovascular control. We have developed a novel point-process-based method for real-time R-R interval error detection and correction. Given an R-wave event, we assume that the length of the next R-R interval follows a physiologically motivated, time-varying inverse Gaussian probability distribution. We then devise an instantaneous automated detection and correction procedure for erroneous and arrhythmic beats by using the information on the probability of occurrence of the observed beat provided by the model. We test our algorithm over two datasets from the PhysioNet archive. The Fantasia normal rhythm database is artificially corrupted with known erroneous beats to test both the detection procedure and correction procedure. The benchmark MIT-BIH Arrhythmia database is further considered to test the detection procedure of real arrhythmic events and compare it with results from previously published algorithms. Our automated algorithm represents an improvement over previous procedures, with best specificity for the detection of correct beats, as well as highest sensitivity to missed and extra beats, artificially misplaced beats, and for real arrhythmic events. A near-optimal heartbeat classification and correction, together with the ability to adapt to time-varying changes of heartbeat dynamics in an online fashion, may provide a solid base for building a more reliable real-time HRV monitoring device. © 1964-2012 IEEE

    Heart Rate Variability: A possible machine learning biomarker for mechanical circulatory device complications and heart recovery

    Get PDF
    Cardiovascular disease continues to be the number one cause of death in the United States, with heart failure patients expected to increase to \u3e8 million by 2030. Mechanical circulatory support (MCS) devices are now better able to manage acute and chronic heart failure refractory to medical therapy, both as bridge to transplant or as bridge to destination. Despite significant advances in MCS device design and surgical implantation technique, it remains difficult to predict response to device therapy. Heart rate variability (HRV), measuring the variation in time interval between adjacent heartbeats, is an objective device diagnostic regularly recorded by various MCS devices that has been shown to have significant prognostic value for both sudden cardiac death as well as all-cause mortality in congestive heart failure (CHF) patients. Limited studies have examined HRV indices as promising risk factors and predictors of complication and recovery from left ventricular assist device therapy in end-stage CHF patients. If paired with new advances in machine learning utilization in medicine, HRV represents a potential dynamic biomarker for monitoring and predicting patient status as more patients enter the mechanotrope era of MCS devices for destination therapy
    • …
    corecore