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Abstract: Short QT syndrome (SQTS) is an inherited cardiac ion channel disease related to an in- 13 

creased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is 14 

often the first clinical presentation in patients with SQTS. However, arrhythmic risk stratification is 15 

presently unsatisfactory in asymptomatic patients. In this context, artificial intelligence-based elec- 16 

trocardiogram (ECG) analysis has never been applied to refine risk stratification in patients with 17 

SQTS. The purpose of this study was to analyze ECGs from SQTS patients with the aid of different 18 

AI algorithms to evaluate their ability to discriminate between subjects with and without docu- 19 

mented life-threatening arrhythmic events.  20 

The study group included 104 SQTS patients, 37 of whom had a documented major arrhythmic 21 

event at presentation and/or during follow-up. Thirteen ECG features were measured inde- 22 

pendently by three expert cardiologists; then, the dataset was randomly divided into three subsets 23 

(training, validation and testing). Five shallow neural networks were trained, validated and tested 24 

to predict subject specific class (non-event/event) using different subsets of ECG features. Addition- 25 

ally, several Deep Learning and Machine Learning algorithms, such as Vision Transformer, Swin 26 

Transformer, MobileNetV3, EfficientNetV2, ConvNextTiny, Capsule Networks and logistic regres- 27 

sion were trained, validated and tested directly on the scanned ECG images, without any manual 28 

feature extraction. Furthermore, a shallow neural network, a 1-D Transformer classifier and a 1-D 29 

CNN were trained, validated and test on ECG signals extracted from the aforementioned scanned 30 

images. Classification metrics were evaluated by means of: sensitivity; specificity; positive and neg- 31 

ative predictive values; accuracy; and area under the curve.  32 

Results prove that Artificial Intelligence can help clinicians in better stratifying arrhythmic risk in 33 

patients with SQTS. In particular, shallow neural networks processing features showed the best 34 

performance in identifying patients that will not suffer from a potentially lethal event. This could 35 

pave the way to a refined ECG-based risk stratification in this group of patients, potentially helping 36 

in saving the lives of young and otherwise healthy individuals. 37 

Keywords: Artificial Intelligence; Shallow Learning; Deep Learning; Short QT syndrome; Electro- 38 

cardiogram; Sudden Cardiac Death; Risk Stratification; Vision Transformers. 39 

 40 

1. Introduction 41 

Citation: To be added by editorial 

staff during production. 

Academic Editor: Firstname Last-

name 

Received: date 

Revised: date 

Accepted: date 

Published: date 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

https://orcid.org/0000-0002-2403-1683
https://orcid.org/0000-0003-3178-6205
https://orcid.org/0000-0003-3640-8561
https://orcid.org/0000-0001-7895-9519
https://orcid.org/0000-0002-4800-1841
https://orcid.org/0000-0002-5102-3398


Sensors 2023, 12, x FOR PEER REVIEW 2 of 20 
 

 

Short QT syndrome (SQTS) is an inherited channelopathy, which was first linked to 42 

an increased risk to develop atrial fibrillation [1] and, then, to sudden cardiac death (SCD) 43 

[2] in young and otherwise healthy individuals. In 2003, Gaita et al. [2] described two 44 

unrelated families with a corrected QT interval (QTc) less than 300 ms and familial history 45 

of SCD, outlining SQTS as a novel clinical entity with an autosomal dominant pattern of 46 

inheritance. Shortly after, the genetic nature of SQTS was confirmed by the discovery of 47 

gain-of-function mutations in potassium channels [3–5]. Subsequently, mutations in other 48 

channels were described [6,7], even though the yield of genetic screening in these patients 49 

remains low (less than 30 %).  50 

According to 2022 European Society of Cardiology guidelines [8], SQTS diagnosis is 51 

recommended in case of a QTc ≤ 360 ms and one or more of the following: confirmed 52 

pathogenic mutation; family history of SQTS; survival from a ventricular fibrillation/tach- 53 

ycardia (VF/VT) episode in the absence of heart disease. Moreover, SQTS diagnosis should 54 

be considered in the presence of a QTc ≤ 320 ms or ranging between 320 and 360 ms to- 55 

gether with history of arrhythmic syncope; finally, the diagnosis may be considered in 56 

case of QTc ranging between 320 and 360 ms and family history of SD below the age of 40 57 

years.   58 

Clinical presentation of SQTS patients is highly heterogeneous; in particular, the 59 

most frequent (up to 32 %) symptomatic presentation is SCD, which is often the first clin- 60 

ical manifestation of the disease [9]. As a consequence, it is extremely important to dis- 61 

criminate, within asymptomatic patients, those who will experience SCD from those who 62 

will not.   63 

Until now, arrhythmic risk stratification in asymptomatic SQTS patients has been 64 

suboptimal, since no solid clinical or electrocardiographic parameters predicting life- 65 

threatening arrhythmic events are currently available [7, 9–12].  66 

The use of artificial intelligence (AI) in medicine is relatively recent, if compared to 67 

other fields (such as speech analytics); however, it is rapidly receiving widespread interest 68 

due to high expectations in terms of improving healthcare and reducing related costs [13– 69 

17]. In particular, the application of AI in ECG analysis has recently gained tremendous 70 

momentum due to the fact that ECG constitutes an ideal substrate for AI application, be- 71 

ing a low-cost and widely adopted cardiological tool [18]. Different groups reported fa- 72 

vorable results obtained with AI-based ECG analysis in several clinical settings such as: 73 

prediction of underlying atrial fibrillation in patients presenting with sinus rhythm [19]; 74 

arterial blood pressure estimation [20–24]; estimation of age and sex [25]; prediction of 75 

underlying cardiac contractile dysfunction [26] and of hyperkalemia [27]; arrhythmia clas- 76 

sification [28–30]; detection of hypertrophic cardiomyopathy [31]; early detection of car- 77 

diovascular autonomic neuropathy [32]; drug development [33]; and, more in general, 78 

heartbeat classification [34–36]. The high-level discrimination capabilities of such AI mod- 79 

els, which showed very good predictive performances [37–39], together with the quick- 80 

ness, availability and cost-effectiveness of the ECG, highlight the high potential of AI- 81 

based ECG analysis. However, to our knowledge, despite its potential, AI-based ECG 82 

analysis has never been applied to SCD risk stratification in patients with SQTS.  83 

The purpose of this study was to analyze ECGs from SQTS patients with the aid of 84 

different artificial intelligence systems in order to evaluate their ability to discriminate 85 

between subjects with and without documented arrhythmic events.  86 

The rest of the paper is organized as follows: Sec. 2 describes the methodology; Sec. 87 

3 presents the results, which are then discussed in Sec. 4; finally, Sec. 5 yields the conclu- 88 

sions.    89 
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2. Methods 90 

2.1. Definitions and study population 91 

The study group included a total of 104 subjects (see Table 1). To our knowledge, this 92 

is the first study to use AI for SQTS risk stratification; therefore, to avoid any bias, it was 93 

chosen to define SQTS in a very conservative way, as proposed by our group in 2011 [9], 94 

as the presence of a QTc interval (Bazett’s formula [40]) ≤ 340 ms; alternatively, SQTS was 95 

defined as a QTc interval ≤ 360 ms (or a QT/QTp ratio ≤ 88 %) [9, 41] associated with at least 96 

one of the following conditions: personal history of SCD, aborted sudden death (aSD) or 97 

syncope, familial history of SCD or SQTS. Eighty-four patients presented with relevant 98 

family history: 53 had familiarity for both SQTS and SCD, while the remaining showed 99 

familiarity only for SCD (n = 11) or SQTS (n = 20).  100 

A major arrhythmic event was defined as the occurrence of SCD, aborted sudden 101 

death (aSD), and/or unexplained syncope. Overall, 37 patients developed a major arrhyth- 102 

mic event, both at presentation and/or during follow-up: 7 died suddenly (SCD), 19 had 103 

an aSD, while 11 had unexplained syncope. Conversely, 67 did not experience any major 104 

arrhythmic event. 105 

To avoid event-related ECG alterations, the ECGs of patients with a major arrhythmic 106 

events were sampled far from the event (either before or after). In case of SCD, since it 107 

was not possible to acquire novel ECGs, it was used a baseline ECG recorded before the 108 

event occurred. In case of asymptomatic patients, it was selected a baseline ECG from the 109 

available ones.  110 

Table 1. Study population characteristics. 111 

 112 

 113 

 114 

 115 

 116 

 117 

2.2. Dataset description and features 118 

For each patient, data regarding both personal and family history were collected to- 119 

gether with 12-lead ECG with a paper speed of either 25 mm/s or 50 mm/s, and a gain of 120 

10 mm/mV.  121 

ECG parameters (features) were measured with a 400% magnification (see Fig. 1) in- 122 

dependently by three expert cardiologists from the lead with the highest T-wave ampli- 123 

tude (usually ranging from V2 to V5), including (see Fig. 1 right): RR interval; QT interval; 124 

QRS duration; J point – T peak (J-Tp); T peak – T end (Tp-Te); J point – T end (J-Te); and T- 125 

wave amplitude (Tamp). Furthermore, the following parameters were calculated: QTp ac- 126 

cording to Rautaharju et al. formula [41], QT/QTp, and the values of QT, J point – T peak, 127 

T peak – T end, and J point – T end corrected with Bazett’s formula. QT interval was 128 

Variables N=104 

Family history, No. (%) 84 (80.8) 

SCD 11 (10.6) 

SQTS 20 (19.2) 

SCD and SQTS 53 (51.0) 

Event occurrence, No. (%) 37 (35.6) 

SCD 7 (0.7) 

aSD 19 (18.3) 

Unexplained Syncope 11 (10.6) 
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measured according to the tangential method [40]. T peak was defined as the highest point 129 

of the T-wave. The complete feature set is summarized in Table 2. 130 

 131 

 132 

Figure 1. ECG parameter measurement after a 400% magnification. 133 

 134 

Table 2. Input feature set description. 135 

Feature Description 

RR (ms) Interval between two R-waves 

QT (ms) Interval from the start of QRS complex and the end of T-wave (defined using tangential method); it ex-

presses global duration of ventricular electrical activity, although used to evaluate ventricular repolariza-

tion 

QTc (ms) QT interval corrected for heart rate using Bazett’s formula 

QTc = QT/√RR  
QTp (ms) QT interval predicted with Rautaharju et al. formula 

QTp= 656/(1+HR/100) 

QRS (ms) Interval between start and end of QRS complex; it expresses the duration of ventricular depolarization 

J-Tp (ms) Interval between J point (junction between the end of the QRS complex and the beginning of the ST seg-

ment) and the peak of the T-wave; it represents the early phase of repolarization 

Tp-Te (ms) Interval between the peak of the T-wave and its end (defined using tangential method); it is a correlate of 

global dispersion of repolarization 

J-Te (ms) Interval between J point (junction between the end of the QRS complex and the beginning of the ST seg-

ment) and the end of T-wave (defined using tangential method); it expresses the effective duration of ven-

tricular repolarization 

Tamp (mV) Amplitude of T-wave measured from isoelectric line up to its peak 

cJ-Tp (ms) Interval between J point and the peak of the T-wave corrected with Bazett’s formula 

cTp-Te (ms) Interval between the peak of the T-wave to its end corrected with Bazett’s formula 

cJ-Te (ms) Interval between J point and the end of T-wave corrected with Bazett’s formula 

QT/QTp Ratio among the QT interval and the QTp 



Sensors 2023, 12, x FOR PEER REVIEW 5 of 20 
 

 

2.3. Neural networks 136 

Neural networks are a set of algorithms, modeled on the human brain functions, de- 137 

signed to recognize patterns, i.e. the relationships, between the input and the output (tar- 138 

get) signals [42]. In this work, two complementary approaches (human-engineered fea- 139 

tures vs automatic feature extraction), have been tested to perform SQTS risk stratifica- 140 

tion. In the former scenario, cardiologists have measured the features reported in Table 2 141 

and, then, this set has been fed to a shallow learning model, while, in the latter case, ECG 142 

scans have been fed directly to the Vision Transformer, without any prior feature extrac- 143 

tion phase. Human-engineered features have a direct, clear, medical explanation; for ex- 144 

ample, the R-R interval refers to the time between two heartbeats. However, the shallow 145 

neural network performance are highly affected by the input feature choice; since SQTS 146 

risk stratification is still an open problem, feature selection is not straightforward. On the 147 

other side, Deep Learning models are able to automatically extract the most significant 148 

features from the training input images and, therefore, cannot be biased by human-based 149 

feature selection; however, they act as a black-box, which means they cannot provide any 150 

medical explanation of a good risk stratification performance. It is worth to mention that, 151 

given the limited size of the input dataset, it is probable that shallow neural network 152 

would work better than Deep Learning models. 153 

There are pros and cons in both scenarios; however, given the above, both ap- 154 

proaches are complementary and worthy to be explored in an experimental setting. 155 

 156 

2.3.1. Shallow neural networks: human-engineered features 157 

In a standard multi-layer perceptron (MLP) configuration, the input layer is made of 158 

a set of units (neurons), one per each feature, which work as an entry point to the neural 159 

network. Indeed, this layer consists of passive nodes, which do not modify the input, but 160 

only transmit the information to each neuron of the subsequent layer (also known as fully 161 

connected). The hidden layer has an arbitrary amount of neurons, which depends on the 162 

complexity of the problem at hand. Each hidden node combines the information received 163 

from each unit of the input layer to achieve a complex representation of the phenomenon 164 

under investigation. At this purpose, a non-linear activation function is employed, such 165 

as the hyperbolic tangent sigmoid. Finally, the output layer yields the input data 166 

classification by means of the softmax function [43].   167 

Due to the dataset size and the use of human-engineered features, it was chosen to 168 

use a shallow learning model. At this purpose, a feed-forward fully connected neural 169 

network with one hidden layer was designed. Different hidden layer sizes have been 170 

tested to evaluate the corresponding network classification performance; the best 171 

performing architecture has 30 and 1 neurons in the hidden and output layers, 172 

respectively, while the input layer size depends on the experiment (i.e. on the size of the 173 

input feature set). Aside from achieving superior performance, such configuration has a 174 

reduced capacity, due to the lower number of neurons in the hidden layer. This feature 175 

can help prevent overfitting, which is likely to occur when analyzing such small datasets, 176 

threatening to invalidate final results. Hidden units were equipped with hyperbolic 177 

tangent sigmoid transfer function, while the output layer used softmax to yield 178 

classification. The network training was performed using the scaled conjugate gradient 179 

(SCG) [44] technique to minimize the cross-entropy error function. 180 

  181 
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 182 

2.3.2. Shallow neural networks: signals 183 

A basic multi-layer perceptron has also been fed with ECG signals extracted from the 184 

two-heartbeat image crops that will be detailed in the next sections. A signal extraction 185 

tool [45] was used, yielding 500-samples numerical signals for precordial leads (V1 to V3, 186 

since leads V4 to V6 were too noisy to be digitized on several images). This process was 187 

remarkably complicated and time-consuming. An example of extracted numerical ECG 188 

signal is shown in Figure 2.   189 

                        190 

Figure 2. Example of a digitized ECG signal extracted from a scanned image 191 

Several configurations for the neural network were tested; the best perfoming one 192 

had 50 neurons in the hidden layer and 1 neuron in the output layer. The same 193 

considerations for the feature approach apply for this case. 194 

 195 

2.3.3. Deep Learning models: Convolutional Neural Networks 196 

Despite being arguably surpassed by more recent models, Convolutional Neural 197 

Networks (CNNs) are still the most common Deep Learning models for computer vision 198 

applications. CNNs apply different kernels over the input image in order to extract rele- 199 

vant features [46]. Stacking several layers, each one with a different kernel in charge of 200 

capturing a specific aspect of the picture, eventually allows the network to collect enough 201 

information to execute tasks like classification, segmentation, object detection and the like. 202 

CNN architectures deployed for this work are EfficientNetV2S, MobileNetV3 and 203 

ConvNextTiny [47][48][49], together with a 1-D CNN applied to numerical signals ex- 204 

tracted from images. Apparently, this approach did not yield the expected results, as de- 205 

tailed in the next sections. 206 

 207 

2.3.4. Deep Learning Models: Vision Transformer and Swin Transformer 208 

A different type of approach is offered by the Vision Transformer (or ViT), a deep 209 

neural network designed as a “computer vision version” of the original Transformer [50, 210 

51].   211 
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This architecture processes images by dividing them into equally-sized patches, 212 

which are subsequently embedded and fed to the transformer. The embedding process 213 

also accounts for patch position within the image, thus retaining the positional infor- 214 

mation of each patch. The resulting vector is then processed inside the Transformer en- 215 

coder by blocks called heads, which exploit the attention mechanism [52] to evaluate the 216 

information associated to each patch, and how these “patches of information” are related 217 

to each other. Multiple heads perform these operations at once, allowing the network to 218 

gather knowledge about the global context of the picture. The encoder output is then fed 219 

to a multi-layer perceptron to classify the image on the basis of the information that the 220 

network was able to extract from it.   221 

The stages of the Vision Transformer in image analysis are in many ways similar to 222 

what the human eye and brain do when looking at a picture, trying to grasp its meaning 223 

by merging information coming from details and knowledge gathered from the global 224 

picture, providing a tool that is capable to extract features autonomously. Conversely, 225 

shallow learning models require ECG features as inputs to the network, thus implying the 226 

necessity to gather medical knowledge about the topic before network deployment. 227 

A different version of the Vision Transformer, called Shifted Window Transformer 228 

(Swin Transformer) was developed trying to make the basic ViT architecture better suited 229 

to vision tasks [53]. In fact, visual entities can undergo large variations, and image pixels 230 

can have a significant resolution when compared to word in text. In order to overcome 231 

these issues, the Swin Transformer’s hierarchical architecture can adapt to different scales, 232 

and its computational complexity varies linearly with image size. 233 

This model was applied to ECG images to assess performance against the Vision 234 

Transformer. Both Vision and Swin Transformers were pretrained on the ImageNet data- 235 

base [54] and fine-tuned on scanned ECG images. In addition, a 1-D version of the original 236 

Transformer encoder was applied to numerical signal extracted from images. 237 

 238 

2.3.5. Deep Learning models: Capsule neural networks  239 

Capsule neural networks (CapsNets) were designed to overcome some of CNNs 240 

main limitations, like lacking the capability to preserve spatial relationships among image 241 

elements [55]. In fact, to mention an “infamous” example, a CNN would typically identify 242 

a human face even when its elements – e.g. nose, mouth, eyes – are misplaced with respect 243 

to where they are expected to lie. With the introduction of capsule modules and dynamic 244 

routing, these neural models are able to capture the orientation of parts within an image.  245 

 246 

2.3.6. Logistic Regression 247 

One of the most common machine learning algorithms. Logistic Regression fits input 248 

data along a sigmoid function, assigning it to different classes according to where it lays 249 

along the function plot [56]. This classifier can be fed with images to perform classification, 250 

and in this case, it was applied on scanned ECG images. 251 

 252 

2.4. Data pre-processing 253 
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The input dataset has been pre-processed to enhance network training and avoid 254 

overfitting.   255 

In the case of the Shallow Learning Model, to reduce noise in data and avoid bias in 256 

the network training, data have been statistically normalized (z-score) to make the network 257 

able to intrinsically determine each input feature importance for classification. Indeed, 258 

without this step, it would have been possible that some features masked some others, 259 

preventing the network to understand the real contribution of each input attribute to 260 

SQTS risk stratification.  261 

On the other side, for Deep Learning Models, images were initially cropped to re- 262 

move all the elements in the bordering part that do not strictly belong to an ECG chart. 263 

Said elements are usually accompanying information (e.g.; annotations) which are con- 264 

sidered to carry no relevant data for the given task. Yet, if not removed, their information 265 

content could erroneously be marked as noteworthy by the model, thus introducing un- 266 

wanted biases in classification. Figure 3 shows an example of ECG image before and after 267 

the initial cropping. 268 

 269 

 270 

                            (a)                                    (b) 

Figure 3. (a) ECG image before cropping; (b) ECG image after cropping. 271 

In order to try and isolate possible elements of the image carrying more information, 272 

images were later cropped to contain only two heartbeats, leading to two additional ver- 273 

sions of the dataset: one containing two-heartbeat-crops for each precordial lead (e.g.: V1 274 

only, V2 only and so on, see Figure 4), and another one containing all two-heartbeat-crops 275 

for all precordial leads (which are considered to hold more information than peripheral 276 

leads with respect to SQTS diagnosis). 277 

               278 

Figure 4. Two-heartbeat crop on a single precordial lead from a scanned image 279 

Subsequently, data augmentation techniques were implemented for all Deep Learn- 280 

ing models in order to help the network achieve better results during training. In particu- 281 

lar, input images went through the following stages undergoing the RandAugment 282 

method for image augmentation [57]: cropping at center; normalizing; horizontal flipping 283 

with a 50% probability of rotation occurring; random cropping and resizing; final resizing 284 

to the initial size. This process was especially necessary to try to level out the strong data 285 
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imbalance in between the two classes, which would otherwise lead to a penalization of 286 

the model’s generalization capabilities. 287 

Another approach was the extraction of numerical signals from the two-heartbeat 288 

crops on leads V1, V2 and V3, with the purpose of trying and retrieving the information 289 

retained in the original ECG signals that were acquired by the time data was collected. 290 

This was done by exploiting the specific tool mentioned previously in Section 2.3.2.  291 

For all AI models, both the input and target sets were randomly divided into three 292 

sets as follows: 70 % for training; 10 % to validate that the network is generalizing and to 293 

stop training before overfitting; and the remaining 20 % to independently test the network 294 

classification performance. To ensure the input data distribution (i.e. the amount of non- 295 

event/event cases) was preserved in the three sets, the random division has been per- 296 

formed separately for non-event and event subsets.  297 

2.5. Classification metrics 298 

 Classification accuracy was estimated analyzing the confusion matrices and the as- 299 

sociated ROC curve. The former, shown in Fig. 5, measures the amount of times the net- 300 

work correctly classify the input; in this sense, it yields an estimate of how much a single 301 

class (negative/positive), i.e. a medical condition (non-event/event), was understood by 302 

the neural model. The rows and the columns correspond to the actual (aka target) and 303 

predicted classes, respectively. The diagonal cells correspond to the true observations 304 

(True Positive and True Negative), correctly classified, while the off-diagonal cells corre- 305 

spond to the false observations (False Positive and False Negative), incorrectly classified.  306 

To better analyze the network performance, five advanced classification metrics can 307 

be derived from the confusion matrix:   308 

• Sensitivity, also referred as True Positive Rate or Recall: it measures the per- 309 

centage of positive examples correctly labelled as positive by the classifier. 310 

In medicine, highly sensitive tests are generally used for screening purposes, 311 

due to their ability to rule out the disease/event occurrence.   312 

• Specificity, also known as True Negative Rate: it measures the percentage of 313 

negative examples correctly labelled as negative by classifier. In medicine, 314 

highly specific tests are typically used for confirmation purposes, due to their 315 

ability to rule in the disease/event occurrence.  316 

• Positive predictive value (PPV), also known as Precision: the ratio between the 317 

total number of correctly classified positive examples and the total number 318 

of predicted positive examples. It yields the correctness achieved in positive 319 

prediction, which means it measures the likelihood that an event will truly 320 

occur given a corresponding network positive outcome.  321 

• Negative predictive value (NPV): the ratio between the total number of cor- 322 

rectly classified negative examples and the total number of predicted nega- 323 

tive examples. It yields the correctness achieved in negative prediction, 324 

which means it measures the likelihood that an event will truly not occur 325 

given a corresponding network negative outcome.  326 

• Accuracy: the percentage of correct predictions. It is an average measure of 327 

the network quality. 328 
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• F1-Score: it is the harmonic mean of PPV and Sensitivity. It is better suited for 329 

unbalanced datasets than accuracy.  330 

 331 

Figure 5. Confusion matrix example: rows yield the real (actual) labels, columns the predicted ones, 332 
i.e. the network outputs 333 

Despite accuracy provides a single global measure of the classification quality, it is 334 

just a mean value of the network performances. On the contrary, the area under the ROC 335 

curve (AUC) yields a more precise measure (the higher the best) of the predictive accuracy 336 

because it represents the probability that a randomly chosen positive sample is ranked 337 

higher than a corresponding negative one. 338 

 339 

3. Results 340 

The classification ability of the proposed shallow learning model has been tested on 341 

different input configurations, i.e. different input human-engineered feature sets, to study 342 

which features were the most relevant to correctly discriminate among subjects who will 343 

have an event from those who will not. In this sense, it was investigated the importance 344 

of the QT interval and of the T wave in distinguishing the two classes (i.e. non- 345 

event/event). Therefore, the experiments could be grouped into five categories as per Ta- 346 

ble 3:  347 

• QT : only the QT related features were considered;  348 

• Twave : only the T wave features were considered;  349 

• QT + Twave : both the QT related and T wave features were considered;  350 

• Twave ext : T wave features were considered together with their Bazzett-cor- 351 

rected values;  352 

• All : all input features were considered. 353 

 354 

Table 3. Input dataset taxonomy. 355 

 Input configurations 

Feature QT Twave QT+Twave Twave ext All 

RR (ms) ✓  ✓ ✓ ✓ 

QT (ms) ✓  
✓  ✓ 

QTc (ms) ✓  
✓  ✓ 



Sensors 2023, 12, x FOR PEER REVIEW 11 of 20 
 

 

QTp (ms) ✓  ✓  ✓ 

Tamp (mV) ✓ ✓ ✓ ✓ ✓ 

QRS (ms) ✓  ✓  ✓ 

J-Tp (ms)  ✓ ✓ ✓ ✓ 

Tp-Te (ms)  ✓ ✓ ✓ ✓ 

J-Te (ms)  ✓ ✓ ✓ ✓ 

cJ-Tp (ms)    ✓ ✓ 

cTp-Te (ms)    ✓ ✓ 

cJ-Te (ms)    ✓ ✓ 

QT/QTp     ✓ 

 356 

To assess the network classification performances, sensitivity, specificity, PPV, NPV, and 357 

accuracy were evaluated. The results on the test set (see Table 4), which checks the abil- 358 

ity of the models to perform on new and previously unseen samples, can be summarized 359 

as follows:  360 

 361 

• Sensitivity: it is generally low in all configurations with a maximum value of 63.6 362 

% in the Twave input configuration and a minimum of 36.4 % in the All configura- 363 

tion.   364 

• Specificity: this metric is generally high across all the different explored input 365 

configurations, with values ranging from 85 % (Twave) to 95 % (QT, Twave ext and 366 

All).  367 

• PPV and NPV: these two metrics do not show optimal values in any of the pro- 368 

posed input configurations; in particular, PPV showed better results as compared 369 

to NPV (maximum PPV: 83.3 % in QT and Twave ext; maximum NPV: 81 % in Twave).  370 

• Accuracy: this evaluation metric is generally suboptimal across all the evaluated 371 

configurations, with all the configurations showing 77.4 % accuracy, with the only 372 

exception of the All input configuration, which showed a slightly reduced accu- 373 

racy in the test set (74.2 %). 374 

• F1-Score: this evaluation metric is generally suboptimal across all the evaluated 375 

configurations, with the Twave one reaching the highest value of 66.6, and QT+Twave 376 

showing roughly the same performance (63.1).  377 

 378 

Table 4. Shallow network (human-engineered features) classification performances: Sensitivity, 379 
Specificity, PPV, NPV, Accuracy, F1-Score. Values are in percentage. The highest values per each 380 
metric are highlighted in bold. 381 

 QT Twave QT+Twave Twave ext All 

Sensitivity 45.5 63.6 54.5 45.5 36.4 

Specificity 95.0 85.0 90.0 95.0 95.0 

PPV 83.3 70.0 75.0 83.3 80.0 

NPV 76.0 81.0 78.3 76.0 73.1 

Accuracy 77.4 77.4 77.4 77.4 74.2 

F1-Score 58.9 66.6 63.1 58.9 50.0 
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Finally, Table 5 reports the AUC values for the five evaluated feature sets. While 382 

training set AUCs are generally satisfying, the same cannot be said for test set AUCs: in 383 

fact, as can be appreciated, AUC values drop to poor values (AUC < 0.60) or just acceptable 384 

values (AUC 0.60-0.70) in all the configurations, except for QT + Twave configuration, which 385 

present a good AUC also in the testing set (0.81). 386 

Table 5. Shallow network (human-engineered features) classification performances: AUC. 387 

 QT Twave QT+Twave Twave ext All 

 Training Test Training Test Training Test Training Test Training Test 

AUC 0.86 0.58 0.75 0.67 0.85 0.81 0.72 0.59 0.76 0.53 

 388 

Tables 6 and 7 summarize the results for the other approaches (signal and image 389 

analysis). Reported metrics are the test accuracy and the AUC scores obtained by feeding 390 

the networks with signals and single lead images. Results are quite similar, regardless the 391 

input type and/or the network architecture: apparently, none of those methods is able to 392 

capture any significant difference between the two categories, interpreting every input as 393 

a case without SCD event. 394 

Table 6. Signal classification approach performances: Test Accuracy (percentage) and AUC. 395 

 Shallow network 1-D CNN 1-D Transformer 

Test Accuracy 63.6 64.0 64.0 

AUC 0.50 0.51 0.51 

 396 

Table 7. Image classification approach performances: Test Accuracy (percentage) and AUC. 397 

 
Efficient-

NetV2S 
MobileNetV3 ConvNextTiny 

Vision  

Transformer 

(ViT) 

Swin  

Transformer 

Capsule  

Networks 

Logistic  

Regression 

Test Accuracy 56.2 56.2 65.6 63.3 64.1 65.0 55.0 

AUC 0.47 0.47 0.55 0.52 0.50 0.51 0.45 

 398 

3.1. Comparison with classical machine learning algorithms  399 

Since the dataset is very small (104 samples and at most 13 features), 1-hidden-layer 400 

perceptron is not guaranteed to perform better than other classical ML models. Therefore, 401 

to better assess the quality of the proposed shallow learning model, it was performed an 402 

additional comparison with classical machine learning algorithms like: logistic regression 403 

[61], decision tree [62], boosted decision tree [62], bagged decision tree [63], support vector 404 

machine (SVM) [62], K-nearest neighbors (KNN) [64]. Also, PCA feature selection tech- 405 

nique [65] was employed as preprocessing, retaining 90% of the overall explained vari- 406 

ance, to see if reducing the input space would imply a improvement in the classification 407 

[66].  408 

Table 8 yields the results on the test set, where different setting of these methods were 409 

reported. More in detail: 410 

• Fine Tree, Medium Tree, Coarse Tree: decision tree with Gini’s diversity in- 411 

dex as split criterion and a maximum number of splits equal to 100, 20, 4, 412 

for Fine, Medium, Coase, tree, respectively.  413 
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• Boosted decision tree: ensemble of decision trees using AdaBoost algorithm 414 

(maximum number of splits: 20,  number of learners: 30, learning rate: 0.1). 415 

• Bagged decision tree: ensemble of decision trees [62] using Bag algorithm 416 

(maximum number of splits: 72,  number of learners: 30). 417 

• SVM: support vector machines [62], with different kernel functions: linear; 418 

quadratic; cubic; Gaussian with kernel scale equal to 0.5 (Fine Gaussian), 2 419 

(Medium Gaussian), and 8 (Coarse Gaussian).  420 

• Fine KNN, Medium KNN, Coarse KNN: k-nearest neighbor algorithm us- 421 

ing Euclidean distance as metric and a number of neighbors equal to 1, 10, 422 

100, for Fine, Medium, Coase, KNN, respectively. 423 

• Cosine KNN: k-nearest neighbor algorithm using a number of neighbors 424 

equal to 10 and cosine distance as metric. 425 

• Cubic KNN: k-nearest neighbor algorithm using a number of neighbors 426 

equal to 10 and Minkowsky distance as metric. 427 

Despite some of these methods show promising results (i.e. 71.0 % of accuracy), no 428 

one reaches the same accuracy of the Shallow Learning (i.e. 77.4 %). Only Coarse Tree 429 

with PCA arrives to 74.2 % of accuracy, still below Shallow Learning one. PCA behavior 430 

is not conclusive, since in some cases it improves performances, while in some other cases 431 

it worsen them, even in the same technique; as an example, see Medium Tree vs Coarse 432 

Tree, or Quadratic SVM vs Cubic SVM. 433 

Table 8. Accuracy classification performances of state-of-the-art ML methods on the five input con- 434 
figuration, with or without PCA data preprocessing (90 % of explained variance retained). Values 435 
are in percentage. The highest values per each column are highlighted in bold. 436 

 QT Twave QT+Twave Twave ext All 

 No PCA PCA No PCA PCA No PCA PCA No PCA PCA No PCA PCA 

Logistic  

Regression 
58.1 64.5 64.5 67.7 58.1 64.5 58.1 64.5 61.3 64.5 

Fine Tree 67.7 58.1 48.4 54.8 51.6 71.0 54.8 64.5 48.4 64.5 

Medium Tree 67.7 58.1 48.4 54.8 51.6 71.0 54.8 64.5 48.4 64.5 

Coarse Tree 58.1 74.2 58.1 58.1 58.1 67.7 45.2 64.5 45.2 58.1 

Boosted Trees 54.8 67.7 54.8 64.5 64.5 71.0 64.5 45.2 41.9 54.8 

Bagged Trees 64.5 67.7 54.8 45.2 67.7 64.5 58.1 58.1 58.1 67.7 

Linear SVM 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 

Quadratic SVM 71.0 58.1 67.7 64.5 64.5 71.0 54.9 61.3 64.5 71.0 

Cubic SVM 58.1 64.5 54.8 54.8 58.1 67.7 41.9 58.1 54.8 67.7 

Fine Gaussian 

SVM 
64.5 71.0 58.1 58.1 64.5 64.5 61.3 64.5 64.5 61.3 

Medium Gauss-

ian SVM 
64.5 64.5 61.3 61.3 64.5 64.5 64.5 64.5 67.7 64.5 

Coarse Gaussian 

SVM 
64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 

Fine KNN 64.5 67.7 64.5 58.1 51.6 58.1 61.3 54.9 51.6 61.3 

Medium KNN 54.8 64.5 61.3 61.3 61.3 54.8 67.7 58.1 67.7 54.8 

Coarse KNN 64.5 64.5 64.2 64.5 64.5 64.5 64.5 64.5 64.5 64.5 

Cosine KNN 54.8 64.5 61.3 61.3 64.5 58.1 67.7 58.1 64.5 61.3 

Cubic KNN 58.1 64.5 61.3 61.3 61.3 58.1 67.7 58.1 67.7 58.1 

 437 
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4. Discussion 438 

SQTS is an inherited channelopathy related to increased risk of SCD. SCD is often the 439 

first symptomatic presentation, demanding an important effort to better stratify the ar- 440 

rhythmic risk in patients who are still asymptomatic at medical evaluation. Until now, 441 

risk stratification in asymptomatic patients has been unsatisfactory. To our knowledge, 442 

this is the first work using an AI-based approach to analyze ECG in patients with SQTS, 443 

in order to refine arrhythmic risk stratification. In this study, we used two different AI- 444 

based approaches to this purpose: the first approach requires manual features extraction 445 

from the ECG, which are used as inputs for shallow learning models; other approaches 446 

directly use the scanned ECG image or the signal extracted from it as input, automatically 447 

performing feature extraction. The main findings are summarized in the following. 448 

Shallow learning models based on different configuration of manually extracted (hu- 449 

man-engineered) ECG features achieved suboptimal performance, in particular regarding 450 

the NPV, which never overcomes 81 %; this is clinically relevant, since it means 2 out of 451 

10 patients with an event are incorrectly classified in the non-event group, potentially 452 

leading to under-treatment.  453 

All other approaches do not seem to grasp any significant difference between the two 454 

classes, and end up considering each input as a case with no SCD event. There are several 455 

possible factors that might have influenced such results: 456 

• Scanned ECG images were extremely different from each other, in terms of 457 

resolution, format, color, background grid color, and most of them suffered 458 

a noisy, poor quality; this hindered the possibility to develop a consistent 459 

preprocessing procedure that could work efficiently on all dataset images. 460 

• Dataset cardinality is particularly low; this could represent an obstacle for 461 

some of the Deep Learning models chosen, both for the image and the signal 462 

approach. In fact, such architectures often contain a vast number of parame- 463 

ters, and are usually trained on very large datasets. 464 

• Image cropping was performed manually, both for lead isolation and signal 465 

digitization; this might introduce some errors due to the lack of specific 466 

methods and criteria for accurate and precise cropping area definition. 467 

• The image and signal approaches were conceived to be specular to the fea- 468 

ture approach: tested models were supposed to automatically extract rele- 469 

vant features in an unbiased manner, potentially uncovering aspects of the 470 

ECG chart that can enrich the knowledge about SQTS, and unveil elements 471 

that can hint to an increased risk of SCD event. Therefore, this methodology 472 

cannot leverage any a priori information that could steer feature search to- 473 

wards a specific direction.  474 

These results suggest that AI-based ECG analysis, in particular using the features 475 

approach, might help in refining risk stratification in SQTS patients, supporting clinical 476 

decision-making in a context where incorrect risk appraisal might translate in the death 477 

of young and otherwise healthy individuals. A refined risk stratification means that the 478 

clinician may offer the patients the most appropriate treatment to prevent SCD, including 479 

cardiac devices. Implantable Cardioverter-Defibrillator (ICD) still represents the mainstay 480 

of treatment for patients with SQTS who are survivors of SCD or have documented spon- 481 

taneous sustained VT [58], despite significant risk of device-related complications, such 482 

as inappropriate shocks (33%), device-related infection (10%), lead failure and fracture 483 
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(21%) and psychological distress (3.5%) [59,60]. In this sense, a better risk stratification 484 

might not just lead to earlier adoption of life-saving therapy to patients deemed at higher 485 

risk of SCD, but also to also to avoiding implantation of ICD in low-risk patients, poten- 486 

tially sparing the risk of device-related complications.   487 

 488 

4.1. Study limits 489 

 The present work has some limitations, which need to be addressed. First, we 490 

acknowledge that the number of patients was limited; however, it should be borne in 491 

mind that SQTS is a rare disease, and this constitutes the widest cohort of SQTS patients 492 

published so far. Given the limited amount of ECGSs, it was not possible to refine the 493 

analysis to different subgroups, since the results would have been not significant from a 494 

statistical point of view. 495 

For the shallow learning model, ECG features were not automatically extracted, but 496 

manually calculated by three experienced cardiologists (albeit with a 400 % magnification 497 

to minimize measurement errors), which is prone to errors in manual measurement. 498 

Moreover, it suffers from an implicit bias over the selected features set: although the thir- 499 

teen features were selected based on the current medical knowledge, they could not be 500 

the more relevant ones to perform SQTS risk stratification. Further studies with different 501 

features sets should be considered. Future works will investigate different ways of feature 502 

selection, e.g.  L1 regularization, and deepen the relationship among the features and the 503 

classification performances.  504 

Finally, to increase generalizability, the results presented in this study will be verified 505 

on an external SQTS population coming from different regions or medical centers, to bet- 506 

ter assess their reliability. 507 

 508 

5. Conclusions 509 

Short QT syndrome is an inherited channelopathy linked with an increased risk of 510 

SCD in young and otherwise healthy individuals. Clinical presentation of patients af- 511 

fected by SQTS is highly heterogeneous, with SCD often being the first clinical presenta- 512 

tion, and risk stratification is particularly challenging in asymptomatic subjects.  513 

The analysis of ECG from SQTS patients with the aid of neural networks shows 514 

promising results in terms of discriminating between subjects with and without docu- 515 

mented arrhythmic events. This could pave the way to a refined ECG-based risk stratifi- 516 

cation in this group of patients, potentially helping in saving the lives of young and oth- 517 

erwise healthy individuals, such as the initial study performed on the Brugada syndrome 518 

[62].  519 

Future studies should focus on automatic calculation of the features from digital ECG 520 

recordings (either using raw digital ECG data or digitized data from paper-based ECG). 521 

This will guarantee an increased reproducibility if compared to manual extraction of rel- 522 

evant ECG features. In addition, other Deep Learning models, assessing the whole raw 523 

digital ECG signal and/or ECG images, should also be explored and should be compared 524 

to other architectures. As an example, images will be converted to the frequency domain 525 

to apply frequency-domain filters or Wiener filters for noise reduction, so that it will be 526 
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possible to provide cleaner input to vision-based Deep Learning models. In parallel, au- 527 

thors will continue to collect SQTS ECGs of subjects which have developed an event to 528 

increase the cardinality of the dataset and further validate the proposed approach; at this 529 

purpose, it will be probably needed to include different cohorts coming from different 530 

regions and medical centers. Finally, data augmentation by means of GANs, will be ex- 531 

plored to increase the amount of ECG images and, thus, the classification performance. 532 

 533 
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