302 research outputs found

    Performance of a high-resolution polarimetric SAR automatic target recognition system

    Get PDF
    s Lincoln Laboratory is investigating the detection, discrimination, and classification of ground targets in high-resolution, fully polarimetric, syntheticaperture radar (SAR) imagery. This paper summarizes our work in SAR automatic target recognition by discussing the prescreening, discrimination, and classification algorithms we have developed; data from 5 km 2 of clutter and 339 targets were used to study the performance of these algorithms. The prescreener required a low threshold to detect most of the targets in the data, which resulted in a high density of false alarms. The discriminator and classifier stages then reduced this false-alarm density by a factor of 100. We improved targetdetection performance by using fully polarimetric imagery processed by the polarimetric whitening filter (PWF), rather than by using single-channel imagery. In addition, the PWF-processed imagery improved the probability of correct classification in a four-class (tank, armored personnel carrier, howitzer, or clutter) classifier. T - program is a broad-based advanced technology program to develop new weapons technology that can locate and destroy critical mobile targets such as SCUD launch systems and other highly mobile platforms. Automatic target recognition (ATR) is an important candidate technology for this effort. To address the surveillance and targeting aspects of the Warbreaker program, Lincoln Laboratory has developed a complete, end-to-end, 2-D synthetic-aperture radar (SAR) ATR system. This system requires a sensor that can search large areas and also provide fine enough resolution to detect and identify mobile targets in a variety of landscapes and deployments. The Lincoln Laboratory ATR system has three basic stages: detection (or prescreening), discrimination, and classification (see To evaluate the performance of the ATR system

    Comparative detections of oil spill using multimode radarsat-1 synthetic aperture radar satellite data

    Get PDF
    Oil spill or leakage into waterways and ocean spreads very rapidly due to the action of wind and currents. The study of the behavior and movement of these oil spills in sea had become imperative in describing a suitable management plan for mitigating the adverse impacts arising from such accidents. But the inherent difficulty of discriminating between oil spills and look-alikes is a main challenge with Synthetic Aperture Radar (SAR) satellite data and this is a drawback, which makes it difficult to develop a fully automated algorithm for detection of oil spill. As such, an automatic algorithm with a reliable confidence estimator of oil spill would be highly desirable. The main objective of this work is to develop comparative automatic detection procedures for oil spill pixels in multimode (Standard beam S2, Wide beam W1 and fine beam F1) RADARSAT-1 SAR satellite data that were acquired in the Malacca Straits using three algorithms namely, textures using cooccurrence matrix, post supervised classification, and neural network (NN) for oil spill detection with window size 7 x 7. The results show that the mean textures from co-occurrence matrix is the best indicator for oil spill detection as it can discriminate oil spill from its surrounding such as look-alikes, sea surface and land. The entropy and contrast textures can be mainly used for look-like detections. The receiver operator characteristic (ROC) was used to determine the accuracy of oil spill detection from RADARSAT-1 SAR data. The results show that oil spills, lookalikes, and sea surface roughness are perfectly discriminated with an area difference of 20% for oil spill, 35% look–alikes, 15% land and 30% for the sea roughness. The NN shows higher performance in automatic detection of oil spill in RADARSAT-1 SAR data as compared to other algorithms with standard deviation of 0.12. It can therefore be concluded that NN algorithm is an appropriate algorithm for oil spill automatic detection and W1 beam mode is appropriate for oil spill and look-alikes discrimination and detection

    A target detection scheme for VHF SAR ground surveillance

    Full text link

    Sonar systems for object recognition

    Get PDF
    The deep sea exploration and exploitation is one of the biggest challenges of the next century. Military, oil & gas, o shore wind farming, underwater mining, oceanography are some of the actors interested in this eld. The engineering and technical challenges to perform any tasks underwater are great but the most crucial element in any underwater systems has to be the sensors. In air numerous sensor systems have been developed: optic cameras, laser scanner or radar systems. Unfortunately electro magnetic waves propagate poorly in water, therefore acoustic sensors are a much preferred tool then optical ones. This thesis is dedicated to the study of the present and the future of acoustic sensors for detection, identi cation or survey. We will explore several sonar con gurations and designs and their corresponding models for target scattering. We will show that object echoes can contain essential information concerning its structure and/or composition

    Investigation of Ground Target Detection Methods in Fully Polarimetric Wide Angle Synthetic Aperture Radar Images

    Get PDF
    Target detection is a high priority of the Air Force for the purpose of reconnaissance and bombardment. This research investigates and develops methods to distinguish ground targets from clutter (i.e. foliage, landscape etc.) in Wide Angle Synthetic Aperture Radar (WASAR) images. WASAR uses multiple aspect angle SAR images of the same target scene. The WASAR data was generated from a pre-release software package (XPATCH-ES) provided by the sponsor (WL-AARA). A statistical analysis and feature extraction is performed on the XPATCH-ES data. Polarimetric and wide angle covariance matrices are estimated and analyzed. From an analysis of the wide angle covariance matrix it is shown that natural clutter has in general a uniform radar return for changing aspect angles, whereas the radar return for a target varies. Based on this analysis, two new wide angle algorithms, the WASAR Whitening Filter and the Adaptive WASAR Whitening Filter (AWWF) are developed. The target detection performance of polarimetric and multi aspect angle image combining algorithms are quantified using Receiver Operating Characteristic curves and target to clutter ratios. It is shown that wide angle processing provides superior target detection performance over polarimetric processing. Combinations of wide angle and polarimetric algorithms were used to achieve a 13.7 dB processing gain in target to clutter ratio when compared to unprocessed images of the target scene. This represents a significant improvement in target detection capabilities

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    Feedback-assisted automatic target and clutter discrimination using a Bayesian convolutional neural network for improved explainability in SAR applications

    Get PDF
    DATA AVAILABILITY STATEMENT : The NATO-SET 250 dataset is not publicly available; however, the MSTAR dataset can be found at the following url: https://www.sdms.afrl.af.mil/index.php?collection=mstar (accessed on 5 January 2022).In this paper, a feedback training approach for efficiently dealing with distribution shift in synthetic aperture radar target detection using a Bayesian convolutional neural network is proposed. After training the network on in-distribution data, it is tested on out-of-distribution data. Samples that are classified incorrectly with high certainty are fed back for a second round of training. This results in the reduction of false positives in the out-of-distribution dataset. False positive target detections challenge human attention, sensor resource management, and mission engagement. In these types of applications, a reduction in false positives thus often takes precedence over target detection and classification performance. The classifier is used to discriminate the targets from the clutter and to classify the target type in a single step as opposed to the traditional approach of having a sequential chain of functions for target detection and localisation before the machine learning algorithm. Another aspect of automated synthetic aperture radar detection and recognition problems addressed here is the fact that human users of the output of traditional classification systems are presented with decisions made by “black box” algorithms. Consequently, the decisions are not explainable, even to an expert in the sensor domain. This paper makes use of the concept of explainable artificial intelligence via uncertainty heat maps that are overlaid onto synthetic aperture radar imagery to furnish the user with additional information about classification decisions. These uncertainty heat maps facilitate trust in the machine learning algorithm and are derived from the uncertainty estimates of the classifications from the Bayesian convolutional neural network. These uncertainty overlays further enhance the users’ ability to interpret the reasons why certain decisions were made by the algorithm. Further, it is demonstrated that feeding back the high-certainty, incorrectly classified out-of-distribution data results in an average improvement in detection performance and a reduction in uncertainty for all synthetic aperture radar images processed. Compared to the baseline method, an improvement in recall of 11.8%, and a reduction in the false positive rate of 7.08% were demonstrated using the Feedback-assisted Bayesian Convolutional Neural Network or FaBCNN.The Radar and Electronic Warfare department at the CSIR.http://www.mdpi.com/journal/remotesensinghj2023Electrical, Electronic and Computer Engineerin

    Bayesian super-resolution with application to radar target recognition

    Get PDF
    This thesis is concerned with methods to facilitate automatic target recognition using images generated from a group of associated radar systems. Target recognition algorithms require access to a database of previously recorded or synthesized radar images for the targets of interest, or a database of features based on those images. However, the resolution of a new image acquired under non-ideal conditions may not be as good as that of the images used to generate the database. Therefore it is proposed to use super-resolution techniques to match the resolution of new images with the resolution of database images. A comprehensive review of the literature is given for super-resolution when used either on its own, or in conjunction with target recognition. A new superresolution algorithm is developed that is based on numerical Markov chain Monte Carlo Bayesian statistics. This algorithm allows uncertainty in the superresolved image to be taken into account in the target recognition process. It is shown that the Bayesian approach improves the probability of correct target classification over standard super-resolution techniques. The new super-resolution algorithm is demonstrated using a simple synthetically generated data set and is compared to other similar algorithms. A variety of effects that degrade super-resolution performance, such as defocus, are analyzed and techniques to compensate for these are presented. Performance of the super-resolution algorithm is then tested as part of a Bayesian target recognition framework using measured radar data

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations
    corecore