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Abstract: In this paper, a feedback training approach for efficiently dealing with distribution shift
in synthetic aperture radar target detection using a Bayesian convolutional neural network is pro-
posed. After training the network on in-distribution data, it is tested on out-of-distribution data.
Samples that are classified incorrectly with high certainty are fed back for a second round of training.
This results in the reduction of false positives in the out-of-distribution dataset. False positive tar-
get detections challenge human attention, sensor resource management, and mission engagement.
In these types of applications, a reduction in false positives thus often takes precedence over target de-
tection and classification performance. The classifier is used to discriminate the targets from the clutter
and to classify the target type in a single step as opposed to the traditional approach of having a se-
quential chain of functions for target detection and localisation before the machine learning algorithm.
Another aspect of automated synthetic aperture radar detection and recognition problems addressed
here is the fact that human users of the output of traditional classification systems are presented with
decisions made by “black box” algorithms. Consequently, the decisions are not explainable, even to
an expert in the sensor domain. This paper makes use of the concept of explainable artificial intelli-
gence via uncertainty heat maps that are overlaid onto synthetic aperture radar imagery to furnish
the user with additional information about classification decisions. These uncertainty heat maps facil-
itate trust in the machine learning algorithm and are derived from the uncertainty estimates of the
classifications from the Bayesian convolutional neural network. These uncertainty overlays further
enhance the users’ ability to interpret the reasons why certain decisions were made by the algorithm.
Further, it is demonstrated that feeding back the high-certainty, incorrectly classified out-of-distribution
data results in an average improvement in detection performance and a reduction in uncertainty
for all synthetic aperture radar images processed. Compared to the baseline method, an improve-
ment in recall of 11.8%, and a reduction in the false positive rate of 7.08% were demonstrated using
the Feedback-assisted Bayesian Convolutional Neural Network or FaBCNN.

Keywords: synthetic aperture radar; automatic target recognition; bayesian convolutional neural
network; feedback-assisted Bayesian convolutional neural network; explainable artificial intelligence;
deep machine learning; epistemic uncertainty; uncertainty estimation

1. Introduction
1.1. Overview

In recent years, substantial progress has been made in the development and appli-
cation of synthetic aperture radar (SAR) sensors and techniques. Military organisations
around the world use SAR for joint, intelligence, and surveillance (JISR) operations. JISR
operations are often time-critical [1]—it is a process that requires a high level of efficiency
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and coordination between decision makers and action takers. The process of extracting
relevant information, especially targets, from SAR data is a time-consuming process, with
highly trained human SAR analysts having to manually evaluate hundreds of kilometres
of SAR data. In addition, limitations in sensor hardware may cause challenges such as low
resolution (coarser than one meter) images, which result in targets only being represented
by a few pixels. These challenges result in delays in SAR-based JISR operations. Conse-
quently, this leads to research into the automation of the process of finding and classifying
targets in SAR images by means of automatic target recognition (ATR) of targets within
SAR data.

Advancements in machine learning (ML) algorithms and the increased capability
of hardware have made the challenge of ATR more practical [2]. As a result, numerous ML
techniques have been applied to the problem of ATR applied to SAR images [3–7], with
some deep neural network (DNN) implementations achieving a remarkable classification
accuracy of 99.3 % on codified data sets [8].

JISR activities can greatly benefit from the use of ML algorithms for ATR using SAR
images as it significantly reduces the time to analyse and classify potential targets of in-
terest. In addition to being time-sensitive, JISR tasks may have severe consequences since
the decisions made have a direct effect on human lives. However, current state-of-the-
art deep learning (DL) algorithms have become “black-box” models that make decisions
without any methods for explaining the decisions. This has caused end-users to question
the reasoning of these algorithms, especially in applications where lives are at risk [9].
A major drawback of current DL algorithms is that due to their non-transparent nature
when an incorrect prediction is made, the model does not provide a reliable indication
as to how confident it was in its decision [10]. Discrepancies in confidence values can
be caused by the activation layer. For example, traditional softmax layers may cause
the whole DL network to suffer from over or under-confident predictions [11]. In addi-
tion, when the model is given samples that are not contained within the training dataset,
the model can behave in unexpected ways. In the same way that the output of the softmax
causes overconfidence, the output of the model for out-of-distribution (OOD) data is often
over-confident [12]. A possible solution to this is to use alternative methods to access
the uncertainty of the model’s prediction. Modern techniques for estimating uncertainty
in DL networks include using dropout training [13] and Bayes by Backprop [14]. The Bayes
by Backprop technique can be further manipulated into a Convolutional Neural Network
(CNN) as shown in [15]. This implementation forms a model that achieves comparable,
but slightly worse classification accuracy to traditional CNNs while having the advantage
of producing uncertainty estimations and is known as the Bayesian Convolutional Neural
Network (BCNN).

In this paper, a method is proposed that leverages uncertainty estimates to feedback
data to improve the model. The advantages of using uncertainty estimates from DL
algorithms to improve the interpretability (e.g., model construction) between the human
user and the ML algorithms are illustrated. Using the uncertainty estimations, a direct
comparison of robustness to over-confident predictions between a standard CNN and
a BCNN, for in- and out-of-distribution samples is made. A method is proposed to visualise
the uncertainty over the SAR image to improve the explainability (e.g., decision outputs)
and interpretability of the ML algorithm decisions for human users. A target detector is
created using the BCNN with the incorporation of uncertainty estimation.

The rest of the paper is organised as follows: Section 1.2 is a literature review and
Section 2 presents the datasets used in this study. In Section 3.1 the theory of the BNN
and uncertainty estimation method is presented. The target detection implementation
as well as the proposed method to visualise the uncertainty over a region is discussed
in Sections 3.2 and 3.4. The feedback-assisted training method is discussed in Section 3.4.
The experimental setup is discussed in detail in Section 3.6. This is followed by the results
section in Section 4. Lastly, Section 5 presents a discussion and Section 6 conclusions.
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1.2. Related Works
1.2.1. Comparison of ATR Systems

In this section, various ATR systems for SAR applications are selected from the literature
and are categorised based on the techniques applied by each for target recognition. The selected
ATR systems are compared based on their classification performance. Owing to the vast amount
of published work on the topic of ATR of SAR images [16], only the systems that utilise feature-
based techniques were selected, as they are the main focus of this study. For methods that use
the MSTAR dataset, refer to Section 2 for detailed information regarding the different operating
conditions under which this dataset was recorded.

Template matching is the simplest method that requires the lowest computational
complexity. Recognition is achieved through the matching of SAR data with stored tem-
plates of a range of sensor-to-target geometrical variations for each target. The appropriate
target is selected using metrics of similarity between the offline templates and input data,
such as correlation and matching filters. An example of template-matching is presented
in [17], where the attributed scattering centres (ASC) are matched to binary target re-
gions. Image segmentation is performed using basic thresholding to obtain the binary
target regions. Then, the binary region is correlated to the stored template region. Lastly,
weighted scores are combined from the correlations to determine the appropriate class.
An average classification accuracy of 98.34% was achieved using the MSTAR dataset under
standard operation conditions (SOC).

An example of a support vector machine implementation is presented in [18]. The training
of the SVM used a Gaussian kernel, with the kernel size selected based on the mean Euclidean
distance between features in the input data. From the results obtained, the SVM achieved a best
classification accuracy of 90.99% while only using three classes of the MSTAR dataset under
SOC. Moreover, the variability of the aspect angle had a large effect on the classification accuracy
and a trade-off was made between the sector size and the training accuracy.

A representative example of a CNN is given in [19]. The ATR system uses im-
age segmentation methods based on morphological operations in order to reduce back-
ground recognition. The CNN is implemented using a large-margin softmax batch nor-
malisation structure which increases separability in the SAR data after pre-processing.
Owing to the structure of the network, an increase in the convergence rate is recorded
as well as reduced proneness to overfitting. The method was capable of achieving a classifi-
cation accuracy of 96.44% on the MSTAR dataset under SOC while being robust in extended
operation conditions (EOC), such as large depression angles and configuration of the tar-
get variants.

Ensemble learning utilises a finite number of different learning methods.
Ensembles use the combination of the outputs from multiple learning algorithms to im-
prove prediction capabilities. The main ensemble methods are bagging, stacking, and
boosting. An example of a method utilising ensemble methods is given in [20], where
a novel pose rectification and image normalisation process is introduced which reduces
the variations of the input samples before the feature extraction process. To extract highly
discriminative features from ground targets, wavelet decomposition techniques are used.
Wavelets allow for a rich edge detection feature set to be extracted that consists of horizontal
and vertical edges. Dimensionality reduction is performed to retain the most discrimi-
native features. Decision tree classifiers are utilised to discriminate between the features.
A statistical analysis of the input data is used to train each base discriminant tree classifier
to support the ensemble learning.

A comparison of feature-based techniques that have been directly applied to ATR
using SAR images is presented in Table 1. It was found that the methods that used
CNNs, on average, achieved the highest classification accuracy. The top performing CNN
implementation [8] slightly outperformed the top performing ensemble implementation [3]
using both SOC and EOC for training on the MSTAR dataset. Both implementations
contained a CNN and, from the literature, it is apparent that CNNs achieved the best
classification performance [21]. Despite being the best performing ATR method in terms



Remote Sens. 2022, 14, 6096 4 of 25

of classification accuracy, CNNs are considered to be “black-box” models and are less
explainable than BNs and SVMs. Furthermore, the problem of over-confident predictions
is still prevalent in CNNs and needs to be considered for ATR systems.

Table 1. Comparison of Various Feature-Based ATR of SAR Techniques.

Refs Classifier Method Dataset Features Classification
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Gaussian Kernel
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three targets
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90.99 %

[19] CNN MSTAR
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96.44%
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[8] DCNN MSTAR
Image segmentation

is performed and
super resolution
image obtained

using Generative
Adverserial Network

99.31%
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ng [3] Fusion of
CNN and SVM

MSTAR
Images are

converted to
dB and data

augmentation is
performed

98.56%

[20]
Ensemble of

decision trees
using AdaBoost

MSTAR Combination of
texture and edges

97.5%

1.2.2. Explainable Artificial Intelligence

As more ML models are being deployed each day, with increasing levels of complexity,
it is apparent that future technological developments can greatly benefit from their use.
Technology has come to a pivotal point where the decisions of these models directly
affect the lives of humans. Therefore, the demand has increased for the explanation
of the decisions made by these ML algorithms [10]. With the increase in the application
of AI systems, the introduction of non-transparent models such as DNNs has occurred.
These models have been shown to produce impressive results by using efficient training
methods and contain a vast number of parameters [22]. With the increase in deployment
of these “black-box” models being allowed to make important decisions in various fields,
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the end-users’ need for improved transparency has also increased. The decisions made
by these models are often made without reason and are not accompanied by any logical
explanations. This can be dangerous in situations where human lives may be affected.
Explainable artificial intelligence (XAI) aims to address the problem of the “black-box”
model in the following ways: producing models that are explainable while maintaining
learning performance, facilitating the user’s trust in the algorithms, allowing humans to
understand the decision-making process, and aiding in the interpretation of the model’s
output [9].

The XAI framework contains methods which can be applied to increase the inter-
pretability of DNNs. Such methods can be applied to previously trained networks and
are often referred to as post-hoc methods [9]. A method for visual explanations from deep
networks is presented in [23], called Gradient-weighted Class Activation Mapping (Grad-
CAM), and it utilises the class-specific gradient data entering into the last convolutional
layer of a CNN to construct a rough map of the critical information for the classifier
in the image. Grad-CAM computes the gradient with respect to the feature maps of the last
convolutional layer. Once computed, the gradients are fed back after a global average
pool operation is performed to obtain the weights. These weight values are used to extract
the critical information of the feature maps for each class. To generate the heat maps, used
in this paper, the weights of the features are combined and followed by a ReLu activation
since only features with a positive influence on the class of interest are desired.

Grad-CAM is an important XAI tool since it allows for understanding in situations where
unexpected predictions are made and, thus, ensuring that the classifier is operating as expected
and derives its predictions based on information from the desired target [24]. In recent years,
the challenge of explainability in ATR has gained much attention with a significant increase
in research addressing this challenge. In [25], an example of the application of an XAI method
is presented for the task of image classification using the MSTAR dataset. The CNN model
used consisted of three convolutional layers, two max-pooling layers, and one dense layer
followed by a softmax layer. Data augmentation is performed by performing various rotations
and transitions. The CNN achieved a classification accuracy of 98.78% under SOC. Local
Interpretable Model-Agnostic Explanations (LIME) were used to provide model explanations
through the visualisation of predictions. LIME allows for the visualisation of the boundary
of key characteristics of the target that contributed to the prediction of the CNN.

The quantification of uncertainty in BCNNs provides additional trust to the user
through the estimation and visualisation of uncertainty in a model’s predictions. The BCNN
has been applied in numerous fields such as medicine, finance, computer vision, and surveil-
lance [26–29]. In [29], a novel model called the Bayes-SAR Net is proposed. The BCNN
achieved comparable classification accuracy when compared to a CNN, with only a slight
decrease in accuracy while gaining the benefits of having uncertainty estimation capabilities.
Uncertainty estimates were formed from the mean and covariance of the estimated posterior
distribution. The model was trained on polarimetric SAR data and it was concluded that
the BCNN was more robust to adversarial noise. Adversarial noise in this instance refers
to noise that exploits vulnerabilities in an ML system. In [30], a taxonomy for uncertainty
representation and evaluation for modelling and decision-making in information fusion is
presented and is further extended in [31]. It contains a discussion on the different types
of uncertainties and where they enter a sensing or fusion system. This taxonomy was
applied to investigate the effects of uncertainties of the BCNN.

2. Datasets

A focus for contemporary XAI methods is transfer learning, or domain adaptation,
between training in one domain and deploying in another (e.g., data collected with different
sensors). For comparison purposes with existing publications, use was made of the MSTAR
data in this research for training only. Testing was performed using a NATO-SET 250 dataset
(to be detailed later), to highlight the challenges of distribution shift. A distribution shift is
a result of changes in the distributions of the input data. In this particular case, the change
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results in the switch from the MSTAR to the NATO-SET 250 dataset. If the distribution shift
is too large, it can result in a decrease in the accuracy of the model; therefore, it is important
to select samples that do not make too many changes to the activation patterns within
the models and shift the distribution in a manner that benefits the desired output [32].
In this study, in-distribution data refers to samples that are similar to the training dataset
distribution, while OOD data samples do not follow the distribution of the training dataset.
The concept of in and out-of-distribution data is better explained with an example from
the MSTAR data. Suppose a classifier is trained to classify between United States (US)
tanks and armoured personnel carriers (APCs), then the in-distribution data samples are
samples of only US tanks and APCs. Subsequently, trying to classify between Soviet era
tanks and APCs will result in reduced performance, since samples of Soviet era tanks
and APCs belong to the OOD dataset. Soviet era tanks and APCs do not have the same
probability distributions over features as the US tanks and APCs, and as such are termed
OOD samples. Initially, the BCNN was trained on the MSTAR dataset; therefore, the MSTAR
initially forms the in-distribution data. During the second round, training samples are
selected from the NATO-SET 250 dataset, which forms the OOD. The MSTAR dataset is
a standard dataset used throughout the literature and is thus an appropriate benchmark
dataset for evaluating the performance of each method [33].

The MSTAR dataset consists of two collections recorded using the X-band Sandia
National Laboratory SAR sensor, containing magnitude data [33–36]. The first collections
of SAR images contain three targets, the T-72 (T-72 tank), BMP2 (infantry fighting vehicle),
and BTR-70 (armoured personnel carrier) and were each collected at depression angles
of 15◦ and 17 ◦. The second collection contains SAR images of seven targets, the 2S1,
BDRM-2, BTR-60, D7, T62, ZIL-131, and ZSU-23/4 recorded at depression angles of 15◦,
17◦, and 30◦. Each SAR image sample is 128× 128 pixels in size consisting of the magnitude
data. Samples from the MSTAR dataset are shown in Figure 1, where the optical images
of BMP2, BTR70, T72, BTR-60,2S1, BRDM2, D7, T62, ZIL-131, and ZSU23/4 are shown
in the upper panel, and the corresponding SAR images for each target are shown in the
corresponding lower panel.

The examples in the figure above use the the two available target configurations, namely, SOC
and EOC. The data set for the SOC consists of ten classes with two depression angles of 15◦ and 17◦.
There is minimal difference between the two depression angles for SOC of only 2◦, but this could
lead to variation in radar reflectivity. The EOC data set includes the same ten classes, with the
addition of discrete values in depression angles between 45◦ and 15◦, noise variation (range
from –10 to 10 dB), occlusion variation (occlusion levels up to 50% of the target), and resolution
variation (range resolution from 0.3 m to 0.7 m). Given that the SOC only has a slight variation
in depression angle, the target detection/classification performance metrics achieved in this
research were higher than when compared to the EOC evaluations. Assume henceforth that each
technique was evaluated using the MSTAR dataset unless stated otherwise.

The four SAR scenes used to generate samples for the BCNN detector were supplied by
the NATO-SET 250 work group. They are similar to the MSTAR dataset since they contain
multiple scenes captured at various depression angles and different orientations; however, they
differ in the sensor used, the geographical locations in which they were captured as well as having
differing types of terrain. Figure 2 shows the four different scenes from the NATO-SET 250 dataset
with bounding boxes around the targets. Both the MSTAR and NATO-SET datasets were captured
using horizontal polarisation in X-band. The NATO-SET 250 dataset was captured at a resolution
of 0.3 m.
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Figure 1. Examples of MSTAR training samples. The MSTAR dataset contains a total of ten targets
of various vehicle types. The optical photographs of the targets are shown above their corresponding
SAR image.

(a) (b)

(c) (d)

Figure 2. SAR scenes provided from the NATO-SET 250 work group with corresponding bounding
boxes around the targets. (a) Scene 1 was captured over a large open grass area, it also contains
a small portion of trees to the bottom right. (b) Scene 2 contains a large collection of trees adjacent to
a few man-made structures. (c) Scene 3 was captured over a similar region as scene 1 but at a different
orientation. This scene highlights more of the tree and hill areas (d) Scene 4 is the same area as scene
2 but captured at a different orientation, at this angle more of the forest area is included.
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3. Methods
3.1. Bayesian Convolutional Neural Network

The implementation for the BCNN is based on the method of variational infer-
ence, namely, Bayes by backpropagation. Bayes by backpropagation is proposed in [14].
It introduces an efficient novel algorithm for regularisation augmented by Bayesian infer-
ence on the weights, allowing for the application of a straightforward learning algorithm
like back-propagation. It is shown that by introducing uncertainty in the weights, the model
gains improved capability by expressing increased uncertainty in areas with little to no data,
resulting in a model that is more robust to over-fitting while offering uncertainty estimates
through its parameters in the form of probability distributions. In a BCNN network, all
of the weights are expressed by probability distributions, in contrast to regular ANNs that
use single-valued weights, as shown comparatively in Figure 3.

0.3

0.9

1.0

2.0

0.5

1.3

0.77

0.95

0.3

1.1

(a) Standard ANN (b) BCNN

Figure 3. Side by side comparison of the structures of a standard ANN and a BCNN. The weights
of the ANN are represented by discrete values, whereas the BCNN makes use of probability distributions.

Bayes by back-propagation determines the true posterior distribution p(w|D) of the weights
w given the training dataD. Bayesian inference on the weights of an ANN is intractable due
to the vast number of parameters; therefore, an approximate distribution qθ(w) is defined
and the objective of the training is to determine an approximate distribution as close as pos-
sible to the true posterior distribution. Variational inference is applied to learn parameters θ
of a distribution on the weights q(w|θ). The optimal parameters θ∗ are expressed in terms
of the Kullback-Leibler divergence as:

θ∗ = arg min
θ

KL[qθ(w|D)||p(w|D)]. (1)

This optimisation problem is known as variational free energy [37] and is optimised
by the minimisation of the cost function with respect to θ. The cost function is denoted by:

F (D, θ) = KL[q(w|θ)||p(w)]− log P(D|w), (2)

where p(w) is the prior distributions of the weights. The cost function is minimised
using gradient descent and variational inference searching for qθ that is closest to the true
posterior. The exact cost can be represented as:
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F (D, θ) =
n

∑
i=1

log q− θ(w(i)|D)− log p(w(i))− log p(D|w(i)). (3)

The weights w(i) represent the ith Monte Carlo (MC) sample sampled from the varia-
tional posterior q(w(i)|θ).

The BCNN implementation used in this study is based on [15] as it provides an efficient
method to perform variational inference using a CNN. The efficiency is achieved through
the use of two convolution operations to determine the mean and variance of the weights.
The BCNN implementation introduces a probability distribution over the weights in the con-
volutional layers, as well as in the weights of the fully-connected layers.

3.2. Target Detector

In traditional ATR systems, a key stage in the processing chain is the “Focus-of-
Attention”, since it is responsible for evaluating the entire scene for Regions of Interest
(ROIs). The attention stage can significantly reduce the computation time required to
identify every target in a scene by only passing ROIs to the classification algorithms [38]
and, thus, minimising the computationally taxing process of passing each sample through
the classification algorithm which may be a DNN. However, for this research, there was no
limitation on the computational time and the main focus was on improving the explainabil-
ity of ATR systems. As a result, the entire SAR scene was used in order for the uncertainty
in the detections to be evaluated. Thus, the BCNN is used as a detector to discrimi-
nate between targets and clutter, as well as classifying the target types for each detection.
Figure 2 shows the four different scenes with bounding boxes around the targets.
To train the detector, the data from the MSTAR was used as the targets, and samples
were manually selected from regions known not to contain targets in the NATO-SET 250
dataset for the clutter samples. The Feedback-assisted Bayesian convolutional neural net-
work (FaBCNN) was trained to detect two classes—targets and clutter. During the detection
process, a sliding window was used to pass samples to the network. At each iteration, data
selected by the window was passed through the network and a classification was made.
Once a window was correctly classified as a target, a green box was drawn around that
sample to indicate that it was correctly detected as a target. Windows correctly detected
as clutter are left blank to emphasise the detected targets. All false detections have red
boxes drawn around the window. To evaluate the performance of the detector, the precision
was calculated for each scene using the correct and incorrect detections.

3.3. Uncertainty Estimation

In order to determine the predicted class, the predictive distribution for the output
y∗ and the test input x∗ are used. The variational predictive distribution is approximated
from the predictive distribution, and its variational predictive distribution is given by:

qθ̂(y
∗ | x∗) =

∫
w

p(y∗ | x∗, w)qθ̂(w)dw, (4)

and since the integral is intractable, an estimator of the predictive distribution is used:

q̂θ̂(y
∗ | x∗) =

1
T

T

∑
t=1

p(y∗ | x∗, ŵt), (5)

where wt is drawn from the variational distribution qθ̂ , and T is the number of samples.
The variance of the variational predictive distribution is also known as the predictive
variance. The variance is also referred to as uncertainty. The uncertainty is separated into
aleatoric and epistemic uncertainty with the aleatoric representing the intrinsic randomness
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in the data while the epistemic uncertainty is generated from the variability in the weights.
The combined uncertainty is given by:

Varqθ̂(y
∗ |x∗)(y

∗) = Eqθ̂(y
∗ |x∗)

{
y∗⊗2

}
− Eqθ̂(y

∗ |x∗)(y
∗)⊗2, (6)

where ⊗ denotes the outer product. The epistemic uncertainty is a result of the variance
of the weights w, given the data [39].

The technique to explicitly compute the uncertainty as two separate types was devel-
oped in [40]. However, this method has two key constraints. Firstly, this method estimates
the variance of linear predictors, which is not the case for classifiers, instead, it should
model the predictive probabilities. Secondly, the aleatoric uncertainty does not factor
in the correlations from the diagonal matrix modelling. The challenges are addressed
in [41] and the predictive variance is reduced to

Varqθ̂(y
∗ |x∗)(y

∗) =
1
T

T

∑
t=1

diag( p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+
1
T

T

∑
t=1

( p̂t − p̄)⊗2

︸ ︷︷ ︸
epistemic

.
(7)

The mean prediction is p̄ = 1
T ∑T

t=1 p̂t and p̂t = softmax( fwt(x∗)), where the softmax
is the activation function applied to the output of the model. The uncertainty estimation de-
scribed above is used in Section 3.4 to generate the uncertainty heat maps and to select high
uncertainty incorrect samples to perform the feedback training. Following the processes to
generate the uncertainty heat maps and uncertainty feedback, more details on the model
initialisation and training are provided in Section 3.5 and lastly, before the results are shown
the experimental setup is described in Section 3.6.

3.4. Uncertainty Heat Maps and Feedback

By calculating the uncertainty estimates over the entire scene, a 2-D representation
of the uncertainty in the detections is constructed. This 2-D image is then used to determine
if the network’s confidence over the scene improved when high-confidence incorrect
detections are fed back into the model.

The uncertainty heat map shows regions of high and low confidence, with bright areas
representing high uncertainty and darker regions representing low uncertainty. This is similar to
the Grad-CAM method that visualises regions that contributed the most to the prediction [23]
but instead the highlighted regions correspond to the model’s uncertainty. Another related
paper that focuses on explainability in SAR is [25]. It uses the LIME algorithm to highlight areas
in the SAR image that contributed the most to the prediction, whereas the uncertainty heat map
approach presented in this paper highlights the areas where classification uncertainty is the highest.
The method to generate the uncertainty heat maps is illustrated in Figure 4. Firstly, a sliding 2-D
window is applied to the scene. The sliding window method has two parameters—crop size and
step size. The crop size is the fixed window size and the step size is the distance the window is
displaced after each iteration. The step size of the sliding window is determined through trial
and error; however, the lower limit of the window is constrained by the crop size of the dataset,
which is 60 × 60. The crop size of the sliding window is set to the crop size of the dataset to
allow for more of the targets to be centred in the window. The data selected by the window is fed
through the BCNN and using the ensemble of softmax probabilities, the epistemic uncertainty
is then calculated using Equation (7) (Figure 4a,b). The epistemic uncertainty values are stored
in a 2-D grid, which forms the base of the uncertainty heat map (Figure 4c). The uncertainty heat
map is then normalised to unity (Figure 4d). For the uncertainty map to be superimposed onto
the test scene, an interpolation function is used to transform the dimension from (44 × 34) to
(1360× 1074) (Figure 4e). First, the uncertainty heat map is scaled to correspond to a maximum
brightness of 255, similar to the SAR scene (Figure 4f). Then, the uncertainty heat map is
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superimposed onto the scene to show regions of high uncertainty. Low-uncertainty regions
should have a pixel value of zero and not contribute when superimposed (f).

Figure 4. Illustration of the method to produce uncertainty heat maps. (a) Each window is
passed through the classifier and the classification results and epistemic uncertainty is captured.
(b) Shows the uncertainty value of the previous window, as well as the current classifier output and
uncertainty value. (c) Shows all uncertainty values for the SAR scene, which is the base of the uncer-
tainty heat map. (d) The uncertainty heat map is normalised. (e) The heat map is passed through
an interpolation function. (f) The interpolated heat map is scaled to a maximum value of 255.
Note that in (d–f) the plot has been split to show the numerical values in the matrix in the upper half
and an example of the corresponding heat map or image in the lower half.
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The novel contribution of this work is to mitigate distribution shift by feeding back
a selection of samples that were incorrectly classified with high certainty in an additional
round of training. The hypothesis is that distribution shift is mitigated efficiently by focus-
ing on incorrect predictions that were made with high certainty on the dataset upon which
the classifier was not trained, which is important for applications where false positives
may have adverse effects on the user. This investigation aims to determine if there is
a reduction in incorrect predictions with high certainty after retraining the BCNN with
the selected samples that were incorrectly classified with high certainty. The method is de-
scribed in Algorithm 1. The intersection over union (IoU) threshold is the minimum overlap
between ground truth and prediction boxes for the classifier output to be considered a true
positive. A popular object detection algorithm called You Only Look Once (YOLO) [42]
typically uses a threshold of iouThreshold ={0.5–0.6}. As a higher IoU threshold (e.g.,
0.6) increases the overlap needed for a true positive; therefore, increasing the difficulty
of detection—the lower threshold of iouThreshold = 0.5 is used instead. The confidence
threshold is selected based on the histogram of the uncertainty heat map. The lower quartile
of the histogram is used, and the confidence threshold used is con f idenceThreshold = 0.05.

Algorithm 1 Uncertainty Feedback.

Input: SAR scene (1360 × 1074), step size = 20
Output: uncertaintyHeatmap (1360 × 1074)

Initialisation: Uncertainty heat map = 0
load BCNN model
for i = 0 to numXWindows do

for j = 0 to numYWindows do
Move sliding window
Calculate prediction and epistemic uncertainty
Update uncertainty heat map

end for
end for
Store all windows coordinates
Normalise uncertaintyheat map
for window in all windows do

for bb in ground truth bounding boxes do
Calculate IoU between window and bb

end for
if any(IoU ≥ iouThreshold) and epistemicUncertainty ≤ con f idenceThreshold and
prediction = ’clutter’ then

Append window to confident incorrect targets list
else if all(IoU = 0) and epistemicUncertainty ≤ con f idenceThreshold prediction = 0
then

Append window to confident incorrect clutter list
end if

end for
Create dataset using incorrect high confident samples
Retrain BCNN using a much lower learning rate on new dataset
Perform target detection
Generate uncertainty heat map

3.5. Model Initialisation and Training

The architecture of the BCNN contains three convolutional layers with three fully-
connected layers. A key attribute of the structure is the max pooling layers which were
introduced to reduce the overall size of the model [43]. This structure was selected owing
to high classification performance and a relatively low number of layers compared to more
modern architectures such as VGG16 [44]. Figure 5 illustrates the dimensions at each layer
of the network. A brief description of the properties of the architecture follows.
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Figure 5. Illustration of input and output dimensions for a three convolutional and three fully-
connected architecture. Both the CNN and BCNN use the same architecture.

The BCNN network requires two Gaussian distributions for the initialisation of the pri-
ors and the weights. The variance can never be zero, therefore, the variance is represented
as σ = softplus(ε) where ε is randomly selected from a uniform distribution. The prior dis-
tribution is initialised with a zero mean and variance of 0.1, while the posterior distribution
is initialised with a mean of zero and a ε randomly sampled from –5 to 0.1, similar to [14].
From [14], the parameters were found experimentally by using the validation error to find
the parameters that resulted in the lowest validation error.

As described in the previous subsection, two convolution operations are performed
to determine the mean and variance. In order to ensure that the variance is non-negative,
the activation function for the convolutional layers is selected to never output a value equal
to or less than zero. The softplus activation function is used as it tends to zero as x → −∞.
The equation for the softplus is given by:

softplus(x) =
1
β

log(1 + exp(βx)). (8)

Here β is set to 1 for all BCNN models trained. The softplus activation is different
to the ReLu near zero, where the softplus is smooth and the ReLu goes through zero.

The Adam optimiser is used to perform the updated steps of the variational parameters.
Adam is a combination of Root Mean Squared Propagation (RMSprop) and stochastic
gradient descent with momentum [45]. Adam benefits from the advantages of adaptive
gradient algorithms and RMSprop. It stores the learning rate which improves performance
with sparse gradients and the learning rates are adjusted using the mean of the magnitudes
of the gradient of weights, making it more resilient to saddle points. The Adam optimiser
has proven to converge faster than both RMSprop and stochastic methods [45].

The training method is described in Algorithm 2. During each forward pass, the ac-
tivation is sampled to calculate the KL divergence. The reparameterisation trick is used
to sample from each convolutional layer. Training ends after a fixed number of epochs,
and the number of epochs is determined during the hyper-parameter optimisation process
along with other hyper-parameters. numSamples is the number of times the activation is
sampled per iteration and is fixed to twenty in order to reduce the total training time.
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Algorithm 2 Bayes by Backpropagation Learning.

Input: Dataset D = (xi, yi), learning rate, batch size
Initialisation : Priors and posteriors of weights
for epoch = 0 to numEpochs do

for batch in numBatches do
for i = 0 to numSamples do

Sample weights
Calculate KL divergence

end for
Calculate ELBO using Equation (3)
Determine the gradient of the variational parameters θ
Update the mean µ and variance ρ of the weights
Calculate the training and validation accuracy
Calculate the training and validation loss

end for
end for

Hyper-parameters are the parameters that control the training of the network and
include the learning rate, number of epochs, batch size, and momentum. Hyper-parameter
optimisation can be a time-consuming task if performed manually or when using a grid-
search method. To improve the efficiency of optimising the networks, a Bayesian model-
based optimisation method is employed. Bayesian optimisation methods record previous
test results that are used to create a statistical model of the hyper-parameter mappings.
This maps the probability of an evaluation for a specific cost function. The hyper-parameter
optimisation method used is from [46]. The optimisation is performed for both the tra-
ditional CNN and BCNN. The optimised hyper-parameters are listed below for BCNN
in Table 2.

Table 2. Optimised Hyper-Parameters for BCNN.

Parameter Value
Initial priors µ = 0, σ = 0.1
Learning rate 0.00035393

Batch size 8
Number of epochs 105

Patience 11
Activation function softplus

3.6. Experimental Setup

In order to evaluate the feedback method, the following performance metrics are used:
precision, recall and false positive rates. These metrics are selected as the feedback may
have different effects on each metric. Since high certainty incorrect samples are fed back into
the network, there should be a decrease in false positive detection rates and subsequently
an increase in precision and recall. The objective of this is to reduce the risks of AI systems
making errors that are safety critical. To assess the degree of improvement a baseline model
is used without any additional training with fed back samples. In the evaluation process,
three options are used as shown in Figure 6. In the first option high certainty incorrect
samples are used for the feedback process. The second option uses random samples and
lastly, the third option uses all the available training data. Ten-fold cross-validation is used,
where for each fold, a SAR scene in the NATO-SET 250 data is not used until the very end
as a test set to evaluate the three options. This ensures that data contamination is eliminated
by not using any of the test data for both the initial and feedback rounds of training.
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Option X:

X: High certainty
incorrect samples X: Random

samples
X: All available

training
samples

Option X Training EvaluationX

Metrics
 

1. Precision
2. Recall
3. False Positive rate

Figure 6. Illustration of options used to evaluate the feedback of high certainty incorrect samples.

4. Results
4.1. Predictive Uncertainty in BCNNs

In this section, the uncertainty estimates from the BCNN are evaluated for in-distribution and
OOD samples. Samples to evaluate the predictive uncertainty were taken from the MSTAR dataset.

The softmax probabilities are shown for both a CNN and BCNN. The BCNN re-
sults have added error bars to display the predictive variance. Along with the softmax
outputs, the epistemic uncertainty was calculated. For the epistemic uncertainty, the soft-
plus activation function was used and was normalised similarly to the softmax function.
The hyper-parameters were selected using a Bayesian model-based optimisation method
from [46].

Two test examples are presented to the BCNN and CNN to evaluate the predictive
uncertainty. The comparisons of the predictions between the BCNN and CNN are shown
for in-distribution and OOD data is shown in Figures 7b and 8b. The corresponding
epistemic uncertainty estimates are shown in Figures 7a and 8a.

(a) Epistemic uncertainty (b) Softmax probabilities

Figure 7. Comparison of CNN and BCNN predictions for in-distribution sample of a BTR70.
(a) Epistemic uncertainty of the sample. (b) Softmax probability for both the CNN and BCNN.
The softmax graph with error bars correspond to the BCNN. The CNN had a predicted softmax
probability of 100%.
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(a) Epistemic uncertainty (b) Softmax probabilities

Figure 8. Comparison of CNN and BCNN predictions for an OOD clutter sample. (a) Epistemic uncertainty.
This was the highest recorded average uncertainty for both in- and out-of-distribution samples. (b) Compari-
son of CNN and BCNN predictions for OOD. The BCNNs produced five classes with probabilities greater
than zero, while the CNN only predicted one class. The OOD input is a clutter sample.

From the initial results, it can be seen that the CNN makes over-confident predictions
when compared to the BCNN. This is further confirmed by using the epistemic uncertainty
to gain additional information about the confidence of the BCNN. An important observation
is that the epistemic uncertainty for the predicted class is the highest in all of the examples.
This can be interpreted as the predicted class having the highest uncertainty, and this
corresponds with the error bars in the softmax outputs with the longest bar being over
the predicted class. The ability to quantify uncertainty comes at a cost, since the CNN
achieves a target detection accuracy of 96.8%, whereas the BCNN achieves a slightly
reduced accuracy of 93.1% on the MSTAR dataset.

4.2. Uncertainty Heat Maps

The uncertainty heat maps are generated using the method described in Section 4 and
are shown in Figures 9b and 10b. The area of dense trees and the regions over the targets
have numerous high-uncertainty regions. The highest uncertainty regions are concentrated
in the bottom left over the buildings. It is noted that there is also a small cluster of trees
with high uncertainty.

From Figures 9b and 10b, the most distinct elements are the regions that contain targets.
Across both scenes, the uncertainty over the targets was the highest. This is attributed to
the results in Section 4.1, where it is shown that the predictive uncertainty is always the high-
est for the predicted class compared to the rest of the classes. It is noted that the predictive
uncertainty refers to the epistemic uncertainty and not the softmax probability.

This is apparent even for false detections—such as when the BCNN classifies a tree
as a target. However, there were regions with a high uncertainty that were correctly
classified as clutter. An example of this can be observed in Figure 9b near the large shadow
close to the top right hill in the area contained in the yellow ellipse.
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(a) (b)

Figure 9. (a) SAR image of scene 1. (b) Uncertainty heat map superimposed onto scene 1, where
the yellow ellipse contains low-certainty clutter detection.

(a) (b)

Figure 10. (a) SAR image of scene 2. (b) Uncertainty heat map superimposed onto scene 2. A group
of high uncertainty detections are observed over the forest area.

4.3. Feedback of High-Confidence Incorrect Samples

From Figure 2, scenes 2 and 3 were used to illustrate the effects of feeding back high-
confident incorrect samples. The results are shown in Figures 11 and 12. The feedback
procedure was executed as follows:

1. The detection performance and uncertainty heat maps were determined for each scene
before feedback was performed (Figure 12a,c). Multiple runs were performed to gather
confident incorrect samples. A total of ten MC runs were performed for the results
obtained.

2. Once the BCNN was retrained using fed back samples (this is the feedback process),
the detection performance and uncertainty heat map were determined again for com-
parison (Figure 12b,d). To retrain and not completely alter the current configuration
of the weight parameters, the learning rate was reduced by a factor of 25. This ensured
that the BCNN was able to adjust its weights appropriately for the new data but not
make significant changes that would drastically change the detection performance.
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(a) Detection before feedback. (b) Detection after feedback.

(c) Uncertainty heat map before feedback. (d) Uncertainty heat map after feedback.

Figure 11. Comparison of the effect of partial retraining BCNN on confident incorrect detections
for scene 2. From (a,b) it can be observed that there was a reduction in the number of false positives
(red bounding boxes) over the forest region while maintaining similar detection performance (green
bounding boxes) over the remaining regions. Interestingly, there was also a reduction in the number
of high uncertainty regions over the forest area between (c,d).

(a) Detection before feedback. (b) Detection after feedback.

Figure 12. Cont.
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(c) Uncertainty heat map before feedback. (d) Uncertainty heat map after feedback.

Figure 12. Comparison of the effect of partial retraining BCNN on confident incorrect detections for scene
3. The main takeaway from (a,b) is the reduction of false detections in the center of the scene over the hill
areas. From (c,d) there is an reduction in the number of high uncertainty areas.

After feedback, there was a reduction in the number of false positive detections.
Noteworthy areas were the line in the centre with the hills. In addition, the number
of high uncertainty areas decreased. To compare the precision and uncertainty estimation,
ten MC runs were conducted to determine the mean of the precision (units in %), recall
(units in %), false positive rate (units in %) and uncertainty (dimensionless quantity) for pre-
and post-feedback for all four scenes in Figure 2. The results are tabulated in Tables 3 and 4.

Table 3. Comparison of Detection Performance for Pre- and Post-Feedback.

Method Precision % Recall % False Positive Rate % Uncertainty

Baseline 75.2 ± 19 8.6 ± 2.35 0.0147 ± 0.0121 0.00107 ± 0.00041
High certainty incorrect

samples 79.7 ± 19 9.2 ± 2.08 0.0129 ± 0.0126 0.00104 ± 0.00040

Random samples 78.3 ± 15 8.8 ± 1.91 0.0127 ± 0.0104 0.00111 ± 0.00043
All available training

samples 72.0 ± 17 8.4 ± 1.99 0.0180 ± 0.0126 0.00131 ± 0.00040

Table 4. Comparison of Average Improvement for Pre- and Post-Feedback.

Method Precision % Recall % False Positive Rate % Uncertainty %

High certainty incorrect
samples 5.958 7.079 –11.803 –2.942

Random samples 4.091 1.898 –13.397 3.82
All available training

samples 1.481 5.65 1.124 8.772

From Table 4 it can be concluded that the option of high certainty incorrect samples
achieved the highest average precision/recall and second lowest average false positive
rate. The best improvement in the false positive rate was for the random samples option,
but the corresponding improvement in precision and recall was low compared to the high
uncertainty incorrect option.

5. Discussion
5.1. Results

In this paper, a method is proposed that feeds back uncertainty estimates from a BCNN.
Then using the uncertainty estimates an investigation is performed to determine the effects
of feeding back high-confident incorrect samples on the performance of a detector.

In Section 4.1, the results illustrated the use of the predictive variance of the BCNN,
with a comparison between predictions made from a CNN and the BCNN for in- and out-of-
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distribution samples. From the comparison, it is observed that the BCNN is appropriately
confident in its predictions, as is apparent from the softmax outputs and the average
epistemic uncertainty of the BCNN. For the in-distribution samples, there is an increased
spread in the softmax probabilities, whereas the CNN was over-confident having absolute
certainty in a single class.

This trend was also prevalent for the OOD samples. In addition, it was recorded that
there is a significant increase in the average epistemic uncertainty, which further indicates
that the BCNN was less confident when processing the OOD samples.

It is apparent that the CNN has no implicit method of compensating for the distribution
shift in the OOD data, and the BCNN provides a solution through uncertainty estimation.
When using epistemic uncertainty, it is possible to allow the BCNN to withhold its decision
when the uncertainty is above a specific threshold. This allows for undecided samples to be
evaluated by a human specialist rather than making an incorrect overconfident prediction.

The uncertainty heat maps provide a 2-D visualisation of the confidence of the model
over each region, where the brighter regions indicate a higher uncertainty and the dimmer
regions correspond to a low uncertainty. The regions of high uncertainty appear in areas
where target detection is more challenging, such as large areas of trees or areas that cast
deep shadows. The high uncertainty over the targets is a result of the epistemic uncertainty
where the predictive class always has the highest uncertainty.

The effect of feeding back confident incorrect samples resulted in fewer missed detec-
tions. This can be observed with the overall increase in precision shown in Table 3 for both
scenes. However, it also resulted in fewer correct detections, but the average precision
was improved. Compared to the baseline method, an improvement in recall of 7.08%, and
a reduction in the false positive rate of 11.8% was demonstrated. This was to be expected
as the model was retrained on data that had previously caused false detections. The feed-
back of confident incorrect samples reduces the number of high-uncertainty predictions
for each scene. A significant decrease in the high-uncertainty regions is observed in Figure 12d.
This may be attributed to the decrease in the number of target detections. However, regions
with known targets have a similar uncertainty to the uncertainty map before the feedback,
which indicates that the network had learnt that those samples were indeed targets and
adjusted its predictions to compensate for incorrect detections. In Figure 12d where learning
is observed, where the number of missed detections in the centre of the image is signifi-
cantly reduced after the feedback, while the network was still able to detect the majority
of the targets correctly.

From Table 4, it can be seen that the average epistemic uncertainty is reduced after
retraining of the network. Hence, the network is more confident regarding its predictions.
It is observed that the feedback of high-uncertainty incorrect samples is beneficial to the net-
work. The FaBCNN may not be practical during real-time applications where ground truth
may not be available , but it is practical in a controlled environment during the training
of the network. The FaBCNN may assist in training and evaluation to improve detection
performance and uncertainty estimation. Finally, the FaBCNN will work in military opera-
tions where one might have intelligence about a small portion of the enemy deployment
i.e., one’s own forces can visually recognise the enemy targets or have intelligence about
a portion of the enemy formation, but obviously, this only covers a small area. A draw-
back of the FaBCNN is the increased computational cost that is caused by representing
the weights as Gaussian distributions and not as single valued weights.

The computer used to train and evaluate the model was an AMD Ryzen 3900 12-core
processor with a Nvidia Geforce RTX 2070 Super. The average time to train and perform
inference on a single sample was recorded for both a CNN and the FaBCNN and shown
in Table 5.
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Table 5. Computational time of FaBCNN versus a CNN with the same architecture.

Operation CNN (s) FaBCNN (s)

Training of target detector 150.707 921.688
Feedback training N/A 711.096
Single inference 0.000593 0.006836

There is almost an order of magnitude increase in both the training and inference
times of the FaBCNN compared to the CNN.

5.2. Future Research

The FaBCNN implementation uses a rudimentary sliding window to perform the tar-
get detection and uncertainty heat map generation, and the approach consisted of feeding
the individual windows into the BCNN to estimate the uncertainty. The FaBCNN method is
computationally expensive as the classifier computes the output for each window position.
Although computational complexity was not the focus of this research, the combination
of the reduction in computational complexity combined with improved explainability could
be an avenue for future research. Current detection algorithms such as YOLO have been
shown to perform with a high degree of speed and precision [42,47]. In addition, YOLO
factors in the targets with different resolutions and aspects and is adaptable to complex
datasets with multiple overlapping classes. The next step would be the incorporation of the
FaBCNN with a YOLO implementation to achieve a state-of-the-art detection algorithm
with the benefits of the improvement in explainability through uncertainty estimations.

Lastly, an extension of the FaBCNN to operate on complex-valued data should be
investigated. In this paper, only the magnitude data was used for training and evaluation. It
has been shown that a significant amount of information is contained in the complex valued
data compared to the magnitude-only data [48]. Implementing a complex-valued BCNN
should improve the detection performance of the network, especially for the application
of ATR using SAR measurements. This approach could also be extended to incorporate
polarisation data which has been shown to improve classification performance in radar sys-
tems [49–51]. Another avenue of pursuit would be the investigation of training the BCNN
on synthetic data generated using electromagnetic modelling tools suitable for electrically
large targets [52,53], and then evaluating the BCNN performance on measured data. This
data augmentation would give a military user the ability to train the BCNN for expected
targets which have not been measured by the radar yet.

6. Conclusions

In this paper, the uncertainty estimations from a BCNN are evaluated and a method
for feedback based on the uncertainty is proposed as a second training step, called the
FaBCNN. The predictive uncertainty indicates that the BCNN makes fewer over-confident
predictions than the CNN while providing insight into the confidence of its predictions.
When both networks are presented with samples that are in and out-of-distribution to
the MSTAR dataset, the BCNN demonstrates a significant improvement over the CNN
with regard to over-confidence. The softmax value of the CNN implies an over-confident
prediction, allocating a 100% probability to a single incorrect class. However, the BCNN
probabilities are much less peaked and with the aid of the epistemic uncertainty, it is
apparent that the network is not over-confident. This difference when testing on OOD data
emphasises the necessity for alternative DNN implementation such as the BCNN, for its
uncertainty estimation capabilities and increased robustness to over-confident predictions.

As a result, the BCNN is capable of dealing with OOD samples and responds accord-
ingly by refusing to classify them. In this situation, human operators may be notified to
address the uncertain sample. This is in contrast to traditional CNNs that would proceed
with an incorrect high-confidence prediction.

The FaBCNN demonstrated that it can distinguish targets from clutter over various
SAR scenes. Compared to the baseline method (BCNN), an improvement in recall of 11.8%,
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and a reduction in the false positive rate of 7.08% were demonstrated using the FaBCNN.
It was found that the detector was able to correctly detect the majority of the targets.
The regions in the images containing trees resulted in the highest number of missed
detections. This is a result of the similarities between single trees and targets in the MSTAR
dataset since they have a shadow with a brighter region in the centre.

The uncertainty heat maps provide a 2-D visualisation of the confidence of the model
over each region where the brighter regions indicate a higher uncertainty and the dimmer
regions correspond to a low uncertainty. The regions of high uncertainty appear in areas
in which target detection is challenging, such as large areas of trees or areas that cast
deep shadows. In the experiments performed in this work, the high uncertainty over
the targets was a result of the epistemic uncertainty, where the predictive class always had
the highest uncertainty. The uncertainty maps improve the explainability of the system
outputs by utilising uncertainty estimations. The FaBCNN is able to provide the user with
an indications of how confident it is through the visualisation of the uncertainty overlayed
onto the SAR scene. Thus, the detection map, supplemented with an uncertainty heat
map, allows the user to have more trust in the target detector. Ultimately, this is a step
in the direction of improving the current ML methodologies to foster increased confidence,
interpretability, and transparency.

An additional advantage of the uncertainty estimates is that they may be used to improve
the performance of the network and reduce the number of high-uncertainty predictions. It was
found that by feeding back high-confident incorrect samples, the precision of the detector is
improved and an overall reduction in average epistemic uncertainty is observed. The FaBCNN
may be used as the last step before a model is deployed to make small adjustments to the network
to reduce the number of high-confident incorrect detection or adapt to an unseen set of targets.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
APC Armoured Personal Carrier
ATR Automatic Target Recognition
BN Bayesian Network
BNN Bayesian Neural Network
BCNN Bayesian Convolutional Neural Network
CNN Convolutional Neural Network
CSIR Council for Scientific and Industrial Research
DL Deep Learning
EOC Extended Operating Conditions
FaBCNN Feedback-assisted Bayesian Convolutional Neural Network
Grad-CAM Gradient-Weighted Class Activation Mapping
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JISR Joint Intelligence, Surveillance, and Reconnaissance
MAP Maximum A Posterior
ML Machine Learning
MC Monte Carlo
MSTAR Moving and Stationary Target Acquisition and Recognition
NATO-SET North Atlantic Treaty Organisation Sensors and Electronic Technology
OOD Out-Of-Distribution
RCS Radar Cross Section
SAR Synthetic Aperture Radar
SOC Standard Operating Condition
XAI eXplainable Artificial Intelligence
YOLO You Only Look Once
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