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■  Lincoln Laboratory is investigating the detection, discrimination, and
classification of ground targets in high-resolution, fully polarimetric, synthetic-
aperture radar (SAR) imagery. This paper summarizes our work in SAR
automatic target recognition by discussing the prescreening, discrimination, and
classification algorithms we have developed; data from 5 km2 of clutter and 339
targets were used to study the performance of these algorithms. The prescreener
required a low threshold to detect most of the targets in the data, which resulted
in a high density of false alarms. The discriminator and classifier stages then
reduced this false-alarm density by a factor of 100. We improved target-
detection performance by using fully polarimetric imagery processed by the
polarimetric whitening filter (PWF), rather than by using single-channel
imagery. In addition, the PWF-processed imagery improved the probability of
correct classification in a four-class (tank, armored personnel carrier, howitzer,
or clutter) classifier.

T  -  program is
a broad-based advanced technology program
to develop new weapons technology that can

locate and destroy critical mobile targets such as SCUD
launch systems and other highly mobile platforms.
Automatic target recognition (ATR) is an important
candidate technology for this effort. To address the
surveillance and targeting aspects of the Warbreaker
program, Lincoln Laboratory has developed a com-
plete, end-to-end, 2-D synthetic-aperture radar (SAR)
ATR system. This system requires a sensor that can
search large areas and also provide fine enough resolu-
tion to detect and identify mobile targets in a variety
of landscapes and deployments.

The Lincoln Laboratory ATR system has three
basic stages: detection (or prescreening), discrimina-

tion, and classification (see Figure 1). In the pre-
screening stage, a two-parameter constant-false-alarm-
rate (CFAR) detector selects candidate targets in a
SAR image by examining the amplitude of the radar
signal in each pixel of the image. In the discrimina-
tion stage, a target-sized 2-D matched filter accu-
rately locates the candidate targets and determines
their orientation. Then texture-discrimination features
(standard deviation, fractal dimension, and weighted-
rank fill ratio) are used to reject natural-clutter false
alarms [1]. In the classification stage, a 2-D pattern-
matching algorithm rejects cultural-clutter false alarms
(i.e., man-made objects that are not targets) and clas-
sifies the remaining detections by target type (tank,
armored personnel carrier, or howitzer).

To evaluate the performance of the ATR system,
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FIGURE 1. Block diagram of the SAR automatic target recognition system. The prescreener locates candidate targets
based on the brightness of pixels in the input image, the discriminator rejects natural-clutter false alarms, and the
classifier rejects non-target cultural clutter and classifies targets by vehicle type.

we used high-resolution (1 ft by 1 ft), fully polarimet-
ric target data and clutter data gathered by the Lin-
coln Laboratory millimeter-wave SAR [2] at a depres-
sion angle of 22.5° and a slant range of 7 km. We
demonstrated the robustness of the ATR system by
testing it against targets both with and without radar
camouflage.

Figure 2 is an example of the quality of the imagery
gathered by the Lincoln Laboratory SAR. In this
image of a golf course in Stockbridge, New York, the
high resolution of the SAR resolves individual trees
and bushes as well as small objects such as the flagpole
located in the center of the putting green. This par-
ticular SAR image was obtained under clear weather
conditions; the quality and resolution of the image
would not have been degraded, however, by dense fog
or thick cloud cover. Thus a SAR sensor has a signifi-
cant advantage over optical sensors. SAR image qual-
ity is not dependent on weather conditions, and the
sensor can be used at any time of day or night. In
addition, SAR sensors can perform other tasks, such
as searching large areas from a long distance.

The image in Figure 2 was constructed from fully
polarimetric SAR data that were processed with a
technique known as the polarimetric whitening filter
(PWF) [3]. PWF processing optimally combines the
HH (horizontal transmit, horizontal receive), HV
(horizontal transmit, vertical receive), and VV (verti-
cal transmit, vertical receive) polarization components
of the radar return. This polarimetric combination
enhances the quality of the imagery in two ways:
(1) the amount of speckle in the imagery is mini-
mized, and (2) the edges of objects in the image (such

as the pond) are sharper. As a result, PWF-processed
imagery is visually clearer than single-polarimetric-
channel imagery. In addition, PWF-processed imag-
ery improves the performance of all three stages of the
ATR system (compared with the performance achieved
by using single-polarimetric-channel imagery) because
PWF processing reduces clutter variance and enhances
target signatures relative to the clutter background.

This article begins with an overview of the three
stages of the baseline ATR system. Next we describe
the performance of the ATR system with both cam-
ouflaged and uncamouflaged targets, and then we
compare performance using PWF data with perfor-
mance using single-channel (HH) data. We also
present details of the three discrimination features
used in our studies, with particular emphasis on the
fractal-dimension feature. Finally, we discuss future
improvements to the discrimination and classifica-
tion stages.

Overview of the Baseline ATR System

This section describes our three-stage baseline SAR
ATR system, which is illustrated in Figure 1 by a sim-
plified block diagram. The three stages—prescreener,
discriminator, and classifier—are described below.

Stage 1: Prescreener

In the first stage of processing, a two-parameter CFAR
detector [4] is used as a prescreener; this stage of
processing identifies potential targets in the image on
the basis of radar amplitude (i.e., by searching for
bright returns). Computation time for this stage of
processing is significantly reduced by operating the
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detector at a reduced resolution (1 m by 1 m) rather
than at the full resolution (1 ft by 1 ft).

Figure 3 is a sketch of the two-parameter CFAR
detector used by the prescreener; the detector is de-
fined by the rule
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where Xt is the amplitude of the test cell, µ̂c  is the
estimated mean of the clutter amplitude, σ̂ c  is the
estimated standard deviation of the clutter amplitude,

and KCFAR is a constant threshold value that defines
the false-alarm rate. As shown in the figure, the test
cell is at the center of a defined local region, and the
80 cells in the boundary stencil are used to estimate
the mean and standard deviation of the local clutter.
The guard area ensures that no target cells are in-
cluded in the estimation of the clutter statistics. If the
detection statistic calculated in Equation 1 exceeds
KCFAR, the test cell is declared to be a target pixel; if
not, it is declared to be a clutter pixel.

When the amplitude distribution of the clutter is
Gaussian, the CFAR detector provides a constant
false-alarm rate for any given KCFAR [5]. Because the
clutter distributions of high-resolution data are typi-

FIGURE 2. High resolution (1 ft by 1 ft) synthetic-aperture radar (SAR) image of a golf course near
Stockbridge, New York. Polarimetric whitening filter (PWF) processing was used to produce this mini-
mum-speckle image. The radar is located at the top of the image; therefore, the radar shadows go toward
the bottom of the page. Notice that the SAR can resolve details as small as the flagpole in the putting green
near the center of the image.
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cally not Gaussian [6], however, the detector does not
always yield a constant false-alarm rate. In spite of
this fact, the detector given by Equation 1 still proves
to be an effective algorithm for detecting targets in
clutter.

Only those test cells whose amplitudes stand out
from the surrounding cells are declared to be targets.
The higher we set the threshold value of KCFAR, the
more a test cell must stand out from its background
for the cell to be declared a target. Because a single
target can produce multiple CFAR detections, the
detected pixels are clustered (grouped together) by
the detector if they are within a target-sized neighbor-
hood. Then a 120-ft-by-120-ft region of interest of
full resolution (1 ft by 1 ft) data around each cluster
centroid is extracted and passed to the discrimination
stage of the algorithm for further processing.

Stage 2: Discriminator

The discrimination stage takes as its input the 120-ft-
by-120-ft regions of interest passed to it by the
prescreener, and it analyzes each region of interest at

full resolution (1 ft by 1 ft). The goal of discrimina-
tion processing is to reject the regions containing
natural-clutter false alarms while accepting the re-
gions containing real targets. This stage consists of
three steps: (1) determining the position and orienta-
tion of a detected object, (2) computing simple tex-
tural features, and (3) combining the features into a
discrimination statistic that measures how targetlike
the detected object is.

In the first step of the discrimination stage the
algorithm determines the position and orientation of
the target by placing a target-sized rectangular tem-
plate on the image. The algorithm then slides and
rotates the template until the energy within the tem-
plate is maximized. The position estimate produced
in the discrimination stage is more accurate than the
position estimate produced in the prescreening stage.
This operation is computationally feasible because it
is performed only on the selected high-resolution re-
gions of interest passed by the prescreener, and not on
the entire image. Mathematically, this operation is
equivalent to processing the data in the region of
interest with a 2-D matched filter for the case when
the orientation of the target is unknown.

In the second step of the discrimination stage the
algorithm calculates three textural features: (1) the
standard deviation of the data within the target-sized
template, (2) the fractal dimension of the pixels in the
region of interest, and (3) the weighted-rank fill ratio
of the data within the template. The standard devia-
tion of the data within the template is a statistical
measure of the fluctuation of the pixel intensities;
targets typically exhibit significantly larger standard
deviations than natural clutter. The fractal dimension
of the pixels in the region of interest provides infor-
mation about the spatial distribution of the brightest
scatterers of the detected object. It complements the
standard-deviation feature, which depends only on
the intensities of the scatterers and not on their spatial
locations. The weighted-rank fill ratio of the data
within the template measures the fraction of the total
power contained in the brightest 5% of the detected
object’s scatterers. For targets, a significant portion of
the total power comes from a small number of very
bright scatterers; for natural clutter, the total power is
distributed more evenly among the scatterers.

FIGURE 3. The prescreener CFAR detector. The ampli-
tude of the test cell is compared with the mean and
standard deviation of the clutter. The boundary con-
sists of 80 cells that are used for clutter statistics esti-
mation. Each cell in the boundary consists of 16 raw
pixels that are noncoherently averaged. The guard area
ensures that no target cells are included in the clutter
statistics estimation.

Test cell Target

Guard area
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In the third step of the discrimination stage the
algorithm combines the three textural features into a
single discrimination statistic; this discrimination sta-
tistic is calculated as a quadratic distance measure-
ment (see the accompanying article entitled “Dis-
criminating Targets from Clutter” by Daniel E.
Kreithen et al.). Most natural-clutter false alarms have
a large quadratic distance and are rejected at this
stage. Most man-made clutter discretes (such as build-
ings and bridges) pass the discrimination stage; there-
fore, the next stage—the classifier stage—must have
the ability to reject them.

Stage 3: Classifier

A 2-D pattern-matching classifier rejects cultural false
alarms caused by man-made clutter discretes and then
classifies target detections by vehicle type. In our
studies we implemented a four-class classifier (tank,
armored personnel carrier, howitzer, and clutter) us-
ing high-resolution (1 ft by 1 ft) PWF imagery. De-
tected objects that pass the discrimination stage are
matched against stored references of the tank, ar-
mored personnel carrier, and howitzer. If none of the
matches exceeds a minimum required score, the de-
tected object is classified as clutter; otherwise, the
detected object is assigned to the class (tank, armored
personnel carrier, or howitzer) with the highest match
score.

The pattern-matching references used in the classi-
fier were constructed by averaging five consecutive

spotlight-mode images of a target collected at 1° in-
crements of azimuth, yielding 72 smoothed images of
each of the targets. Figure 4 shows typical pattern-
matching references for the three targets at a particu-
lar aspect angle.

Performance of the Baseline ATR System

This section describes the performance of the pre-
screening, discrimination, and classification stages of
the baseline SAR ATR system. Clutter data from 5
km2 of ground area were processed through the ATR-
system algorithms, along with data for 162 camou-
flaged targets and 177 uncamouflaged targets. The
camouflaged target data used in this study represent a
difficult scenario in which the test targets were realis-
tically deployed and covered with radar camouflage.
The training data used to design the ATR system
were taken from the uncamouflaged targets. The clut-
ter data contained a moderate number of man-made
clutter discretes.

The CFAR detection threshold in the prescreener
was set relatively low to obtain a high initial probabil-
ity of detection (PD) for the target data. At the output
of the prescreener, PD = 1.00 was obtained for the
uncamouflaged targets, while PD = 0.82 was obtained
for the camouflaged targets. At this CFAR threshold,
a false-alarm density of approximately 30 false alarms
per km2 (FA/km2) was obtained. The initial detection
processing was carried out at reduced resolution (1 m
by 1 m).

FIGURE 4. Typical pattern-matching reference templates for (a) a tank, (b) an armored personnel carrier,
and (c) a howitzer. These pattern-matching references are used to classify detected objects by vehicle
type. They are constructed by averaging five consecutive spotlight-mode images of a target collected at 1°
increments of azimuth.

(a) (b) (c)
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Table 1. Overview of ATR System Performance.

Pd Pd

FA/km
2

Uncamouflaged Camouflaged

Targets*  Targets

After prescreening 30 1.00 0.82

After discrimination 3.0 1.00 0.75

After classification 0.3 1.00 0.70

* The uncamouflaged target test data was used for algorithm training.

FIGURE 5. Overview of classifier performance. The clut-
ter and target data were processed separately. Most of
the clutter had correlation scores below the threshold
value of 0.7, and was rejected. Detected objects above
the threshold were classified according to their highest
correlation scores.
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mented by the pattern-matching classifier. As the fig-
ure shows, most of the clutter discretes had correla-
tion scores below the threshold value of 0.7, and thus
were rejected (i.e., classified as clutter). Detected ob-
jects with correlation scores equal to or greater than
0.7 were considered to be sufficiently targetlike, and
were classified according to their highest correlation
scores (as tank, armored personnel carrier, or howit-
zer). Figure 5 also indicates that only a small fraction
of the camouflaged targets were declared to be clutter
because of low correlation scores.

The second function of the classifier is to assign

Each detected region of interest (containing a po-
tential target) was passed to the discrimination stage
for further processing at full resolution (1 ft by 1 ft).
The discrimination stage determined the location and
orientation of each detected object, and then calcu-
lated the textural features (standard deviation, fractal
dimension, and weighted-rank fill ratio) that were
used to reject natural-clutter discretes. Discrimina-
tion processing reduced the false-alarm density by a
factor of 10, to 3 FA/km2. No uncamouflaged targets
were rejected by the textural-feature tests; thus the
initial PD of 1.00 was maintained. A few of the cam-
ouflaged targets were rejected by the textural-feature
tests, which resulted in PD = 0.75 for these targets.

In the classification stage of processing, the 2-D
pattern-matcher was applied to those detections which
had passed the discrimination stage. Classification
processing reduced the false-alarm rate by another
factor of 10, to approximately 0.3 FA/km2. No
uncamouflaged targets were rejected by the pattern
matcher (resulting in PD = 1.00 for these targets), but
some camouflaged targets were incorrectly classified
as clutter (resulting in PD = 0.70 for these targets).

Table 1 summarizes the performance of all three
stages of the ATR system. The uncamouflaged target
data were used for training the discrimination and
classification stages. The thresholds of the algorithms
were set so that perfect performance was achieved
with the uncamouflaged data. Once the thresholds
had been set in this way, the clutter and camouflaged
targets were processed.

Figure 5 illustrates how clutter rejection was imple-
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flaged targets were classified as targets, and 85% of
those targets were correctly classified by vehicle type.

The four-class, 2-D pattern-matching algorithm
used in this study was implemented with normalized
dB references, which provided the best overall perfor-
mance among five different reference schemes that
were tested.

ATR Performance Using Single-Channel Data
versus Fully Polarimetric Data

We compared the performance of the ATR system
using single-channel (HH) data with the performance
of the system using fully polarimetric PWF data.
Figure 6(a) shows an HH-polarization SAR image of
a scene processed to reduced resolution (1 m by 1 m).
In this image two regions of trees are separated by a
narrow strip of coarse scrub. Also visible in the image,
although somewhat faint, are four power-line towers
located in the scrub. Figure 6(b) shows the corre-
sponding PWF-processed image of the scene. The
power-line towers have greater intensity in the PWF
image than in the HH image because the PWF image
includes contributions from HH, HV, and VV polar-
izations.

Table 3 compares ATR system performance using
HH versus PWF data. The comparison was performed
by using the same target and clutter data used to

Table 2. Correlation Pattern-Matching
Classifier Performance

(training data: uncamouflaged targets;
test data: camouflaged targets and clutter discretes)

Percent Classified as

Tank APC Howitzer Clutter

Tank 89% 11% 0% 0%

APC 0% 96% 0% 4%

Howitzer 0% 13% 71% 16%

Clutter 0% 14% 0% 86%

FIGURE 6. Comparison of (a) HH and (b) PWF imagery. The power-line towers are more clearly visible in the PWF
image because PWF processing combines data from all three polarization channels (HH, HV, and VV).

objects accepted as targets to target classes (tank, ar-
mored personnel carrier, howitzer). Table 2 shows the
classification performance of the baseline classifier as
a confusion matrix that tabulates the correct and
incorrect classifications. Recall that the classifier used
templates constructed from uncamouflaged targets;
the classification results shown in Table 2 are for
clutter discretes and camouflaged test targets that
passed the detection and discrimination stages. At the
output of the classification stage, 70% of the camou-

(a) (b)
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generate the results in Table 1. At the output of each
stage (prescreening, discrimination, and classification)
the false-alarm densities were set equal for HH and
PWF clutter imagery. This normalization permits us
to compare the HH and PWF detection performance
at each stage.

The detection performance was better with PWF
data than with HH data. At the output of the detec-
tion stage PD = 0.82 for PWF data and PD = 0.65 for
HH data. At the output of the discrimination stage
PD = 0.75 for PWF data and PD = 0.57 for HH data.
At the output of the classification stage PD = 0.70 for
PWF data and PD = 0.24 for HH data; the PD at the
end of the classification stage represents the overall
end-to-end performance of the ATR system.

Details of the Baseline Discrimination Features

This section presents details of the three baseline
discrimination features: standard deviation, fractal di-
mension, and weighted-rank fill ratio. The equations
for calculating each feature are also discussed. Because
the concept of the fractal-dimension feature is fairly
involved, this feature is discussed at greater length
than the other two features.

Standard-Deviation Feature

The standard-deviation feature is a measure of the
fluctuation in intensity, or radar cross section, in an
image. The log standard deviation for a particular
region is defined as the standard deviation of the
radar returns (in dB) from the region. If the radar
intensity in power from range r and azimuth a is
denoted by P(r, a), then the log standard deviation σ

can be estimated as follows:
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and N is the number of points in the region.

Fractal-Dimension Feature

The fractal-dimension feature provides a measure of
the spatial distribution of the brightest scatterers in a
region. In the following paragraphs we present the
formal definition of fractal dimension, along with
several simple examples to illustrate the definition.
We also show how to calculate the fractal dimension
of detected objects in a SAR image. By using high-
resolution SAR imagery gathered at Stockbridge, New
York, we demonstrate how the spatial texture differ-
ences measured by the fractal-dimension feature can
be used to discriminate between natural and cultural
objects.

The fractal dimension of a set S in a two-dimen-
sional space can be defined as follows:

dim( ) lim
log

log
,S

M=






→ε

ε

ε
0 1 (4)

where Mε = the minimum number of ε-by-ε boxes
needed to cover S. (By covering S, we mean finding a
set of square boxes Bi such that ∪ ⊇B Si .) For small
values of ε, the definition in Equation 4 is equivalent
to writing

M K S
ε ε≈ − dim( ) , (5)

where K  is a constant. This equation expresses one of
the important ideas behind fractal analysis: fractal

Table 3. Comparison of ATR System Perfor-
mance Using HH Imagery versus PWF Imagery.

FA/km
2

Pd Pd

HH Data PWF Data

After prescreening 30 0.65 0.82

After discrimination 3.0 0.57 0.75

After classification 0.3 0.24 0.70
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dimension measures how certain properties of a set
change with the scale of observation ε. In the fol-
lowing paragraphs, three specific examples clarify
this idea.

Example 1. Let S be a single point. A point can be
covered by one box regardless of the box size ε; hence

dim( ) lim
log

log
lim

log
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We could use Equation 5 to derive this same result by
noting that the number of square boxes needed to
cover S is independent of the box size; thus dim(point)
equals zero. Figure 7 summarizes this example. In
addition, as long as ε is below a certain critical value, a
finite set of isolated points can be covered by a fixed
number of boxes (independent of ε). Therefore, a
finite set of isolated points also has a dimension of
zero.

Example 2. Let S be a line segment. For simplicity,
we assume the line is 1 unit long. A single 1-unit-by-
1-unit box can cover the line. If we reduce the box
size to 1/2 unit by 1/2 unit, then two boxes are

needed to cover the line. If we reduce the box size
again, to 1/4 unit by 1/4 unit, four boxes are needed
to cover the line. Each time the box size is halved, the
number of boxes needed to cover a line doubles; thus

dim( ) lim
log
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.line =
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Figure 8 summarizes this example. It can also be
shown that a finite set of isolated line segments has a
fractal dimension of one.

Example 3. Let S be a square area. Again, for sim-
plicity, we assume the square is 1 unit by 1 unit in
size. A single 1-unit-by-1-unit box can cover the square.
If we reduce the box size to 1/2 unit by 1/2 unit, four
boxes are required. If we reduce the box size again, to
1/4 unit by 1/4 unit, 16 boxes are required. As the
box size is halved, the number of boxes needed to
cover the square area quadruples; thus

dim( ) lim
log

log

.square =
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FIGURE 8. Fractal-dimension calculation for a line seg-
ment. As the size of each square box that covers the line
segment is halved, the number of boxes required to
cover the line segment doubles. As a result, the fractal
dimension of a line segment is one.

FIGURE 7. Fractal-dimension calculation for a point. As
the size of the square box that covers the point de-
creases, the number of boxes required to cover the point
remains the same (i.e., one). As a result, the fractal
dimension of a point is zero.
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Figure 9 summarizes this example. We used a
square area in this example for convenience. Any
area that can be synthesized from a finite number of
square areas, however, will have a fractal dimension
of two.

From these simple examples, we see that fractal
dimension clearly has the potential to discriminate
between certain types of objects in 2-D space. The
question is, how can this feature be applied to SAR
data?

The first step in applying the fractal-dimension
concept to a radar image is to select an appropriately
sized region of interest, and then convert the pixel
values in the region of interest to binary (i.e., each
pixel value equals 0 or 1). One method of performing
this conversion is amplitude thresholding, in which all
pixel values exceeding a specified threshold are con-
verted to 1, and the remaining pixel values are con-
verted to 0. Another method is to select the N bright-
est pixels in the region of interest and convert their
values to 1, while converting the rest of the pixel
values to 0; this second method is the approach we
used (because it worked better).

After converting the radar image to a binary image,

we let the pixels with the value 1 constitute the set S
in Equation 4. A problem arises, however, when we
attempt to apply the definition of Equation 4 directly
to our binary image. According to the definition of
fractal dimension, we need to take a limit as the box
size ε goes to zero. The smallest meaningful value of
the box size ε , however, is the size of one pixel.
Therefore, we must develop an approximation to the
formula of Equation 4.

From Equation 5 we observe that

log dim log logM Kε ε≈ − +

for small ε. Because the relation between log Mε and
log ε is linear for small ε, with the slope equal to the
negative of the dimension, the fractal dimension can
be approximated by using only the box counts for
ε = 1 and ε = 2 in the following way:

dim
log log

log log

log log

log
,= − −

−
= −M M M M1 2 1 2

1 2 2

(6)

where M1 is the number of 1-pixel-by-1-pixel boxes
needed to cover the image and M2 is the number of
2-pixel-by-2-pixel boxes needed to cover the
image. Figure 10 summarizes the fractal dimensions
of simple objects as they are observed in SAR
imagery.

The following paragraphs provide two examples of
calculating the fractal dimension of regions of interest
in radar imagery. The examples use data extracted
from the SAR image shown in Figure 11. The figure
shows a Stockbridge, New York, clutter scene that
includes trees, a street with houses on both sides, a
swimming pool, and a meadow. The examples dem-
onstrate the fractal-dimension calculation for a typi-
cal tree (natural clutter) and the rooftop of a house
(cultural clutter).

Figure 12 illustrates the fractal-dimension calcula-
tion for a binary image of a tree; the binary image was
formed by selecting the 50 brightest pixels from a
120-ft-by-120-ft region of interest in the image of
Figure 11. The number of 1-pixel-by-1-pixel boxes
needed to cover this image is identical to the number
of pixels with the value 1 (i.e., M1 equals 50). The

FIGURE 9. Fractal-dimension calculation for a square
area. Each time the size of each square box that covers
the square area is halved, the number of boxes required
to cover the square quadruples. As a result, the fractal
dimension of a square is two.
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Fractal dimension = 0 Fractal dimension = 1 Fractal dimension = 2

minimum number of 2-pixel-by-2-pixel boxes needed
to cover the image is 41; Figure 12 shows this mini-
mal covering. By applying Equation 6, we find that
the fractal dimension of the tree is 0.29. This rela-
tively low value reflects the fact that the binary image
of the tree consists primarily of isolated pixels.

Figure 13 illustrates the fractal-dimension calcula-
tion for a binary image of a house rooftop (this image
was formed in the same way as the image of the tree in
Figure 12). Notice that the pixels in this image are
clustered into lines and areas. The number of 1-pixel-
by-1-pixel boxes needed to cover the image is 50, but
the minimum number of 2-pixel-by-2-pixel boxes
needed to cover the image is only 21. By using Equa-
tion 6, we find that the fractal dimension of the house
rooftop is 1.25. This relatively high value is
caused by the clustering of the pixels. The different
fractal-dimension values for the tree and the
rooftop illustrate that this feature can be used to
discriminate between natural clutter and cultural
clutter.

Weighted-Rank Fill Ratio Feature

The third textural feature, the weighted-rank fill ra-
tio, measures the percentage of the total energy con-

tained in the brightest scatterers of a detected object.
Using the notation of Equations 2 and 3, we define
the weighted-rank fill ratio η as follows:

η =
∑

∑

P r a

P r a
k

( , )

( , )
, brightest pixels

all pixels

where k is selected to correspond approximately to
the brightest 5% of the detected object’s pixels. For
man-made objects a significant portion of the total
energy comes from a small number of bright scatter-
ers; for natural clutter the total energy is distributed
more evenly among the pixels.

Future ATR System Improvements

The baseline ATR system currently uses only three
features in the discrimination stage (standard devia-
tion, fractal dimension, and weighted-rank fill ratio);
we have found that these features reliably reject natu-
ral-clutter false alarms. Other discrimination features
could be added that would also reject some cultural-
clutter false alarms. For example, a size feature, such
as length and width of the detected object, could

FIGURE 10. Fractal dimensions of simple objects in SAR imagery. (a) Points have a fractal
dimension of zero, (b) lines have a fractal dimension of one, and (c) squares and L-shaped
objects have a fractal dimension of two. In the text we show how to calculate the fractal
dimensions of these objects by using the approximation derived in Equation 6.
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reject objects too large or too small to be targets.
Numerous discrimination features have been investi-
gated, and an improved set of five features has been
found to provide better discrimination performance
than the baseline feature set used in this article. A
detailed description of all the discrimination features
investigated so far is given in the accompanying ar-
ticle entitled “Discriminating Targets from Clutter”
by Daniel E. Kreithen et al.

Improvements in the baseline pattern-matching
classifier will be necessary before an operational, end-

to-end ATR system can be implemented. Target sig-
natures vary with aspect angle, depression angle, and
SAR squint angle; constructing templates incorporat-
ing these variables would produce a large and compu-
tationally unwieldy set of templates. In an operational
scenario, the target aspect angle is not known. There-
fore, each detected object would have to be correlated
with a large subset of the pattern-matching templates,
which would increase computation time significantly.
The accompanying article entitled “Improving a Tem-
plate-Based Classifier in a SAR Automatic Target Rec-

FIGURE 11. High resolution (1 ft by 1 ft) PWF-processed SAR image of mixed natural and cultural
clutter in Stockbridge, New York. A tree and a house rooftop from this image are used in the fractal-
dimension calculations illustrated in Figures 12 and 13.

Pool
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using spatial matched filters. The initial results of
these studies indicate the possibility of a significant
reduction in computation time and storage require-
ments with no reduction in performance [7].
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FIGURE 12. Fractal-dimension calculation for the binary
image of a tree. The 50 brightest pixels (indicated by the
small black boxes) are relatively isolated, and 41 two-
pixel-by-two-pixel boxes are needed to cover them, which
results in a low fractal dimension of 0.29.

ognition System by Using 3-D Target Information”
by Shawn M. Verbout et al. presents an approach to
this classification task based on the generation of 2-D
templates from 3-D models of targets.

Because the pattern-matching approach to classifi-
cation requires a large number of templates, we are
investigating an alternative approach to classification—

FIGURE 13. Fractal-dimension calculation for the binary
image of a house rooftop. The 50 brightest pixels (indi-
cated by the small black boxes) are more tightly clus-
tered than they are for the tree in Figure 12, and only 21
two-pixel-by-two-pixel boxes are needed to cover them,
which results in a higher fractal dimension of 1.25.
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