130 research outputs found

    Advancing efficiency and robustness of neural networks for imaging

    Get PDF
    Enabling machines to see and analyze the world is a longstanding research objective. Advances in computer vision have the potential of influencing many aspects of our lives as they can enable machines to tackle a variety of tasks. Great progress in computer vision has been made, catalyzed by recent progress in machine learning and especially the breakthroughs achieved by deep artificial neural networks. Goal of this work is to alleviate limitations of deep neural networks that hinder their large-scale adoption for real-world applications. To this end, it investigates methodologies for constructing and training deep neural networks with low computational requirements. Moreover, it explores strategies for achieving robust performance on unseen data. Of particular interest is the application of segmenting volumetric medical scans because of the technical challenges it imposes, as well as its clinical importance. The developed methodologies are generic and of relevance to a broader computer vision and machine learning audience. More specifically, this work introduces an efficient 3D convolutional neural network architecture, which achieves high performance for segmentation of volumetric medical images, an application previously hindered by high computational requirements of 3D networks. It then investigates sensitivity of network performance on hyper-parameter configuration, which we interpret as overfitting the model configuration to the data available during development. It is shown that ensembling a set of models with diverse configurations mitigates this and improves generalization. The thesis then explores how to utilize unlabelled data for learning representations that generalize better. It investigates domain adaptation and introduces an architecture for adversarial networks tailored for adaptation of segmentation networks. Finally, a novel semi-supervised learning method is proposed that introduces a graph in the latent space of a neural network to capture relations between labelled and unlabelled samples. It then regularizes the embedding to form a compact cluster per class, which improves generalization.Open Acces

    Computational methods to predict and enhance decision-making with biomedical data.

    Get PDF
    The proposed research applies machine learning techniques to healthcare applications. The core ideas were using intelligent techniques to find automatic methods to analyze healthcare applications. Different classification and feature extraction techniques on various clinical datasets are applied. The datasets include: brain MR images, breathing curves from vessels around tumor cells during in time, breathing curves extracted from patients with successful or rejected lung transplants, and lung cancer patients diagnosed in US from in 2004-2009 extracted from SEER database. The novel idea on brain MR images segmentation is to develop a multi-scale technique to segment blood vessel tissues from similar tissues in the brain. By analyzing the vascularization of the cancer tissue during time and the behavior of vessels (arteries and veins provided in time), a new feature extraction technique developed and classification techniques was used to rank the vascularization of each tumor type. Lung transplantation is a critical surgery for which predicting the acceptance or rejection of the transplant would be very important. A review of classification techniques on the SEER database was developed to analyze the survival rates of lung cancer patients, and the best feature vector that can be used to predict the most similar patients are analyzed

    Large-scale inference in the focally damaged human brain

    Get PDF
    Clinical outcomes in focal brain injury reflect the interactions between two distinct anatomically distributed patterns: the functional organisation of the brain and the structural distribution of injury. The challenge of understanding the functional architecture of the brain is familiar; that of understanding the lesion architecture is barely acknowledged. Yet, models of the functional consequences of focal injury are critically dependent on our knowledge of both. The studies described in this thesis seek to show how machine learning-enabled high-dimensional multivariate analysis powered by large-scale data can enhance our ability to model the relation between focal brain injury and clinical outcomes across an array of modelling applications. All studies are conducted on internationally the largest available set of MR imaging data of focal brain injury in the context of acute stroke (N=1333) and employ kernel machines at the principal modelling architecture. First, I examine lesion-deficit prediction, quantifying the ceiling on achievable predictive fidelity for high-dimensional and low-dimensional models, demonstrating the former to be substantially higher than the latter. Second, I determine the marginal value of adding unlabelled imaging data to predictive models within a semi-supervised framework, quantifying the benefit of assembling unlabelled collections of clinical imaging. Third, I compare high- and low-dimensional approaches to modelling response to therapy in two contexts: quantifying the effect of treatment at the population level (therapeutic inference) and predicting the optimal treatment in an individual patient (prescriptive inference). I demonstrate the superiority of the high-dimensional approach in both settings

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    Nonrigid Registration of 3-Dimensional Images of the Carotid Arteries

    Get PDF
    Atherosclerosis at the carotid bifurcation can result in cerebral emboli, which in turn can block the blood supply to the brain causing ischemic strokes. Non-invasive imaging tools that characterize arterial wall, and atherosclerotic plaque structure and composition may help to determine the factors, which lead to the development of unstable lesions, and identify patients at risk of plaque disruption. Registration of 3D ultrasound (US) images of carotid plaque obtained at different time points, and with Magnetic Resonance (MR) images are required for monitoring of plaque changes in volume and surface morphology, and combining the complementary information of the two modalities for better understanding of factors that define plaque vulnerability. These registration techniques should be nonrigid, to remove deformations caused by bending and torsion in the neck during image acquisition sessions. The high degrees of freedom and large number of parameters associated with nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, high computational complexity, and low reliability. Thus, we used a “twisting and bending” model with only six parameters to model the natural movement of the neck for nonrigid registration. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target and the registered images using the distance between “matched points” to evaluate registration results. We registered 3D US carotid images acquired at different head positions to simulate images acquired at different times, and obtained an average MRE of 0.8±0.3mm for nonrigid registration. We registered 3D US and MR carotid images at field strengths, 1.5T and 3.0T, of the same subject acquired on the same day, and obtained an average MRE of 1.4±0.3mm for 1.5T and 1.5±0.4mm for 3.0T, using nonrigid registration. Furthermore, we showed that the error metric used here was not significantly different from the widely accepted Target Registration Error (TRE)
    • …
    corecore